
1

Ptolemy Project 1

Streaming Models of Computation
in The Ptolemy Project

Edward A. Lee
Professor

UC Berkeley

Workshop on Streaming Systems,
Endicott House, Dedham, MA

August 22-23, 2003

Ptolemy Project, Lee, Berkeley 2

Ptolemy Project ParticipantsPtolemy Project Participants
Director:Director:
•• Edward A. LeeEdward A. Lee

Staff:Staff:
•• Christopher Christopher HylandsHylands
•• Susan Gardner (Chess)Susan Gardner (Chess)
•• NualaNuala MansardMansard
•• Mary P. StewartMary P. Stewart
•• Neil E. Turner (Chess)Neil E. Turner (Chess)
•• Lea Turpin (Chess)Lea Turpin (Chess)

PostdocsPostdocs, Etc.:, Etc.:
•• JoernJoern JanneckJanneck, , PostdocPostdoc
•• Rowland R. Johnson, Visiting Scholar Rowland R. Johnson, Visiting Scholar
•• KeesKees VissersVissers, Visiting Industrial Fellow, Visiting Industrial Fellow
•• Daniel Daniel LLáázarozaro CuadradoCuadrado, Visiting Scholar, Visiting Scholar

Graduate Students:Graduate Students:

•• J. Adam J. Adam CataldoCataldo
•• Chris ChangChris Chang
•• Elaine Elaine CheongCheong
•• SanjeevSanjeev KohliKohli
•• XiaojunXiaojun LiuLiu
•• EleftheriosEleftherios D. D. MatsikoudisMatsikoudis
•• Stephen Stephen NeuendorfferNeuendorffer
•• James James YehYeh
•• Yang ZhaoYang Zhao
•• HaiyangHaiyang ZhengZheng
•• Rachel ZhouRachel Zhou

2

Ptolemy Project, Lee, Berkeley 3

At Work in the Chess Software LabAt Work in the Chess Software Lab
Chess = Center for Hybrid and Embedded Software SystemsChess = Center for Hybrid and Embedded Software Systems

Ptolemy Project, Lee, Berkeley 4

Software Legacy of the Project
• Gabriel (1986-1991)

– Written in Lisp
– Aimed at signal processing
– Synchronous dataflow (SDF) block diagrams
– Parallel schedulers
– Code generators for DSPs
– Hardware/software co-simulators

• Ptolemy Classic (1990-1997)
– Written in C++
– Multiple models of computation
– Hierarchical heterogeneity
– Dataflow variants: BDF, DDF, PN
– C/VHDL/DSP code generators
– Optimizing SDF schedulers
– Higher-order components

• Ptolemy II (1996-2022)
– Written in Java
– Domain polymorphism
– Multithreaded
– Network integrated and distributed
– Modal models
– Sophisticated type system
– CT, HDF, CI, GR, etc.

Each of these served
us, first-and-
foremost, as a
laboratory for
investigating design.

• PtPlot (1997-??)
– Java plotting package

• Tycho (1996-1998)
– Itcl/Tk GUI framework

• Diva (1998-2000)
– Java GUI framework

Focus has always
been on embedded
software.

3

Ptolemy Project, Lee, Berkeley 5

Ptolemy Classic Example From 1995
(adaptive nulling in an antenna array)

Ptolemy application developed
by Uwe Trautwein, Technical
University of Ilmenau, Germany

streams

hierarchical
comonents

Ptolemy Project, Lee, Berkeley 6

Ptolemy II
Ptolemy II:

Our current framework for
experimentation with actor-
oriented design, concurrent
semantics, visual syntaxes, and
hierarchical, heterogeneous design.

http://ptolemy.eecs.berkeley.edu

Hierarchical component

modal model

dataflow controller

example Ptolemy II model: hybrid control system

4

Ptolemy Project, Lee, Berkeley 7

Actor-Oriented Design
Actors with Ports and Attributes

PortPort

Actor Actor
Link

Relation

Actor
Port

connection

connection co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

Model of Computation:

• Messaging schema
• Flow of control
• Concurrency

Examples:

• Dataflow
• Process networks
• Synchronous
• Time triggered
• Discrete-event systems
• Publish & subscribe

Most Ptolemy II models of computation are “actor oriented.”
But the precise semantics depends on the selected “director,”
which implements a model of computation.

called a “kernel,” “step,” …

Ptolemy Project, Lee, Berkeley 8

Other Examples of Actor-Oriented
Component Frameworks

• Simulink (The MathWorks)
• Labview (National Instruments)
• Modelica (Linkoping)
• OCP, open control platform (Boeing)
• GME, actor-oriented meta-modeling (Vanderbilt)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling (Rational)
• Easy5 (Boeing)
• Port-based objects (U of Maryland)
• I/O automata (MIT)
• VHDL, Verilog, SystemC (Various)
• Polis & Metropolis (UC Berkeley)
• …

Unlike Ptolemy II,
all of these define
a fixed model of
computation.

5

Ptolemy Project, Lee, Berkeley 9

Ptolemy Project Principle

Director from a library
defines component
interaction semantics

Large, domain-polymorphic
component library.

Example of Ptolemy II model:

The model of computation is not built in to
the software framework.

Ptolemy Project, Lee, Berkeley 10

Actor View of
Producer/Consumer Components

Models of Computation are
implemented in Ptolemy II
by a “director” and a
“receiver” (which is supplied
by the director). Examples
we have built:

• dataflow (several variants)
• process networks
• push/pull
• continuous-time
• CSP (rendezvous)
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

Ptolemy II uses the object-oriented
principle of polymorphism to realize multiple
actor-oriented models of computation.

6

Ptolemy Project, Lee, Berkeley 11

Focus on Dataflow
(a few variants)

• Computation graphs [Karp & Miller - 1966]
• Process networks [Kahn - 1974]
• Static dataflow [Dennis - 1974]
• Dynamic dataflow [Arvind, 1981]
• K-bounded loops [Culler, 1986]
• Synchronous dataflow [Lee & Messerschmitt, 1986]
• Structured dataflow [Kodosky, 1986]
• PGM: Processing Graph Method [Kaplan, 1987]
• Synchronous languages [Lustre, Signal, 1980’s]
• Well-behaved dataflow [Gao, 1992]
• Boolean dataflow [Buck and Lee, 1993]
• Multidimensional SDF [Lee, 1993]
• Cyclo-static dataflow [Lauwereins, 1994]
• Integer dataflow [Buck, 1994]
• Bounded dynamic dataflow [Lee and Parks, 1995]
• Heterochronous dataflow [Girault, Lee, & Lee, 1997]
• …

Many tools,
software
frameworks,
and hardware
architectures
have been
built to
support one
or more of
these.

Ptolemy Project, Lee, Berkeley 12

Synchronous Dataflow (SDF)
(Lee and Messerschmitt, 1986)

SDF offers feedback, multirate,
static scheduling, deadlock
analysis, parallel scheduling, static
memory allocation.

SDF director

7

Ptolemy Project, Lee, Berkeley 13

Synchronous Dataflow (SDF)
Fixed Production/Consumption Rates

Balance equations (one for each channel):

Schedulable statically
Decidable:

buffer memory requirements
deadlock

fire B {
…
consume M
…

}

fire A {
…
produce N
…

}

channel

N M

MfNf BA =
number of tokens consumed

number of firings per “iteration”

number of tokens produced

Ptolemy Project, Lee, Berkeley 14

Parallel Scheduling of SDF Models

A

C

D

B

Sequential Parallel

SDF is suitable
for automated
mapping onto
parallel
processors and
synthesis of
parallel circuits.

Many scheduling
optimization
problems can be
formulated. Some
can be solved, too!

8

Ptolemy Project, Lee, Berkeley 15

Selected Generalizations

• Multidimensional Synchronous Dataflow (1993)
– Arcs carry multidimensional streams
– One balance equation per dimension per arc

• Cyclo-Static Dataflow (Lauwereins, et al., 1994)
– Periodically varying production/consumption rates

• Boolean & Integer Dataflow (1993/4)
– Balance equations are solved symbolically
– Permits data-dependent routing of tokens
– Heuristic-based scheduling (undecidable)

• Dynamic Dataflow (1981-)
– Firings scheduled at run time
– Challenge: maintain bounded memory, deadlock freedom, liveness
– Demand driven, data driven, and fair policies all fail

• Kahn Process Networks (1974-)
– Replace discrete firings with process suspension
– Challenge: maintain bounded memory, deadlock freedom, liveness

• Heterochronous Dataflow (1997)
– Combines state machines with SDF graphs
– Very expressive, yet decidable

Ptolemy Project, Lee, Berkeley 16

Multidimensional SDF
(Lee, 1993)

• Production and
consumption of N-
dimensional arrays of
data:

• Balance equations and
scheduling policies
generalize.

• Much more data
parallelism is exposed.

(40, 48)

(8, 8)

Similar (but dynamic)
multidimensional streams have been
implemented in Lucid.

9

Ptolemy Project, Lee, Berkeley 17

MDSDF Structure Exposes
Fine-Grain Data Parallelism

(1,1,N)

(1,1,1)

Repeat

(0,1,0)

Downsample

(1,M,N)

(M,N,1)

Transpose Parameter: (3,1,2)T

A
(L,M)

B
(M,N)

(L,1,1)

(1,1,1)

Repeat

T

(1,M,1)

(1,1,1)
(L,1,N)

(L,N,1)

Transpose Parameter: (1,3,2)

From this, a precedence
graph can be automatically
constructed that reveals
all the parallelism in the
algorithm.

L

M

N

M

N

L

Original Matrix

Repeats

Element-wise product

Original Matrix

Repeats

However, such programs
are extremely hard to
write (and to read).

Ptolemy Project, Lee, Berkeley 18

Cyclostatic Dataflow (CSDF)
(Lauwereins et al., TU Leuven, 1994)

Actors cycle through a regular
production/consumption pattern.
Balance equations become:

fire B {
…
consume M
…

}

fire A {
…
produce
…

}

channel

),(;
1

0
mod

1

0
mod QPlcmRMfNf

R

i
QiB

R

i
PiA == ∑∑

−

=

−

=

iN
10 ,, −PNN K 10 ,, −QMM K

cyclic production pattern

10

Ptolemy Project, Lee, Berkeley 19

Boolean and Integer Dataflow (BDF, IDF)
(Lee and Buck, 1993)

• Balance equations are solved symbolically in terms
of unknowns that become known at run time.

• An annotated schedule is constructed with
predicates guarding each action.

• Existence of such an annotated schedule is
undecidable (as is deadlock & bounded memory)

Production rate is unknown and is
represented symbolically by a variable (b).

B

se
le

ct

sw
it

ch

b

1− b

b

1− b

A

C
D

E ...
)1(Cswitch

Bswitch

fbf
fbf
=−

=

b

Ptolemy Project, Lee, Berkeley 20

Dynamic Dataflow (DDF)

• Actors have firing rules
– Set of finite prefixes on input sequences
– For determinism: No two such prefixes are joinable under a prefix order
– Firing function applied to finite prefixes yield finite outputs

• Scheduling objectives:
– Do not stop if there are executable actors
– Execute in bounded memory if this is possible
– Maintain determinacy if possible

• Policies that fail:
– Data-driven execution
– Demand-driven execution
– Fair execution
– Many balanced data/demand-driven strategies

• Policy that succeeds (Parks 1995):
– Execute with bounded buffers
– Increase bounds only when deadlock occurs

DDF, like BDF and IDF is undecidable
(deadlock, bounded memory, schedule)

11

Ptolemy Project, Lee, Berkeley 21

Dynamic Dataflow and Process Networks are
Formally Similar, Practically Different

OEP problem under DARPA MoBIES (Model-
based design of embedded software),

Example from signal intelligence: Detection
of unknown signal (PSK in this case)

Output data sequence,
at detected baud rate.
(not known apriori)

First
Symbol

Expected
Symbol Drift
caused by error
in estimation

Ptolemy Project, Lee, Berkeley 22

Undecidability
(Buck ’93)

• Sufficient set of actors for undecidability:
– boolean functions on boolean tokens
– switch and select
– initial tokens on arcs

• Undecidable:
– deadlock
– bounded buffer memory
– existence of an annotated schedule

boolean
function se

le
ct

sw
it

ch

initial token

1

1

1

1

1 1

1

b

1− b

b

1− b

BDF, IDF, DDF, and PN
are all undecidable in this
sense. Fortunately, we can
identify a large decidable
subset, which we call
heterochronous dataflow
(HDF).

T

F

T

F

12

Ptolemy Project, Lee, Berkeley 23

Example of a Heterochronous Dataflow
(HDF) Model

An actor consists of a state machine and
refinements to the states that define behavior.

Ptolemy Project, Lee, Berkeley 24

Heterochronous Dataflow (HDF)
(Girault, Lee, and Lee, 1997)

• An interconnection of actors.
• An actor is either SDF or HDF.
• If HDF, then the actor has:

– a state machine
– a refinement for each state
– where the refinement is an SDF or HDF actor

• Operational semantics:
– with the state of each state machine fixed, graph is SDF
– in the initial state, execute one complete SDF iteration
– evaluate guards and allow state transitions
– in the new state, execute one complete SDF iteration

• HDF is decidable
– but complexity can be high

13

Ptolemy Project, Lee, Berkeley 25

Other Stream-Like Models of Computation
(all implemented in Ptolemy II)

• Push/Pull
– dataflow with disciplined nondeterminism
– e.g. Click (Kohler, 2001)

• Discrete events
– data tokens have time stamps
– e.g. NS

• Continuous time
– streams are a continuum of values
– e.g. Simulink

• Synchronous languages
– sequence of values, one per clock tick
– fixed-point semantics
– e.g. Esterel

• Time triggered
– similar, but no fixed-point semantics
– e.g. Giotto

• Modal models
– state machines + stream-like MoCs, hierarchical
– e.g. Hybrid systems

all of these include a
logical notion of time

Ptolemy Project, Lee, Berkeley 26

Discrete-Event Models
Example: Sensor Nets Modeling

Ptolemy II model
of a sensor net
using discrete-
event
communication
where
connectivity is
determined by
proximity.

This model shows the
results of a power
optimization where the
green node issues a
broadcast signal and
the red ones retransmit
to relay the signal.

14

Ptolemy Project, Lee, Berkeley 27

Continuous-Time Models
Example: Soft Walls Avionics System

aircraft model

criticality calculation

pilot model

bias control

th
e

wa
ll

Analog Computers!

Ptolemy Project, Lee, Berkeley 28

Modal Models
Example: Hybrid Systems

Hybrid systems
are hierarchical
combinations of
continuous-time
models and
state machines.

15

Ptolemy Project, Lee, Berkeley 29

Heterogeneous Models

Modal models are one example of a family
of hierarchically heterogeneous models,
where diverse models of computation are
combined in a hierarchy.

Ptolemy Project, Lee, Berkeley 30

Heterogeneous Models: Periodic/Time-Driven
Example: Control Inside Continuous Time

Giotto director indicates
a periodic, time-driven
model of computation.

Domain-polymorphic component.

CT director indicates a
continuous time model
of computation.

16

Ptolemy Project, Lee, Berkeley 31

Heterogeneous Modal Models
Example: Modal Control System

Periodic, time-driven tasks

Modes (normal & faulty)

Controller task is
a dataflow model

Ptolemy Project, Lee, Berkeley 32

Other Topics Not Dealt With

• Scheduling problems
– throughput, latency, jitter, memory, load balancing, …

• Higher-order components
– like higher-order functions, but actor-oriented

• Distributed models
– giving middleware concurrent, actor-oriented semantics

• Domain polymorphism
– designing components to operate with multiple models of

computation
• Behavioral type systems

– components declare interfaces that make explicit
requirements of the MoC

Ptolemy II is open source & free
http://ptolemy.eecs.berkeley.edu

