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Abstract

Chess, the Berkeley Center for Hybrid and Embedded Software Systems,
has been studying the representation and execution of hybrid systems
models. These models combine the discrete events of conventional
software systems with the continuous dynamics of the physical world.
Part of this effort has been an interaction with the DARPA MoBIES
project (Model-Based Integration of Embedded Software), which has
recently drafted a proposed "standard" for hybrid systems
representation called HSIF, Hybrid System Interchange Format. In this
presentation, I will be describe the issues that arise in the semantics
of executable hybrid systems models. Fundamentally, computer systems
are not capable of precise execution of hybrid system models because
they cannot precisely realize the continuous dynamics. However,
reasonable approximations are available, using for example numerical
solvers for ordinary differential equations. However, these
approximation techniques do not address the issues peculiar to hybrid
systems, where discrete events can realize discontinuous behaviors in
these ODEs. In this talk, I will outline the issues and how they have
been addressed in Chess.
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Focus on Hybrid & Embedded 
Software Systems

Computational systems
but not first-and-foremost a computer

Integrated with physical processes
sensors, actuators

Reactive
at the speed of the environment

Heterogeneous
hardware/software, mixed architectures

Networked
adaptive software, shared data, resource discovery
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Model-Based 
Design

Recall from the 
Previous talk:
Model-based design
is specification of 
designs in platforms 
with “useful 
modeling 
properties.”
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“Useful Modeling Properties”
for Embedded Systems

Example: Control systems:
Continuous dynamics
Stability analysis
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Discretized Model
A Small Step Towards Software

Numerical integration techniques provided sophisticated ways to get from 
the continuous idealizations to computable algorithms.
Discrete-time signal processing techniques offer the same sophisticated 
stability analysis as continuous-time methods.

But it’s not accurate for software controllers
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Hybrid Systems – A Bigger Step Towards 
Software

Combine:
finite-state 
automata
classical models of 
continuous or 
discrete-time 
dynamics
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Actor-Oriented 
Platforms
Recall from the 
Previous talk:
Actor oriented
models compose 
concurrent 
components 
according to a 
model of 
computation.
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Ptolemy II – Our Laboratory
Ptolemy II:

Our current framework for 
experimentation with actor-oriented 
design, concurrent semantics, visual 
syntaxes, and hierarchical, 
heterogeneous design.

http://ptolemy.eecs.berkeley.edu

Hierarchical component

modal model

dataflow controller

example Ptolemy II model: hybrid control system
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HyVisual – Hybrid System Modeling Tool 
Based on Ptolemy II

HyVisual was 
first released 
in January 
2003.
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Operational Semantics of Hybrid Systems
(How to Build Simulators)

If you are going to rely on simulation results, then you need 
an operational semantics. 

Hybrid system semantics tend to be denotational.

A simulator cannot ignore nondeterminism.
It is incorrect to choose one trajectory.
Creating deterministic models must be easy.
Nondeterministic models must be explored either exhaustively 
or using Monte Carlo methods.
Must avoid unnecessary nondeterminism.

Should not use continuous-time models to represent discrete 
behaviors.

Inaccurate for software.
Heterogeneous models are better.
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View Hybrid Systems as Networks of 
Automata

The key question becomes: What is the semantics 
for the interaction between automata?
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Many Interaction Semantics Between 
Automata Have Been Tried

Asynchronous
Promela (specification language for Spin)
SDL
Ptolemy II (PN+FSM, DE+FSM)

Synchronous w/ fixed point
Esterel
Simulink
Ptolemy II (SR+FSM)

Synchronous w/out fixed point
Statecharts
Giotto
Ptolemy II (SDF+FSM)

Continuous time
Simulink + Stateflow
Ptolemy II (CT+FSM)

Discrete time
Teja
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Context of the Discussion

DARPA/MoBIES Effort to Standardize: Hybrid System 
Interchange Format: HSIF
HSIF allows modeling of Networks of Hybrid Automata
Automata interact via signals (synchronous semantics) 
and global variables (unrestricted)

example from Gabor Karsai, Vanderbilt
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Some Semantics Questions
What automata can be expressed?

nondeterministic, guard expression language, actions, …
How are transitions in distinct automata coordinated?

synchronous, time-driven, event-driven, dataflow, …
can outputs and updates be separated?

What can automata communicate?
messages, events, triggers

How is communication carried out?
synchronous, rendezvous, buffered, lossy, …

How are continuous variables shared?
global name space, scoping, mutual exclusion, …

What is the meaning of directed cycles?
fixed point, error, infinite loop, …

What is the meaning of simultaneous events?
secondary orderings, such as data precedences, priorities, …
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Modeling continuous dynamics using
Initial Value Ordinary Differential Equations:
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Interaction Between ODE Solvers 
and State Machine Dynamics
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ODE Solvers

Numerical solution of the ODE on discrete time points.
Implementing ODE solvers by token passing
Evaluate f and g by firing a sorted sequence of components.

tt0 t1 t2t3 ts

f2 g1
xu f1

f3

g2

...

Step sizes are dynamically determined!
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Executing Discrete Event Systems

Global notion of time
event = (time_tag, data_token)
Event-driven execution
Global event queue, sorting events in their chronological order
Components are causal
Components can schedule “refires” by producing pure events.

B

CA
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Mixing The Two Means Dealing with 
Events In Continuous-Time Signals

Breakpoint Handling:
Predictable Breakpoints: 

• known beforehand.
• Register to a Breakpoint Table in advance.
• Use breakpoints to adjust step sizes.

Unpredictable Breakpoints: 
• Prediction is not accurate enough.
• Check after each integration step.
• Refine the last step size if a breakpoint is missed.
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Transitions of an FSM Are 
Discrete Events

In continuous-time models, Ptolemy II can use event detectors
to identify the precise time at which an event occurs:

Semantics of transitions: can either enable a mode change or 
trigger a mode change.

Under enabling: deterministic model becomes nondeterministic 
if simulator takes steps that are too large.
Also under enabling: invariants may be violated due to failure to 
take mode transitions on time.
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Can yield values that are conceptually 
impossible in the model, purely as an artifact 
of the chosen step size.

Guards Enabling Transitions is the 
Wrong Answer!

In this example, overshoot violates invariants

Timer used in Pump

Temperature

0.5

2.6

2.2
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Simultaneous Events: The
Order of Execution Question

Given an event from the event source, 
which of these should react first?  
Nondeterministic? Data precedences?

Simulink/Stateflow and the Ptolemy II 
CT domain declare this to be 
deterministic, based on data 
precedences.  Actor1 executes before 
Actor2.

Many formal hybrid systems 
languages (with a focus on 
verification) declare this to be 
nondeterministic.
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Non-Deterministic Interaction is the 
Wrong Answer

turn one trigger into N,
where N is the number of actors

encode the 
desired sequence 
as an automaton 
that produces a 
schedule

embellish the 
guards with 
conditions on the 
schedule

An attempt to achieve deterministic 
execution by making the scheduling 
explicit shows that this is far too difficult 
to do.

broadcast the
schedule
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OTOH: Nondeterminism is Easily Added in 
a Deterministic Modeling Framework

At a time when 
the event source 
yields a positive 
number, both 
transitions are 
enabled.

Although this can be done in 
principle, Ptolemy II does not 
support this sort of 
nondeterminism. What execution 
trace should it give?



13

Lee, UC Berkeley 25

Nondeterministic Ordering

In favor
Physical systems have no true simultaneity
Simultaneity in a model is artifact
Nondeterminism reflects this physical reality

Against
It surprises the designer

• counters intuition about causality
It is hard to get determinism

• determinism is often desired (to get repeatability)
Getting the desired nondeterminism is easy

• build on deterministic ordering with nondeterministic FSMs
Writing simulators that are trustworthy is difficult

• It is incorrect to just pick one possible behavior!
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More Semantics Questions: How to 
Get Predictable Execution

Discontinuous signals must have zero transition times.
Precise transition times.
Accurate model of Zeno conditions.

Avoid unnecessary nondeterminism.
Discrete signals should have values only at discrete times

Accurately heterogeneous model (vs. continuous approximation)

Sampling of discontinuous signals must be well-defined.
Avoid unnecessary nondeterminism.

Transient states must be active for zero time.
Properly represent glitches.
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Discontinuous Signals

Timed automaton generating 
a piecewise constant signal.

Correct output:

RK 2-3 variable-step solver and 
breakpoint solver determine 
sample times:

Incorrect output:Discontinuous 
signals must 
predictably have 
multiple values at 
the time of the 
discontinuity.

Note two values at 
the same time:
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Sampling Discontinuous Signals

Samples must be 
deterministically taken at t- or t+. 
Our choice is t-, inspired by 
hardware setup times.

Note that in Ptolemy II, unlike Simulink, discrete 
signals have no value except at discrete points.

Continuous signal with sample times chosen by the solver:

Discrete result of sampling:
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Transient States and Glitches

If an outgoing guard is true upon 
entering a state, then the time spent 
in that state is identically zero. This 
can create glitches.
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Status of HSIF:
Limited Tool Interchange

CHARON

HSIF

SAL Ptolemy Simulink/Sflow Checkmate

Export: Import:

Partial:
GME/HSIF

U PennU Penn SRISRI UC BerkeleyUC Berkeley VU/ISISVU/ISIS VU/ISISVU/ISIS

CMUCMU

VU/ISISVU/ISIS

Teja

Planned:

UC BerkeleyUC Berkeley

courtesy of Gabor Karsai, Vanderbilt
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Personal Experience with HSIF

Models exchanged between the tools had limited 
value:

Imported models had enough translation applied that little 
intuition remained about the model.
Exporting models is only practical if the exporting 
framework exactly matches the HSIF semantics.

Hybrid systems don’t solve the whole problem anyway.

More work is needed…
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Caveat: Hybrid Systems are Not the Only 
Useful Continuous/Discrete Mixture

An example, due to Jie Liu, has two controllers 
sharing a CPU under an RTOS. Under preemptive 
multitasking, only one can be made stable 
(depending on the relative priorities). Under non-
preemptive multitasking, both can be made stable.

Hybrid systems theory does not deal well with this.

Modeling multitasking 
with hybrid systems is 
extremely awkward.
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Alternatives Give Clean Temporal 
Semantics to Software: e.g. Giotto

t+10mst+10mst t t+5ms t+5ms

Higher frequency Task

Lower frequency task:

Giotto compiler targets the E Machine/S Machine
Created by Tom Henzinger and colleagues
Giotto model of computation also implemented in Ptolemy II

Giotto – Periodic 
Hard-Real-Time 
Tasks with 
Precise Mode 
Changes.

Deterministic task 
interaction.

Lee, UC Berkeley 34

Giotto with a Visual Syntax

hierarchical modes

tasks defined using another MoC

The Giotto Director in Ptolemy II gives the 
diagram Giotto semantics.
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Design Pattern: Periodic/Time-Driven 
Inside Continuous Time

Giotto director
indicates a new model of
computation.

Domain-polymorphic component.

Domains can be 
nested and 
mixed.
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Nesting Giotto With State Machine 
for Modeling Faults

Periodic, time-driven tasks

Modes (normal & faulty)

Controller task
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Simulink With Real-Time Workshop 
Has Similar Semantics

continuous time
discrete actors are logically 
instantaneous
separation of output/update 
methods to support algebraic 
loops, integration, and zero-
crossing detection
output method invoked many 
times
multitasking mode for periodic 
discrete-time tasks.
multitasking mode requires 
Giotto-like delayed output 
commit

image from Writing S-Functions, 
version 4, The MathWorks
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Conclusion

Modeling hybrid systems correctly is subtle

There are other formalisms for 
discrete/continuous mixtures

Standardization will be challenging

see http://ptolemy.eecs.berkeley.edu


