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NSF ITR Deliverables

A set of reusable, inter-operating software 
modules, freely distributed as open-source 
software. These modules will be toolkits 
and frameworks that support the design of 
embedded systems, provide infrastructure 
for domain-specific tools, and provide 
model-based code generators.

The starting point is a family of actor-
oriented modeling tools and associated 
meta modeling tools.
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Tool Architectures

• Objective is to unify:
– modeling
– specification
– design
– programming

• Define modeling & design “languages” with:
– syntaxes that aid understanding
– composable abstractions
– understandable concurrency and time
– predictable behavior
– robust behavior

All of these tasks are 
accomplished by the 
system designers.
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Actor-Oriented Design

• Object orientation:

class name

data

methods

call return

What flows through 
an object is 

sequential control

• Actor orientation:
actor name

data (state)

portsInput data
parameters

Output data

What flows through 
an object is data 

streams
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Examples of Actor-Oriented
Component Frameworks

• Simulink (The MathWorks)
• Labview (National Instruments)
• Modelica (Linkoping)
• OCP, open control platform (Boeing)
• GME, actor-oriented meta-modeling (Vanderbilt)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling (Rational)
• Port-based objects (U of Maryland)
• I/O automata (MIT)
• VHDL, Verilog, SystemC (Various)
• Polis & Metropolis (UC Berkeley)
• Ptolemy & Ptolemy II (UC Berkeley)
• …
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Actor View of Producer/Consumer 
Components

Models of Computation:

• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

  Actor

  IOPort
  IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

  Receiver
(inside port)

Key idea: The model of computation defines the component 
interaction patterns and is part of the framework, not part of the 
components themselves.
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Object-Oriented and 
Actor-Oriented Design

• Object orientation:
– strong typing
– inheritance
– procedural interfaces

• Actor orientation
– concurrency
– communication
– real time

• These are complementary

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Actor orientation offers:
• modeling the continuous environment (and hybrid systems)
• understandable concurrency (vs. RPC, semaphores, and mutexes)
• specifications of temporal behavior (vs. “prioritize and pray”)

UML object model emphasizes static 
structure.
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Two of Our Tool Starting Points

• GME: Generic Modeling Environment
– Vanderbilt ISIS
– Meta modeling of actor-oriented modeling
– Proven for representing “abstract syntax”

(called by some “static semantics”)

• Ptolemy II
– UC Berkeley Chess
– Framework for exploring actor-oriented 

semantics
– Beginnings of meta modeling of actor-oriented 

“abstract semantics”
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Actor-Oriented Modeling in GME

Domain-specific 
actor-oriented 
modeling 
environments 
are created 
from meta 
models, and a 
sophisticated, 
domain-specific 
UI is generated 
from those 
models.
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Meta Modeling in GME

Meta models 
consist of UML 
object models 
enriched by OCL 
constraints 
which capture 
structural 
properties 
shared by a 
family of models.
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Ptolemy II

A laboratory supporting 
experimentation with actor-
oriented design, concurrent 
semantics, and visual 
syntaxes.

http://ptolemy.eecs.berkeley.edu

continuous environment

modal model

discrete controller

example Ptolemy model: hybrid control system
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Software Practice

• Ptolemy II and GME are widely recognized to be 
unusually high quality software from a research group.

• Software practice in the Ptolemy Project:
– Object models in UML
– Design patterns
– Layered software architecture
– Design and code reviews
– Design document
– Nightly build
– Regression tests
– Sandbox experimentation
– Code rating
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Software is 
written to be 
read!

Code rating

• A simple framework for
– quality improvement by peer review
– change control by improved visibility
– encouraging innovation

• Four confidence levels
– Red. No confidence at all.
– Yellow. Passed design review. 

Soundness of the APIs.
– Green. Passed code review. 

Quality of implementation.
– Blue. Passed final review. 

Backwards-compatibility assurance.
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ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Modeling Semantics in Ptolemy II –
Object Model for Executable Components
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IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

  

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

  

Communication Protocols –
Object Model for Messaging Framework
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Structuring This Space with
Interface Theories

• Concept of Interface Theories is due to 
Tom Henzinger and his colleagues.

• We are using this concept to figure out 
what the Ptolemy Group has done with its  
software prototypes.
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Receiver Interface –
Software Architecture Perspective

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods 
implement the communication 
semantics of a domain in Ptolemy 
II. The receiver instance used in 
communication is supplied by the 
director, not by the component.

producer
actor

consumer
actor

IOPort

Receiver

Director
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Behavioral Types –
Interface Theory Perspective

• Capture the dynamic interaction of components in types
• Obtain benefits analogous to data typing.
• Call the result behavioral types.

producer
actor

consumer
actor

IOPort

Receiver

Director

• Communication has
– data types
– behavioral types

• Components have
– data type signatures
– behavioral type signatures

• Components are
– data polymorphic
– domain polymorphic



10

Chess/ISIS/MSI  19

A Preliminary Behavioral Type System

• Based on interface automata
– Proposed by de Alfaro and Henzinger
– Concise composition (vs. standard automata)
– Alternating simulation provides contravariant inputs/outputs

• Compatibility checking
– Done by automata composition
– Captures the notion “components can work together”

• Alternating simulation (from Q to P)
– All input steps of P can be simulated by Q, and
– All output steps of Q can be simulated by P.
– Provides the ordering we need for subtyping & polymorphism
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Simple Example: One Place Buffer
Showing Consumer Interface Only

hasTokenhT
getg

Return False from hasTokenhTF

Return True from hasTokenhTT
Tokent

Outputs:Inputs:

Model of the 
interaction of a 
one-place buffer, 
showing the 
interface to a 
consumer actor.

consumer
interfaceBuffer:
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Two Candidate Consumer Actors

Consumer with check: Consumer without check:
buffer
interface

hasTokenhT
getg

Return False from hasTokenhTF

Return True from hasTokenhTT
Tokent

Inputs: Outputs:
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Composition: Behavioral Type Check

Consumer with check: Buffer:

Illegal states are 
pruned out of the 
composition. A 
composite state is 
illegal if an output 
produced by one has 
no corresponding 
input in the other.
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Composition: Behavioral Type Check

Buffer:

Consumer without check:

An empty 
composition means 
that all composite 
states are illegal. 
E.g., here, 0_0 is 
illegal, which 
results in pruning 
all states.
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Subclassing and Polymorphism

Buffer:

Buffer with Default:

Alternating 
simulation 
relation

We can construct a type lattice 
by defining a partial order 
based on alternating simulation. 
It properly reflects the desire 
for contravariant inputs and 
outputs.
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Contravariance of Inputs and Outputs
in a Classical Type System

public Complex foo(Double arg)

BaseClass

public Double foo(Complex arg)

DerivedClass

Can accept more 
general inputs

… and deliver more 
specific outputs

DerivedClass
remains a valid drop-

in substitution for 
BaseClass.
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Representing Models of Computation 
Synchronous Dataflow (SDF) Domain

producer
actor

consumer
actor

IOPort

Receiver

Directorreceiver
interface

director
interface

This can be 
composed with 

models of actors to 
determine 

compatibility.
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Subtyping Relation Between Models of 
Computation: SDF ≤ DE

SDF Domain

DE Domain

This enables the design of 
components that can operate 

within multiple models of 
computation (“domain 

polymorphic components”)
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Summary of Behavioral Types –
Preliminary Results

• We capture patterns of component interaction in a 
type system framework: behavioral types

• We describe interaction types and component 
behavior using interface automata.

• We do type checking through automata composition 
(detect component incompatibilities)

• Subtyping order is given by the alternating 
simulation relation, supporting polymorphism.

• A behavioral type system is a set of automata that 
form a lattice under alternating simulation.
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Scalability

• Automata represent behavioral types
– Not arbitrary program behavior
– Descriptions are small
– Compositions are small
– Scalability is probably not an issue

• Type system design becomes an issue
– What to express and what to not express
– Restraint!

• Will lead to efficient type check and type 
inference algorithms
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Issues and Ideas

• Composition by name-matching
– awkward, limiting.
– use ports in hierarchical models?

• Rich subtyping:
– extra ports interfere with alternating simulation.
– projection automata?
– use ports in hierarchical models?

• Synchronous composition:
– composed automata react synchronously.
– modeling mutual exclusion is awkward
– use transient states?
– hierarchy with transition refinements?
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More Speculative

• We can reflect component dynamics in a run-time 
environment, providing behavioral reflection.
– admission control
– run-time type checking
– fault detection, isolation, and recovery (FDIR)

• Timed interface automata may be able to model 
real-time requirements and constraints.
– checking consistency becomes a type check
– generalized schedulability analysis

• Need a language with a behavioral type system
– Visual syntax given here is meta modeling
– Use this to build domain-specific languages
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Conclusions

• You can expect from this team:
– Sophisticated software
– High quality, open-source software
– Domain-specific modules
– Generators for domain-specific modules

• Emphasis on:
– Meta modeling of abstract syntax
– Meta modeling of semantics
– Actor-oriented design methods
– Interface definitions
– Composable models


