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At Work in the Chess Software LabAt Work in the Chess Software Lab
Chess = Center for Hybrid and Embedded Software SystemsChess = Center for Hybrid and Embedded Software Systems
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Software Legacy of the Project
• Gabriel (1986-1991)

– Written in Lisp
– Aimed at signal processing
– Synchronous dataflow (SDF) block diagrams 
– Parallel schedulers
– Code generators for DSPs
– Hardware/software co-simulators

• Ptolemy Classic (1990-1997)
– Written in C++
– Multiple models of computation
– Hierarchical heterogeneity
– Dataflow variants: BDF, DDF, PN
– C/VHDL/DSP code generators
– Optimizing SDF schedulers
– Higher-order components

• Ptolemy II (1996-2022)
– Written in Java
– Domain polymorphism
– Multithreaded
– Network integrated and distributed
– Modal models
– Sophisticated type system
– CT, HDF, CI, GR, etc.

Each of these served 
us, first-and-
foremost, as a 
laboratory for 
investigating design.

• PtPlot (1997-??)
– Java plotting package

• Tycho (1996-1998)
– Itcl/Tk GUI framework

• Diva (1998-2000)
– Java GUI framework

Focus has always 
been on embedded 
software.
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Ptolemy Classic Example From 1995
(adaptive nulling in an antenna array)

Ptolemy application developed 
by Uwe Trautwein, Technical 
University of Ilmenau, Germany

streams

hierarchical 
comonents
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Ptolemy II
Ptolemy II:

Our current framework for 
experimentation with actor-
oriented design, concurrent 
semantics, visual syntaxes, and 
hierarchical, heterogeneous design.

http://ptolemy.eecs.berkeley.edu

Hierarchical component

modal model

dataflow controller

example Ptolemy II model: hybrid control system
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Actor-Oriented Design
Actors with Ports and Attributes
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Model of Computation:

• Messaging schema
• Flow of control
• Concurrency

Examples:

• Dataflow
• Process networks
• Synchronous
• Time triggered
• Discrete-event systems
• Publish & subscribe

Most Ptolemy II models of computation are “actor oriented.” 
But the precise semantics depends on the selected “director,” 
which implements a model of computation.

called a “kernel,” “step,” …
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Other Examples of Actor-Oriented
Component Frameworks

• Simulink (The MathWorks)
• Labview (National Instruments)
• Modelica (Linkoping)
• OCP, open control platform (Boeing)
• GME, actor-oriented meta-modeling (Vanderbilt)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling (Rational)
• Easy5 (Boeing)
• Port-based objects (U of Maryland)
• I/O automata (MIT)
• VHDL, Verilog, SystemC (Various)
• Polis & Metropolis (UC Berkeley)
• …

Unlike Ptolemy II, 
all of these define 
a fixed model of 
computation.
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Ptolemy Project Principle

Director from a library 
defines component 
interaction semantics

Large, domain-polymorphic 
component library.

Example of Ptolemy II model:

The model of computation is not built in to 
the software framework.
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Actor View of
Producer/Consumer Components

Models of Computation are 
implemented in Ptolemy II 
by a “director” and a 
“receiver” (which is supplied 
by the director). Examples 
we have built:

• dataflow (several variants)
• process networks
• push/pull
• continuous-time
• CSP (rendezvous)
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

  Actor

  IOPort
  IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

  Receiver
(inside port)

Ptolemy II uses the object-oriented 
principle of polymorphism to realize multiple 
actor-oriented models of computation.
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Focus on Dataflow
(a few variants)

• Computation graphs [Karp & Miller - 1966]
• Process networks [Kahn - 1974]
• Static dataflow [Dennis - 1974]
• Dynamic dataflow [Arvind, 1981]
• K-bounded loops [Culler, 1986]
• Synchronous dataflow [Lee & Messerschmitt, 1986]
• Structured dataflow [Kodosky, 1986]
• PGM: Processing Graph Method [Kaplan, 1987]
• Synchronous languages [Lustre, Signal, 1980’s]
• Well-behaved dataflow [Gao, 1992]
• Boolean dataflow [Buck and Lee, 1993]
• Multidimensional SDF [Lee, 1993]
• Cyclo-static dataflow [Lauwereins, 1994]
• Integer dataflow [Buck, 1994]
• Bounded dynamic dataflow [Lee and Parks, 1995]
• Heterochronous dataflow [Girault, Lee, & Lee, 1997]
• …

Many tools, 
software 
frameworks, 
and hardware 
architectures 
have been 
built to 
support one 
or more of 
these.
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Synchronous Dataflow (SDF)
(Lee and Messerschmitt, 1986)

SDF offers feedback, multirate, 
static scheduling, deadlock 
analysis, parallel scheduling, static 
memory allocation.

SDF director
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Synchronous Dataflow (SDF)
Fixed Production/Consumption Rates

Balance equations (one for each channel):

Schedulable statically
Decidable:

buffer memory requirements
deadlock

fire B {
…
consume M
…

}

fire A {
…
produce N
…

}

channel

N M

MfNf BA =
number of tokens consumed

number of firings per “iteration”

number of tokens produced
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Parallel Scheduling of SDF Models

A

C

D

B

Sequential Parallel

SDF is suitable 
for automated 
mapping onto 
parallel 
processors and 
synthesis of 
parallel circuits.

Many scheduling 
optimization 
problems can be 
formulated. Some 
can be solved, too!
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Selected Generalizations

• Multidimensional Synchronous Dataflow (1993)
– Arcs carry multidimensional streams
– One balance equation per dimension per arc

• Cyclo-Static Dataflow (Lauwereins, et al., 1994)
– Periodically varying production/consumption rates

• Boolean & Integer Dataflow (1993/4)
– Balance equations are solved symbolically
– Permits data-dependent routing of tokens
– Heuristic-based scheduling (undecidable)

• Dynamic Dataflow (1981-)
– Firings scheduled at run time
– Challenge: maintain bounded memory, deadlock freedom, liveness
– Demand driven, data driven, and fair policies all fail

• Kahn Process Networks (1974-)
– Replace discrete firings with process suspension
– Challenge: maintain bounded memory, deadlock freedom, liveness

• Heterochronous Dataflow (1997)
– Combines state machines with SDF graphs
– Very expressive, yet decidable
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Multidimensional SDF
(Lee, 1993)

• Production and 
consumption of N-
dimensional arrays of 
data:

• Balance equations and
scheduling policies
generalize.

• Much more data 
parallelism is exposed.

(40, 48)

(8, 8)

Similar (but dynamic) 
multidimensional streams have been 
implemented in Lucid.
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MDSDF Structure Exposes
Fine-Grain Data Parallelism

(1,1,N)

(1,1,1)

Repeat

(0,1,0)

Downsample

(1,M,N)

(M,N,1)

Transpose Parameter: (3,1,2)T

A
(L,M)

B
(M,N)

(L,1,1)

(1,1,1)

Repeat

T

(1,M,1)

(1,1,1)
(L,1,N)

(L,N,1)

Transpose Parameter: (1,3,2)

From this, a precedence
graph can be automatically
constructed that reveals
all the parallelism in the
algorithm.

L

M

N

M

N

L

Original Matrix

Repeats

Element-wise product

Original Matrix

Repeats

However, such programs 
are extremely hard to 
write (and to read).
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Cyclostatic Dataflow (CSDF)
(Lauwereins et al., TU Leuven, 1994)

Actors cycle through a regular 
production/consumption pattern.
Balance equations become:

fire B {
…
consume M
…

}

fire A {
…
produce 
…

}

channel

),(;
1

0
mod

1

0
mod QPlcmRMfNf

R

i
QiB

R

i
PiA == ∑∑

−

=

−

=

iN
10 ,, −PNN K 10 ,, −QMM K

cyclic production pattern
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Boolean and Integer Dataflow (BDF, IDF)
(Lee and Buck, 1993)

• Balance equations are solved symbolically in terms 
of unknowns that become known at run time.

• An annotated schedule is constructed with 
predicates guarding each action. 

• Existence of such an annotated schedule is 
undecidable (as is deadlock & bounded memory)

Production rate is unknown and is 
represented symbolically by a variable (b).

B

se
le

ct

sw
it

ch

b

1− b

b

1− b

A

C
D

E ...
)1( Cswitch

Bswitch

fbf
fbf
=−

=

b
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Dynamic Dataflow (DDF)

• Actors have firing rules
– Set of finite prefixes on input sequences
– For determinism: No two such prefixes are joinable under a prefix order
– Firing function applied to finite prefixes yield finite outputs

• Scheduling objectives:
– Do not stop if there are executable actors
– Execute in bounded memory if this is possible
– Maintain determinacy if possible

• Policies that fail:
– Data-driven execution
– Demand-driven execution
– Fair execution
– Many balanced data/demand-driven strategies

• Policy that succeeds (Parks 1995):
– Execute with bounded buffers
– Increase bounds only when deadlock occurs

DDF, like BDF and IDF is undecidable
(deadlock, bounded memory, schedule)
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Dynamic Dataflow and Process Networks are 
Formally Similar, Practically Different

OEP problem under DARPA MoBIES (Model-
based design of embedded software),

Example from signal intelligence: Detection 
of unknown signal (PSK in this case)

Output data sequence, 
at detected baud rate.  
(not known apriori)

First 
Symbol

Expected 
Symbol Drift 
caused by error 
in estimation
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Undecidability
(Buck ’93)

• Sufficient set of actors for undecidability:
– boolean functions on boolean tokens
– switch and select
– initial tokens on arcs

• Undecidable:
– deadlock
– bounded buffer memory
– existence of an annotated schedule

boolean
function se

le
ct

sw
it

ch

initial token

1

1

1

1

1 1

1

b

1− b

b

1− b

BDF, IDF, DDF, and PN 
are all undecidable in this 
sense. Fortunately, we can 
identify a large decidable 
subset, which we call 
heterochronous dataflow 
(HDF).

T

F

T

F
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Example of a Heterochronous Dataflow 
(HDF) Model

An actor consists of a state machine and 
refinements to the states that define behavior.
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Heterochronous Dataflow (HDF)
(Girault, Lee, and Lee, 1997)

• An interconnection of actors.
• An actor is either SDF or HDF.
• If HDF, then the actor has:

– a state machine
– a refinement for each state
– where the refinement is an SDF or HDF actor

• Operational semantics:
– with the state of each state machine fixed, graph is SDF
– in the initial state, execute one complete SDF iteration
– evaluate guards and allow state transitions
– in the new state, execute one complete SDF iteration

• HDF is decidable
– but complexity can be high
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Other Stream-Like Models of Computation
(all implemented in Ptolemy II)

• Push/Pull
– dataflow with disciplined nondeterminism
– e.g. Click (Kohler, 2001)

• Discrete events
– data tokens have time stamps
– e.g. NS

• Continuous time
– streams are a continuum of values
– e.g. Simulink

• Synchronous languages
– sequence of values, one per clock tick
– fixed-point semantics
– e.g. Esterel

• Time triggered
– similar, but no fixed-point semantics
– e.g. Giotto

• Modal models
– state machines + stream-like MoCs, hierarchical
– e.g. Hybrid systems

all of these include a 
logical notion of time
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Discrete-Event Models
Example: Sensor Nets Modeling

Ptolemy II model 
of a sensor net 
using discrete-
event 
communication 
where 
connectivity is 
determined by 
proximity.

This model shows the 
results of a power 
optimization where the 
green node issues a 
broadcast signal and 
the red ones retransmit 
to relay the signal.
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Continuous-Time Models
Example: Soft Walls Avionics System

aircraft model

criticality calculation

pilot model

bias control

th
e 

wa
ll

Analog Computers!
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Modal Models
Example: Hybrid Systems

Hybrid systems 
are hierarchical 
combinations of 
continuous-time 
models and 
state machines.
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Heterogeneous Models

Modal models are one example of a family 
of hierarchically heterogeneous models, 
where diverse models of computation are 
combined in a hierarchy.
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Heterogeneous Models: Periodic/Time-Driven 
Example: Control Inside Continuous Time

Giotto director indicates 
a periodic, time-driven 
model of computation.

Domain-polymorphic component.

CT director indicates a 
continuous time model 
of computation.
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Heterogeneous Modal Models
Example: Modal Control System

Periodic, time-driven tasks

Modes (normal & faulty)

Controller task is 
a dataflow model
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Other Topics Not Dealt With

• Scheduling problems
– throughput, latency, jitter, memory, load balancing, …

• Higher-order components
– like higher-order functions, but actor-oriented

• Distributed models
– giving middleware concurrent, actor-oriented semantics

• Domain polymorphism
– designing components to operate with multiple models of 

computation
• Behavioral type systems

– components declare interfaces that make explicit 
requirements of the MoC

Ptolemy II is open source & free
http://ptolemy.eecs.berkeley.edu


