An Overview of the
Ptolemy Project and
Actor-Oriented Design

] OMG Technical Meeting
S | L Edward A. Lee Feb. 4, 2004
T Anaheim, CA, USA

/4 Professor

k’ ! 4 uc Beﬂ(eley Special thanks to the entire
;i‘f‘? 3; Ptolemy Team.

51 B

et

' I},“ 3 ~—
8= S Center for Hybrid and embedded software systems
SE= o

Abstract

The Ptolemy Project at UC Berkeley studies modeling, simulation, and
design of concurrent, real-time, and embedded systems. The focus is on
assembly of concurrent components under "actor-oriented" models of
computation, where components are conceptually concurrent and
communicate through one of several messaging schemas. This talk
describes the principles of actor-oriented design, including common
features across models of computation, such as abstract syntax and type
systems, and features that differ across models of computation, such
concurrent threads of control and messaging schemas. Mechanisms that
support the use of heterogeneous mixtures of models of computation are
also described. The Ptolemy Il system, which is the experimental
framework used by the project in its investigations, will be described
and used to illustrate key points. The Ptolemy Project at UC Berkeley

is part of Chess, the Berkeley Center for Hybrid and Embedded Software
Systems.

Lee, UC Berkeley 2

Slemy Project Participa 8

L) Graduat

Neil E. Turrfér (éhess) ;é
Lea Turpin (Chess) 9

i

o Rachel’Zhou

Vis ng Industrial Fellow
adrado, Visiting Stholar

-

® ‘ Software Legacy of the Project

o Gabriel (1986-1991)
Written in Lisp
Aimed at signal processing
Synchronous dataflow (SDF) block diagrams
Parallel schedulers
Code generators for DSPs
Hardware/software co-simulators
o Ptolemy Classic (1990-1997)
Written in C++
Multiple models of computation
Hierarchical heterogeneity
Dataflow variants: BDF, DDF, PN
C/VHDL/DSP code generators
Optimizing SDF schedulers
Higher-order components
o Ptolemy Il (1996-2022)
Written in Java
Domain polymorphism
Multithreaded

Each of these served
us, first-and-foremost,
as a laboratory for
investigating design.

o PtPlot (1997-77)

Java plotting package
o Tycho (1996-1998)

Itcl/Tk GUI framework
o Diva (1998-2000)

Java GUI framework

Network integrated and distributed
Modal models

Sophisticated type system

CT, HDF, CI, GR, etc.

Focus has always
been on embedded
software.

Lee, UC Berkeley 4

hierarchical
components
ot |

Ptolemy Classic Example From 1995
(adaptive nulling in an antenna array)

An Adaptive Array Processor with a 4 Element
Uniform Circular Array suppresses three
Cochannel Interferers

' if&”‘-

Lol _ml‘
Beam Pattern
¥
o / —
- [- .
Sk hlgher-order om)
components . &
-asaf 100,
Ptolemy application developed by * * 2 *
] RS i Uwe Trautwein, Technical BT ,
* University of Imenau, Germany s
= | Lee, UC Berkeley 5
° ‘ Ptolemy || Ptolemyk
Our current framework for
‘ Hierarchical component ‘ experimentation with actor-oriented
| design, concurrent semantics, visual
% ----------------------- syntaxes, and hierarchical,
m— modal mode| mms: heterogeneous design.
») =
g Y Ptolemy Il is truly free software (cf. GPL)

http://ptolemy.eecs.berkeley.edu

‘ example Ptolemy Il model: hybrid control system ‘

Lee, UC Berkeley 6

At Work in the Che!
Chess = Center for Hybrl ghd Embedded Sbﬁwar@Systems

3S Software Lab

Platforms

A platform is a set of
designs.

Relations between
platforms represent
design processes.

\ + DSP s\fsl'ems
communications systems ~._ applications

'

synthesizable
WHOL programs

| executables

silicon chips

P4-M 1LaGHE

MOSE chips

MICroprocessons

Progress

Many useful technical
developments
amounted to creation of
new platforms.

o microarchitectures
o operating systems
o virtual machines
O processor cores
o configurable ISAs

+_DSP syster
\\ communications systems“"\ apm

Lprugrams

synthesizable
WHOL programs

b
\ standard

cell
desbgns

Pa-M 1.6GHz

FPGAS
microprocessors

silicon chips

Desirable
Properties

From above:
o modeling
o expressiveness

From below:
o correctness
o efficiency

- DS?
\\ communications s;rstems‘\.__ apm

programs:

i

Java byte code programs

FPGA configurations

B6 programs

Y

Pa-M 1.6GHz

| executables

A

MOSIES chips

FPGAs
MiCroprocessors

silicon chips

Model-Based
Design

Model-based design
is specification of
designs in platforms

communications systems

applications

synthesizable
WHOL programs

Giving the red platforms
useful modeling
properties (e.g.
verification, SystemC,
UML, MDA)

Getting from red
platforms to blue
platforms (e.g.
correctness, efficiency,
synthesis of tools)

with “useful

modeling

properties.”
. ‘ com ations systems applications
Recent

Action

silicon chips

+_DSP syster
‘ \\ communications systems“"\ applications

il
B ette r / Real-time workshop
Platforms TN

Platforms with
modeling properties
that reflect
requirements of the
application, not
accidental
properties of the
implementation.

synmeslable
VHDL PrOgrans

VHDL programs

3
+

\‘mndard Java byte code programs.

cell
‘ desbgns
FPGA configurations i
BB programs

I. executables [

T

Pa-M 1.6GHz

FPGAS
microprocessors

silicon chips

|

‘ How to View This Design

From above: Signal flow graph with linear, time-
invariant components.

Figure

s

Integrator3 Matrix

fundmental and three harmonics.

4’

To Workspace

L

Integrator Matrix

Gain1 S

Gain3

Matrix
Gain

Matrix Integrator

Gain2

Integrator2

C.12: A block diagram generating a plucked string sound with a

|

From below: Synchronous concurrent

composition of components Lee. UG Berkeley 14

® ‘ Actor-Oriented Design

Object orientation:

class name
p What flows through
ata . i
an object is
p methods sequential control
call return

Actor orientation:

actor name

data (state) What flows through

— eters | M an object is

streams of data

ports

Input data Output data Lee, UC Berkeley 15

Actor Orientation
vs. Object Orientation

Object oriented Actor oriented

TextToSpeech

Text to Speech
initialize(): void
notify(): void text iy E}}}D . sPeech out
isReady(): boolean

getSpeech(): double[]

OO interface definition gives procedures . . T
that have to be invoked in an order not ac?or-onented mterfacg CELMLTI SET
specified as part of the interface definition. Enve s 3 el ghte f2t Spacen

o lIdentified problems with object orientation:
Says little or nothing about concurrency and time
Concurrency typically expressed with threads, monitors, semaphores
Components tend to implement low-level communication protocols
Re-use potential is disappointing
o Actor orientation offers more potential for useful modeling properties, and hence
for model-based design. Lee, UC Berkeley 16

“Actors” vs. “Capsules”

Actors are more like UML capsules than like UML
actors

The term “actors” was introduced in the 1970’s by Carl
Hewitt of MIT to describe autonomous reasoning
agents.

The term evolved through the work of Gul Agha and
others to refer to a family of concurrent models of
computation, irrespective of whether they were being
used to realize autonomous reasoning agents.

The term “actor” has also been used since 1974 in the
dataflow community in the same way, to represent a
concurrent model of computation.

Lee, UC Berkeley 17

Attributes Attributes

Abstract Syntax: Hierarchical Entities,
Ports, Connections and Attributes

connection Our abstract syntax choices:

Actor Relation

Link + Hierarchy is tree
structured (like XML).

* A relation mediates
connections.

* Ports can link multiple
relations and relations
can link multiple ports.

* Ports mediate
connections across
levels of the hierarchy
(no statecharts-style
level-crossing links)

Port

Attributes

Abstract syntax defines the structure of a .
model, but says little about what it means.

Lee, UC Berkeley 18

MoML — An XML Concrete Syntax
(Modeling Markup Language)

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC ".." "http://..">
<model name="top" class="path name'">
<entity name="source" class="path name">
<port name="output"/>
</entity>
<entity name="sink" class="path name">
<port name="input"/>
</entity>
<relation name="r1" class="path name"/>
<link port="source.output" relation="r1"/>
<link port="sink.input" relation="r1"/>
</model>

MoML is the persistent file format of Ptolemy II.

Lee, UC Berkeley 19

‘ Visual Renditions of Models

Ptolemy Il model rendered in Vergil, a visual editor:

| | utiities -
| | director library
_ e
B4 sources
] generic sources
[4 timed sources

3 Clock Master Clock String Sequence
5l CurrertTime
5l PoissonClock

DE Director

Display As Received

5 TriggeredClack
ariableClock
__| sequence sources

isassembler

g Display Resequenced
| sinks

1]io

- | math

£-__] ranci

5 j :‘E;I’\'Nacn;mm The channel is modeled Sequencer
= Bl by a variable delay, which
e here is random, with a
_— Rayeigh distribution

e — —

e e

Lee, UC Berkeley 20

Semantics of

Producer/Consumer Components

Basic Transport:

send(0,t

I0Port

IORelation Receiver

(inside port)

This abstract syntax is compatible with many
semantic interpretations. The concurrency and
communication model together is what we call
the model of computation (MoC).

Models of Computation:

* continuous-time

* dataflow

* rendezvous

« discrete events

* synchronous

* time-driven

* publish/subscribe

Lee, UC Berkeley 21

Examples of Actor-Oriented

Component Frameworks

Simulink (The MathWorks)

Labview (National Instruments)
Modelica (Linkoping)

Polis & Metropolis (UC Berkeley)
OCP, open control platform (Boeing)

System studio (Synopsys)

Easy5 (Boeing)

Port-based objects (U of Maryland)
I/0 automata (MIT)

VHDL, Verilog, SystemC (Various)

O 0O 0O OO OO OOO O O OO

GME, actor-oriented meta-modeling (Vanderbilt)
SPW, signal processing worksystem (Cadence)

ROOM, real-time object-oriented modeling (Rational)

Unlike Ptolemy I,
most of these define
a fixed model of
computation.

Lee, UC Berkeley 22

Ptolemy Project Principle

The model of computation is not built in to the

software framework.

| | utiities

| | director library

B -ctor liorary

-4 sources

] generic sources

. B _timed sources
—E clock
- currentTime
- Poizsonclock
i Timedsinewave
i TriggeredClock

B wvariableClock

H] sequence saurces

| sinks
\ :

i

__Imath
MoC-polymorphic
component library.

DE Director

Master Clock

Gaussian

__Irandam
1 fiowy cantrol
[+ Iresl

I firne:

>=
Sequence Count
bﬂ

Director from a library
defines the model of
computation

<=

Sftring Sequence Display As Received

Disassembler

Record Assembler

Channel Model

Record

Display Resequenced

Square

The channel is modeled
by a variable delay, which
here is random, with a
Rayleigh distribution

Sequencer

Lee, UC Berkeley 23

Actor-Oriented
Design is not One

But Many
Techniques

A rich set of
possible semantic
and syntactic
approaches, each
with useful modeling
and implementation
properties.

\\

= [P
communications syss%_

El Pm

4

Lprugrams

symheslzable
VHDL progranms

VHDL programs

|emecutables /1
‘ T |
microprocessors

silicon chips

P ‘ \\cammm;mgfy:%\\ apm
g,

. ey synchronous™, gise
Actor-Oriented *“m.;s e
Platforms N
Actor oriented
models compose
concurrent
components
according to a
model of
computation.

silicon chips
® Examples of Models of Computation
o Dataflow
o Discrete events Each of these
o Continuous time has several
o Finite state machines competing
variants

o Synchronous reactive

o Time driven

o Publish and subscribe
o Communicating sequential processes

o Process networks
o ...

Lee, UC Berkeley 26

[Start With Dataflow

o Computation graphs [Karp & Miller - 1966] Many tools,
o Visual programs [Sutherland — 1966] software
o Process networks [Kahn - 1974] frameworks,
o Static dataflow [Dennis - 1974] and hardware
o Dynamic dataflow [Arvind, 1981] architectures
o Structured dataflow [Matwin & Pietrzykowski 1985] ha}’e been
o K-bounded loops [Culler, 1986] built to support
o Synchronous dataflow [Lee & Messerschmitt, 1986] one or more of
o Structured dataflow [Kodosky, 1986] these.
o PGM: Processing Graph Method [Kaplan, 1987]
o Synchronous languages [Lustre, Signal, 1980’s]
o Well-behaved dataflow [Gao, 1992]
o Boolean dataflow [Buck and Lee, 1993]
o Multidimensional SDF [Lee, 1993]
o Cyclo-static dataflow [Lauwereins, 1994]
o Integer dataflow [Buck, 1994]
o Bounded dynamic dataflow [Lee and Parks, 1995]
o Heterochronous dataflow [Girault, Lee, & Lee, 1997]
o
Lee, UC Berkeley 27
° Synchronous Dataflow (SDF)

(Lee and Messerschmitt, 1986)

B&file: /C:/ptil/ptolemy /domains /sdf /dem. . .opySpectrum,/MaximumEntropySpectrum.xml

File View Edt Graph Debug Help

=10ix]

| Zlz]@|=]al»|n|@[® x> |b]c] e

|| utities: SDF

| | directar liorary - Estimate the spectrum of three sinusoids in noise
g actor library by three different techniques.

|| more libraries
|) user lbrary

SDF director

Sinewave Spectrum

lotter

rum

L] Spectral :
amaothed
: ax .

<40 <35 30 -25 <20 415 -10 -05 00 05 10 1.5 20 25 30 35 40 allocatlon'

Fraguancy (in Hz) Gl

SDF offers feedback, multirate, static
scheduling, deadlock analysis,
parallel scheduling, static memory

Lee, UC Berkeley 28

Synchronous Dataflow (SDF)

o
Fixed Production/Consumption Rates
e Balance equations (one for each channel):
f N = / M
e Schedulable statically \H number of tokens consumed ‘
o Get a well-defined “iteration” ‘ number of firings per “iteration”
e Decidable: ‘ number of tokens produced ‘
e buffer memory requirements
e deadlock
fire A { fire B {
o channel o
produce N @ »@ consume M
M
} }
Lee, UC Berkeley 29
® Dynamic Dataflow (DDF)
o Actors have firing rules

o

o

Set of finite prefixes on input sequences
For determinism: No two such prefixes are joinable under a prefix order
Firing function applied to finite prefixes yield finite outputs

Scheduling objectives:

Do not stop if there are executable actors
Execute in bounded memory if this is possible
Maintain determinacy if possible

Policies that fail:
Data-driven execution

Demand-driven execution

Fair execution

key properties of DDF models are undecidable
(deadlock, bounded memory, schedule)

Many balanced data/demand-driven strategies
Policy that succeeds (Parks 1995):

Execute with bounded buffers

Increase bounds only when deadlock occurs

Lee, UC Berkeley 30

Application of Dynamic Dataflow:
Resampling of Streaming Media

PN Director

SignalSink
SignalSource Bool

ResamplingControl | Discard

o This pattern requires the use of a semantically richer
dataflow model than SDF because the BooleanSwitch
is not an SDF actor.

o This has a performance cost and reduces the static
analyzability of the model.

Lee, UC Berkeley 31

Undecidability: What SDF Avoids

(Buck '93)

o Sufficient set of actors for undecidability:
boolean functions on boolean tokens
switch and select
initial tokens on arcs

boolean
function

~O—

initial token

1
~
-

o Undecidable:
deadlock
bounded buffer memory
existence of an annotated schedule

Lee, UC Berkeley 32

Resampling Design Pattern using
Hierarchical Heterogeneity

SDF Director

SignalSource:

modal mode|
in

[E=}—

ResamplingContrpl

i

Hierarchically mixing synchronous
dataflow with finite state machines
offers a much more powerful model of
computation than either alone. And
everything remains decidable!

in

control

SDF Director

[

SignalSink

Cee, UC Berkeley 33

‘ State Machines & Block Diagrams

guard/action

invariant/activity

\

Sequential

<::::YConcurrent

Lee, UC Berkeley 34

® Useful State Machine Models

o Von-Neumann computers

o Imperative programming languages

o Finite state machines (FSMs)

Lee, UC Berkeley 35

Y ‘ Concurrency + Control Logic
ﬁ‘ig;?tgj_e”‘ Compositional
env(;rol;ment construction

Contf"ql logic

&7l | Concurrent
= FSMs

[

Modal model

Continuous-time modeling
of physical subsystems

Lee, UC Berkeley 36

Contrast With Statecharts

o Statecharts bundle orthogonal semantic issues
state machines
concurrency
o Statecharts chooses synchronous semantics
for the concurrency model
what if | want an asynchronous model?

what if | want continuous time (to get hybrid
systems)?
what if | want time-stamped discrete events?

Lee, UC Berkeley 37

The Principle of Hierarchical

Heterogeneity

“Use the best tool
for the job.”

With some discipline, you can use
 distinct semantics at different levels of
the hierarchy.

Lee, UC Berkeley 38

Combines Dataflow with FSMs

Example: Heterochronous Dataflow (HDF)

controller | e -
: " 3 . - e [
n r . -
’ =~
b | B

5

»:

| »:

We can keep everything decidable, but greatly improve expressiveness.

Lee, UC Berkeley 39

Another Example: Hybrid Systems

o
Combines Continuous Time with FSMs
Refinement Solver This models the dynamics of a ball
falling in a gravitational field. velocity
Fin Fdt Spedal Help
Const V(]l\cmty ZBmCmssiﬂgDewSE:rr“p) Position EEEE
’ 4]_.D_- 10 T T T T
Position h‘ -
T positior 8
&l £ L]
File -— _— 3
EEEEENTE R R EE] =
A= annatation) 2
state velocity i
bump \] & 10 1% 20 i a0
’ m . B (S0c)
pasilon) @ Hybrid systems
__/ are hierarchical
= o combinations of
> continuous-time
»
e ST P, models and
state machines.
—

Lee, UC Berkeley 40

Heterogeneous Models

We refer to models that combine FSMs
hierarchically with concurrent models of
computation as modal models.

Modal models are one example of a family of
hierarchically heterogeneous models, where

diverse models of computation are combined
in a hierarchy.

Lee, UC Berkeley 41

How Does This Work?
Abstract Semantics is the Key

flow of control

o preinitialize()
o Execution declare static information, like
. . . type constraints, scheduling

o Finalization properties, temporal
properties, structural
elaboration

communication initialize()

o Structure of signal. initialize variables

o Send/receive protocols

Lee, UC Berkeley 42

Abstract Semantics — The Key To
Hierarchical Heterogeneity

flow of control
o Initialization
o Execution

o Finalization

communication
o Structure of signal

iterate()

o Send/receive protocols

Lee, UC Berkeley 43

Abstract Semantics — The Key To
Hierarchical Heterogeneity

flow of control
o Initialization
o Execution

o Finalization

communication
o Structure of signals

The order in which component methods
prefire(), fire(), postfire(), depends on the
model of computation.

iterate()

A?\ prefire()

- fire()
| postfire()

stopFire()

o Send/receive protocols

In hierarchical heterogeneity,
the fire() method iterates a
submodel, but according to its
model of computation.

Lee, UC Berkeley 44

O Lifecycle Management

o ltis possible to hierarchically compose the Ptolemy I
abstract semantics.

o Actors providing common patterns:

RunCompositeActor is a composite actor that, instead of
firing the contained model, executes a complete lifecycle
of the contained model.

ModelReference is an atomic actor whose function is
provided by a complete execution of a referenced model
in another file or URL.

o Provides systematic approach to building systems of
systems.

Lee, UC Berkeley 45

Hierarchical Composition of the
Ptolemy Il Abstract Semantics

flow of control

o Initializati |

o Execu A? prefire() initialization

o Finaliza. iterate() f"e()f_ Execution
|| postfirel Finalization

communicatio ' stopFire()

o Structure of siy
o Send/receive protocols

Lee, UC Berkeley 46

o

o

(o]

o

o

Other Stream-Like Models of Computation
Compatible with this Abstract Semantics

Discrete events (e.g. NS)

data tokens have time stamps

Synchronous languages (e.g. Esterel)

sequence of values, one per clock tick
fixed-point semantics

Time triggered (e.g. Giotto)

similar, but no fixed-point semantics

o Process networks
separate thread per actor
asynchronous communication

Communicating sequential processes

separate thread per actor
synchronous communication

Push/Pull (e.g. Click)

dataflow with disciplined nondeterminism

Lee, UC Berkeley 47

Is Using Visual Syntaxes a Good

|dea?

Example: Need to separately process elements of an array

Carmier Estimate2

Carrier Estimate:

RRzecarS Bandwidih Estimate

£ (26171875,

<

dis ribulor

typed compasite aciard
a Sio _‘ Kurosis
L [
typed compasite aciars prerages

»| Hio

|
T

lecior

Amayerage

wpend JIFAY N | €lements out

typed Composite actors

L distributor

typed compasile actorT g]'{:]
me JEc) <
r

typed composite actard

Array_englh

o

O O O

naive approach:
8 elements
8 signal paths
hard to build
hardwired scale
distributor:

converts an
array of
dimension 8 to
a sequence of 8
tokens.

Lee, UC Berkeley 48

Scalability of Visual Syntaxes
lteration by Dataflow

SDF Director

ArrayToSequence _actor fo iterate

E] SequenceToArray

o Although sometimes useful, this design pattern has limitations:
array size must be statically fixed
actor to iterate must be stateless, or
desired semantics must be to carry state across array elements

Lee, UC Berkeley 49

Analogy to Structured Programming
in Actor-Oriented Models

IterateOverArray

iny S}D out

——— |

o A library of actors that encapsulate common design patterns:

IterateOverArray: Serialize an array input and provide it
sequentially to the contained actor.

MapOverArray: Provide elements of an array input to distinct
instances of the contained actor.

Zip, Scan, Case, ...

o Like the higher-order functions of functional languages, but
unlike functions, actors can have state.

o The implementation leverages the abstract semantics of
Ptolemy II.

Lee, UC Berkeley 50

What About All Those Wires?
If You Don’t Want Them, Don’t Use Them

o Ptolemy Il framework for

model of a sensor node

This channel has range given by the
“range"” parameter and probability of
delivery given by the "probability”

R&arameler.

Channel

modeling wireless sensor
networks
Connectivity is wireless
Customized visualization
Location-aware models
Channel models include:
packets losses
power attenuation
distance limitations
collisions
Component models include:
Antenna gains
Terrain models
Jamming

O O O ©O

model of a channel

Lee, UC Berkeley 51

What About Abstraction?

These 49 sensor nodes are
actors that are instances of
the same class, defined as:

Canfigure (C
Customize M;
Get Documer|

DEDirsciar wnodeColor: {00, 10,00, 1.0}
‘e fandomize; randomize

Sand through andy tha Brst avant to Brive,

n Discard ih rest. RasisanSwitch Ewnm!m ot
L = e byt
report
e

Set o green i the synal is
ansmited more than 1 hops.

BookranSwikch? Const

This channel has range given by the
“range" parameter and probability of
delivery given by the "probability”
parameter.

Channel

Configure Pol
Set Icon
Save Actor I

Listen to Act

fusiaioini
o ey
Singlal Sat 10 redT T KHATE
Sl to while al - Cons? transmiled by 1 hog. Marge Fr—
st i | B p—f 0507010 P

Lee, UC Berkeley 52

® What About Modularity?

The definition below is a
class and objects at the
left are instances, not

Making these objects copies.

instances of a class
rather than copies
reduced the XML
representation of the
model from 1.1
Mbytes to 87 kBytes,
and offered a number

DEDinecior

wnodeCalor (0.0, 10,00, 1.0}
wrandomizs, ndomiz

Sand ihrough andy tha Brst avent 1o smve
Driscard ih rest BoslaanGuiich Exposniong

Set bo green f the sgnal is
jranamibed more than 1 hops.

=3
Sa

Margs

_' ‘W"'g‘;)

of other advantages.

Lee, UC Berkeley 53

Now that we have classes, can we
bring in more of the modern
programming world?

o subclasses?
o inheritance?
o interfaces?
o subtypes?
o aspects?

Lee, UC Berkeley 54

Actor Interfaces:

o
Ports and Parameters
parameters:
a, = value Example:
a, = value
input ports
output port ArrayPeakSearch
startindex peakValues
P!
Py endlm%?ﬁE » . Poakindices
Ps
[)2 Edit parameters for ArrayPeakSearch E|
input/output port @ i bd
port squelch [100
seale: hbsaiute 3|
startincle:: ||]
endinces: [preoart
mazimumhumberoPeaks [peoart
Cornmit add Remove | preferences | veb | cancel |
Lee, UC Berkeley 55
° Subclasses? Inheritance?

Interfaces? Subtypes? Aspects?

These are a part of what the

Berkeley Center for Hybrid and
Yes We Can! Embedded Software Systems
o subclasses and inheritance (Chess) is doing.

hierarchical models that inherit structure from a base class
o interfaces and subtypes

ports and parameters of actors form their interface
o aspects

heterarchical models interweave multiple hierarchies, providing
true multi-view modeling.

All of these operate at the abstract syntax level, and are
independent of the model of computation, and therefore can
be used with any model of computation! Thus, they become
available in domain-specific actor-oriented languages.

Lee, UC Berkeley 56

Conclusion

o Actor-oriented design remains a relatively
immature area, but one that is progressing
rapidly.

o Ptolemy Il is free and open software for
experimenting with actor-oriented design
techniques.

o see http://ptolemy.eecs.berkeley.edu

Lee, UC Berkeley 57

