Actor-Oriented Design:

. A focus on domain-specific
[’\ languages for embedded systems

Edward A. Lee
Professor, UC Berkeley
Director, Center for Hybrid and Embedded Software Systems (CHESS)

o
R g

it d Bl iy

S

Formal Methods and Models for Codesign (MEMOCODE'2004)
June 22-25, 2004

San Diego, California

Abstract

Concurrent, domain-specific languages such as Simulink, LabVIEW,
Modelica, VHDL, SystemC, and OPNET provide modularization
mechanisms that are significantly different from those in prevailing object-
oriented languages such as C++ and Java. In these languages,
components are concurrent objects that communicate via messaging,
rather than abstract data structures that interact via procedure calls.
Although the concurrency and communication semantics differ
considerably between languages, they share enough common features

that we consider them to be a family. We call them actor-oriented
languages.

Actor-oriented languages, like object-oriented languages, are about
modularity of software. | will argue that we can adapt for actor-oriented
languages many (if not all) of the innovations of OO design, including
concepts such as the separation of interface from implementation, strong
typing of interfaces, subtyping, classes, inheritance, and aspects. | will

show some preliminary implementations of these mechanisms in a
Berkeley system called Ptolemy II.

Lee, Berkeley 2

The Questions

.
IZ] cruisecontrolonoff *
.

File Edit Wiew Simulation Format Tooks Help

+ |s this a good way to do design?

How does it relate to prevailing SW engineering?
Does it support abstraction and modularity?

Will it scale?

[N~ = o] . .
Can it become mainstream?
Enabled
Subsystem
IEl—pm outt
Sine Wave)
Constant >
Gain n
ol
Enabled Carmodel (F = ma)
Subsystem
5 a
tforce) Sl peed [1
B
Desired Timass Integrator Integrater! Fosition
spasd
OtoBD .
attime 1) e »
Spaed
Simple Cruise Contrel System
Ready 100% adeds

Lee, Berkeley 3

Platforms

A platform is a set of

designs.

Relations between

platforms represent

design processes.

\ \%
camw systems applications

/

synthesizable
WHOL pragrams

VHDL programs
programs

i

Java byte code programs

VM
*BE programs

Y

P4-M 1.66HE

FPGA configurations

| executables /

™y

MOSIS chips

MiCroprocessors

silicon chips

Progress

Many useful technical
developments amount
to creation of new
platforms.

|
o microarchitectures]l
o operating systems]]
o virtual machines ‘
O processor cores
o configurable ISAs

executables /

communications systems
-

applications

Recent
Action

Giving the red platforms
useful modeling
properties (e.g.
verification, SystemC,
UML, MDA)

Getting from red
platforms to blue
platforms (e.g.
correctness, efficiency,
synthesis of tools)

Better

Platforms

Platforms with
modeling properties
that reflect
requirements of the
application, not
accidental
properties of the
implementation.

\\ *,__*_DSPsystems T

communications systems applications
Simulink medels. ‘
Real-time workshop

v

Lprugrams

srnmeslable
'-fHDL PrOganns

VHOL programs

C-H- programs

Java programs

programs

| exacutables
Pa-M 1.6GHz
FPGAS
microprocessors
silicon chips

3
+

SEUEE Java byte code programs

cell
, designs
FPGA configurations A
B6 programs

How to View This Design

From above: Signal flow graph with linear, time-
invariant components.

Integrator3

Matrix Integrator

Gain3

Matrix
Gain2

Integrator2

Figure C.12: A block diagram generating a plucked string sound with a
fundmental and three harmonics.

4’
To Workspace

>

Matrix

Scope
Gain1 G

Matrix
Gain

Integrator

From below: Synchronous concurrent
composition of components

Lee, Berkeley 8

Actor-Oriented
Platforms

Actor oriented models
compose concurrent
components according
to a model of
computation.

Time and concurrency
become key parts of the
programming model.

—
comil i systems e ne

- 2 applications
| TN o

@:é’ '\ programs
+ 7

. o
_-lava byte code programs

silicon chips

L Actor-Oriented Design

Object orientation:

class name

data What flowls thfough
an object is
(methods sequential control
call return
Actor orientation:
actor name
data (state) What flows through
— o cters | E— an object is
streams of data
ports
Input data Output data Lee, Berkeley 10

Actor Orientation
vs. Object Orientation

Object oriented Actor oriented

TextToSpeech

Text to Speech

initialize(): void
notify(): void text iy, %}D il
isReady(): boolean

getSpeech(): double[]

OO interface definition gives procedures
that have to be invoked in an order not
specified as part of the interface definition.

actor-oriented interface definition says
“Give me text and I'll give you speech”

o Identified limitations of object orientation:
Says little or nothing about concurrency and time
Concurrency typically expressed with threads, monitors, semaphores
Components tend to implement low-level communication protocols
Re-use potential is disappointing

Lee, Berkeley 11

The First (?) Actor-Oriented Programming Language
o The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother,
Ivan Sutherland) to create the first actor-oriented
programming framework.

Partially constructed actor-oriented model with

a class definition (top) and instance (below). Lee, Berkeley 12

o Your Speaker in 1966

Lee, Berkeley 13

Modern Examples of Actor-Oriented
Component Frameworks

Simulink (The MathWorks) Except Ptolemy, all of
Labview (National Instruments) these define a fixed
Modelica (Linkoping) model of

OPNET (Opnet Technologies) computation.

Polis & Metropolis (UC Berkeley)

Gabiriel, Ptolemy, and Ptolemy Il (UC Berkeley)

OCP, open control platform (Boeing)

GME, actor-oriented meta-modeling (Vanderbilt)

SPW, signal processing worksystem (Cadence)

System studio (Synopsys)

ROOM, real-time object-oriented modeling (Rational)

Easy5 (Boeing)

Port-based objects (U of Maryland)

I/O automata (MIT)

VHDL, Verilog, SystemC (Various)

O 0O O0OO0OO0OO0OO0ODO0OO0OOOOOOODO

Lee, Berkeley 14

Basic Ptolemy IT infrastructure:

Ptolemy Il Framework for
Experimenting with AO Design

Director from a library
defines component

|| utilties: - i . .
DE Dircctor interaction semantics
Master Clock String Sequence Display As Received
>= Record Assembler
Sequence Count ChannslMeces
A variahleClock &
equence sources | =
#- | sinks .
0 Jio Gaussian Square
gj :E’::T;mml The channel is moSgled
) et =l bya variable delay, Wich
S e e here is random, with
L Rayeigh distribution
= Large, domain-polymorphic

component library.

’ Hierarchical components

Visual editor

Lee, Berkeley 15

Actors in 2004: “Capsules” (UML-RT)

and “Composite Structures” (U

UML-RT borrowed from Selic’'s ROOM the notion of
“capsules,” which structurally look like actors.

which also look like actors.
syntax (and a concrete syntax), but no semantics.

oriented design to be done wrong...

ML-2)

UML-2 is introducing the notion of “composite structures,”

UML capsules and composite structures specify abstract

What this says is that there is huge potential for actor-

Lee, Berkeley 16

Why Use the Term “Actors”

The term “actors” was introduced in the 1970’s by Carl
Hewitt of MIT to describe autonomous reasoning agents.

The term evolved through the work of Gul Agha and
others to refer to a family of concurrent models of
computation, irrespective of whether they were being
used to realize autonomous reasoning agents.

The term “actor” has also been used since 1974 in the
dataflow community in the same way, to represent a
concurrent model of computation.

But UML uses the term “actor” in its use cases.

Lee, Berkeley 17

Does Actor-Oriented Design Offer Best-
Of-Class SW Engineering Methods?

o Abstraction
procedures/methods
classes

o Modularity
subclasses
inheritance
interfaces
polymorphism
aspects

o Correctness
type systems

Lee, Berkeley 18

Example of an Actor-Oriented
Framework: Simulink

/| E!cruisecnnlrnlnnnffl[nahled Subsystem1 *
File Edit Wiew Simulation Format Tools Help

IZ] cruisecontrolonoff *

File Edi Yiew Smulation Format Tooks Help OEedé& REL &)
De-dS o |- &

Enabled

Subsystem Enable

.—».—»}—». D
1 /] Int Outd
ZeroOrder Cantraller
ST b Hold tsimple gain)
Gain n
. e 100% odeds

- basic abstraction
: . mechanism is

1imass Inte grat: Integratort Pozition
e hierarchy.
Speed
Simple Cruise Control System
Ready 100% odeds

Lee, Berkeley 19

o Observation

By itself, hierarchy is a very weak
abstraction mechanism.

Lee, Berkeley 20

° Tree Structured Hierarchy

o Does not
represent

common class
definitions. Only

instances.

o Multiple

instances of the |

container container
hierarchical
component copy

same hierarchical

component are

copies.

leaf components: instances of an OO class

Lee, Berkeley 21

Alternative Hierarchy:

Roles and Instances

one definition, I I I I
multiple containers
class instance instance
role hierarchy instance hierarchy
(“design-time” view) (“run time” view)

Lee, Berkeley 22

| Role Hierarchy

o Multiple instances of
the same hierarchical
component are
represented by classes

with multiple hierarchical
. |
containers. class
o This makes hierarchical | | | |

components more like
leaf components.

Lee, Berkeley 23

A Motivating Application: Modeling
Sensor Networks

Model of Massimo Franceschetti’s “small
world” phenomenon with 49 sensor nodes.

These 49 sensor nodes are
actors that are instances of
the same class, defined as:

Making these objects

instances of a class rather - S
than copies reduced the XML Send g ry st vt e o
. tscard the rest anSui Exqssion 2
representation of the model — "“F_+ Tl
Congd raport
from 1.1 Mbytes to 87 e i
kBytes, and offered a number Configure (o e £
SRl BoosanSwitchl] rawnsmil ::'r.lm o mnl |::|a=
Of Other advantages Get Documer| Liw ------ !‘T;; 1.0,0.0, 1.0} ; ol pan 1t
Channel This channel has range given by the gz:;i:e Fo ==) ‘:’:‘;.o.n 0,10}
“range" parameter and probability of aEwrn Sal i recT T ITES YRETE
delivery given by the "probability" Save Actor I Sed o white 8l th Cons? transmited by 1 hop. Satvariaty
parameter. Liskerbo Actq Star of fe run. 1 ¥ roceCoicr |

Lee, Berkeley 24

Subclasses, Inheritance?
Interfaces, Subtypes? Aspects?

o Now that we have classes, can we bring in
more of the modern programming world?

subclasses?
inheritance?
interfaces?
subtypes?
aspects?

Lee, Berkeley 25

SDF Director

of L >
Iocé&t\
definition
This is an ind%a
of the above clas’

definition. Look
inside to see the

This is an instan

definition.

NoisySinewave This actor is a class definition, indicated by the blue halo. Itis

=isy instance of this class, right click on

subclass definition.

ofthe base class
for the above class

‘ Example Using AO Classes

This model illustrates the mechanisms in Ptolemy Il

1

for defining classes and subclasses with inheritance. ' ﬁ\
!
L]

an [3]

ignorex nd senes as a declaration. To create an

Claan and Noisy Sime Wave =

0z 03 04 05 0E

RE % % e
execution:?

"Create Instance” (or type Ctrl-N). To see the class definition, looknaT

InstanceOfMNoisySinewave
SequencePlotter

J 5 '@N&hn ao
instance

ce M

Ramp

Generate 8 sine wave,

i t o F ¢ i At
tnstanc |nh§r|te&a:ctqrﬁm
I3 frequency: 440.0 iy a0 i

L3> phnse: 0.0

BOF Diector

:}) Trequency: $40.0
SDF Direciar :] H
S —

override actorg ®

3an2szacceoreass @ noiseSandardDedaton: 0.1
Benetale & dina wive:

The objects highlighted in pink are

definad in this superclass. Such objects
cannat be removed in this derived ciass.
Thair paramaters can ba changed, howaver.
This implies thal they can be moved and
«can be assigned custom icons. To examing
the superclass, right ciick on the
background and select "Open Base Class™

. TripFuncson output

[

Gaussian

Ramp

AsdSublract TrigFunction

7N

‘subclass

outpul

Lee, Berkeley 26

(] Inner Classes

This model illustrates classes, subclasses, inner classes

L Il definiti and inheritance, using custom icons to make it visually
ocal class aefinitions clear how inheritance works.

are important to

. . . BaseClass SubclassOfBaseClass
achieving modularity. . -w\ A key issue is then to
define the semantics of

E}gﬁgg:llitl::s'mp“% inheritance and
InstanceOfBaseglass. InstanceOfSubclassOBasec OVerrides.

definitions can exist .
within class definitions. ‘ \

The BaseClass de_ﬁnitiun includes an inner class and a subclass of that inner class, plus instances of each;
a subclass of that inner class, plus instances of each. | | | 77T T T EER TR A am R

SubclassOfinnerClass

The triangle added to the icon of the inner
class here effectively overrides the inner
class definition inherited from BaseClass
InstanceQfSubclassCfinnerClass
InstanceOfSubclass OfinnerClass _InstanceOfinnerClass 5]
InstanceOfinnerClass . 1 :

Lee, Berkeley 27

® Ordering Relations

Top

containment relation

550BaseClass

BaseClass

parent-child relation

disciplined
form of
multiple

InnerClass | SubclassOfinnerClass 2 heritance.
InstanceOfSubclassOfinnerClass rlrszancaquubc assOfinnerClass

InstanceOfnnerClass _InstanceQfinnerClass

Mathematically, this structure is a doubly-nested diposet, the formal
properties of which help to define a clean inheritance semantics. The

principle we follow is that local changes override global changes.
Lee, Berkeley 28

Defining Actor Interfaces:

parameters:
a, = value
! Example:
a, = value
input ports
output port ArrayPeakSearch
startindex peakValues
_a
P e”d'%%%’iE > bpealdndices
Ps
pZ Edit parameters for ArrayPeakSearch El
input/output port @ e ol
port souelch: [1o0
sesle: Fhsolte |
Startindex b
endincex: |Maxlm
rraimumbumberQPeaks: |Max|n|
Commit Add Remove | preferences | v | cancel |

Lee, Berkeley 29

o Actor Subtypes

Example of a simple type lattice:

a,: Int=value

General
String
py: Int
ps: Double Boolean .SCa/ar
ks Long Complex
g [subtype =
> . —
&\ relation a,: Double = value _% \ Doub|e
5 >
3 o
° © InT
p,- Double
EvenT

Py Int

Lee, Berkeley 30

o Actor Subtypes (cont)

a,: Int=value

Subtypes can have:

o Fewer input ports

py:Int o More output ports
P4 Double
subtype Remove (ignore) Of course, the types
relation | or add parameters of these can have
co/contravariant
Remove : : :
(ignore) s Int relationships with the
input supertype.
ports p,4. Double
Add output ports Lee, Berkeley 31
® Observations

o Subtypes can remove (or ignore) parameters and also
add new parameters because parameters always have
a default value (unlike inputs, which a subtype cannot
add)

o Subtypes cannot modify the types of parameters
(unlike ports). Co/contravariant at the same time.

o PortParameters are ports with default values. They can
be removed or added just like parameters because
they provide default values.

o Are there similar exceptions to co/contravariance in OO

languages?

Lee, Berkeley 32

o Composing Actors

A connection implies a type constraint. Can:

o check compatibility
o perform conversions
o infer types

out: Int in: Int
out: Int in: Double
Source out: Int in: Unknown Sink

The Ptolemy Il type system does all three. Lee, Berkeley 33

What Happens to Type Constraints
® When a Subclass Adds
Connections?

Type resolution results may be
different in different subclasses of
the same base class (connection
with let-bound variables in a
Hindley-Milner type system?)

DerivedClass

’c“
Te—n

Source Sink
BaseClass

Lee, Berkeley 34

® Abstract Actors?

Suppose one of the
contained actors is an
interface only. Such a
class definition cannot
be instantiated (it is
abstract). Concrete
subclasses would
have to provide
implementations for
the interface.

Is this useful?

Lee, Berkeley 35

Implementing Multiple Interfaces

[
An Example
EnergyConsumer interface has a single Filter interface for a
output port that produces a Double stream transformer
representing the energy consumed by a firing. component.

in: Event

in: Double

energy: Double out: Double

subtype

Event is a peculiar typ relation

that can yield a token
of any type. Itis the
bottom of the type

lattice.

EnergyConsumingFilter
composed interface.

in: Double out: Double

power: Double

Lee, Berkeley 36

o A Model Using
Such an Actor 7 boudle
Sink
in: Double out: Double
ower: Double
EnergyConsumingFilter
out: Double
Source in: Double
EnergyTabulator
Lee, Berkeley 37
o Heterarchy? Multi-View
Modeling? Aspects?
Abstract
Abstract 3 Sink EnergyConsumer
Yy Fiter
Source FunctionModel EnergyModel EnergyTabulator
Source Sink EnergyConsumingFilter EnergyTabulator
This is multi-view modeling, similar |s this an actor-oriented version of
to what GME (Vanderbilt) can do. aspect-oriented programming?

Lee, Berkeley 38

Recursive Containment
o Can Hierarchical Classes Cont
Instances of Themselves?

L1 1
-

class instance
class instance
instance

role hierarchy

Note that in this case, unrolling instance hierarchy

cannot occur at “compile time”.

ain

Lee, Berkeley 39

Early Realization of this in

y Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial
evaluation strategy on higher-order components.

Gl T - u.)
distribyE)_rI e L1 | S
) + IfThenElse repeat
L] o
rikeir | 1 = 1
L@ T - il
e 1 L)
..... g bl | Worls
FFT of half
the order k8 x(0) X(0)
(recursive - X /
reference) e oxj X(2) > X(1)
& N XX
QY x(1) X(2)
recursive reference 3 X(3)
X » »

[Conclusion

o Actor-oriented design remains a relatively
immature area, but one that is progressing
rapidly.

o It has huge potential.

o Many questions remain...

Lee, Berkeley 41

