Advanced Tool Architectures
Supporting Interface-Based Design

Presented by
Edward A. Lee
Chess, UC Berkeley

UC Berkeley: Chess
Vanderbilt University: ISIS
University of Memphis: MSI

Foundations of Hybrid and Embedded Software Systems

NSF ITR Deliverables ‘%

A set of reusable, inter-operating software
modules, freely distributed as open-source
software. These modules will be toolkits
and frameworks that support the design of
embedded systems, provide infrastructure
for domain-specific tools, and provide
model-based code generators.

The starting point is a family of actor-
oriented modeling tools and associated
meta modeling tools.

Chess/ISIS/MSI 2

Tool Architectures ‘%

- Objective is to unify:
modeling
specification

All of these tasks are
accomplished by the
design system designers.
programming
+ Define modeling & design “languages” with:
- syntaxes that aid understanding .
composable abstractions L
understandable concurrency and time ;!‘ e
predictable behavior s it
robust behavior

Chess/ISIS/MSI 3

Actor-Oriented Design ‘%

+ Object orientation:

What flows through
class name an object is
data sequential control
r methods 1
call return
Actor orientation: What flows through
actor name an object is data
data (state) streams
- parameters ‘
Input data borts Output data

Chess/ISIS/MSI 4

Examples of Actor-Oriented
Component Frameworks

&

Simulink (The MathWorks)

Labview (National Instruments)

Modelica (Linkoping)

OCP, open control platform (Boeing)

GME, actor-oriented meta-modeling (Vanderbilt)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)

ROOM, real-time object-oriented modeling (Rational)
Port-based objects (U of Maryland)

I/0 automata (MIT)

VHDL, Verilog, SystemC (Various)

Polis & Metropolis (UC Berkeley)

Ptolemy & Ptolemy IT (UC Berkeley)

Chess/ISIS/MSI 5

Actor View of Producer/Consumer
Components

&

Basic Transport: Models of Co

receiver.put(t)

 dataflow
* rendezvous

IORelation

{inside port) « time-driven

* publish/subscribe

.

Key idea: The model of computation defines the component
interaction patterns and is part of the framework, not part of the
components themselves.

e continuous-time

* discrete events
Receiver * synchronous

mputation:

Chess/ISIS/MSI 6

Object-Oriented and @
Actor-Oriented Design '

«Interface» nterface
Executable [<H | Actor

+ Object orientation:
- strong typing o |-
- inheritance Pl B o
- procedural interfaces [’ T ‘ TT
+ Actor orientation 1 7‘ L -
- concurrency
- communication
- real time

« These are complemem‘ary ;)TAr"\lJLC$SF‘i:C1- model emphasizes static

CompositeEntity

CompositeActor

Actor orientation offers:

* modeling the continuous environment (and hybrid systems)

* understandable concurrency (vs. RPC, semaphores, and mutexes)
« specifications of temporal behavior (vs. “prioritize and pray")

Chess/ISIS/MSI 7

Two of Our Tool Starting Points ‘%

* GME: Generic Modeling Environment
- Vanderbilt ISIS
- Meta modeling of actor-oriented modeling

- Proven for representing "abstract syntax”
(called by some “static semantics")

* Ptolemy II
- UC Berkeley Chess

- Framework for exploring actor-oriented
semantics

- Beginnings of meta modeling of actor-oriented
"abstract semantics”

Chess/ISIS/MSI 8

Actor-Oriented Modeling in GME

R

.7 GVE20ND - test - [Operatorintertoce | i [=1E
Flle Edt View Window Help =
[imBxlac| 440 s He@ | BTED
X T teme [Operatarinietace |Eu| Aapect |SignalFicw =l r —
a — | Ao | inhedance | Meta |
=| nNEx 1 =
L g = §*Demo -
& ol g——-- = T AMTSystem
& 7 T Aspen
— 3 @ T Coriod
T Nelleta
+ T Momnalize
= T Dperatointadace
pres) A Elottir
. o _pres & START
A Star
Tart A co
Display . A g_prs il
er am
temp =mp g_ternp :z termp
| u apt
A @l
START = & o2 i
»

i Loyou | Signalype. SignalFlow

Domain-specific
actor-oriented
modeling
environments
are created
from meta
models, and a
sophisticated,
domain-specific
UI is generated
from those
models.

Chess/ISIS/MSI 9

Meta Modeling in GME

R

Meta-Modeling Language
Meta-Meta-Model

Example: FSM Meta-Model

Transition

Meta-Modeliing Language

Meta-Model

State Machine State weansFum
= - _ } =

Domain Modeling Language
Model

Example: FSM Model

Computer-Based System

Meta models
consist of UML
object models
enriched by OCL
constraints
which capture
structural
properties
shared by a
family of models.

Chess/ISIS/MSI 10

Ptolemy IT ¢

‘ continuous environment ‘

controller | " A labor‘afor‘y Suppor‘.‘-ing
_ﬁ experimentation with actor-
| — modal model == gpiented design, concurrent

semantics, and visual
syntaxes.

http://ptolemy.eecs.berkeley.edu

‘ example Ptolemy model: hybrid control system ‘
Chess/ISIS/MSI 11

Software Practice ‘%

* Ptolemy IT and GME are widely recognized to be
unusually high quality software from a research group.

- Software practice in the Ptolemy Project:
- Object models in UML
- Design patterns
- Layered software architecture
- Design and code reviews
- Design document
- Nightly build
- Regression tests
- Sandbox experimentation
- Code rating

Chess/ISIS/MSI 12

Code rating

- A simple framework for
- quality improvement by peer review
- change control by improved visibility
- encouraging innovation

+ Four confidence levels
- Red. No confidence at all.

Passed design review.
Soundness of the APIs.

- Green. Passed code review.
Quality of implementation.

- Blue. Passed final review.
Backwards-compatibility assurance

Software is
written to be
read!

Modeling Semantics in Ptolemy IT -

Object Model for Executable Components

&

CompositeEntity

]

CompositeActor

«Interface» «Interface»
Executable <} | Actor R
ComponentEntity
+fire() +getDirector() : Director
+initialize() +getExecutiveDirector() : Directol 0.1
+postfire() : boolean +getManager() : Manager o.n -
+prefire() : boolean +inputPortList() : List
+preinitialize() +newReceiver() : Receiver
+stopFire() +outputPortList() : List
+terminate()
+wrapup()
N
Director AtomicActor

Chess/ISIS/MSI 14

Communication Protocols - @
Object Model for Messaging Framework '

IOPort

0.1 0.n

«Interface»

" Recei
eceiver NoTokenException|
throws
throws

+get() : Token

+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

«Interface»
Mailbox i Q i D i SDF

T T 1.1 1.1
= by 1.1
' - .

1.1 FIFOQueue ArrayFIFOQueue

CT i CSF

Chess/ISIS/MSI 15

Structuring This Space with %
Interface Theories :

- Concept of Interface Theories is due to
Tom Henzinger and his colleagues.

+ We are using this concept to figure out
what the Ptolemy Group has done with its
software prototypes.

Chess/ISIS/MSI 16

Receiver Interface - %
Software Architecture Perspective ;

«Interface» These polymorphic methods
Receiver implement the communication
semantics of a domain in Ptolemy

+get() : Token Il. The repeiyer i.nstance. used in

+getContainer() : IOPort communication is supplied by the

+hasRoom() : boolean director, not by the component.

+hasToken() : boolean

+put(t : Token) Director

+setContainer(port : IOPort)

I0Port
producer consumer
actor actor
Receiver
Chess/ISIS/MSI 17

Behavioral Types - %
Interface Theory Perspective ;

+ Capture the dynamic interaction of components in types
* Obtain benefits analogous to data typing.
* Call the result behavioral types.

+ Communication has
Director - data types
- behavioral types
« Components have

p’;’;’t‘i,‘i"' O etor - data type signatures

- behavioral type signatures
+ Components are

- data polymorphic

- domain polymorphic

I0Port

Receiver

Chess/ISIS/MSI 18

A Preliminary Behavioral Type System ‘%

* Based on /interface automata

- Proposed by de Alfaro and Henzinger

- Concise composition (vs. standard automata)

- Alternating simulation provides contravariant inputs/outputs
+ Compatibility checking

- Done by automata composition

- Captures the notion “components can work together”

* Alternating simulation (from Q to P)
- All input steps of P can be simulated by Q, and

- All output steps of Q can be simulated by P.
- Provides the ordering we need for subtyping & polymorphism

Chess/ISIS/MSI 19

Simple Example: One Place Buffer %
Showing Consumer Interface Only /

_ consumer
Buffer: ’\ interface
o o W] Modelof the
/\ interaction of a
@ @ h‘ one-place buffer,
showing the
f”)Y‘\Q"’g?/f”) hTT interfacge toa
hTF! ul Ul
' consumer actor.
@ @ hTF
s
Outputs:

T Token
hTT [Return True from hasToken

hTF | Return False from hasToken

Inputs:

g get
hT | hasToken

Chess/ISIS/MSI 20

Two Candidate Consumer Actors ‘%

SEMEET Tl Gress Consumer without check:

h; \ buffer Wt
b interface © m

hTT
» ’

hTF’? hTF 2

1020020/l {o®0
\») »

g
ot Outputs:
t Token

g get

hTT | Return True from hasToken
hTF | Return False from hasToken

hT | hasToken

Chess/ISIS/MSI 21

Composition: Behavioral Type Check ‘%

hT A q
Consumer with check: Buffer:

h! B 1’

’ p_pR: h

hTF’F hT

hT @
{020, 0Ol nuo = a s %
)) O

Tllegal states are 33

pruned out of the C) :

composition. A oo ’/2: ‘\\ 2
composite state is) ——(>
illegal if an output (<>)
produced by one has ﬁ_")m

no corresponding C)
input in the other.

Chess/ISIS/MSI 22

Composition: Behavioral Type Check

Consumer without check:

n

»

hTF r.':\
BB
. A L
»

An empty
composition means
that all composite
states are illegal.
E.g. here, 0_0is
illegal, which
results in pruning
all states.

Buffer:

N
() ()

hTF

o

Chess/ISIS/MSI 23

Subclassing and Polymorphism

&

We can construct a type lattice

by defining a partial order

based on alternating simulation.
Tt properly reflects the desire

for contravariant inputs and

outputs.

Buffer with Default:

Buffer:
»
/_,_,..——-——-___\‘ >
() ()
~ w0
J O~ €k
@ -
]
4
S
- Alfer‘nq’fing
/ ®» simulation
o @-’ - h;r relation
hTF
]

Chess/ISIS/MSI 24

Contravariance of Inputs and Outputs %
in a Classical Type System '

... and deliver more
specific outputs

public Complex foo(DoubIe/jA/
‘ Can accept more
Deri\%/d/ass

general inputs
7
public Double foo(Complex arg)

BaseClass

DerivedClass
remains a valid drop-
in substitution for

BaseClass.
Chess/ISIS/MSI 25
Representing Models of Computation %
Synchronous Dataflow (SDF) Domain :
. Director
receilver
interface
> \ 4 5 Poetor ctor
'; - O : Receiver
::P m| director
m :)__ O_" > interface
hT .
o s I This can be
[] O composed with
hTF } models of actors to
determine
compatibility.
Chess/ISIS/IMSI 26

Subtyping Relation Between Models of
Computation: SDF < DE

DE Domain | ~
O
i ';-q_—\-l'}_\ﬁ-';_\——b'}_h\s;‘h () -
I’ (’y_/’ R N LN N »
. . ,/".J Ty
SDF Domain » L/
» k()
» 5 o
“ O W O
» >
® OO O (Oe() * This enables the design of
» (j components that can operate
Y O within multiple models of
4 computation (“domain
polymorphic components”)

Chess/ISIS/MSI 27

Summary of Behavioral Types -
Preliminary Results

&

We capture patterns of component interaction in a

type system framework: behavioral types

We describe interaction types and component
behavior using /nterface automata.

We do type checking through automata composition

(detect component incompatibilities)

Subtyping order is given by the alternating
simulation relation, supporting polymorphism.

A behavioral type systemis a set of automata that

form a lattice under alternating simulation.

Chess/ISIS/MSI 28

Scalability ‘%

* Automata represent behavioral types
- Not arbitrary program behavior
- Descriptions are small
- Compositions are small
- Scalability is probably not an issue

+ Type system design becomes an issue
- What to express and what to not express

- Restraint!

* Will lead to efficient type check and type
inference algorithms

Chess/ISIS/MSI 29

Issues and Ideas ‘%

Composition by name-matching
- awkward, limiting.
- use ports in hierarchical models?

Rich subtyping:

- extra ports interfere with alternating simulation.
- projection automata?

- use ports in hierarchical models?

Synchronous composition:

- composed automata react synchronously.
- modeling mutual exclusion is awkward

- use transient states?

- hierarchy with transition refinements?

Chess/ISIS/MSI 30

More Speculative ‘%

We can reflect component dynamics in a run-time
environment, providing behavioral reflection.

- admission control

- run-time type checking

- fault detection, isolation, and recovery (FDIR)

Timed interface automata may be able to model
real-time requirements and constraints.

- checking consistency becomes a type check

- generalized schedulability analysis

Need a /anguage with a behavioral type system
- Visual syntax given here is meta modeling
- Use this to build domain-specific languages

Chess/ISIS/MSI 31

Conclusions ‘%

* You can expect from this tfeam:
Sophisticated software

High quality, open-source software
Domain-specific modules

Generators for domain-specific modules
* Emphasis on:

- Meta modeling of abstract syntax
Meta modeling of semantics
Actor-oriented design methods
Interface definitions
Composable models

Chess/ISIS/MSI 32

