An Extensible Type System for
Component-Based Design

Yuhong Xiong
Advisor: Professor Edward A. Lee

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

DAC Ph.D. Forum, 6/11/02

Component-Based Design

* Good for designing complex, concurrent,

heterogeneous systems

- Two levels of interface:
- data types and

- dynamic interaction: communication & execution

+ We propose a type system to address the
constraints at these two levels

Time Domain Display

ru

Frequancy Domain Display

Data Type Lattice

* Organize all types in
a lattice structure

+ This example lattice
specifies lossless
type conversion
relation

General

String

N

Boolean

SCa/ar'

T

Long Complex

\ Double

In‘r

Unknown

Type Compatibility Rule

sendType < receiveType

OK XK

+ Static type checking
- Type conversion

Type Constraints

y <Complex '
Y Complex

‘ Int <a
Int a

Double <3
Double

B

Efficient algorithm (Rehof & Mogensen)
can find least solution

Structured Types

(arrays and records)

Goals: Questions:

* Arbitrary element * Order relation among
types. E.g. (int)array, structured types?
((int)array)array, * Structured types
array of records, admitted by the
records conTaining inequalify solving
arrays, .. algorithm?

* Type constraints » Conhvergence on
between element infinite lattice?

types and the types
of other objects in
system

Actors Manipulating Structured
Types
+ SequenceToArray * RecordAssembler

* ArrayToSequence » RecordDisassembler
* ArrayAppend * RecordUpdater

+ ArrayElement

* ArrayExtract
* Arraylength

B

{item: a Array, val: 3 Array}
—

B Array

Monotonic Functions in Type
Constraints

» Example: AbsoluteValue Actor
- Works for Int, Long, Fix, Double, Complex
- Output type is the same as the input, unless
input is Complex
- Output type is Double when input is Complex

a B
C.) Complex\Complex

f(a) <, where Double j »Double

f
f(a) = Double if a = Complex I - Ly

= otherwise

Behavioral Type

+ Data types only specify static aspects of
interface

* Proposal:

- Capture the dynamic interaction of
components in types

- Use interface automata (de Alfaro &
Henzinger)

- Obtain benefits analogous to data typing
- Call the result behavioral types

+ Experimental platform: Ptolemy IT

Interaction Semantics

* Flow of control issues

- in Ptolemy IT, these are defined by a Director class
- Communication between components

- in Ptolemy IT, this is defined by a Receiver class

Director

IOPort
producer <L€/ consumer
actor J actor

Receiver

Actor interface for execution: fire

Receiver interface for communication: put, get,
hasToken

Models of Computation

- Define the interaction semantics

* Implemented in Ptolemy IT by a domain
- Receiver + Director

* Examples:
- Communicating Sequential Processes (CSP):
rendezvous-style communication

- Process Networks (PN):
asynchronous communication

- Synchronous Data Flow (SDF):
stream-based communication, statically scheduled

- Discrete Event (DE):
event-based communication

- Synchronous/Reactive (SR):
synchronous, fixed point semantics

Example: Synchronous Dataflow (SDF)
Consumer Actor Type Definition

/\
communication / _
execution mterface t Such actors are
interface ®» | passive, and

(\ _ | assume that input
» j | is available when
i 2 | they fire.

ﬁ@—@ﬂ

Inputs:
- Outputs:
fire .
R Token fR | Return from fire

hTT | Return True from hasToken g | get

hTF | Return False from hasToken hT | hasToken

Type Definition - Synchronous
Dataflow (SDF) Domain

receiver

interface

O—*Q—*Q—*Q—*‘
> director

- Interface

Type Checking - Compose SDF
Consumer Actor with SDF Domain

p’ i g
g O : -
> N » O ’
. OO OO0 * » / n
:T fé))hm f; 0 1 2 rg
= N\ "

h; N O 0=05
SDF Domain SDF Consumer Actor

Compose

+

Y

0.0 1.0 2.0 3 1 4 2
p? pR! f;
—4— —-_+ ——+— - g. *

Type Checking - Compose SDF
Consumer Actor with DE Domain

» — @

p;

» (T OO0

O / \
O .

12 N o004

DE Domain SDF Consumer Actor
Compose

v

p

>

pR

.

+ Empty automaton indicates incompatibility
- Composition type has no behaviors

Subtyping Relation

Alternating Simulation: SDF < DE

SDF Domain

IN

DE Domain

-

> Q—*Q—*O—*Q—’Q
C)

O

Behavior-Level Type Lattice -
Defined by Alternating Simulation

domain e
polymorphic

discrete

events

synchronous
dataflow

unknown (unknown:

process
networks

» Subtyping relation
- Shown here for a few

Ptolemy II domains

communicating

g— equen tial

If an actor is
compatible with a
certain type, it is also
compatible with the
subtypes

