e

Actor-Oriented Design:

i Concurrent Models as Programs
J

T

E
Foi kil

Edward A. Lee

—t—

'
g

i

Professor, UC Berkeley

.
O

1 Director, Center for Hybrid and Embedded Software Systems (CHESS)

by |4

i H
= b3 d;;

=2 Parc Forum

o
"F“?‘.j Palo Alto, CA
14 May 13, 2004
= e

ios44

S £

Abstract

Concurrent, domain-specific languages such as Simulink, LabVIEW,
Modelica, VHDL, SystemC, and OPNET provide modularization
mechanisms that are significantly different from those in prevailing object-
oriented languages such as C++ and Java. In these languages,
components are concurrent objects that communicate via messaging,
rather than abstract data structures that interact via procedure calls.
Although the concurrency and communication semantics differ
considerably between languages, they share enough common features

that we consider them to be a family. We call them actor-oriented
languages.

Actor-oriented languages, like object-oriented languages, are about
modularity of software. | will argue that we can adapt for actor-oriented
languages many (if not all) of the innovations of OO design, including
concepts such as the separation of interface from implementation, strong
typing of interfaces, subtyping, classes, inheritance, and aspects. | will

show some preliminary implementations of these mechanisms in a
Berkeley system called Ptolemy II.

Lee, Berkeley 2

° The Questions

File Edit Yiew Simulation Format Tools Help

+ Is this a good way to do design?

» How does it relate to prevailing SW engineering?

Does it support abstraction and modularity?
Will it scale?
Can it become mainstream?

DEE& =) |
Enabled
Subsystem
IE'—»\M ot
Sine Wave 1
Constant >
Gain n
Qe
Enabled
Subsystemt

Car model (F = ma)

a

(acoe|eration)
acceerallun .

Glorce)

peed [1
B

Desired 1imass Integrator Integrater! Fosition
spesd
@ to B0 cpeed
attime 1) 2 L -]
Speed
simple Cruise Control System
Ready 100% odeds

Lee, Berkeley 3

Platforms

A platform is a set of
designs.

Relations between
platforms represent
design processes.

\ + D% syems
communications systerms ™. applications

& programs

)

Java byte code programs

\‘standan:l

cell
designs

M
*B6 programs

¢

P4-M 1LaGHE

FPGA configurations

| executables

I

MOSE chips

MICroprocessons

silicon chips

Progress

Many useful technical
developments amount
to creation of new
platforms.

o microarchitectures
o operating systems
o virtual machines
O processor cores
o configurable ISAs

Recent
Action

Giving the red platforms
useful modeling
properties (e.g.
verification, SystemC,
UML, MDA)

Getting from red
platforms to blue
platforms (e.g.
correctness, efficiency,
synthesis of tools)

silicon chips

+_DSP syster
\\ communications systems“"\ applications

o
—— N
B ette r ~ Real-time workshap
Platforms NN

Platforms with
modeling properties
that reflect
requirements of the
application, not
accidental
properties of the
implementation.

synmeslable
VHDL PrOgrans

VHDL programs

3
+

\‘mndard Java byte code programs.

cell
‘ desbgns
FPGA configurations i
BB programs

I. executables [

T

Pa-M 1.6GHz

FPGAS
microprocessors

silicon chips

|

How to View This Design

From above: Signal flow graph with linear, time-
invariant components.

s

Integrator3 Matrix

Figure C.12: A block diagram generating a plucked string sound with a
fundmental and three harmonics.

4’

To Workspace

L

Integrator Matrix
Gain1

Scope
Gain3

Matrix
Gain

Matrix Integrator

Gain2

Integrator2

|

From below: Synchronous concurrent

composition of components Lee. Berkeloy &

» DSp
cammunications systems
I

S

k| Pm

Actor-Oriented

\ ot e

Platforms

Actor oriented models

compose concurrent
components according
to a model of
computation.

Time and concurrency
become key parts of the
programming model.

silicon chips

Object orientation:

class name

Actor-Oriented Design

data What row§ through
an object is
r methods sequential control
call return
Actor orientation:
actor name
data (state) What flows through
) | ometers | ™SSP an object is
streams of data
ports
Input data Output data Lee, Berkeley 10

Actor Orientation
vs. Object Orientation

Object oriented Actor oriented

TextToSpeech

Text to Speech

initialize(): void
notify(): void text iny| %}D |, speech out
isReady(): boolean

getSpeech(): double[]

OO interface definition gives procedures
that have to be invoked in an order not
specified as part of the interface definition.

actor-oriented interface definition says
“Give me text and I'll give you speech”

[e]

Identified limitations of object orientation:
Says little or nothing about concurrency and time
Concurrency typically expressed with threads, monitors, semaphores
Components tend to implement low-level communication protocols
Re-use potential is disappointing

Lee, Berkeley 11

The First (?) Actor-Oriented Programming Language
® The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother,
Ivan Sutherland) to create the first actor-oriented
programming framework.

Partially constructed actor-oriented model with

a class definition (top) and instance (below). Lee, Berkeley 12

Your Speaker in 1966

Lee, Berkeley 13

O 000000 O0OOOOOOOODO

Modern Examples of Actor-Oriented
Component Frameworks

Simulink (The MathWorks) Except Ptolemy, all of
Labview (National Instruments) these define a fixed
Modelica (Linkoping) model of

OPNET (Opnet Technologies) computation.

Polis & Metropolis (UC Berkeley)

Gabriel, Ptolemy, and Ptolemy Il (UC Berkeley)
OCP, open control platform (Boeing)

GME, actor-oriented meta-modeling (VVanderbilt)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)

ROOM, real-time object-oriented modeling (Rational)
Easy5 (Boeing)

Port-based objects (U of Maryland)

I/O automata (MIT)

VHDL, Verilog, SystemC (Various)

Lee, Berkeley 14

Ptolemy |l Framework for
® Experimenting with AO Design

Basic Ptolemy IT infrastructure: Director from a library
— ~ defines component
;.lérv DE Direcior g interaction semantics

] generic sources

Master Clock String Sequence Display As Received

>= Record Assembler -
Channel Model

Sequence Count Record Disa¥gembler

bﬂ

£ WariableClock
] sequence sources

| sinks
5o Gaussian Square

+/-__| rancom

+-_ | flow contral

#- real fime =l
pe

5= Large, domain-polymorphic
component library.

The channel is moSgled
by a variable delay, Wich
here is random, with
Rayleigh distribution

’ Hierarchical components

Visual editor Lee, Berkeley 15

Actors in 2004: “Capsules” (UML-RT)
and “Composite Structures” (UML-2)

o UML-RT borrowed from Selic’'s ROOM the notion of
“capsules,” which structurally look like actors.

o UML-2 is introducing the notion of “composite structures,”
which also look like actors.

o UML capsules and composite structures specify abstract
syntax (and a concrete syntax), but no semantics.

o What this says is that there is huge potential for actor-
oriented design to be done wrong...

Lee, Berkeley 16

Why Use the Term “Actors”

The term “actors” was introduced in the 1970’s by Carl
Hewitt of MIT to describe autonomous reasoning agents.

The term evolved through the work of Gul Agha and
others to refer to a family of concurrent models of
computation, irrespective of whether they were being
used to realize autonomous reasoning agents.

The term “actor” has also been used since 1974 in the
dataflow community in the same way, to represent a
concurrent model of computation.

But UML uses the term “actor” in its use cases.

Lee, Berkeley 17

Does Actor-Oriented Design Offer Best-
Of-Class SW Engineering Methods?

o Abstraction
procedures/methods
classes

o Modularity
subclasses
inheritance
interfaces
polymorphism
aspects

o Correctness
type systems

Lee, Berkeley 18

Example of an Actor-Oriented
Framework: Simulink

P =) cruisecontrolonoff/Enabled Subsystem1 *

File Edt Wiew Simulation Format Tools Help

=1 cruisecontrolonoff *

File Edt Yiew Smulation Formst Tools Help D =ge TEEEIR
Deda 2 &
Enabled
Subsystem T
Ig—bm !
5 n
ine Wave - :
! = Int Outt
~ Zaro-Order Controller
Foretart b Hold tzsimple gain)
Gain Il
" Ll 100% adeds

- basic abstraction
a mechanism is

1imass Ints grat: Integratort Fosition
SR hierarchy.
Speed
Simple © Control System
Ready 100% dedS

Lee, Berkeley 19

® Observation

By itself, hierarchy is a very weak
abstraction mechanism.

Lee, Berkeley 20

® Tree Structured Hierarchy

o Does not container container
represent
common class hierarchical
definitions. Only component copy
instances.

o Multiple
instances of the | | | 1 | | I
same hierarchical
component are
copies. | | | 1 | | |

leaf components: instances of an OO class

Lee, Berkeley 21

Alternative Hierarchy:
Roles and Instances

one definition, I I I I
multiple containers

class instance instance

role hierarchy
(“design-time” view)

instance hierarchy
(“run time” view)

Lee,

Berkeley 22

L Role Hierarchy

o Multiple instances of
the same hierarchical
component are
represented by classes

with multiple hierarchical
: |
containers. class
o This makes hierarchical | | | |

components more like
leaf components.

Lee, Berkeley 23

A Motivating Application: Modeling

®
Sensor Networks
Model of Massimo Franceschetti’s “small
world” phenomenon with 49 sensor nodes.
These 49 sensor nodes are
actors that are instances of
the same class, defined as:
Making these objects
instances of a class rather - S
than copies reduced the XML Send oy o et v e .
. iscard the rest BosiaanSiwitch SO, ol
representation of the model — "‘t__: -
from 1.1 Mbytes to 87 e e -
kBytes, and offered a number Carfigure st g £ st
of other advantages. o o] Lew B oo oy o ten 1 hops
Charnal This channel has range given by the Configure Pol e ‘:’:‘;.o.n 0, 1.0p
“range" parameter and probability of 3% 1" i Sol 10 e YR HQATE
delivery given by the "probability" Save Ackor I Sl o while at thy Conat? transmiled by 1 hog. Salanabiy
parameter. Listen to actq Sart of fe un. 1 f noceCocr |

Lee, Berkeley 24

Subclasses, Inheritance?
Interfaces, Subtypes? Aspects?

o Now that we have classes, can we bring in
more of the modern programming world?

subclasses?
inheritance?
interfaces?
subtypes?
aspects?

Lee, Berkeley 25

o ‘ Example Using AO Classes

SDF Director

This model illustrates the mechanisms in Ptolemy Il
for defining classes and subclasses with inheritance.

NoisySinewave This actoris a class definition, indicated bythe blue halo. Itis

Iocm

definition

This is an instance
of the above class

definition. Look

inside to see the
subclass definition.

This is an instance
ofthe base class
for the above class

definition.

wilsy

ignored by ihe director, and serves as a declaration. To create an
instance of this class, right click on the ciass definition and select
"Create Instance” (or type Ctrl-N). To see the class definition, look inside.

InstanceOfMoisySinewave

SequencePlotter
B

Sinewaie @M“ Fr
—J instance
SOF Direciar
: & Generals 8 sine wave,
instanc

¢-> freguency. 440.0
L3> phnse: 0.0

Ramp

AddSublract

BOFDivewr .

:}) Trequency, 440.0

]
innwes‘riteé«a;w Ofs

override actorg #

Elean and Neisy Sine Wave L

! AVAVAYAYAY

o
Samghs nurmer

[FRNT] [TRTY ¢

w7 #¥ o¥ e
execution*’

3an2szacceoreass @ noiseSandardDedaton: 0.1
Benetale & dina wive:

The objects highlighted in pink are

defined in this superclass. Such objects
cannat be removed in this derived ciass.
Thair paramaters can ba changed, howaver.
This implies thal they can be moved and
«can be assigned custom icons. To examing
the superclass, right ciick on the
background and select "Open Base Class™

. TripFuncson

output

Gaussian
AdaSubct?

AN

E subclass

outpul

Lee, Berkeley 26

° Inner Classes

Local class definitions

This model illustrates classes, subclasses, inner classes
and inheritance, using custom icons to make it visually

are important to
achieving modularity. BgagQiass
Encapsulation implies
that local class
definitions can exist
within class definitions.

InstanceOfBaseklass

clear how inheritance works.
SubclassOfBaseClass
-w\ A key issue is then to
define the semantics of

inheritance and
InstanceOfSubclassOfBasec. OVErTides.

The BaseClass definition includes an inner class and
a subclass of that inner class, plus instances of each.

SubclassOfinnerClass
InnerClass

InstanceOfSubclass OfinnerClass
InstanceOflnnerClass

| \

The triangle added to the icon of the inner
class here effectively overrides the inner
class definition inherited from BaseClass
InstanceQfSubclass OfinnerClass
_InstanceQfinnerClass 5 '

Lee, Berkeley 27

® Ordering Relations

Top

[Bs]

containment relation

BaseClass

55 0fBaseClass

SubclassOfinnerClass

InnerClass |

AN

InstanceOfSubclassOfinnerClass

InstanceOflnnerClass

parent-child relation

limited form
of multiple
inheritance.

nnerClass

. InstanceCfSubclassOfinnerClass

Mathematically, this structure is a doubly-nested diposet, the formal
properties of which help to define a clean inheritance semantics. The

principle we follow is that local changes override global changes.

Lee, Berkeley 28

Defining Actor Interfaces:

o
Ports and Parameters
parameters:
a, = value Example:
a, = value
input ports
output port ArrayPeakSearch
startindex Fpeakvalues
P endlm%?ﬁE » . Poakindices
Ps
p2 Edit parameters for ArrayPeakSearch El
input/output port @ dip |
port squelch [100
seale: hbsaiute 3|
startincle:: ||]
endinces: [preoart
mazimumhumberoPeaks [peoart
Commit Add Remove | preferences | veb | cancel |
Lee, Berkeley 29
® Actor Subtypes
Example of a simple type lattice:
a,: Int=value General
String
p;-Int
P Double Boolean Scalar
& Long Complex
3 | subtype < |
> . - >
&\ relation a,: Double = value .% Double
c >
S) _——
o o Int
»,- Double /
Event

ps- Int

Lee, Berkeley 30

o Actor Subtypes (cont)

a,: Int=value

Subtypes can have:

o Fewer input ports

p:Int o More output ports
P4 Double
subtype Remove (ignore) Of course, the types
relation or add parameters of these can have
co/contravariant
Remove . . .
(ignore) s Int relationships with the
input supertype.
ports »,: Double
Add output ports Lee, Berkeley 31
® Observations

o Subtypes can remove (or ignore) parameters and also
add new parameters because parameters always have
a default value (unlike inputs, which a subtype cannot
add)

o Subtypes cannot modify the types of parameters
(unlike ports). Co/contravariant at the same time.

o PortParameters are ports with default values. They can
be removed or added just like parameters because
they provide default values.

o Are there similar exceptions to co/contravariance in OO

languages?

Lee, Berkeley 32

o Composing Actors

A connection implies a type constraint. Can:

o check compatibility
o perform conversions
o infer types

out: Int in: Int
out: Int in: Double
Source out: Int in: Unknown Sink

The Ptolemy |l type system does all three. Lee, Berkeley 33

What Happens to Type Constraints

° When a Subclass Adds
Connections?

Type resolution results may be :

different in different subclasses of DAY B N\

the same base class (connection

with let-bound variables in a

Hindley-Milner type system?)
.
~\

T T
T.— 1 |)
S Sink
. BaseClass -

Lee, Berkeley 34

® Abstract Actors?

Suppose one of the
contained actors is an
interface only. Such a
class definition cannot
be instantiated (it is
abstract). Concrete
subclasses would
have to provide
implementations for
the interface.

Is this useful?

Lee, Berkeley 35

Implementing Multiple Interfaces

[
An Example
EnergyConsumer interface has a single Filter interface for a
output port that produces a Double stream transformer
representing the energy consumed by a firing. component.

in: Event

in: Double

energy: Double out: Double

subtype

Event is a peculiar typ !
relation

that can yield a token
of any type. Itis the
bottom of the type

lattice.

EnergyConsumingFilter
composed interface.

in: Double out: Double

power: Double

Lee, Berkeley 36

A Model Using

o
Such an Actor = Dbouble
Sink
in: Double out: Double
ower: Double
EnergyConsumingFilter
out: Double
Source in: Double
EnergyTabulator
Lee, Berkeley 37
o Heterarchy? Multi-View
Modeling? Aspects?
Abstract
Abstract 3 Sink EnergyConsumer
3 Filter
Source FunctionModel EnergyModel EnergyTabulator
Source Sink EnergyConsumingFilter EnergyTabulator
This is multi-view modeling, similar Is this an actor-oriented version of
to what GME (Vanderbilt) can do. aspect-oriented programming?

Lee, Berkeley 38

Recursive Containment
Can Hierarchical Classes Contain
Instances of Themselves?

L]

class

class

role hierarchy

Note that in this case, unrolling
cannot occur at “compile time”.

-

1

instance

instance

instance

instance hierarchy

Lee, Berkeley 39

Primitive Realization of this in
Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial
evaluation strategy on higher-order components.

10>
distributor| | - - A
+ IfThenElse repeat
B
rirkeir | 1 1 1
o 1 B
Vi, 1 \
----- mall e | oels
FFT of half
the order e x(0) X(0)
(recursive - >< /
reference) e exf X(2) > X(1)
& B ><><
Y 4 x(1) X(2)
recursive reference (3 X(3)
X . -

[Conclusion

o Actor-oriented design remains a relatively
immature area, but one that is progressing
rapidly.

o It has huge potential.

o Many questions remain...

Lee, Berkeley 41

