
1

An Overview of the
Ptolemy Project and
Actor-Oriented Design

Edward A. Lee
Professor
UC Berkeley

Center for Hybrid and embedded software systems

OMG Technical Meeting
Feb. 4, 2004
Anaheim, CA, USA

Special thanks to the entire
Ptolemy Team.

Lee, UC Berkeley 2

Abstract

The Ptolemy Project at UC Berkeley studies modeling, simulation, and
design of concurrent, real-time, and embedded systems. The focus is on
assembly of concurrent components under "actor-oriented" models of
computation, where components are conceptually concurrent and
communicate through one of several messaging schemas. This talk
describes the principles of actor-oriented design, including common
features across models of computation, such as abstract syntax and type
systems, and features that differ across models of computation, such
concurrent threads of control and messaging schemas. Mechanisms that
support the use of heterogeneous mixtures of models of computation are
also described. The Ptolemy II system, which is the experimental
framework used by the project in its investigations, will be described
and used to illustrate key points. The Ptolemy Project at UC Berkeley
is part of Chess, the Berkeley Center for Hybrid and Embedded Software
Systems.

2

Lee, UC Berkeley 3

Ptolemy Project ParticipantsPtolemy Project Participants

Director:Director:
Edward A. LeeEdward A. Lee

Staff:Staff:
Christopher Christopher HylandsHylands
Susan Gardner (Chess)Susan Gardner (Chess)
NualaNuala MansardMansard
Mary P. StewartMary P. Stewart
Neil E. Turner (Chess)Neil E. Turner (Chess)
Lea Turpin (Chess)Lea Turpin (Chess)

PostdocsPostdocs, Etc.:, Etc.:
JoernJoern JanneckJanneck, , PostdocPostdoc
Rowland R. Johnson, Visiting Scholar Rowland R. Johnson, Visiting Scholar
KeesKees VissersVissers, Visiting Industrial Fellow, Visiting Industrial Fellow
Daniel Daniel LLáázarozaro CuadradoCuadrado, Visiting Scholar, Visiting Scholar

Graduate Students:Graduate Students:

J. Adam J. Adam CataldoCataldo
Chris ChangChris Chang
Elaine Elaine CheongCheong
SanjeevSanjeev KohliKohli
XiaojunXiaojun LiuLiu
EleftheriosEleftherios D. D. MatsikoudisMatsikoudis
Stephen Stephen NeuendorfferNeuendorffer
James James YehYeh
Yang ZhaoYang Zhao
HaiyangHaiyang ZhengZheng
Rachel ZhouRachel Zhou

Lee, UC Berkeley 4

Software Legacy of the Project

Gabriel (1986-1991)
Written in Lisp
Aimed at signal processing
Synchronous dataflow (SDF) block diagrams
Parallel schedulers
Code generators for DSPs
Hardware/software co-simulators

Ptolemy Classic (1990-1997)
Written in C++
Multiple models of computation
Hierarchical heterogeneity
Dataflow variants: BDF, DDF, PN
C/VHDL/DSP code generators
Optimizing SDF schedulers
Higher-order components

Ptolemy II (1996-2022)
Written in Java
Domain polymorphism
Multithreaded
Network integrated and distributed
Modal models
Sophisticated type system
CT, HDF, CI, GR, etc.

Each of these served
us, first-and-foremost,
as a laboratory for
investigating design.

PtPlot (1997-??)
Java plotting package

Tycho (1996-1998)
Itcl/Tk GUI framework

Diva (1998-2000)
Java GUI framework

Focus has always
been on embedded
software.

3

Lee, UC Berkeley 5

Ptolemy Classic Example From 1995
(adaptive nulling in an antenna array)

Ptolemy application developed by
Uwe Trautwein, Technical
University of Ilmenau, Germany

streams

hierarchical
components

higher-order
components

Lee, UC Berkeley 6

Ptolemy II Ptolemy II:
Our current framework for
experimentation with actor-oriented
design, concurrent semantics, visual
syntaxes, and hierarchical,
heterogeneous design.

Ptolemy II is truly free software (cf. GPL)

http://ptolemy.eecs.berkeley.edu

Hierarchical component

modal model

dataflow controller

example Ptolemy II model: hybrid control system

4

Lee, UC Berkeley 7

At Work in the Chess Software LabAt Work in the Chess Software Lab
Chess = Center for Hybrid and Embedded Software SystemsChess = Center for Hybrid and Embedded Software Systems

Lee, UC Berkeley 8

Platforms

A platform is a set of
designs.

Relations between
platforms represent
design processes.

big gap

5

Lee, UC Berkeley 9

Progress

Many useful technical
developments
amounted to creation of
new platforms.

microarchitectures
operating systems
virtual machines
processor cores
configurable ISAs

Lee, UC Berkeley 10

Desirable
Properties

From above:
modeling
expressiveness

From below:
correctness
efficiency

6

Lee, UC Berkeley 11

Model-Based
Design

Model-based design
is specification of
designs in platforms
with “useful
modeling
properties.”

Lee, UC Berkeley 12

Recent
Action

Giving the red platforms
useful modeling
properties (e.g.
verification, SystemC,
UML, MDA)

Getting from red
platforms to blue
platforms (e.g.
correctness, efficiency,
synthesis of tools)

7

Lee, UC Berkeley 13

Better
Platforms

Platforms with
modeling properties
that reflect
requirements of the
application, not
accidental
properties of the
implementation.

Lee, UC Berkeley 14

How to View This Design

From above: Signal flow graph with linear, time-
invariant components.

From below: Synchronous concurrent
composition of components

8

Lee, UC Berkeley 15

Actor-Oriented Design

Actor orientation:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

streams of data

class name

data

methods

call return

What flows through
an object is

sequential control

Object orientation:

Lee, UC Berkeley 16

Actor Orientation
vs. Object Orientation

Identified problems with object orientation:
Says little or nothing about concurrency and time
Concurrency typically expressed with threads, monitors, semaphores
Components tend to implement low-level communication protocols
Re-use potential is disappointing

Actor orientation offers more potential for useful modeling properties, and hence
for model-based design.

OO interface definition gives procedures
that have to be invoked in an order not
specified as part of the interface definition.

TextToSpeech

initialize(): void
notify(): void
isReady(): boolean
getSpeech(): double[]

actor-oriented interface definition says
“Give me text and I’ll give you speech”

Actor orientedObject oriented

9

Lee, UC Berkeley 17

“Actors” vs. “Capsules”

Actors are more like UML capsules than like UML
actors

The term “actors” was introduced in the 1970’s by Carl
Hewitt of MIT to describe autonomous reasoning
agents.

The term evolved through the work of Gul Agha and
others to refer to a family of concurrent models of
computation, irrespective of whether they were being
used to realize autonomous reasoning agents.

The term “actor” has also been used since 1974 in the
dataflow community in the same way, to represent a
concurrent model of computation.

Lee, UC Berkeley 18

Abstract Syntax: Hierarchical Entities,
Ports, Connections and Attributes

PortPort

Actor Actor
Link

Relation

Actor
Port

connection

connection co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

Our abstract syntax choices:

• Hierarchy is tree
structured (like XML).

• A relation mediates
connections.

• Ports can link multiple
relations and relations
can link multiple ports.

• Ports mediate
connections across
levels of the hierarchy
(no statecharts-style
level-crossing links)

• …Abstract syntax defines the structure of a
model, but says little about what it means.

10

Lee, UC Berkeley 19

MoML – An XML Concrete Syntax
(Modeling Markup Language)

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "…" "http://…">
<model name="top" class="path name">
<entity name="source" class="path name">
<port name="output"/>

</entity>
<entity name="sink" class="path name">
<port name="input"/>

</entity>
<relation name="r1" class="path name"/>
<link port="source.output" relation="r1"/>
<link port="sink.input" relation="r1"/>

</model>

MoML is the persistent file format of Ptolemy II.

Lee, UC Berkeley 20

Visual Renditions of Models

Ptolemy II model rendered in Vergil, a visual editor:

11

Lee, UC Berkeley 21

Semantics of
Producer/Consumer Components

Models of Computation:

• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

This abstract syntax is compatible with many
semantic interpretations. The concurrency and
communication model together is what we call
the model of computation (MoC).

Lee, UC Berkeley 22

Examples of Actor-Oriented
Component Frameworks

Simulink (The MathWorks)
Labview (National Instruments)
Modelica (Linkoping)
Polis & Metropolis (UC Berkeley)
OCP, open control platform (Boeing)
GME, actor-oriented meta-modeling (Vanderbilt)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
Easy5 (Boeing)
Port-based objects (U of Maryland)
I/O automata (MIT)
VHDL, Verilog, SystemC (Various)
…

Unlike Ptolemy II,
most of these define
a fixed model of
computation.

12

Lee, UC Berkeley 23

Ptolemy Project Principle

Director from a library
defines the model of
computation

MoC-polymorphic
component library.

The model of computation is not built in to the
software framework.

Lee, UC Berkeley 24

Actor-Oriented
Design is not One
But Many
Techniques

A rich set of
possible semantic
and syntactic
approaches, each
with useful modeling
and implementation
properties.

13

Lee, UC Berkeley 25

Actor-Oriented
Platforms

Actor oriented
models compose
concurrent
components
according to a
model of
computation.

Lee, UC Berkeley 26

Examples of Models of Computation

Dataflow
Discrete events
Continuous time
Finite state machines
Synchronous reactive
Time driven
Publish and subscribe
Communicating sequential processes
Process networks
…

Each of these
has several
competing
variants

14

Lee, UC Berkeley 27

Start With Dataflow

Computation graphs [Karp & Miller - 1966]
Visual programs [Sutherland – 1966]
Process networks [Kahn - 1974]
Static dataflow [Dennis - 1974]
Dynamic dataflow [Arvind, 1981]
Structured dataflow [Matwin & Pietrzykowski 1985]
K-bounded loops [Culler, 1986]
Synchronous dataflow [Lee & Messerschmitt, 1986]
Structured dataflow [Kodosky, 1986]
PGM: Processing Graph Method [Kaplan, 1987]
Synchronous languages [Lustre, Signal, 1980’s]
Well-behaved dataflow [Gao, 1992]
Boolean dataflow [Buck and Lee, 1993]
Multidimensional SDF [Lee, 1993]
Cyclo-static dataflow [Lauwereins, 1994]
Integer dataflow [Buck, 1994]
Bounded dynamic dataflow [Lee and Parks, 1995]
Heterochronous dataflow [Girault, Lee, & Lee, 1997]
…

Many tools,
software
frameworks,
and hardware
architectures
have been
built to support
one or more of
these.

Lee, UC Berkeley 28

Synchronous Dataflow (SDF)
(Lee and Messerschmitt, 1986)

SDF offers feedback, multirate, static
scheduling, deadlock analysis,
parallel scheduling, static memory
allocation.

SDF director

15

Lee, UC Berkeley 29

Synchronous Dataflow (SDF)
Fixed Production/Consumption Rates

Balance equations (one for each channel):

Schedulable statically
Get a well-defined “iteration”
Decidable:

buffer memory requirements
deadlock

fire B {
…
consume M
…

}

fire A {
…
produce N
…

}

channel

N M

MfNf BA =
number of tokens consumed

number of firings per “iteration”

number of tokens produced

Lee, UC Berkeley 30

Dynamic Dataflow (DDF)
Actors have firing rules

Set of finite prefixes on input sequences
For determinism: No two such prefixes are joinable under a prefix order
Firing function applied to finite prefixes yield finite outputs

Scheduling objectives:
Do not stop if there are executable actors
Execute in bounded memory if this is possible
Maintain determinacy if possible

Policies that fail:
Data-driven execution
Demand-driven execution
Fair execution
Many balanced data/demand-driven strategies

Policy that succeeds (Parks 1995):
Execute with bounded buffers
Increase bounds only when deadlock occurs

key properties of DDF models are undecidable
(deadlock, bounded memory, schedule)

16

Lee, UC Berkeley 31

Application of Dynamic Dataflow:
Resampling of Streaming Media

This pattern requires the use of a semantically richer
dataflow model than SDF because the BooleanSwitch
is not an SDF actor.
This has a performance cost and reduces the static
analyzability of the model.

Lee, UC Berkeley 32

Undecidability: What SDF Avoids
(Buck ’93)

Sufficient set of actors for undecidability:
boolean functions on boolean tokens
switch and select
initial tokens on arcs

Undecidable:
deadlock
bounded buffer memory
existence of an annotated schedule

boolean
function se

le
ct

sw
itc

h

initial token

1

1

1

1

1 1

1

b

1- b

b

1- b

T

F

T

F

17

Lee, UC Berkeley 33

Resampling Design Pattern using
Hierarchical Heterogeneity

Hierarchically mixing synchronous
dataflow with finite state machines
offers a much more powerful model of
computation than either alone. And
everything remains decidable!

Lee, UC Berkeley 34

State Machines & Block Diagrams

A

C

D

B

guard/action

Sequential

Concurrent

invariant/activity

signal

actor

18

Lee, UC Berkeley 35

Useful State Machine Models

Von-Neumann computers
Imperative programming languages
Finite state machines (FSMs)

Lee, UC Berkeley 36

Concurrency + Control Logic
A

C

D

B

x
y

z

G
F

E

x
y

z

x
y

z

G
F

E

Compositional
construction

Concurrent
FSMs

DE

CTCT

Continuous-time modeling
of physical subsystems

Modal model

Discrete-event
model (e.g.
environment
model)

Control logic

19

Lee, UC Berkeley 37

Contrast With Statecharts

Statecharts bundle orthogonal semantic issues
state machines
concurrency

Statecharts chooses synchronous semantics
for the concurrency model

what if I want an asynchronous model?
what if I want continuous time (to get hybrid
systems)?
what if I want time-stamped discrete events?

Lee, UC Berkeley 38

The Principle of Hierarchical
Heterogeneity

A

C

D

B
G

F

H

E

G
F

H

E “Use the best tool
for the job.”

With some discipline, you can use
distinct semantics at different levels of
the hierarchy.

20

Lee, UC Berkeley 39

Example: Heterochronous Dataflow (HDF)
Combines Dataflow with FSMs

We can keep everything decidable, but greatly improve expressiveness.

Lee, UC Berkeley 40

Another Example: Hybrid Systems
Combines Continuous Time with FSMs

Hybrid systems
are hierarchical
combinations of
continuous-time
models and
state machines.

21

Lee, UC Berkeley 41

Heterogeneous Models

We refer to models that combine FSMs
hierarchically with concurrent models of
computation as modal models.

Modal models are one example of a family of
hierarchically heterogeneous models, where
diverse models of computation are combined
in a hierarchy.

Lee, UC Berkeley 42

How Does This Work?
Abstract Semantics is the Key

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

preinitialize()
declare static information, like
type constraints, scheduling
properties, temporal
properties, structural
elaboration

initialize()
initialize variables

22

Lee, UC Berkeley 43

Abstract Semantics – The Key To
Hierarchical Heterogeneity

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

iterate()

Lee, UC Berkeley 44

Abstract Semantics – The Key To
Hierarchical Heterogeneity

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

iterate()
prefire()
fire()
postfire()

stopFire()

In hierarchical heterogeneity,
the fire() method iterates a
submodel, but according to its
model of computation.

The order in which component methods
prefire(), fire(), postfire(), depends on the
model of computation.

23

Lee, UC Berkeley 45

Lifecycle Management

It is possible to hierarchically compose the Ptolemy II
abstract semantics.

Actors providing common patterns:
RunCompositeActor is a composite actor that, instead of
firing the contained model, executes a complete lifecycle
of the contained model.
ModelReference is an atomic actor whose function is
provided by a complete execution of a referenced model
in another file or URL.

Provides systematic approach to building systems of
systems.

Lee, UC Berkeley 46

Hierarchical Composition of the
Ptolemy II Abstract Semantics

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

iterate()
prefire()
fire()
postfire()

stopFire()

initialization
Execution
Finalization

24

Lee, UC Berkeley 47

Other Stream-Like Models of Computation
Compatible with this Abstract Semantics

Discrete events (e.g. NS)
data tokens have time stamps

Synchronous languages (e.g. Esterel)
sequence of values, one per clock tick
fixed-point semantics

Time triggered (e.g. Giotto)
similar, but no fixed-point semantics

Process networks
separate thread per actor
asynchronous communication

Communicating sequential processes
separate thread per actor
synchronous communication

Push/Pull (e.g. Click)
dataflow with disciplined nondeterminism

Lee, UC Berkeley 48

Is Using Visual Syntaxes a Good
Idea?

naïve approach:
8 elements
8 signal paths

hard to build
hardwired scale
distributor:

converts an
array of
dimension 8 to
a sequence of 8
tokens.

array in elements out

Example: Need to separately process elements of an array

25

Lee, UC Berkeley 49

Scalability of Visual Syntaxes
Iteration by Dataflow

Although sometimes useful, this design pattern has limitations:
array size must be statically fixed
actor to iterate must be stateless, or
desired semantics must be to carry state across array elements

Lee, UC Berkeley 50

Analogy to Structured Programming
in Actor-Oriented Models

A library of actors that encapsulate common design patterns:
IterateOverArray: Serialize an array input and provide it
sequentially to the contained actor.
MapOverArray: Provide elements of an array input to distinct
instances of the contained actor.
Zip, Scan, Case, …

Like the higher-order functions of functional languages, but
unlike functions, actors can have state.
The implementation leverages the abstract semantics of
Ptolemy II.

26

Lee, UC Berkeley 51

What About All Those Wires?
If You Don’t Want Them, Don’t Use Them

Ptolemy II framework for
modeling wireless sensor
networks
Connectivity is wireless
Customized visualization
Location-aware models
Channel models include:

packets losses
power attenuation
distance limitations
collisions

Component models include:
Antenna gains
Terrain models
Jamming

model of a sensor node

model of a channel

Lee, UC Berkeley 52

What About Abstraction?

These 49 sensor nodes are
actors that are instances of
the same class, defined as:

27

Lee, UC Berkeley 53

What About Modularity?

The definition below is a
class and objects at the
left are instances, not
copies.Making these objects

instances of a class
rather than copies
reduced the XML
representation of the
model from 1.1
Mbytes to 87 kBytes,
and offered a number
of other advantages.

Lee, UC Berkeley 54

Now that we have classes, can we
bring in more of the modern
programming world?

subclasses?
inheritance?
interfaces?
subtypes?
aspects?

28

Lee, UC Berkeley 55

Actor Interfaces:
Ports and Parameters

input ports
output port

p1

p2

p3

parameters:
a1 = value
a2 = value

input/output
port

port

Example:

Lee, UC Berkeley 56

Subclasses? Inheritance?
Interfaces? Subtypes? Aspects?

Yes We Can!
subclasses and inheritance

hierarchical models that inherit structure from a base class
interfaces and subtypes

ports and parameters of actors form their interface
aspects

heterarchical models interweave multiple hierarchies, providing
true multi-view modeling.

All of these operate at the abstract syntax level, and are
independent of the model of computation, and therefore can
be used with any model of computation! Thus, they become
available in domain-specific actor-oriented languages.

These are a part of what the
Berkeley Center for Hybrid and
Embedded Software Systems
(Chess) is doing.

29

Lee, UC Berkeley 57

Conclusion

Actor-oriented design remains a relatively
immature area, but one that is progressing
rapidly.

Ptolemy II is free and open software for
experimenting with actor-oriented design
techniques.

see http://ptolemy.eecs.berkeley.edu

