Overview of Ptolemy II Edward A. Lee Professor UC Berkeley October 9, 2003

Software Legacy of the Project

- · Gabriel (1986-1991)
 - Written in Lisp
 - Aimed at signal processing
 - Synchronous dataflow (SDF) block diagrams
 - Parallel schedulers
 - Code generators for DSPs
 - Hardware/software co-simulators
- Ptolemy Classic (1990-1997)
 - Written in C++
 - Multiple models of computation
 - Hierarchical heterogeneity
 - Dataflow variants: BDF, DDF, PN
 - C/VHDL/DSP code generators
 - Optimizing SDF schedulers
 - Higher-order components
- Ptolemy II (1996-2022)
 - Written in Java
 - Domain polymorphism
 - Multithreaded
 - Network integrated
 - Modal models
 - Sophisticated type system
 - CT, HDF, CI, GR, etc.

Each of these served us, first-and-foremost, as a laboratory for investigating design.

- PtPlot (1997-??)
 - Java plotting package
- Tycho (1996-1998)
 - Itcl/Tk GUI framework
- Diva (1998-2000)
 - Java GUI framework

All open source.
All truly free software (cf. FSF).

Kernel - Abstract Syntax Entities, Ports, Relations and Attributes

The Ptolemy II kernel provides an abstract syntax - clustered graphs - that is well suited to a wide variety of component-based modeling strategies, ranging from state machines to process networks.

UC Berkeley, Edward Lee 7

MoML XML Schema for this Abstract Syntax

Ptolemy II designs are represented in XML:

Actor Package Supports Producer/Consumer Components

Basic Transport:

Services in the Infrastructure:

- broadcast
- multicast
- busses
- mutations
- clustering parameterization
- typing
- polymorphism

UC Berkeley, Edward Lee 11

Focus on Actor-Oriented Design

Object orientation:

What flows through an object is sequential control

Actor orientation:

Actor-Oriented vs. Object-Oriented Interface Definitions

Actor Oriented

actor-oriented interface definition says "Give me text and I'll give you speech"

Object Oriented

TextToSpeech

initialize(): void
notify(): void
isReady(): boolean
getSpeech(): double[]

OO interface definition gives procedures that have to be invoked in an order not specified as part of the interface definition.

UC Berkeley, Edward Lee 13

Examples of Actor-Oriented Component Frameworks

- Simulink (The MathWorks)
- Labview (National Instruments)
- Modelica (Linkoping)
- OCP, open control platform (Boeing)
- GME, actor-oriented meta-modeling (Vanderbilt)
- Easy5 (Boeing)
- SPW, signal processing worksystem (Cadence)
- System studio (Synopsys)
- ROOM, real-time object-oriented modeling (Rational)
- Port-based objects (U of Maryland)
- I/O automata (MIT)
- VHDL, Verilog, SystemC (Various)
- Polis & Metropolis (UC Berkeley)
- Ptolemy & Ptolemy II (UC Berkeley)

Ptolemy Project Principles Basic Ptolemy II infrastructure: Director from a library defines component utilities director library interaction semantics DE Director actor library generic sources imed sources C Clock C CurrentTime PoissonClock TriggeredClock Variable** Display As Received Record Assembler Channel Model Display Resequenced 🗾 sinks 🔃 math square The channel is modeled 📋 flow control by a variable delay, which here is random, with a Rayleigh distribution. Large, polymorphic component library. UC Berkeley, Edward Lee 15

Polymorphic Components - Component Library Works Across Data Types and Domains

- Data polymorphism:
 - Add numbers (int, float, double, Complex)
 - Add strings (concatenation)
 - Add composite types (arrays, records, matrices)
 - Add user-defined types

Behavioral polymorphism:

- In dataflow, add when all connected inputs have data
- In a time-triggered model, add when the clock ticks
- In discrete-event, add when any connected input has data, and add in zero time
- In process networks, execute an infinite loop in a thread that blocks when reading empty inputs
- In CSP, execute an infinite loop that performs rendezvous on input or output
- In push/pull, ports are push or pull (declared or inferred) and behave accordingly
- In real-time CORBA, priorities are associated with ports and a dispatcher determines when to add

By not choosing among these when defining the component, we get a huge increment in component reusability. But how do we ensure that the component will work in all these circumstances?

Domains - Provide semantic models for component interactions

- CI Push/pull component interaction
- · CSP concurrent threads with rendezvous
- · CT continuous-time modeling
- · DE discrete-event systems
- · DDE distributed discrete events
- · FSM finite state machines
- DT discrete time (cycle driven)
- Giotto synchronous periodic
- GR 2-D and 3-D graphics
- PN process networks
- · SDF synchronous dataflow
- SR synchronous/reactive
- TM timed multitasking

Actor View of Producer/Consumer Components The send() and get() **Basic Transport:** methods on ports are polymorphic. Their receiver.put(t) get(0) send(0,t) implementation is **P**2 E2 provided by an object R1 implementing the E1 token t **IOPort** Receiver interface. **IORelation** Receiver The Receiver is (inside port) Actor supplied by the director and implements the communication semantics of a model of computation. UC Berkeley, Edward Lee 27

Object-Oriented Approach to Achieving Behavioral Polymorphism

«Interface» Receiver

+get(): Token

+getContainer() : IOPort +hasRoom() : boolean +hasToken() : boolean

+put(t : Token)

+setContainer(port : IOPort)

These polymorphic methods implement the communication semantics of a domain in Ptolemy II. The receiver instance used in communication is supplied by the director, not by the component.

Director

is the idea that components can be defined to operate with multiple models of computation and multiple middleware frameworks.

Recall: Behavioral polymorphism

UC Berkeley, Edward Lee 29

Extension Exercise

Exercise

Build a director that subclasses SDFDirector to allow substitution of receiver classes in place of the default SDFReceiver. Such substitutions are to be specified by attaching a parameter named "receiverClass" to an input port whose (string) value is the class name of a receiver.

This illustrates a simple mechanism that could be used to support communication refinement.

Examples of Extensions Self-Repairing Models

Concept demonstration built together with Boeing to show how to write actors that adaptively reconstruct connections when the model structure changes.

