
1

Actor-Oriented Design:
A focus on domain-specific
languages for embedded systems

Edward A. Lee
Professor, UC Berkeley
Director, Center for Hybrid and Embedded Software Systems (CHESS)

Formal Methods and Models for Codesign (MEMOCODE'2004)
June 22-25, 2004
San Diego, California

Lee, Berkeley 2

Abstract

Concurrent, domain-specific languages such as Simulink, LabVIEW,
Modelica, VHDL, SystemC, and OPNET provide modularization
mechanisms that are significantly different from those in prevailing object-
oriented languages such as C++ and Java. In these languages,
components are concurrent objects that communicate via messaging,
rather than abstract data structures that interact via procedure calls.
Although the concurrency and communication semantics differ
considerably between languages, they share enough common features
that we consider them to be a family. We call them actor-oriented
languages.
Actor-oriented languages, like object-oriented languages, are about
modularity of software. I will argue that we can adapt for actor-oriented
languages many (if not all) of the innovations of OO design, including
concepts such as the separation of interface from implementation, strong
typing of interfaces, subtyping, classes, inheritance, and aspects. I will
show some preliminary implementations of these mechanisms in a
Berkeley system called Ptolemy II.

2

Lee, Berkeley 3

The Questions
• Is this a good way to do design?
• How does it relate to prevailing SW engineering?
• Does it support abstraction and modularity?
• Will it scale?
• Can it become mainstream?

Lee, Berkeley 4

Platforms

A platform is a set of
designs.

Relations between
platforms represent
design processes.

big gap

3

Lee, Berkeley 5

Progress

Many useful technical
developments amount
to creation of new
platforms.

microarchitectures
operating systems
virtual machines
processor cores
configurable ISAs

Lee, Berkeley 6

Recent
Action

Giving the red platforms
useful modeling
properties (e.g.
verification, SystemC,
UML, MDA)

Getting from red
platforms to blue
platforms (e.g.
correctness, efficiency,
synthesis of tools)

4

Lee, Berkeley 7

Better
Platforms

Platforms with
modeling properties
that reflect
requirements of the
application, not
accidental
properties of the
implementation.

Lee, Berkeley 8

How to View This Design

From above: Signal flow graph with linear, time-
invariant components.

From below: Synchronous concurrent
composition of components

5

Lee, Berkeley 9

Actor-Oriented
Platforms

Actor oriented models
compose concurrent
components according
to a model of
computation.

Time and concurrency
become key parts of the
programming model.

Lee, Berkeley 10

Actor-Oriented Design

Actor orientation:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

streams of data

class name

data

methods

call return

What flows through
an object is

sequential control

Object orientation:

6

Lee, Berkeley 11

Actor Orientation
vs. Object Orientation

Identified limitations of object orientation:
Says little or nothing about concurrency and time
Concurrency typically expressed with threads, monitors, semaphores
Components tend to implement low-level communication protocols
Re-use potential is disappointing

OO interface definition gives procedures
that have to be invoked in an order not
specified as part of the interface definition.

TextToSpeech

initialize(): void
notify(): void
isReady(): boolean
getSpeech(): double[]

actor-oriented interface definition says
“Give me text and I’ll give you speech”

Actor orientedObject oriented

Lee, Berkeley 12

The First (?) Actor-Oriented Programming Language
The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother,
Ivan Sutherland) to create the first actor-oriented
programming framework.

7

Lee, Berkeley 13

Your Speaker in 1966

Lee, Berkeley 14

Modern Examples of Actor-Oriented
Component Frameworks

Simulink (The MathWorks)
Labview (National Instruments)
Modelica (Linkoping)
OPNET (Opnet Technologies)
Polis & Metropolis (UC Berkeley)
Gabriel, Ptolemy, and Ptolemy II (UC Berkeley)
OCP, open control platform (Boeing)
GME, actor-oriented meta-modeling (Vanderbilt)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
Easy5 (Boeing)
Port-based objects (U of Maryland)
I/O automata (MIT)
VHDL, Verilog, SystemC (Various)
…

Except Ptolemy, all of
these define a fixed
model of
computation.

8

Lee, Berkeley 15

Ptolemy II Framework for
Experimenting with AO Design

Director from a library
defines component
interaction semantics

Large, domain-polymorphic
component library.

Basic Ptolemy II infrastructure:

Hierarchical components

Visual editor

Type system

Lee, Berkeley 16

Actors in 2004: “Capsules” (UML-RT)
and “Composite Structures” (UML-2)

UML-RT borrowed from Selic’s ROOM the notion of
“capsules,” which structurally look like actors.

UML-2 is introducing the notion of “composite structures,”
which also look like actors.

UML capsules and composite structures specify abstract
syntax (and a concrete syntax), but no semantics.

What this says is that there is huge potential for actor-
oriented design to be done wrong…

9

Lee, Berkeley 17

Why Use the Term “Actors”

The term “actors” was introduced in the 1970’s by Carl
Hewitt of MIT to describe autonomous reasoning agents.

The term evolved through the work of Gul Agha and
others to refer to a family of concurrent models of
computation, irrespective of whether they were being
used to realize autonomous reasoning agents.

The term “actor” has also been used since 1974 in the
dataflow community in the same way, to represent a
concurrent model of computation.

But UML uses the term “actor” in its use cases.

Lee, Berkeley 18

Does Actor-Oriented Design Offer Best-
Of-Class SW Engineering Methods?

Abstraction
procedures/methods
classes

Modularity
subclasses
inheritance
interfaces
polymorphism
aspects

Correctness
type systems

10

Lee, Berkeley 19

Example of an Actor-Oriented
Framework: Simulink

basic abstraction
mechanism is
hierarchy.

Lee, Berkeley 20

Observation

By itself, hierarchy is a very weak
abstraction mechanism.

11

Lee, Berkeley 21

Tree Structured Hierarchy

Does not
represent
common class
definitions. Only
instances.

Multiple
instances of the
same hierarchical
component are
copies.

hierarchical
component copy

leaf components: instances of an OO class

container container

Lee, Berkeley 22

Alternative Hierarchy:
Roles and Instances

class

role hierarchy
(“design-time” view)

instance hierarchy
(“run time” view)

instance instance

one definition,
multiple containers

12

Lee, Berkeley 23

Role Hierarchy

Multiple instances of
the same hierarchical
component are
represented by classes
with multiple
containers.

This makes hierarchical
components more like
leaf components.

hierarchical
class

Lee, Berkeley 24

A Motivating Application: Modeling
Sensor Networks

These 49 sensor nodes are
actors that are instances of
the same class, defined as:

Making these objects
instances of a class rather
than copies reduced the XML
representation of the model
from 1.1 Mbytes to 87
kBytes, and offered a number
of other advantages.

Model of Massimo Franceschetti’s “small
world” phenomenon with 49 sensor nodes.

13

Lee, Berkeley 25

Subclasses, Inheritance?
Interfaces, Subtypes? Aspects?

Now that we have classes, can we bring in
more of the modern programming world?

subclasses?
inheritance?
interfaces?
subtypes?
aspects?

Lee, Berkeley 26

Example Using AO Classes

instance

instance

subclass

inherited actors

override actors

local class
definition

execution

14

Lee, Berkeley 27

Inner Classes

Local class definitions
are important to
achieving modularity.

Encapsulation implies
that local class
definitions can exist
within class definitions.

A key issue is then to
define the semantics of
inheritance and
overrides.

Lee, Berkeley 28

Ordering Relations

containment relation

parent-child relation

Mathematically, this structure is a doubly-nested diposet, the formal
properties of which help to define a clean inheritance semantics. The
principle we follow is that local changes override global changes.

disciplined
form of
multiple
inheritance.

15

Lee, Berkeley 29

Defining Actor Interfaces:
Ports and Parameters

input ports
output port

p1

p2

p3

parameters:
a1 = value
a2 = value

input/output
port

port

Example:

Lee, Berkeley 30

Actor Subtypes

General

String

ScalarBoolean

Complex

Double

Long

Int

Event

a1: Int = value

p3: Double
p1: Int

Example of a simple type lattice:

a1: Double = value

p3: Int
p1: Double

subtype
relation

C
ov

ar
ia

nt

C
on

tra
va

ria
nt

16

Lee, Berkeley 31

Actor Subtypes (cont)

a1: Int = value

p3: Double
p1: Int

p3: Int

Remove (ignore)
or add parameters

subtype
relation

p4: Double

Remove
(ignore)

input
ports

Add output ports

Subtypes can have:
Fewer input ports
More output ports

Of course, the types
of these can have
co/contravariant
relationships with the
supertype.

Lee, Berkeley 32

Observations

Subtypes can remove (or ignore) parameters and also
add new parameters because parameters always have
a default value (unlike inputs, which a subtype cannot
add)

Subtypes cannot modify the types of parameters
(unlike ports). Co/contravariant at the same time.

PortParameters are ports with default values. They can
be removed or added just like parameters because
they provide default values.

Are there similar exceptions to co/contravariance in OO
languages?

17

Lee, Berkeley 33

Composing Actors

A connection implies a type constraint. Can:

Source

in: Int

Sink

out: Int

in: Doubleout: Int
in: Unknownout: Int

check compatibility
perform conversions
infer types

The Ptolemy II type system does all three.

Lee, Berkeley 34

τ1 <= τ3

τ3

DerivedClass

What Happens to Type Constraints
When a Subclass Adds
Connections?

Type resolution results may be
different in different subclasses of
the same base class (connection
with let-bound variables in a
Hindley-Milner type system?)

Source Sink

τ1 <= τ2

BaseClass

τ1 τ
2

18

Lee, Berkeley 35

Abstract Actors?
Suppose one of the
contained actors is an
interface only. Such a
class definition cannot
be instantiated (it is
abstract). Concrete
subclasses would
have to provide
implementations for
the interface.

Is this useful?

Lee, Berkeley 36

Implementing Multiple Interfaces
An Example

energy: Double

EnergyConsumer interface has a single
output port that produces a Double
representing the energy consumed by a firing.

out: Double
in: Double

Filter interface for a
stream transformer
component.

out: Double

subtype
relation

power: Double

in: Double

EnergyConsumingFilter
composed interface.

in: Event

Event is a peculiar type
that can yield a token
of any type. It is the
bottom of the type
lattice.

19

Lee, Berkeley 37

A Model Using
Such an Actor

out: Double

out: Double

power: Double

in: Double

EnergyConsumingFilter

Source

in: Double

in: Double

Sink

EnergyTabulator

Lee, Berkeley 38

Heterarchy? Multi-View
Modeling? Aspects?

EnergyTabulatorEnergyConsumingFilterSinkSource

This is multi-view modeling, similar
to what GME (Vanderbilt) can do.

Is this an actor-oriented version of
aspect-oriented programming?

FunctionModel

Filter

Source

Sink
Abstract EnergyConsumer

EnergyTabulatorEnergyModel

Abstract

20

Lee, Berkeley 39

Recursive Containment
Can Hierarchical Classes Contain
Instances of Themselves?

class

role hierarchy

instance hierarchy

class

instance

instance

instance

…

Note that in this case, unrolling
cannot occur at “compile time”.

Lee, Berkeley 40

Early Realization of this in
Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial
evaluation strategy on higher-order components.

recursive reference

21

Lee, Berkeley 41

Conclusion

Actor-oriented design remains a relatively
immature area, but one that is progressing
rapidly.

It has huge potential.

Many questions remain…

