
DAC Ph.D. Forum, 6/11/02

An Extensible Type System for
Component-Based Design

Yuhong Xiong
Advisor: Professor Edward A. Lee

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Component-Based Design
• Good for designing complex, concurrent,

heterogeneous systems
• Two levels of interface:

– data types and
– dynamic interaction: communication & execution

• We propose a type system to address the
constraints at these two levels

Data Type Lattice

• Organize all types in
a lattice structure

• This example lattice
specifies lossless
type conversion
relation

General

String

ScalarBoolean

Complex

Double

Long

Int

Unknown

Type Compatibility Rule

sendType ≤ receiveType

• Static type checking
• Type conversion

Double

Double

Complex

OK

Complex
Double

Boolean

OK

Type Constraints

Efficient algorithm (Rehof & Mogensen)
can find least solution

α
β

γInt

Double

Complex

α ≤ γ
β ≤ γ
γ ≤ Complex

Int ≤ α

Double ≤ β

γ ≤Complex

Structured Types
(arrays and records)

Goals:
• Arbitrary element

types. E.g. (int)array,
((int)array)array,
array of records,
records containing
arrays, …

• Type constraints
between element
types and the types
of other objects in
system

Questions:
• Order relation among

structured types?
• Structured types

admitted by the
inequality solving
algorithm?

• Convergence on
infinite lattice?

Actors Manipulating Structured
Types

• SequenceToArray
• ArrayToSequence
• ArrayAppend
• ArrayElement
• ArrayExtract
• ArrayLength

• RecordAssembler
• RecordDisassembler
• RecordUpdater

SequenceToArray
α α Array

SequenceToArray
β

β Array

item

val

{item: α Array, val: β Array}
RecordAssembler

Monotonic Functions in Type
Constraints

• Example: AbsoluteValue Actor
– Works for Int, Long, Fix, Double, Complex
– Output type is the same as the input, unless

input is Complex
– Output type is Double when input is Complex

α β

f(α) ≤ β, where

f(α) = Double if α = Complex
= α otherwise

Complex

Double

Int

Complex

Double

Int

f

f

f

Behavioral Type

• Data types only specify static aspects of
interface

• Proposal:
– Capture the dynamic interaction of

components in types
– Use interface automata (de Alfaro &

Henzinger)
– Obtain benefits analogous to data typing
– Call the result behavioral types

• Experimental platform: Ptolemy II

Interaction Semantics

• Flow of control issues
– in Ptolemy II, these are defined by a Director class

• Communication between components
– in Ptolemy II, this is defined by a Receiver class

producer
actor

consumer
actor

IOPort

Receiver

Director

Actor interface for execution: fire
Receiver interface for communication: put, get,

hasToken

Models of Computation

• Define the interaction semantics
• Implemented in Ptolemy II by a domain

– Receiver + Director
• Examples:

– Communicating Sequential Processes (CSP):
rendezvous-style communication

– Process Networks (PN):
asynchronous communication

– Synchronous Data Flow (SDF):
stream-based communication, statically scheduled

– Discrete Event (DE):
event-based communication

– Synchronous/Reactive (SR):
synchronous, fixed point semantics

Example: Synchronous Dataflow (SDF)
Consumer Actor Type Definition

hasTokenhT

getg

Return from firefR

Return False from hasTokenhTF
Return True from hasTokenhTT
Tokent
firef

Inputs:
Outputs:

Such actors are
passive, and
assume that input
is available when
they fire.

execution
interface

communication
interface

Type Definition – Synchronous
Dataflow (SDF) Domain

producer
actor

consumer
actor

IOPort

Receiver

Directorreceiver
interface

director
interface

Type Checking – Compose SDF
Consumer Actor with SDF Domain

Compose
SDF Domain SDF Consumer Actor

Type Checking – Compose SDF
Consumer Actor with DE Domain

• Empty automaton indicates incompatibility
• Composition type has no behaviors

ComposeDE Domain SDF Consumer Actor

Subtyping Relation
Alternating Simulation: SDF ≤ DE

SDF Domain DE Domain

≤

Behavior-Level Type Lattice –
Defined by Alternating Simulation

• Subtyping relation
• Shown here for a few

Ptolemy II domains

If an actor is
compatible with a
certain type, it is also
compatible with the
subtypesunknown

PN

SDF

DE

CSP

DP

discrete
events

synchronous
dataflow

unknown

process
networks

communicating
sequential
processes

domain
polymorphic

