
1

Model-Based Design
in the Ptolemy Project

A Chess Project
Center for Hybrid and Embedded Software Systems

Edward A. Lee
UC Berkeley

Presented at Boeing, Seattle
July 31, 2003

Chess Board of Directors
Tom Henzinger
Edward A. Lee
Alberto Sangiovanni-Vincentelli
Shankar Sastry

Other key faculty
Dave Auslander
Ruzena Bajcsy
Raz Bodik
Karl Hedrick
Kurt Keutzer
George Necula
Masayoshi Tomizuka
Pravin Varaiya

Chess, UC Berkeley, E. A. Lee 2

Mission of Chess

To provide an environment for graduate research on
the design issues necessary for supporting next-
generation embedded software systems.

– Model-based design
– Tool-supported methodologies

For
– Real-time
– Fault-tolerant
– Robust
– Secure
– Heterogeneous
– Distributed

Software

The fate of
computers
lacking
interaction with
physical
processes.

We are on the
line to create a
“new systems
science” that
is at once
computational
and physical.

2

Chess, UC Berkeley, E. A. Lee 3

A Traditional Systems Science –
Feedback Control Systems

• Models of continuous-time dynamics
• Sophisticated stability analysis

• But not accurate for software controllers

Chess, UC Berkeley, E. A. Lee 4

Discretized Model –
A Step Towards Software

• Numerical integration techniques provided sophisticated ways to get
from the continuous idealizations to computable algorithms.

• Discrete-time signal processing techniques offer the same
sophisticated stability analysis as continuous-time methods.

• But it’s still not accurate for software controllers

3

Chess, UC Berkeley, E. A. Lee 5

Hybrid Systems –
Reconciliation of Continuous & Discrete

• UCB researchers have
contributed hugely to the
theory and practice of
blended discrete &
continuous models.

• But it’s still not accurate
for software controllers

Chess, UC Berkeley, E. A. Lee 6

Timing in Software is More Complex Than
What the Theory Deals With

An example, due to Jie Liu, models two
controllers sharing a CPU under an RTOS.
Under preemptive multitasking, only one
can be made stable (depending on the
relative priorities). Under non-preemptive
multitasking, both can be made stable.

Where is the theory for this?

4

Chess, UC Berkeley, E. A. Lee 7

Another Traditional Systems Science -
Computation, Languages, and Semantics

States = Bits*

results + state out

sequence f : States → States

Everything “computable” can be given by a
terminating sequential program.

• Functions on bit patterns
• Time is irrelevant
• Non-terminating programs are defectiveAlan Turing

Chess, UC Berkeley, E. A. Lee 8

Current fashion – Pay Attention to
“Non-functional properties”

• Time
• Security
• Fault tolerance
• Power consumption
• Memory management

But the formulation of the question is very telling:

How is it that when a braking system applies the
brakes is any less a function of the braking system
than how much braking it applies?

5

Chess, UC Berkeley, E. A. Lee 9

Processes and Process Calculi

incoming message

outgoing message

Infinite sequences of
state transformations
are called “processes”
or “threads”

In prevailing software
practice, processes are
sequences of external
interactions (total
orders).

And messaging protocols
are combined in ad hoc
ways.

Various messaging
protocols lead to
various formalisms.

Chess, UC Berkeley, E. A. Lee 10

stalled for rendezvous

stalled by precedence

timing dependence

Interacting Processes –
Concurrency as Afterthought

Software
realizing these
interactions is
written at a
very low level
(semaphores
and mutexes).
Very hard to
get it right.

6

Chess, UC Berkeley, E. A. Lee 11

Interacting Processes –
Not Compositional

An aggregation
of processes is
not a process
(a total order
of external
interactions).
What is it?

Many software
failures are due
to this ill-
defined
composition.

Chess, UC Berkeley, E. A. Lee 12

What Will Replace This Approach?

• Synchronous languages (e.g. Esterel)?
• Time-driven languages (e.g. Simulink, Giotto)?
• Push/Pull component interactions?
• Hybrid systems?
• Timed process networks?
• Discrete-event formalisms?
• Timed CSP?

We intend to find out.

7

Chess, UC Berkeley, E. A. Lee 13

Ptolemy Project within Chess

• Objective is to unify:
– modeling
– specification
– design
– programming

• Define modeling & design “languages” with:
– syntaxes that aid understanding
– composable abstractions
– understandable concurrency and time
– predictable behavior
– robust behavior

All of these tasks are
accomplished by the
system designers.

Chess, UC Berkeley, E. A. Lee 14

Ptolemy Project ParticipantsPtolemy Project Participants
Director:Director:
•• Edward A. LeeEdward A. Lee

Staff:Staff:
•• Christopher Christopher HylandsHylands
•• Susan Gardner (Chess)Susan Gardner (Chess)
•• NualaNuala MansardMansard
•• Mary P. StewartMary P. Stewart
•• Neil E. Turner (Chess)Neil E. Turner (Chess)
•• Lea Turpin (Chess)Lea Turpin (Chess)

PostdocsPostdocs, Etc.:, Etc.:
•• JoernJoern JanneckJanneck, , PostdocPostdoc
•• Rowland R. Johnson, Visiting Scholar Rowland R. Johnson, Visiting Scholar
•• KeesKees VissersVissers, Visiting Industrial Fellow, Visiting Industrial Fellow
•• Daniel Daniel LLáázarozaro CuadradoCuadrado, Visiting Scholar, Visiting Scholar

Graduate Students:Graduate Students:

•• J. Adam J. Adam CataldoCataldo
•• Chris ChangChris Chang
•• Elaine Elaine CheongCheong
•• SanjeevSanjeev KohliKohli
•• XiaojunXiaojun LiuLiu
•• EleftheriosEleftherios D. D. MatsikoudisMatsikoudis
•• Stephen Stephen NeuendorfferNeuendorffer
•• James James YehYeh
•• Yang ZhaoYang Zhao
•• HaiyangHaiyang ZhengZheng
•• Rachel ZhouRachel Zhou

8

Chess, UC Berkeley, E. A. Lee 15
At Work in the Chess Software LabAt Work in the Chess Software Lab

Chess, UC Berkeley, E. A. Lee 16

Software Legacy of the Project
• Gabriel (1986-1991)

– Written in Lisp
– Aimed at signal processing
– Synchronous dataflow (SDF) block diagrams
– Parallel schedulers
– Code generators for DSPs
– Hardware/software co-simulators

• Ptolemy Classic (1990-1997)
– Written in C++
– Multiple models of computation
– Hierarchical heterogeneity
– Dataflow variants: BDF, DDF, PN
– C/VHDL/DSP code generators
– Optimizing SDF schedulers
– Higher-order components

• Ptolemy II (1996-2022)
– Written in Java
– Domain polymorphism
– Multithreaded
– Network integrated
– Modal models
– Sophisticated type system
– CT, HDF, CI, GR, etc.

Each of these served
us, first-and-
foremost, as a
laboratory for
investigating design.

• PtPlot (1997-??)
– Java plotting package

• Tycho (1996-1998)
– Itcl/Tk GUI framework

• Diva (1998-2000)
– Java GUI framework

9

Chess, UC Berkeley, E. A. Lee 17

Ptolemy Classic Example

Ptolemy application developed
by Uwe Trautwein, Technical
University of Ilmenau, Germany

Chess, UC Berkeley, E. A. Lee 18

M
od

el
in

g

Sy
nt

he
si

s

Heterogeneous,
problem-level
description

Heterogeneous,
implementation
-level description Relating the problem

level with the
implementation level

10

Chess, UC Berkeley, E. A. Lee 19

Foundations

Our contributions:
• Hierarchical Heterogeneity
• Behavioral Types
• Domain Polymorphism
• Responsible Frameworks
• Hybrid Systems Semantics
• Tagged Signal Model
• Discrete-Event Semantics
• Starcharts and Modal Model Semantics
• Continuous-Time Semantics
• Dataflow Semantics (SDF, BDF, DDF, PN, CI)

Giving structure to the notion of
“models of computation”

Chess, UC Berkeley, E. A. Lee 20

Hierarchical Heterogeneity

In Ptolemy, the semantics of
a block diagram is defined by
a “director,” which is a
component that the model
builder places in the model.
An “abstract semantics”
defines the interaction
across levels of hierarchy
where the semantics differ.

continuous environment

modal model

discrete controller

example Ptolemy II model: hybrid control system

11

Chess, UC Berkeley, E. A. Lee 21

Actor-Oriented Design
Actors with Ports and Attributes

PortPort

Actor Actor
Link

Relation

Actor
Port

connection

connection co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

Model of Computation:

• Messaging schema
• Flow of control
• Concurrency

Examples:

• Push/Pull
• Time triggered
• Process networks
• Discrete-event systems
• Dataflow systems
• Publish & subscribe

Key idea: The model of computation is part of the framework
within which components are embedded rather than part of
the components themselves.

Chess, UC Berkeley, E. A. Lee 22

Actor View of
Producer/Consumer Components

Models of Computation:

• push/pull
• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

Many actor-oriented frameworks
assume a producer/consumer metaphor
for component interaction.

12

Chess, UC Berkeley, E. A. Lee 23

Examples of Actor-Oriented
Component Frameworks

• Easy5 (Boeing)
• Simulink (The MathWorks)
• Labview (National Instruments)
• Modelica (Linkoping)
• OCP, open control platform (Boeing)
• GME, actor-oriented meta-modeling (Vanderbilt)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling (Rational)
• Port-based objects (U of Maryland)
• I/O automata (MIT)
• VHDL, Verilog, SystemC (Various)
• Polis & Metropolis (UC Berkeley)
• Ptolemy & Ptolemy II (UC Berkeley)
• …

Chess, UC Berkeley, E. A. Lee 24

Models of Computation
Principles of Model Driven Architecture

• Continuous-time models
• Dataflow

– synchronous dataflow
– boolean/integer dataflow
– dynamic dataflow
– heterochronous dataflow

• Push/pull models
• Discrete-event models
• Synchronous/reactive models
• CSP models
• Discrete-time models
• Time-triggered models (TTA, Giotto)

• Modal models are possible in all cases

13

Chess, UC Berkeley, E. A. Lee 25

Ptolemy Project Principles

Director from a library
defines component
interaction semantics

Large, domain-polymorphic
component library.

Basic Ptolemy II infrastructure:

Chess, UC Berkeley, E. A. Lee 26

Continuous-Time Models
Soft Walls Avionics System

aircraft model

criticality calculation

pilot model

bias control

th
e

wa
ll

14

Chess, UC Berkeley, E. A. Lee 27

Synchronous Dataflow (SDF)

SDF offers feedback, multirate,
static scheduling, deadlock
analysis, parallel scheduling, static
memory allocation.

Chess, UC Berkeley, E. A. Lee 28

Parallel Scheduling of SDF Models

A

C

D

B

Sequential (software) Parallel (hardware)

SDF is suitable
for automated
mapping onto
parallel
processors

15

Chess, UC Berkeley, E. A. Lee 29

Other Dataflow Models
Process Networks

Challenge problem under DARPA Mobies
(Model-based design of embedded software),

Detection of unknown signal
(PSK in this case)

Output data sequence,
at detected baud rate.
(not known apriori)

First
Symbol

Expected
Symbol Drift
caused by error
in estimation

Chess, UC Berkeley, E. A. Lee 30

Discrete-Event Models
Sensor Nets Modeling

Ptolemy II
model where
actor icons
depict sensor
range and
connectivity is
not shown with
wires

This model shows
the results of a
power optimization
where the green
node issues a
broadcast signal and
the red ones
retransmit to relay
the signal.

16

Chess, UC Berkeley, E. A. Lee 31

Heterogeneous Models: Periodic/Time-Driven
Control Inside Continuous Time

Giotto director
indicates a new model of
computation.

Domain-polymorphic component.

Domains can be
nested and mixed.

Chess, UC Berkeley, E. A. Lee 32

Heterogeneous Models
Modal Controller

Periodic, time-driven tasks

Modes (normal & faulty)

Controller task

17

Chess, UC Berkeley, E. A. Lee 33

Heterogeneous Models
Hybrid Systems

HyVisual is a
branded tool
based on
Ptolemy II
designed for
hybrid system
modeling.

Chess, UC Berkeley, E. A. Lee 34

Distributed Models, Middleware
and Systems of Systems

Currently, components
are designed to the
middleware APIs. Our
objective is to define the
components with
middleware-polymorphic
interfaces that declare
precisely the
assumptions and
guarantees of the
components.

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

Middleware mediates communication.

Platform 1 Platform 2

Middleware

18

Chess, UC Berkeley, E. A. Lee 35

Distributed Models Using
Mobile Models

Model-based distributed task management:

MobileModel actor accepts a
StringToken containing an XML
description of a model. It then
executes that model on a stream of
input data.

PushConsumer actor receives
pushed data provided via CORBA,
where the data is an XML model of a
signal analysis algorithm.

Authors:
Yang Zhao
Steve Neuendorffer
Xiaojun Liu

A significant challenge here is achieving type safety and security.

Chess, UC Berkeley, E. A. Lee 36

MoML XML Schema Used to Transport Models

Ptolemy II designs are represented in XML:

...
<entity name="FFT" class="ptolemy.domains.sdf.lib.FFT">

<property name="order" class="ptolemy.data.expr.Parameter" value="order">
</property>
<port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort">

...
</port>
...

</entity>
...
<link port="FFT.input" relation="relation"/>
<link port="AbsoluteValue2.output" relation="relation"/>
...

19

Chess, UC Berkeley, E. A. Lee 37

Verification & Validation
What Many People Say They Want

Push Me

A button that they can push that when pushed
will tell them whether or not the design is
correct.

Chess, UC Berkeley, E. A. Lee 38

Behavioral Types –
A More Practical Approach

• Capture the dynamic interaction of components in types
• Obtain benefits analogous to data typing.
• Call the result behavioral types.

producer
actor

consumer
actor

IOPort

Receiver

Director

• Communication has
– data types
– behavioral types

• Components have
– data type signatures
– domain type signatures

• Components are
– data polymorphic
– domain polymorphic

20

Chess, UC Berkeley, E. A. Lee 39

Receiver Interface

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

producer
actor

consumer
actor

IOPort

Receiver

Director

Domain polymorphism is
the idea that components
can be defined to operate
with multiple models of
computation and multiple
middleware frameworks.

Chess, UC Berkeley, E. A. Lee 40

Key to Domain Polymorphism:
Receiver Object Model

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

21

Chess, UC Berkeley, E. A. Lee 41

Behavioral Type System

execution
interface

communication
interface

A type signature for
a consumer actor.

• We capture patterns of
component interaction in a
type system framework.

• We describe interaction
types and component
behavior using interface
automata.

• We do type checking through
automata composition (detect
component incompatibilities)

• Subtyping order is given by
the alternating simulation
relation, supporting domain polymorphism.

Chess, UC Berkeley, E. A. Lee 42

Conclusion – What to Remember

• A new systems science
– physical + computational

• Actor-oriented design
– concurrent components interacting via ports

• Models of computation
– principles of component interaction

• Hierarchical heterogeneity
– principled mixing of models of computation

• Behavioral types
– a practical approach to verification and interface definition

• Domain polymorphism
– defining components for use in multiple contexts

http://ptolemy.eecs.berkeley.edu
http://chess.eecs.berkeley.edu

