
1

Hybrid System Modeling:
Operational Semantics Issues

Edward A. Lee
Professor
UC Berkeley

Center for Hybrid and embedded software systems

OMG Technical Meeting
Feb. 4, 2004
Anaheim, CA, USA

Special thanks to
Jie Liu,
Xiaojun Liu,
Steve Neuendorffer, and
Haiyang Zheng.

Lee, UC Berkeley 2

Abstract

Chess, the Berkeley Center for Hybrid and Embedded Software Systems,
has been studying the representation and execution of hybrid systems
models. These models combine the discrete events of conventional
software systems with the continuous dynamics of the physical world.
Part of this effort has been an interaction with the DARPA MoBIES
project (Model-Based Integration of Embedded Software), which has
recently drafted a proposed "standard" for hybrid systems
representation called HSIF, Hybrid System Interchange Format. In this
presentation, I will be describe the issues that arise in the semantics
of executable hybrid systems models. Fundamentally, computer systems
are not capable of precise execution of hybrid system models because
they cannot precisely realize the continuous dynamics. However,
reasonable approximations are available, using for example numerical
solvers for ordinary differential equations. However, these
approximation techniques do not address the issues peculiar to hybrid
systems, where discrete events can realize discontinuous behaviors in
these ODEs. In this talk, I will outline the issues and how they have
been addressed in Chess.

2

Lee, UC Berkeley 3

Focus on Hybrid & Embedded
Software Systems

Computational systems
but not first-and-foremost a computer

Integrated with physical processes
sensors, actuators

Reactive
at the speed of the environment

Heterogeneous
hardware/software, mixed architectures

Networked
adaptive software, shared data, resource discovery

Lee, UC Berkeley 4

Model-Based
Design

Recall from the
Previous talk:
Model-based design
is specification of
designs in platforms
with “useful
modeling
properties.”

3

Lee, UC Berkeley 5

“Useful Modeling Properties”
for Embedded Systems

Example: Control systems:
Continuous dynamics
Stability analysis

Lee, UC Berkeley 6

Discretized Model
A Small Step Towards Software

Numerical integration techniques provided sophisticated ways to get from
the continuous idealizations to computable algorithms.
Discrete-time signal processing techniques offer the same sophisticated
stability analysis as continuous-time methods.

But it’s not accurate for software controllers

4

Lee, UC Berkeley 7

Hybrid Systems – A Bigger Step Towards
Software

Combine:
finite-state
automata
classical models of
continuous or
discrete-time
dynamics

Lee, UC Berkeley 8

Actor-Oriented
Platforms
Recall from the
Previous talk:
Actor oriented
models compose
concurrent
components
according to a
model of
computation.

5

Lee, UC Berkeley 9

Ptolemy II – Our Laboratory
Ptolemy II:

Our current framework for
experimentation with actor-oriented
design, concurrent semantics, visual
syntaxes, and hierarchical,
heterogeneous design.

http://ptolemy.eecs.berkeley.edu

Hierarchical component

modal model

dataflow controller

example Ptolemy II model: hybrid control system

Lee, UC Berkeley 10

HyVisual – Hybrid System Modeling Tool
Based on Ptolemy II

HyVisual was
first released
in January
2003.

6

Lee, UC Berkeley 11

Operational Semantics of Hybrid Systems
(How to Build Simulators)

If you are going to rely on simulation results, then you need
an operational semantics.

Hybrid system semantics tend to be denotational.

A simulator cannot ignore nondeterminism.
It is incorrect to choose one trajectory.
Creating deterministic models must be easy.
Nondeterministic models must be explored either exhaustively
or using Monte Carlo methods.
Must avoid unnecessary nondeterminism.

Should not use continuous-time models to represent discrete
behaviors.

Inaccurate for software.
Heterogeneous models are better.

Lee, UC Berkeley 12

View Hybrid Systems as Networks of
Automata

The key question becomes: What is the semantics
for the interaction between automata?

7

Lee, UC Berkeley 13

Many Interaction Semantics Between
Automata Have Been Tried

Asynchronous
Promela (specification language for Spin)
SDL
Ptolemy II (PN+FSM, DE+FSM)

Synchronous w/ fixed point
Esterel
Simulink
Ptolemy II (SR+FSM)

Synchronous w/out fixed point
Statecharts
Giotto
Ptolemy II (SDF+FSM)

Continuous time
Simulink + Stateflow
Ptolemy II (CT+FSM)

Discrete time
Teja

Lee, UC Berkeley 14

Context of the Discussion

DARPA/MoBIES Effort to Standardize: Hybrid System
Interchange Format: HSIF
HSIF allows modeling of Networks of Hybrid Automata
Automata interact via signals (synchronous semantics)
and global variables (unrestricted)

example from Gabor Karsai, Vanderbilt

8

Lee, UC Berkeley 15

Some Semantics Questions
What automata can be expressed?

nondeterministic, guard expression language, actions, …
How are transitions in distinct automata coordinated?

synchronous, time-driven, event-driven, dataflow, …
can outputs and updates be separated?

What can automata communicate?
messages, events, triggers

How is communication carried out?
synchronous, rendezvous, buffered, lossy, …

How are continuous variables shared?
global name space, scoping, mutual exclusion, …

What is the meaning of directed cycles?
fixed point, error, infinite loop, …

What is the meaning of simultaneous events?
secondary orderings, such as data precedences, priorities, …

Lee, UC Berkeley 16

Modeling continuous dynamics using
Initial Value Ordinary Differential Equations:

f gx
u y

),,(
)(

),,(

00

tuxgy
xtx

tuxfx

=
=

=&

x&

Interaction Between ODE Solvers
and State Machine Dynamics

9

Lee, UC Berkeley 17

ODE Solvers

Numerical solution of the ODE on discrete time points.
Implementing ODE solvers by token passing
Evaluate f and g by firing a sorted sequence of components.

tt0 t1 t2t3 ts

f2 g1
xu f1

f3

g2

...

Step sizes are dynamically determined!

Lee, UC Berkeley 18

Executing Discrete Event Systems

Global notion of time
event = (time_tag, data_token)
Event-driven execution
Global event queue, sorting events in their chronological order
Components are causal
Components can schedule “refires” by producing pure events.

B

CA

10

Lee, UC Berkeley 19

Mixing The Two Means Dealing with
Events In Continuous-Time Signals

Breakpoint Handling:
Predictable Breakpoints:

• known beforehand.
• Register to a Breakpoint Table in advance.
• Use breakpoints to adjust step sizes.

Unpredictable Breakpoints:
• Prediction is not accurate enough.
• Check after each integration step.
• Refine the last step size if a breakpoint is missed.

Lee, UC Berkeley 20

Transitions of an FSM Are
Discrete Events

In continuous-time models, Ptolemy II can use event detectors
to identify the precise time at which an event occurs:

Semantics of transitions: can either enable a mode change or
trigger a mode change.

Under enabling: deterministic model becomes nondeterministic
if simulator takes steps that are too large.
Also under enabling: invariants may be violated due to failure to
take mode transitions on time.

11

Lee, UC Berkeley 21

Can yield values that are conceptually
impossible in the model, purely as an artifact
of the chosen step size.

Guards Enabling Transitions is the
Wrong Answer!

In this example, overshoot violates invariants

Timer used in Pump

Temperature

0.5

2.6

2.2

Lee, UC Berkeley 22

Simultaneous Events: The
Order of Execution Question

Given an event from the event source,
which of these should react first?
Nondeterministic? Data precedences?

Simulink/Stateflow and the Ptolemy II
CT domain declare this to be
deterministic, based on data
precedences. Actor1 executes before
Actor2.

Many formal hybrid systems
languages (with a focus on
verification) declare this to be
nondeterministic.

12

Lee, UC Berkeley 23

Non-Deterministic Interaction is the
Wrong Answer

turn one trigger into N,
where N is the number of actors

encode the
desired sequence
as an automaton
that produces a
schedule

embellish the
guards with
conditions on the
schedule

An attempt to achieve deterministic
execution by making the scheduling
explicit shows that this is far too difficult
to do.

broadcast the
schedule

Lee, UC Berkeley 24

OTOH: Nondeterminism is Easily Added in
a Deterministic Modeling Framework

At a time when
the event source
yields a positive
number, both
transitions are
enabled.

Although this can be done in
principle, Ptolemy II does not
support this sort of
nondeterminism. What execution
trace should it give?

13

Lee, UC Berkeley 25

Nondeterministic Ordering

In favor
Physical systems have no true simultaneity
Simultaneity in a model is artifact
Nondeterminism reflects this physical reality

Against
It surprises the designer

• counters intuition about causality
It is hard to get determinism

• determinism is often desired (to get repeatability)
Getting the desired nondeterminism is easy

• build on deterministic ordering with nondeterministic FSMs
Writing simulators that are trustworthy is difficult

• It is incorrect to just pick one possible behavior!

Lee, UC Berkeley 26

More Semantics Questions: How to
Get Predictable Execution

Discontinuous signals must have zero transition times.
Precise transition times.
Accurate model of Zeno conditions.

Avoid unnecessary nondeterminism.
Discrete signals should have values only at discrete times

Accurately heterogeneous model (vs. continuous approximation)

Sampling of discontinuous signals must be well-defined.
Avoid unnecessary nondeterminism.

Transient states must be active for zero time.
Properly represent glitches.

14

Lee, UC Berkeley 27

Discontinuous Signals

Timed automaton generating
a piecewise constant signal.

Correct output:

RK 2-3 variable-step solver and
breakpoint solver determine
sample times:

Incorrect output:Discontinuous
signals must
predictably have
multiple values at
the time of the
discontinuity.

Note two values at
the same time:

Lee, UC Berkeley 28

Sampling Discontinuous Signals

Samples must be
deterministically taken at t- or t+.
Our choice is t-, inspired by
hardware setup times.

Note that in Ptolemy II, unlike Simulink, discrete
signals have no value except at discrete points.

Continuous signal with sample times chosen by the solver:

Discrete result of sampling:

15

Lee, UC Berkeley 29

Transient States and Glitches

If an outgoing guard is true upon
entering a state, then the time spent
in that state is identically zero. This
can create glitches.

Lee, UC Berkeley 30

Status of HSIF:
Limited Tool Interchange

CHARON

HSIF

SAL Ptolemy Simulink/Sflow Checkmate

Export: Import:

Partial:
GME/HSIF

U PennU Penn SRISRI UC BerkeleyUC Berkeley VU/ISISVU/ISIS VU/ISISVU/ISIS

CMUCMU

VU/ISISVU/ISIS

Teja

Planned:

UC BerkeleyUC Berkeley

courtesy of Gabor Karsai, Vanderbilt

16

Lee, UC Berkeley 31

Personal Experience with HSIF

Models exchanged between the tools had limited
value:

Imported models had enough translation applied that little
intuition remained about the model.
Exporting models is only practical if the exporting
framework exactly matches the HSIF semantics.

Hybrid systems don’t solve the whole problem anyway.

More work is needed…

Lee, UC Berkeley 32

Caveat: Hybrid Systems are Not the Only
Useful Continuous/Discrete Mixture

An example, due to Jie Liu, has two controllers
sharing a CPU under an RTOS. Under preemptive
multitasking, only one can be made stable
(depending on the relative priorities). Under non-
preemptive multitasking, both can be made stable.

Hybrid systems theory does not deal well with this.

Modeling multitasking
with hybrid systems is
extremely awkward.

17

Lee, UC Berkeley 33

Alternatives Give Clean Temporal
Semantics to Software: e.g. Giotto

t+10mst+10mst t t+5ms t+5ms

Higher frequency Task

Lower frequency task:

Giotto compiler targets the E Machine/S Machine
Created by Tom Henzinger and colleagues
Giotto model of computation also implemented in Ptolemy II

Giotto – Periodic
Hard-Real-Time
Tasks with
Precise Mode
Changes.

Deterministic task
interaction.

Lee, UC Berkeley 34

Giotto with a Visual Syntax

hierarchical modes

tasks defined using another MoC

The Giotto Director in Ptolemy II gives the
diagram Giotto semantics.

18

Lee, UC Berkeley 35

Design Pattern: Periodic/Time-Driven
Inside Continuous Time

Giotto director
indicates a new model of
computation.

Domain-polymorphic component.

Domains can be
nested and
mixed.

Lee, UC Berkeley 36

Nesting Giotto With State Machine
for Modeling Faults

Periodic, time-driven tasks

Modes (normal & faulty)

Controller task

19

Lee, UC Berkeley 37

Simulink With Real-Time Workshop
Has Similar Semantics

continuous time
discrete actors are logically
instantaneous
separation of output/update
methods to support algebraic
loops, integration, and zero-
crossing detection
output method invoked many
times
multitasking mode for periodic
discrete-time tasks.
multitasking mode requires
Giotto-like delayed output
commit

image from Writing S-Functions,
version 4, The MathWorks

Lee, UC Berkeley 38

Conclusion

Modeling hybrid systems correctly is subtle

There are other formalisms for
discrete/continuous mixtures

Standardization will be challenging

see http://ptolemy.eecs.berkeley.edu

