
1

NSF

Foundations of Hybrid and Embedded Software Systems

UC Berkeley: Chess
Vanderbilt University: ISIS
University of Memphis: MSI

Advanced Tool Architectures
Supporting Interface-Based Design

Presented by
Edward A. Lee
Chess, UC Berkeley

Chess/ISIS/MSI 2

NSF ITR Deliverables

A set of reusable, inter-operating software
modules, freely distributed as open-source
software. These modules will be toolkits
and frameworks that support the design of
embedded systems, provide infrastructure
for domain-specific tools, and provide
model-based code generators.

The starting point is a family of actor-
oriented modeling tools and associated
meta modeling tools.

2

Chess/ISIS/MSI 3

Tool Architectures

• Objective is to unify:
– modeling
– specification
– design
– programming

• Define modeling & design “languages” with:
– syntaxes that aid understanding
– composable abstractions
– understandable concurrency and time
– predictable behavior
– robust behavior

All of these tasks are
accomplished by the
system designers.

Chess/ISIS/MSI 4

Actor-Oriented Design

• Object orientation:

class name

data

methods

call return

What flows through
an object is

sequential control

• Actor orientation:
actor name

data (state)

portsInput data
parameters

Output data

What flows through
an object is data

streams

3

Chess/ISIS/MSI 5

Examples of Actor-Oriented
Component Frameworks

• Simulink (The MathWorks)
• Labview (National Instruments)
• Modelica (Linkoping)
• OCP, open control platform (Boeing)
• GME, actor-oriented meta-modeling (Vanderbilt)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling (Rational)
• Port-based objects (U of Maryland)
• I/O automata (MIT)
• VHDL, Verilog, SystemC (Various)
• Polis & Metropolis (UC Berkeley)
• Ptolemy & Ptolemy II (UC Berkeley)
• …

Chess/ISIS/MSI 6

Actor View of Producer/Consumer
Components

Models of Computation:

• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

Key idea: The model of computation defines the component
interaction patterns and is part of the framework, not part of the
components themselves.

4

Chess/ISIS/MSI 7

Object-Oriented and
Actor-Oriented Design

• Object orientation:
– strong typing
– inheritance
– procedural interfaces

• Actor orientation
– concurrency
– communication
– real time

• These are complementary

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Actor orientation offers:
• modeling the continuous environment (and hybrid systems)
• understandable concurrency (vs. RPC, semaphores, and mutexes)
• specifications of temporal behavior (vs. “prioritize and pray”)

UML object model emphasizes static
structure.

Chess/ISIS/MSI 8

Two of Our Tool Starting Points

• GME: Generic Modeling Environment
– Vanderbilt ISIS
– Meta modeling of actor-oriented modeling
– Proven for representing “abstract syntax”

(called by some “static semantics”)

• Ptolemy II
– UC Berkeley Chess
– Framework for exploring actor-oriented

semantics
– Beginnings of meta modeling of actor-oriented

“abstract semantics”

5

Chess/ISIS/MSI 9

Actor-Oriented Modeling in GME

Domain-specific
actor-oriented
modeling
environments
are created
from meta
models, and a
sophisticated,
domain-specific
UI is generated
from those
models.

Chess/ISIS/MSI 10

Meta Modeling in GME

Meta models
consist of UML
object models
enriched by OCL
constraints
which capture
structural
properties
shared by a
family of models.

6

Chess/ISIS/MSI 11

Ptolemy II

A laboratory supporting
experimentation with actor-
oriented design, concurrent
semantics, and visual
syntaxes.

http://ptolemy.eecs.berkeley.edu

continuous environment

modal model

discrete controller

example Ptolemy model: hybrid control system

Chess/ISIS/MSI 12

Software Practice

• Ptolemy II and GME are widely recognized to be
unusually high quality software from a research group.

• Software practice in the Ptolemy Project:
– Object models in UML
– Design patterns
– Layered software architecture
– Design and code reviews
– Design document
– Nightly build
– Regression tests
– Sandbox experimentation
– Code rating

7

Chess/ISIS/MSI 13

Software is
written to be
read!

Code rating

• A simple framework for
– quality improvement by peer review
– change control by improved visibility
– encouraging innovation

• Four confidence levels
– Red. No confidence at all.
– Yellow. Passed design review.

Soundness of the APIs.
– Green. Passed code review.

Quality of implementation.
– Blue. Passed final review.

Backwards-compatibility assurance.

Chess/ISIS/MSI 14

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Modeling Semantics in Ptolemy II –
Object Model for Executable Components

8

Chess/ISIS/MSI 15

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

Communication Protocols –
Object Model for Messaging Framework

Chess/ISIS/MSI 16

Structuring This Space with
Interface Theories

• Concept of Interface Theories is due to
Tom Henzinger and his colleagues.

• We are using this concept to figure out
what the Ptolemy Group has done with its
software prototypes.

9

Chess/ISIS/MSI 17

Receiver Interface –
Software Architecture Perspective

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

producer
actor

consumer
actor

IOPort

Receiver

Director

Chess/ISIS/MSI 18

Behavioral Types –
Interface Theory Perspective

• Capture the dynamic interaction of components in types
• Obtain benefits analogous to data typing.
• Call the result behavioral types.

producer
actor

consumer
actor

IOPort

Receiver

Director

• Communication has
– data types
– behavioral types

• Components have
– data type signatures
– behavioral type signatures

• Components are
– data polymorphic
– domain polymorphic

10

Chess/ISIS/MSI 19

A Preliminary Behavioral Type System

• Based on interface automata
– Proposed by de Alfaro and Henzinger
– Concise composition (vs. standard automata)
– Alternating simulation provides contravariant inputs/outputs

• Compatibility checking
– Done by automata composition
– Captures the notion “components can work together”

• Alternating simulation (from Q to P)
– All input steps of P can be simulated by Q, and
– All output steps of Q can be simulated by P.
– Provides the ordering we need for subtyping & polymorphism

Chess/ISIS/MSI 20

Simple Example: One Place Buffer
Showing Consumer Interface Only

hasTokenhT
getg

Return False from hasTokenhTF

Return True from hasTokenhTT
Tokent

Outputs:Inputs:

Model of the
interaction of a
one-place buffer,
showing the
interface to a
consumer actor.

consumer
interfaceBuffer:

11

Chess/ISIS/MSI 21

Two Candidate Consumer Actors

Consumer with check: Consumer without check:
buffer
interface

hasTokenhT
getg

Return False from hasTokenhTF

Return True from hasTokenhTT
Tokent

Inputs: Outputs:

Chess/ISIS/MSI 22

Composition: Behavioral Type Check

Consumer with check: Buffer:

Illegal states are
pruned out of the
composition. A
composite state is
illegal if an output
produced by one has
no corresponding
input in the other.

12

Chess/ISIS/MSI 23

Composition: Behavioral Type Check

Buffer:

Consumer without check:

An empty
composition means
that all composite
states are illegal.
E.g., here, 0_0 is
illegal, which
results in pruning
all states.

Chess/ISIS/MSI 24

Subclassing and Polymorphism

Buffer:

Buffer with Default:

Alternating
simulation
relation

We can construct a type lattice
by defining a partial order
based on alternating simulation.
It properly reflects the desire
for contravariant inputs and
outputs.

13

Chess/ISIS/MSI 25

Contravariance of Inputs and Outputs
in a Classical Type System

public Complex foo(Double arg)

BaseClass

public Double foo(Complex arg)

DerivedClass

Can accept more
general inputs

… and deliver more
specific outputs

DerivedClass
remains a valid drop-

in substitution for
BaseClass.

Chess/ISIS/MSI 26

Representing Models of Computation
Synchronous Dataflow (SDF) Domain

producer
actor

consumer
actor

IOPort

Receiver

Directorreceiver
interface

director
interface

This can be
composed with

models of actors to
determine

compatibility.

14

Chess/ISIS/MSI 27

Subtyping Relation Between Models of
Computation: SDF ≤ DE

SDF Domain

DE Domain

This enables the design of
components that can operate

within multiple models of
computation (“domain

polymorphic components”)

Chess/ISIS/MSI 28

Summary of Behavioral Types –
Preliminary Results

• We capture patterns of component interaction in a
type system framework: behavioral types

• We describe interaction types and component
behavior using interface automata.

• We do type checking through automata composition
(detect component incompatibilities)

• Subtyping order is given by the alternating
simulation relation, supporting polymorphism.

• A behavioral type system is a set of automata that
form a lattice under alternating simulation.

15

Chess/ISIS/MSI 29

Scalability

• Automata represent behavioral types
– Not arbitrary program behavior
– Descriptions are small
– Compositions are small
– Scalability is probably not an issue

• Type system design becomes an issue
– What to express and what to not express
– Restraint!

• Will lead to efficient type check and type
inference algorithms

Chess/ISIS/MSI 30

Issues and Ideas

• Composition by name-matching
– awkward, limiting.
– use ports in hierarchical models?

• Rich subtyping:
– extra ports interfere with alternating simulation.
– projection automata?
– use ports in hierarchical models?

• Synchronous composition:
– composed automata react synchronously.
– modeling mutual exclusion is awkward
– use transient states?
– hierarchy with transition refinements?

16

Chess/ISIS/MSI 31

More Speculative

• We can reflect component dynamics in a run-time
environment, providing behavioral reflection.
– admission control
– run-time type checking
– fault detection, isolation, and recovery (FDIR)

• Timed interface automata may be able to model
real-time requirements and constraints.
– checking consistency becomes a type check
– generalized schedulability analysis

• Need a language with a behavioral type system
– Visual syntax given here is meta modeling
– Use this to build domain-specific languages

Chess/ISIS/MSI 32

Conclusions

• You can expect from this team:
– Sophisticated software
– High quality, open-source software
– Domain-specific modules
– Generators for domain-specific modules

• Emphasis on:
– Meta modeling of abstract syntax
– Meta modeling of semantics
– Actor-oriented design methods
– Interface definitions
– Composable models

