
1

Behavioral Types as Interface Definitions
for Concurrent Components

Center for Hybrid and Embedded Software Systems

Edward A. Lee
Professor
UC Berkeley

Invited Talk
NEXT TTA Workshop on the Specification of Linking Interfaces
Oct. 12 2003
Philadelphia, PA, USA

Chess, UC Berkeley, E. A. Lee 2

Object-Oriented Design
An Approach to Component Interface Specification

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

Interface is a
collection of
methods and their
type signatures.UML static

structure
diagram

Inheritance
Implementation

2

Chess, UC Berkeley, E. A. Lee 3

Focus on Actor-Oriented Design

• Object orientation:
class name

data

methods

call return

What flows through
an object is

sequential control

• Actor orientation:
actor name

data (state)

portsInput data
parameters

Output data

What flows through
an object is

streams of data

Chess, UC Berkeley, E. A. Lee 4

Actor Orientation
vs. Object Orientation

• Identified problems with object orientation:
– Says little or nothing about concurrency and time
– Concurrency typically expressed with threads, monitors, semaphores
– Components tend to implement low-level communication protocols
– Re-use potential is disappointing

• Actor orientation offers more potential for useful modeling
properties, and hence for model-based design.

OO interface definition gives procedures
that have to be invoked in an order not
specified as part of the interface definition.

TextToSpeech

initialize(): void
notify(): void
isReady(): boolean
getSpeech(): double[]

actor-oriented interface definition says
“Give me text and I’ll give you speech”

Actor orientedObject oriented

3

Chess, UC Berkeley, E. A. Lee 5

Example of Actor-Oriented Design
(in this case, with a visual syntax)

Director from a library
defines component
interaction semantics

Large, polymorphic
component library.

Ptolemy II example:

Key idea: The model of computation is part of the
framework within which components are embedded
rather than part of the components themselves. Thus,
components need to declare behavioral properties.

Model of Computation:
• Messaging schema
• Flow of control
• Concurrency

Component

Chess, UC Berkeley, E. A. Lee 6

Examples of Actor-Oriented
Component Frameworks

• Simulink (The MathWorks)
• Labview (National Instruments)
• Modelica (Linkoping)
• OCP, open control platform (Boeing)
• GME, actor-oriented meta-modeling (Vanderbilt)
• Easy5 (Boeing)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling (Rational)
• Port-based objects (U of Maryland)
• I/O automata (MIT)
• VHDL, Verilog, SystemC (Various)
• Polis & Metropolis (UC Berkeley)
• Ptolemy & Ptolemy II (UC Berkeley)
• …

4

Chess, UC Berkeley, E. A. Lee 7

Actor View of
Producer/Consumer Components

Models of Computation:

• push/pull
• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

Many actor-oriented frameworks
assume a producer/consumer metaphor
for component interaction.

Chess, UC Berkeley, E. A. Lee 8

Actor Orientation vs. Object Orientation

• Object Orientation
– procedural interfaces
– a class is a type (static structure)
– type checking for composition
– separation of interface from implementation
– subtyping
– polymorphism

• Actor Orientation
– concurrent interfaces
– a behavior is a type
– type checking for composition of behaviors
– separation of behavioral interface from implementation
– behavioral subtyping
– behavioral polymorphism

This is a vision of the
future: Few actor-
oriented frameworks
fully offer this view.
Eventually, all will.

Focus on this

5

Chess, UC Berkeley, E. A. Lee 9

Polymorphism

• Data polymorphism:
– Add numbers (int, float, double, Complex)
– Add string (concatenation)
– Add composite types (arrays, records, matrices)
– Add user-defined types

• Behavioral polymorphism:
– In dataflow, add when all connected inputs have data
– In a time-triggered model, add when the clock ticks
– In discrete-event, add when any connected input has

data, and add in zero time
– In process networks, execute an infinite loop in a thread

that blocks when reading empty inputs
– In CSP, execute an infinite loop that performs

rendezvous on input or output
– In push/pull, ports are push or pull (declared or inferred)

and behave accordingly
– In real-time CORBA, priorities are associated with ports

and a dispatcher determines when to add

By not choosing
among these
when defining
the component,
we get a huge
increment in
component re-
usability. But
how do we
ensure that the
component will
work in all these
circumstances?

Chess, UC Berkeley, E. A. Lee 10

Object-Oriented Approach to Achieving
Behavioral Polymorphism

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

producer
actor

consumer
actor

IOPort

Receiver

Director

Recall: Behavioral polymorphism
is the idea that components can be
defined to operate with multiple
models of computation and multiple
middleware frameworks.

6

Chess, UC Berkeley, E. A. Lee 11

Behavioral Polymorphism
The Object Oriented View

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

Interface

Implementation

Chess, UC Berkeley, E. A. Lee 12

But What If…

• The component requires data at all
connected input ports?

• The component can only perform meaningful
operations on 2 successive inputs?

• The component can produce meaningful
output before the input is known (enabling it
to break potential deadlocks)?

• The component has a mutex monitor with
another component (e.g. to access a common
hardware resource)?

None of these is expressed in the object-oriented
interface definition, yet each can interfere with
behavioral polymorphism.

7

Chess, UC Berkeley, E. A. Lee 13

Behavioral Types –
A Practical Approach

• Capture the dynamic interaction of components in types
• Obtain benefits analogous to data typing.
• Call the result behavioral types.

producer
actor

consumer
actor

IOPort

Receiver

Director

• Communication has
– data types
– behavioral types

• Components have
– data type signatures
– behavioral type signatures

• Components are
– data polymorphic
– behaviorally polymorphicSee Liskov & Wing, ACM, 1994

for an intro to behavioral types.

Chess, UC Berkeley, E. A. Lee 14

Behavioral Type System

execution
interface

communication
interface

A type signature for
a consumer actor.

• We capture patterns of
component interaction in a
type system framework.

• We describe interaction
types and component
behavior using extended interface
automata (de Alfaro & Henzinger)

• We do type checking through
automata composition (detect
component incompatibilities)

• Subtyping order is given by
the alternating simulation
relation, supporting behavioral polymorphism.

These behavioral types are an example of
an interface theory (Henzinger, et al).

8

Chess, UC Berkeley, E. A. Lee 15

Enabled by a Behavioral Type System

• Checking behavioral compatibility of
components that are composed.

• Checking behavioral compatibility of
components and their frameworks.

• Behavioral subclassing enables
interface/implementation separation.

• Helps with the definition of behaviorally-
polymorphic components.

Chess, UC Berkeley, E. A. Lee 16

Enabled by Behavioral Polymorphism (1):
More Re-Usable Component Libraries

actor

actor.lib

AbsoluteValue
Accumulator
AddSubtract
ArrayAppend
ArrayElement
ArrayExtract
ArrayLength
ArrayMaximum
ArrayMinimum
Average
Bernoulli
Const
Counter
DB
Differential
DiscreteRandomSource
Expression
Gaussian
IIR
Interpolator
Lattice
LevinsonDurbin
Limiter
LinearDifferenceEquationSystem
LookupTable
MathFunction
MaxIndex
Maximum
Minimum
MultiplyDivide
PhaseUnwrap
PoissonClock
Pulse
Quantizer
RandomSource
RecursiveLattice
Rician
Scale
TrigFunction
Uniform

ConvolutionalCoder
DeScrambler
HadamardCode
Scrambler
ViterbiDecoder

actor.lib.comm

ArrayPlotter
ArrowKeySensor
BarGraph
Display
HistogramPlotter
InteractiveShell
KeystrokeSensor
MatrixViewer
Plotter
PlotterBase
RealTimePlotter
SequencePlotter
SequenceScope
SketchedSource
SliderSource
TimedPlotter
TimedScope
XYPlotter
XYScope

actor.lib.gui

AudioCapture
AudioPlayer
AudioReadBuffer
AudioReader
AudioWriteBuffer
AudioWriter

actor.lib.javasound

ImageDisplay
ImageReader
ImageRotate
ImageToString
Transform
URLToImage

actor.lib.image

DoubleMatrixToJAI
JAIAffineTransform
JAIBMPWriter
JAIBandCombine
JAIBandSelect
JAIBorder
JAIBoxFilter
JAIConvolve
JAICrop
JAIDCT
JAIDFT
JAIDataCaster
JAIEdgeDetection
JAIIDCT
JAIIDFT
JAIImageReader
JAIImageToken
JAIInvert
JAIJPEGWriter
JAILog
JAIMagnitude
JAIMedianFilter
JAIPNMWriter
JAIPeriodicShift
JAIPhase
JAIPolarToComplex
JAIRotate
JAIScale
JAITIFFWriter
JAIToDoubleMatrix
JAITranslate
JAITranspose

actor.lib.jai

ColorFinder
JMFImageToken
PlaySound
VideoCamera

actor.lib.jmf

domains

sdf

lib

ArrayToSequence
Autocorrelation
DelayLine
DotProduct
DownSample
FFT
FIR
IFFT
LMSAdaptive
LineCoder
MatrixToSequence
RaisedCosine
Repeat
SampleDelay
SequenceToArray
SequenceToMatrix
UpSample
VariableFIR
VariableLattice
VariableRecursiveLattice

UML package
diagram of key
actor libraries
included with
Ptolemy II.

Data polymorphic components
Behaviorally polymorphic components

9

Chess, UC Berkeley, E. A. Lee 17

Enabled by Behavioral Polymorphism (2):
Hierarchical Heterogeneity

Giotto director
indicates a new model of
computation.

Domain-polymorphic component.

Domains can be
nested and mixed.

Chess, UC Berkeley, E. A. Lee 18

Enabled by Behavioral Polymorphism (3):
Modal Models

Periodic, time-driven tasks

Modes (normal & faulty)

Controller task

10

Chess, UC Berkeley, E. A. Lee 19

Enabled by Behavioral Polymorphism (4):
Mobile Models

Model-based distributed task management:

MobileModel actor accepts a
StringToken containing an XML
description of a model. It then
executes that model on a stream of
input data.

PushConsumer actor receives
pushed data provided via CORBA,
where the data is an XML model of a
signal analysis algorithm.

Authors:
Yang Zhao
Steve Neuendorffer
Xiaojun Liu

Data and behavioral type safety will help make such models secure

Chess, UC Berkeley, E. A. Lee 20

Conclusion – What to Remember

• Actor-oriented design
– concurrent components interacting via ports

• Models of computation
– principles of component interaction

• Behavioral types
– a practical approach to verification and interface

definition
• Behavioral polymorphism

– defining components for use in multiple contexts

http://ptolemy.eecs.berkeley.edu
http://chess.eecs.berkeley.edu

