Behavioral Types as Interface Definitions
for Concurrent Components

: |

Edward A. Lee |
Professor s
UC Berkeley ‘_ |
Invited Talk ! i‘
NEXT TTA Workshop on the Specification of Linking Interfaces & ':,,'_‘ 1
Oct. 12 2003 3 -|' 4
Philadelphia, PA, USA LR B
5 it 1

t.:"".: *

1

g l 4=

. TEEE

Center for Hybrid and Embedded Software Systems S ei=

Object-Oriented Design

An Approach to Component Interface Specification

I0Port

Interface is a

0.n collection of

| Jﬁ/«mmce» methods and their
Receiver :

UML static ﬂ: e | typE Signatures.

structure

. +getContainer() : IOPort
diagram

+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

Inheritance '—-} : Y

«Interface»

Mailbox

H

CTReceiver CSPReceiver

DEReceiver SDFReceiver

1.1

FIFOQueue

ArrayFIFOQueue
PNReceiver

Chess, UC Berkeley, E. A. Lee 2




Focus on Actor-Oriented Design

- Object orientation:

What flows through
class name an object is
data sequential control
p methods
call return
« Actor orientation: What flows through
an object is
actor name streams of data
data (state)
- parameters ‘
Input data borts Output data

Chess, UC Berkeley, E. A. Lee 3

Actor Orientation
vs. Object Orientation

Object oriented Actor oriented

TextToSpeech

Text to Speech

initialize(): void
notify(): void text iny, %}C] bspeech out
isReady(): boolean

getSpeech(): double[]

OO interface definition gives procedures
that have to be invoked in an order not
specified as part of the interface definition.

actor-oriented interface definition says
“Give me text and I'll give you speech”

+ Identified problems with object orientation:
- Says little or nothing about concurrency and time
- Concurrency typically expressed with threads, monitors, semaphores
- Components tend to implement low-level communication protocols
- Re-use potential is disappointing
*  Actor orientation offers more potential for useful modeling
properties, and hence for model-based design.

Chess, UC Berkeley, E. A. Lee 4




Example of Actor-Oriented Design
(in this case, with a visual syntax)

Ptol le: Director from a library

fo emy II example: defines component

Ty =] SoF e o e interaction semantics

i e Sriireeifeneptiechuues Synchronous Dataflow Modeling
j;;m:“‘”"m SR ERastLy This example illustrates SDF modeling, which

is well-suited to signal processing. In SDF,

__limage processing

=4 spectrum companents cammunicate using streams, but their

. [=oe Sinewave2 Lm Production and consumption rates are fixed.

. [=EEr > Because of these fixed rates, extensive static
=i analysis of the model is possible, enabling

H ELevwnsonDurbin

- [EE] axirumErtropySpm
H Periudogram

o [ Praselnwrap

h Smocrthe iodagr:

efficient code generation and optimization.

potrum

SequencePlotier
TaE

Large, polymorphic Component

component library. Model of Computation:
Key idea. The model of computation is part of the * Messaging schema
framework within which components are embedded * Flow of control
rather than part of the components themselves. Thus, * Concurrency
components need to declare behavioral properties. Chess, UC Berkeley, E. A. Lee 5

Examples of Actor-Oriented
Component Frameworks

+  Simulink (The MathWorks)
+ Labview (National Instruments)
*  Modelica (Linkoping)
+ OCP, open control platform (Boeing)
* GME, actor-oriented meta-modeling (Vanderbilt)
+ Easyb (Boeing)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
Port-based objects (U of Maryland)
I/0 automata (MIT)
VHDL, Verilog, SystemC (Various)
Polis & Metropolis (UC Berkeley)
Ptolemy & Ptolemy IT (UC Berkeley)

Chess, UC Berkeley, E. A. Lee 6




Actor View of
Producer/Consumer Components

Basic Transport: Models of Computation:

receiver.put(t)

send(0,¢ * push/pull
* continuous-time
* dataflow
* rendezvous
Receiver * discrete events
(inside port)

* synchronous

* time-driven

* publish/subscribe

IORelation

Many actor-oriented frameworks
assume a producer/consumer metaphor
for component interaction.

Chess, UC Berkeley, E. A. Lee 7

Actor Orientation vs. Object Orientation

+ Object Orientation
- procedural interfaces
- aclass is a type (static structure)
- type checking for composition
- separation of interface from implementation
- subtyping
- polymorphism This is a vision of the
future: Few actor-

. . oriented frameworks
Actor Orientation fully offer this view.

- concurrent interfaces Eventually, all will.
- a behavior is a type
- type checking for composition of behaviors

- separation of behavioral interface from implementation
- behavioral subtyping

- behavioral polymorphism - Focus on this

Chess, UC Berkeley, E. A. Lee 8




Polymorphism

+ Data polymorphism:

- Add numbers (int, float, double, Complex) AddSubtract
- Add string (concatenation) i
- Add composite types (arrays, records, matrices) -

- Add user-defined types

By not choosing
+  Behavioral polymorphism: among these
- Indataflow, add when all connected inputs have data when defining
- Ina time-triggered model, add when the clock ticks the component,
- Indiscrete-event, add when any connected input has we get a huge
data, and add in zero time increment in
- Inprocess networks, execute an infinite loop in a thread | cOmponent re-
that blocks when reading empty inputs usability. But
- InCSP, execute an infinite loop that performs how do we
rendezvous on input or output ensure that the
- Inpush/pull, ports are push or pull (declared or inferred) | component will
and behave accordingly work in all these
- Inreal-time CORBA, priorities are associated with ports | Circumstances?
and a dispatcher determines when to add T

Object-Oriented Approach to Achieving
Behavioral Polymorphism

«Interface» These polymorphic methods
Receiver implement the communication
semantics of a domain in Ptolemy
+gel()  Token IT. The receiver instance used in
+getContainer() : IOPort communication is supplied by the
+hasRoom() : boolean director, not by the component.
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort) Director

I0Port

Recall: Behavioral polymorphism

is the idea that components can be pr:ftl:,ier
defined to operate with multiple
models of computation and multiple Receiver
middleware frameworks.

consumer
actor

Chess, UC Berkeley, E. A. Lee 10




Behavioral Polymorphism
The Object Oriented View

I0Port

0.n

«Interface»

i Receiver
throws

+get() : Token

+getContainer() : IOPort
+hasRoom() : boolean
l nte rface +hasToken() : boolean

+put(t : Token)

| Implementation‘ |

+setContainer(port : IOPort)

NoTokenException
throws

Mailbox

«Interface»

SDF

=

CTi

CSP

sl

FIFOQueue

ArrayFIFOQueue

Chess, UC Berkeley, E. A. Lee 11

But What

If..

* The component requires data at all
connected input ports?

* The component can only perform meaningful "

operations on 2 successive inputs?

* The component can produce meaningful
output before the input is known (enabling it
to break potential deadlocks)?

+ The component has a mutex monitor with

AddSubtract
o+

-

another component (e.g. o access a common
hardware resource)?

None of these is expressed in the object-oriented
interface definition, yet each can interfere with
behavioral polymorphism.

Chess, UC Berkeley, E. A. Lee 12




Behavioral Types -
A Practical Approach

* Capture the dynamic interaction of components in types
+ Obtain benefits analogous to data typing.
* Call the result behavioral types.

Director

producer
actor

IOPort

Receiver

consumer
actor

See Liskov & Wing, ACM, 1994
for an intro to behavioral types.

+ Communication has

- data types

- behavioral types
+ Components have

- data type signatures

- behavioral type signatures
+ Components are

- data polymorphic

- behaviorally polymorphic

Chess, UC Berkeley, E. A. Lee 13

Behavioral Type System

We capture patterns of

component interaction in a

type system framework.

We describe interaction
types and component

behavior using extended /nterface
automata (de Alfaro & Henzinger)

We do type checking through
automata composition (detect
component incompatibilities)

Subtyping order is given by

the alternating simulation
relation, supporting behavioral polymorphism.

communication -
execution 3 RS

interface O »
S \Q

N’

A type sighature for
a consumer actor.

=
=l

=
=
—

f?
— =

o)

A £
3
——

These behavioral types are an example of

an /nterface theory (Henzinger, et al).

Chess, UC Berkeley, E. A. Lee 14




Enabled by a Behavioral Type System

» Checking behavioral compatibility of
components that are composed.

» Checking behavioral compatibility of
components and their frameworks.

* Behavioral subclassing enables
interface/implementation separation.

* Helps with the definition of behaviorally-
polymorphic components.

Chess, UC Berkeley, E. A. Lee 15

Enabled by Behavioral Polymorphism (1):
More Re-Usable Component Libraries

actor domains
__Isaurces 1 W |
1 sinks actorib } 4
_lio AbsoluteValue /r lib
Accumulator
I math ‘AddSubtract actor.lib.comm } actor.lib.gui ﬁ:(i‘g;rss\saql:fr:me
random ArrayAppend
= rayAppen ConvolutionalCoder ArrayPlotter DelayLine
=L rirol ArrayElement oo
low control ArrayExtract Descrambler ArrowKeySensor Dglwrzsanr:"c‘\)le
real time ArrayLength ladamardCode BarGraph
ez e | Scrambier Dislay il
| logic ViterbiDecoder HistogramPlotter FIR
strin Average v
et Bemoull KeystrokeSensor LMSAdaptive
__| conversions psiig actor.ibjai LineCoder
_larray Counter DoubleMatrixToJAl Plotter MatrixToSequence
PlotterBase RaisedCosine
ot DB JAlAffineTransform
| matrix RealTimePlotter Repeat
Differential JAIBMPWiter
[=}+_4 signsl processing Di JAIBandCombi SequencePlotter SampleDelay
Expression JAIBandSelect SequenceScope SequenceToAray
| audio Gaussian JAlBorder SketchedSource SequenceToMatrix
| communicstions IR JAIBoxFilter SliderSource UpSample
i Interpolator JAIConvolve TimedPlotter VariableFIR
| fitering Lattice JaiGrop TimedScope zanas:e;amce -
_|image processing LevinsonDurbin JAIDCT X otter riableRecursivet attice
¥ Limiter JAIDFT cope
=+ _4 spectrum LinearDifferenceEquationSystem | JAIDataCaster
~[=]oe LookupTabl JAEdgeDetecion actor o mage |
FFT iathFunction !
Maxindex JAIDFT ImageDisplay | UML package
IFFT Maximum JAlimageReader ImageReader i .
LevinsonDurbin mwmmum JAlmageToken ImageRotate ! diagram of key
I ultiplyDivide JAlinvert ImageToString ! .
MexitumEntropySp PhaseUnwrap JALIPEGWiiter Transform actor libraries
PoissonClock JAiLog URLTolmage A 3
Perioclogram Pole IAiNgnitude included with
Quantizer JAIMedianFilter actor.lib,jmf Ptolemy Il
RecursiveLattice JAlPeriodicShift ColorFinder
S Rician JAIPhase JMFImageToken ]
Scale JAIPolarToComplex | | PlaySound

TrigFunction JAIRotate VideoCamera

[#__] domsin specific - Uniform InScale '
4 » JAITIFFWriter |

JAIToDoubleMatrix actor.lib javasound } rrrrr

JAlTranslate

JAITranspose ﬁgglzg;‘;‘:”s
e Data polymorphic components AudioReadBuffer
AudioReader

. . AudioWriteBuffer
e Behaviorally polymorphic components AudioWriter

UC Berkeley, E. A. Lee 16




Enabled by Behavioral Polymorphism (2):
Hierarchical Heterogeneity

Giotto director
indicates a new model of
computation.

mator_current

| Giotto Director
I:I throttle_motor

throttle_position

+—m

monitor

servo_control

‘ EE

Heterogeneous model of the UC Berkeley Vehicle Dynar
Electronic Throttle Controller.

by Paul Griffiths, Christoph Kirsch, Tunc Simsek, Jason
Last updated January 15, 2002

user_made

e T

manager

pedal_paosition

CT Directar

/]

throttle pasitiar)

throttle

powertrain inp

Domains can be
nested and mixed.

Chess, UC Berkeley, E. A. Lee 17

Enabled by Behavioral Polymorphism (3):
Modal Models

Giotto Director

throttle_motor

motor_current monitor

servo_control

throttle_position

Smanaget”

Periodic, time-driven tasks

Controller task

user_mo
Modal servo control.

throttle_positions

desired_throttle_position

mode

serva_control_output

SDF Directar

throttle_positions

throttle_paosition

sliding mode controller with estimator

desired_throttle]

Modes (normal & faulty)

AddSubtract
n current

mode

Chess, UC Berkeley, E. A. Lee 18




Enabled by Behavioral Polymorphism (4):
Mobile Models

Model-based distributed task management:

DE Director

TimedDelay

PushConsumer

e order:

Authors:

Yang Zhao
MoblleModel Steve Neuendorffer
Xiaojun Liu
510 J

{wt

s

PushConsumer actor receives
pushed data provided via CORBA,
where the data is an XML model of a
signal analysis algorithm.

MobileModel actor accepts a
StringToken containing an XML
description of a model. It then
executes that model on a stream of
input data.

Data and behavioral type safety will help make such models secure

Chess, UC Berkeley, E. A. Lee 19

Conclusion - What to Remember

* Actor-oriented design

- concurrent components interacting via ports
* Models of computation

- principles of component interaction

Behavioral types

- a practical approach to verification and interface

definition

Behavioral polymorphism

- defining components for use in multiple contexts

http://ptolemy.eecs.berkeley.edu
http://chess.eecs.berkeley.edu

Chess, UC Berkeley, E. A. Lee 20




