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Object-Oriented Design

An Approach to Component Interface Specification
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Focus on Actor-Oriented Design

- Object orientation:

What flows through
class name an object is
data sequential control
p methods
call return
« Actor orientation: What flows through
an object is
actor name streams of data
data (state)
- parameters ‘
Input data borts Output data
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Actor Orientation
vs. Object Orientation

Object oriented Actor oriented

TextToSpeech

Text to Speech

initialize(): void
notify(): void text iny, %}C] bspeech out
isReady(): boolean

getSpeech(): double[]

OO interface definition gives procedures
that have to be invoked in an order not
specified as part of the interface definition.

actor-oriented interface definition says
“Give me text and I'll give you speech”

+ Identified problems with object orientation:
- Says little or nothing about concurrency and time
- Concurrency typically expressed with threads, monitors, semaphores
- Components tend to implement low-level communication protocols
- Re-use potential is disappointing
*  Actor orientation offers more potential for useful modeling
properties, and hence for model-based design.
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Example of Actor-Oriented Design
(in this case, with a visual syntax)

Ptol le: Director from a library

fo emy II example: defines component

Ty =] SoF e o e interaction semantics

i e Sriireeifeneptiechuues Synchronous Dataflow Modeling
j;;m:“‘”"m SR ERastLy This example illustrates SDF modeling, which

is well-suited to signal processing. In SDF,

__limage processing

=4 spectrum companents cammunicate using streams, but their

. [=oe Sinewave2 Lm Production and consumption rates are fixed.

. [=EEr > Because of these fixed rates, extensive static
=i analysis of the model is possible, enabling

H ELevwnsonDurbin

- [EE] axirumErtropySpm
H Periudogram

o [ Praselnwrap

h Smocrthe iodagr:

efficient code generation and optimization.

potrum

SequencePlotier
TaE

Large, polymorphic Component

component library. Model of Computation:
Key idea. The model of computation is part of the * Messaging schema
framework within which components are embedded * Flow of control
rather than part of the components themselves. Thus, * Concurrency
components need to declare behavioral properties. Chess, UC Berkeley, E. A. Lee 5

Examples of Actor-Oriented
Component Frameworks

+  Simulink (The MathWorks)
+ Labview (National Instruments)
*  Modelica (Linkoping)
+ OCP, open control platform (Boeing)
* GME, actor-oriented meta-modeling (Vanderbilt)
+ Easyb (Boeing)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
Port-based objects (U of Maryland)
I/0 automata (MIT)
VHDL, Verilog, SystemC (Various)
Polis & Metropolis (UC Berkeley)
Ptolemy & Ptolemy IT (UC Berkeley)
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Actor View of
Producer/Consumer Components

Basic Transport: Models of Computation:

receiver.put(t)

send(0,¢ * push/pull
* continuous-time
* dataflow
* rendezvous
Receiver * discrete events
(inside port)

* synchronous

* time-driven

* publish/subscribe

IORelation

Many actor-oriented frameworks
assume a producer/consumer metaphor
for component interaction.
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Actor Orientation vs. Object Orientation

+ Object Orientation
- procedural interfaces
- aclass is a type (static structure)
- type checking for composition
- separation of interface from implementation
- subtyping
- polymorphism This is a vision of the
future: Few actor-

. . oriented frameworks
Actor Orientation fully offer this view.

- concurrent interfaces Eventually, all will.
- a behavior is a type
- type checking for composition of behaviors

- separation of behavioral interface from implementation
- behavioral subtyping

- behavioral polymorphism - Focus on this
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Polymorphism

+ Data polymorphism:

- Add numbers (int, float, double, Complex) AddSubtract
- Add string (concatenation) i
- Add composite types (arrays, records, matrices) -

- Add user-defined types

By not choosing
+  Behavioral polymorphism: among these
- Indataflow, add when all connected inputs have data when defining
- Ina time-triggered model, add when the clock ticks the component,
- Indiscrete-event, add when any connected input has we get a huge
data, and add in zero time increment in
- Inprocess networks, execute an infinite loop in a thread | cOmponent re-
that blocks when reading empty inputs usability. But
- InCSP, execute an infinite loop that performs how do we
rendezvous on input or output ensure that the
- Inpush/pull, ports are push or pull (declared or inferred) | component will
and behave accordingly work in all these
- Inreal-time CORBA, priorities are associated with ports | Circumstances?
and a dispatcher determines when to add T

Object-Oriented Approach to Achieving
Behavioral Polymorphism

«Interface» These polymorphic methods
Receiver implement the communication
semantics of a domain in Ptolemy
+gel()  Token IT. The receiver instance used in
+getContainer() : IOPort communication is supplied by the
+hasRoom() : boolean director, not by the component.
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort) Director

I0Port

Recall: Behavioral polymorphism

is the idea that components can be pr:ftl:,ier
defined to operate with multiple
models of computation and multiple Receiver
middleware frameworks.

consumer
actor
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Behavioral Polymorphism
The Object Oriented View

I0Port

0.n

«Interface»

i Receiver
throws

+get() : Token

+getContainer() : IOPort
+hasRoom() : boolean
l nte rface +hasToken() : boolean

+put(t : Token)

| Implementation‘ |

+setContainer(port : IOPort)

NoTokenException
throws

Mailbox

«Interface»

SDF

=

CTi

CSP

sl

FIFOQueue

ArrayFIFOQueue
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But What

If..

* The component requires data at all
connected input ports?

* The component can only perform meaningful "

operations on 2 successive inputs?

* The component can produce meaningful
output before the input is known (enabling it
to break potential deadlocks)?

+ The component has a mutex monitor with

AddSubtract
o+

-

another component (e.g. o access a common
hardware resource)?

None of these is expressed in the object-oriented
interface definition, yet each can interfere with
behavioral polymorphism.
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Behavioral Types -
A Practical Approach

* Capture the dynamic interaction of components in types
+ Obtain benefits analogous to data typing.
* Call the result behavioral types.

Director

producer
actor

IOPort

Receiver

consumer
actor

See Liskov & Wing, ACM, 1994
for an intro to behavioral types.

+ Communication has

- data types

- behavioral types
+ Components have

- data type signatures

- behavioral type signatures
+ Components are

- data polymorphic

- behaviorally polymorphic
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Behavioral Type System

We capture patterns of

component interaction in a

type system framework.

We describe interaction
types and component

behavior using extended /nterface
automata (de Alfaro & Henzinger)

We do type checking through
automata composition (detect
component incompatibilities)

Subtyping order is given by

the alternating simulation
relation, supporting behavioral polymorphism.

communication -
execution 3 RS

interface O »
S \Q

N’

A type sighature for
a consumer actor.

=
=l

=
=
—

f?
— =

o)

A £
3
——

These behavioral types are an example of

an /nterface theory (Henzinger, et al).
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Enabled by a Behavioral Type System

» Checking behavioral compatibility of
components that are composed.

» Checking behavioral compatibility of
components and their frameworks.

* Behavioral subclassing enables
interface/implementation separation.

* Helps with the definition of behaviorally-
polymorphic components.
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Enabled by Behavioral Polymorphism (1):
More Re-Usable Component Libraries

actor domains
__Isaurces 1 W |
1 sinks actorib } 4
_lio AbsoluteValue /r lib
Accumulator
I math ‘AddSubtract actor.lib.comm } actor.lib.gui ﬁ:(i‘g;rss\saql:fr:me
random ArrayAppend
= rayAppen ConvolutionalCoder ArrayPlotter DelayLine
=L rirol ArrayElement oo
low control ArrayExtract Descrambler ArrowKeySensor Dglwrzsanr:"c‘\)le
real time ArrayLength ladamardCode BarGraph
ez e | Scrambier Dislay il
| logic ViterbiDecoder HistogramPlotter FIR
strin Average v
et Bemoull KeystrokeSensor LMSAdaptive
__| conversions psiig actor.ibjai LineCoder
_larray Counter DoubleMatrixToJAl Plotter MatrixToSequence
PlotterBase RaisedCosine
ot DB JAlAffineTransform
| matrix RealTimePlotter Repeat
Differential JAIBMPWiter
[=}+_4 signsl processing Di JAIBandCombi SequencePlotter SampleDelay
Expression JAIBandSelect SequenceScope SequenceToAray
| audio Gaussian JAlBorder SketchedSource SequenceToMatrix
| communicstions IR JAIBoxFilter SliderSource UpSample
i Interpolator JAIConvolve TimedPlotter VariableFIR
| fitering Lattice JaiGrop TimedScope zanas:e;amce -
_|image processing LevinsonDurbin JAIDCT X otter riableRecursivet attice
¥ Limiter JAIDFT cope
=+ _4 spectrum LinearDifferenceEquationSystem | JAIDataCaster
~[=]oe LookupTabl JAEdgeDetecion actor o mage |
FFT iathFunction !
Maxindex JAIDFT ImageDisplay | UML package
IFFT Maximum JAlimageReader ImageReader i .
LevinsonDurbin mwmmum JAlmageToken ImageRotate ! diagram of key
I ultiplyDivide JAlinvert ImageToString ! .
MexitumEntropySp PhaseUnwrap JALIPEGWiiter Transform actor libraries
PoissonClock JAiLog URLTolmage A 3
Perioclogram Pole IAiNgnitude included with
Quantizer JAIMedianFilter actor.lib,jmf Ptolemy Il
RecursiveLattice JAlPeriodicShift ColorFinder
S Rician JAIPhase JMFImageToken ]
Scale JAIPolarToComplex | | PlaySound

TrigFunction JAIRotate VideoCamera

[#__] domsin specific - Uniform InScale '
4 » JAITIFFWriter |

JAIToDoubleMatrix actor.lib javasound } rrrrr

JAlTranslate

JAITranspose ﬁgglzg;‘;‘:”s
e Data polymorphic components AudioReadBuffer
AudioReader

. . AudioWriteBuffer
e Behaviorally polymorphic components AudioWriter
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Enabled by Behavioral Polymorphism (2):
Hierarchical Heterogeneity

Giotto director
indicates a new model of
computation.

mator_current

| Giotto Director
I:I throttle_motor

throttle_position

+—m

monitor

servo_control

‘ EE

Heterogeneous model of the UC Berkeley Vehicle Dynar
Electronic Throttle Controller.

by Paul Griffiths, Christoph Kirsch, Tunc Simsek, Jason
Last updated January 15, 2002

user_made

e T

manager

pedal_paosition

CT Directar

/]

throttle pasitiar)

throttle

powertrain inp

Domains can be
nested and mixed.
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Enabled by Behavioral Polymorphism (3):
Modal Models

Giotto Director

throttle_motor

motor_current monitor

servo_control

throttle_position

Smanaget”

Periodic, time-driven tasks

Controller task

user_mo
Modal servo control.

throttle_positions

desired_throttle_position

mode

serva_control_output

SDF Directar

throttle_positions

throttle_paosition

sliding mode controller with estimator

desired_throttle]

Modes (normal & faulty)

AddSubtract
n current

mode
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Enabled by Behavioral Polymorphism (4):
Mobile Models

Model-based distributed task management:

DE Director

TimedDelay

PushConsumer

e order:

Authors:

Yang Zhao
MoblleModel Steve Neuendorffer
Xiaojun Liu
510 J

{wt

s

PushConsumer actor receives
pushed data provided via CORBA,
where the data is an XML model of a
signal analysis algorithm.

MobileModel actor accepts a
StringToken containing an XML
description of a model. It then
executes that model on a stream of
input data.

Data and behavioral type safety will help make such models secure

Chess, UC Berkeley, E. A. Lee 19

Conclusion - What to Remember

* Actor-oriented design

- concurrent components interacting via ports
* Models of computation

- principles of component interaction

Behavioral types

- a practical approach to verification and interface

definition

Behavioral polymorphism

- defining components for use in multiple contexts

http://ptolemy.eecs.berkeley.edu
http://chess.eecs.berkeley.edu
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