Preventing the use of Commercial Aircraft as Weapons

Edward A. Lee
Professor, EECS, UC Berkeley

with Xiaojun Liu, Adam Cataldo

Institute of Transportation Studies Seminar
February 8, 2002
A Lethal Weapon?
Need to Shield

- Major cities
- Government centers
- Chemical and nuclear plants
- Military installations
- Critical infrastructure
Softwalls

- Carry on-board a 3-D database with “no-fly-zones”
- Enforce no-fly zones using on-board avionics (aviation electronics)
- Non-networked, non-hackable
Normal response pilot steering control.

Biasing Pilot Control While Maintaining Responsivity

\[\theta = \text{heading angle} \]
\[\frac{d\theta}{dt} = \text{rate of change of heading} \]
\[M = \text{maximum rate of change} \]

- \(+M \) to \(-M \)
- \(-M \) to \(+M \)

\[\frac{d\theta}{dt} \]

\[\text{no bias} \]
Bias the aircraft to the right.

\[\theta = \text{heading angle} \]
\[d\theta/dt = \text{rate of change of heading} \]
\[M = \text{maximum rate of change} \]
Biasing Pilot Control While Maintaining Responsivity

Bias of \(-M\) allows the plane to turn only to the right.

\[\theta = \text{heading angle} \]
\[\frac{d\theta}{dt} = \text{rate of change of heading} \]
\[M = \text{maximum rate of change} \]

The diagram illustrates the relationship between the desired rate of change of heading, the actual rate of change of heading, and the bias value \(-M\). The axes represent the direction of control (Right, Left) and the magnitude of the rate of change (\(M\) and \(-M\)).
Biasing Pilot Control
While Maintaining Responsivity

Bias of \(-3M/2\) forces the plane to turn to the right at least at half the maximum rate of change of heading.

\[\text{bias} = -3M/2 \]

\[\theta = \text{heading angle} \]
\[d\theta/dt = \text{rate of change of heading} \]
\[M = \text{maximum rate of change} \]
Responsivity of 1 ensures that aircraft dynamics appear normal, and the bias feels like an external force.

Objective is to allow the pilot maximum latitude subject to no-fly zone restriction.

\[\text{responsivity} = \text{slope} \]

\[\theta = \text{heading angle} \]

\[d\theta/dt = \text{rate of change of heading} \]

\[M = \text{maximum rate of change} \]
Sailing Analogy – Weather Helm

Even with weather helm, the craft responds to fine-grain control as expected.
A Preliminary Candidate Control Strategy

due to Xiaojun Liu
Two-Dimensional Aircraft Model

- speed s
- position p
- heading θ
- time t

$p(t) = (s(t) \cos(\theta(t)), s(t) \sin(\theta(t)))$
Criticality - Time to Wall

- Measure of time to wall in the worst case (most uncooperative pilot)
- Assumes the pilot turns toward the wall at the maximum rate

\[c = \frac{\pi}{M} \]

\[c = \frac{d}{v} \]

\[c = \frac{\pi}{2/M + (d-r_{\text{min}})/v} \]
Maximally Uncooperative Pilot

- Assume $\theta = 0$ is heading towards the wall
- This pilot steers maximally towards the wall
Bias from Criticality-Based Controller

- If time to wall is less than π/M, the bias rises
 - at the wall, heading away is OK
- At $2/M$ it saturates.
 - still can avoid wall with half-maximum turn.

![Graph showing bias against time to wall with criticality-based controller](image-url)
Simulation Model

- Aircraft model
- Criticality calculation
- Pilot model
- Bias control
Simulation - Maximally Uncooperative Pilot

Assumptions (pulled out of a hat):
- speed: 0.1 miles/sec = 360 miles/hour
- $M: \frac{2\pi}{20}$ radians/sec
- min turning radius: speed/$M = 0.32$ miles

- pilot turns towards the wall
- bias starts, pilot counteracts
- pilot controls saturate
- pilot regains steerage towards the wall

nautical miles

the wall
Related Methods

- Ground proximity warning systems
- Automatic ground avoidance systems
- TCAS & ACAS – collision avoidance
- Potential field methods for air-traffic control
Objections

• Reducing pilot control is dangerous
 - reduces ability to respond to emergencies
Is There Any Aircraft Emergency Severe Enough to Justify Trying to Land on Fifth Ave?
Objections

• Reducing pilot control is dangerous
 - reduces ability to respond to emergencies

• There is no override
 - switch in the cockpit
No-Fly Zone with Harsher Enforcement

There is no override in the cockpit that allows pilots to fly through this.
Objections

• Reducing pilot control is dangerous
 - reduces ability to respond to emergencies

• There is no override
 - switch in the cockpit

• Localization technology could fail
 - GPS can be jammed
Localization Issues

- GPS
- Inertial navigation

“Localization” is the technology for reliably and accurately knowing the location of an object.
Objections

• Reducing pilot control is dangerous
 - reduces ability to respond to emergencies

• There is no override
 - switch in the cockpit

• Localization technology could fail
 - GPS can be jammed

• Deployment could be costly
 - how to retrofit older aircraft?
Deployment

- Fly-by-wire aircraft
 - a software change
- Older aircraft
 - autopilot level
- Phase in
 - prioritize airports
Objections

• Reducing pilot control is dangerous
 - reduces ability to respond to emergencies
• There is no override
 - switch in the cockpit
• Localization technology could fail
 - GPS can be jammed
• Deployment could be costly
 - how to retrofit older aircraft?
• Deployment could take too long
 - software certification
Not Like Air Traffic Control

This seems entirely independent of air traffic control, and could complement safety methods deployed there. Self-contained on a single aircraft.
Objections

• Reducing pilot control is dangerous
 - reduces ability to respond to emergencies
• There is no override
 - switch in the cockpit
• Localization technology could fail
 - GPS can be jammed
• Deployment could be costly
 - how to retrofit older aircraft?
• Deployment could take too long
 - software certification

• Fully automatic flight control is possible
 - throw a switch on the ground, take over plane
UAV Technology
(Unoccupied Air Vehicle)

e.g. Global Hawk
(Northrop Grumman)

Technology Support Working Group
(TSWG), office of the Secretary of
Defense, has reportedly decided
against recommending any partial
control approach. Their feeling is
that there is only one feasible
strategy: a single trigger, either on-
board or remote control, that would
assume complete control and take
the plane to a safe base.

Northrop Grumman has such a
system in the Global Hawk UAV that
some believe can be dropped-in to
passenger airliners.
Potential Problems with Ground Control

• Human-in-the-loop delay on the ground
 - authorization for takeover
 - delay recognizing the threat

• Security problem on the ground
 - hijacking from the ground?
 - takeover of entire fleet at once?
 - coup d’etat?

• Requires radio communication
 - hackable
 - jammable
Open Questions

• Technical issues
 - Geometry constraints on no-fly zones?
 - Can localization without GPS be accurate enough?
 - Can the database be secure?
 - Can areas near urban airports be protected?
 - How to prove safety?
 - Robustness with partial system failures?

• Policy issues
 - Definition of no-fly zones
 - Centralized vs. decentralized control
Acknowledgements

- Adam Cataldo
- David Corman (Boeing)
- Peter Huber (Forbes Magazine)
- David Lee
- Xiaojun Liu
- Per Peterson
- Shankar Sastry
- Claire Thomlin
- Don Winter (Boeing)
- Paul Yang
Discussion

• Absent terrorism, does this make flying safer?
• Is it better to have F-16’s enforcing no-fly zones?
• Are pilots willing to give up some control?
• Can the technique be phased in?
• Are there other, simpler approaches?
• ...

Softwalls, E. A. Lee 34