Causality Interfaces and Compositional Causality Analysis

Edward A. Lee Haiyang Zheng Ye Zhou

{eal, hyzheng, zhouye}@eecs.berkeley.edu
Center for Hybrid and Embedded Software Systems (CHESS)
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Workshop on Foundations of Interface Technologies
Satellite to CONCUR 2005
Objectives

Focus on concurrent software components:

- “actors”, which are in charge of their actions
- “objects”, which are acted upon

Develop *causality interfaces* for actors in actor-oriented design and an *algebra* for composing these interfaces.

Deploy causality interfaces to determine existence and uniqueness of behaviors of compositions of actors under certain *models of computation*.
1. Actor-Oriented Design

2. Causality
 - The Tagged Signal Model
 - Composition of Actors

3. Causality Interfaces
 - Definitions
 - Compositional Analysis
 - Dynamic Causality Interfaces
Outline

1 Actor-Oriented Design

2 Causality
 - The Tagged Signal Model
 - Composition of Actors

3 Causality Interfaces
 - Definitions
 - Compositional Analysis
 - Dynamic Causality Interfaces
Actor-Oriented Design

Offers complementary approaches (to object-oriented design) for modeling compositions of concurrent components.

Object orientation:

```
class name
data
methods
```

call return

what flows through an object is sequential control.

Actor orientation:

```
actor name
data (state)
parameters
ports
```

Input data Output data

what flow through an actor are streams of data.
The patterns of interactions between concurrent components are called *models of computation*.

- Classical "actor model" [Agha, 1990][Hewitt, 1977]
- Synchronous languages [Benveniste, Berry, 1991]
- Discrete event models [Cassandras, 1993]
- Dataflow models
 - Kahn-MacQueen process networks [Kahn, MacQueen, 1977]
 - Dennis-style dataflow [Dennis, 1974]
Interfaces for Actors

Analogous to the type signatures of an abstract data type in object-oriented design:

Static structure interface:
- ports
- parameters
- their type constraints
Richer Interfaces for Actors

- Interaction semantics [Talcott, 1996]
- Behavioral subtyping [Liskov, Wing, 1999]
- Interface theories [de Alfaro, Henzinger, 2001]
- Behavioral type systems [Lee, Xiong, 2004]
- Abstract behavioral types [Arbab, 2005]

Note

These interface theories cover behavioral properties, not just static structure.
A special family of behavioral interfaces that capture the causality properties of actors, which reflect the dependency of particular outputs having on particular inputs.

Useful for determining existence and uniqueness of behaviors of compositions under certain models of computation.

Related to causalities properties of stream functions in [Broy, 1995]
Outline

1. Actor-Oriented Design

2. Causality
 - The Tagged Signal Model
 - Composition of Actors

3. Causality Interfaces
 - Definitions
 - Compositional Analysis
 - Dynamic Causality Interfaces
We use a formal and *denotational* framework for studying and comparing actor-oriented models of computation, which is called the Tagged Signal Model [Lee, Sangiovanni-Vincentelli, 1998].

Related to

- Interaction semantics [Talcott, 1996]
- Behavioral types [Arbab, 2005]
Actors, Formally

Event e: (t, v) pair, where $t \in \mathcal{T}$ and $v \in \mathcal{V}$. \mathcal{T} is a partially or totally ordered set. \mathcal{V} is a set of possible values.

$$e \in \mathcal{E} = \mathcal{T} \times \mathcal{V}, \ \text{where } \mathcal{E} \coloneqq \text{the set of all events.}$$
Actors, Formally

Signal s: a set of events
For example, a token stream of infinite length

$$s \subseteq \mathcal{E}, \quad S := \text{the set of all signals.}$$

$$s \in S = \mathcal{P}(\mathcal{E}), \text{ the power set.}$$
An actor operates on signals.
Behavior σ: a total function from ports to signals
Actor a: a set of behaviors

$$\sigma : P \rightarrow S, \ a \subseteq [P_a \rightarrow S].$$
Actors, Formally

Functional actor:
- has input ports P_i and output ports P_o
- defines a function from input behaviors to output behaviors

$$F_a : [P_i \rightarrow S] \rightarrow [P_o \rightarrow S].$$
Actors are composed by connecting ports with connectors.
A connector c between ports P_c is the constraint on ports. It is also a set of behaviors.

$$c \subseteq [P_c \rightarrow S]$$

$$\forall \sigma \in c, \exists s \in S \text{ s.t. } \forall p \in P_c, \sigma(p) = s$$
Composition of Actors

A composition behavior is the intersection of the actor and connector behaviors.

\[a \land b \land c = \{ \sigma \mid \sigma \downarrow_{P_a} \in a \ \text{and} \ \sigma \downarrow_{P_b} \in b \ \text{and} \ \sigma \downarrow_{P_c} \in c \}. \]
Example of Composition

- series composition
- parallel composition
- feedback composition
Feedback Composition

(a)

(b)

(c)
Recall that F_a denotes the behaviors of actor a:

$$F_a: [P_i \rightarrow S] \rightarrow [P_o \rightarrow S], \ P_i \cup P_o = P_a$$

The input behavior of the left feedback composition is a function:

$$f: \{p1, p2, p3\} \rightarrow S.$$

The above behavior is a fixed point of F_a. That is,

$$F_a(f) = f.$$
Questions about Fixed Point Behavior

Problem (1)

Does such a fixed point \(f \) exist?

Problem (2)

Is the fixed point \(f \) unique?

\[F_a(f) = f \]
Causality is the Key

- Synchronous Languages
 No causality loop.
- Discrete-Event Models
 Contraction map.
- Dataflow Models
 No deadlock.

The key is to determine the causality properties of actor a from the causality properties of its components, the actors and connectors contained inside.
Outline

1. Actor-Oriented Design

2. Causality
 - The Tagged Signal Model
 - Composition of Actors

3. Causality Interfaces
 - Definitions
 - Compositional Analysis
 - Dynamic Causality Interfaces
Causality Interfaces

- D is an ordered set with elements called *dependencies*.

- A *causality interface* for an actor a with input ports P_i and output ports P_o is a function

$$\delta_a : P_i \times P_o \rightarrow D$$

- A *causality interface* for a connector c that links output ports P_o to input ports P_i is a function

$$\delta_c : P_o \times P_i \rightarrow D$$

Interpretation

$\delta(p_1, p_2)$ denotes the dependency that port p_2 has on p_1.
Dependency Set D as an Algebra

D is an ordered set with two binary operations \otimes and \oplus that satisfy the axioms given below.

- (Associativity)
 \[
 \forall d_1, d_2, d_3 \in D, \quad (d_1 \oplus d_2) \oplus d_3 = d_1 \oplus (d_2 \oplus d_3),
 \]
 \[
 \forall d_1, d_2, d_3 \in D, \quad (d_1 \otimes d_2) \otimes d_3 = d_1 \otimes (d_2 \otimes d_3).
 \]

- (Commutativity)
 \[
 \forall d_1, d_2 \in D, \quad d_1 \oplus d_2 = d_2 \oplus d_1,
 \]
 \[
 \forall d_1, d_2 \in D, \quad d_1 \otimes d_2 = d_2 \otimes d_1.
 \]

- (Distributivity)
 \[
 \forall d_1, d_2, d_3 \in D, \quad d_1 \otimes (d_2 \oplus d_3) = (d_1 \otimes d_2) \oplus (d_1 \otimes d_3).
 \]

- (Null and Identity Elements)
 \[
 \exists 0, 1 \in D, \text{ such that } \forall d \in D,
 \]
 \[
 d \oplus 0 = d, \quad d \oplus d = d,
 \]
 \[
 d \otimes 0 = 0, \quad d \otimes 1 = d.
 \]
Examples of Dependency Sets

- **Boolean Dependencies**
 - $D = \{\text{true}, \text{false}\}$, where false $< \text{true}$, $0 = \text{true}$, and $1 = \text{false}$.
 - \oplus is *logical and*, \otimes is *logical or*.

\[\delta(p_1, p_2) = \text{false} \] means that P_2 depends immediately on P_1.

- **Weighted Dependencies**
 - $D = \mathbb{R}_+ \cup \{\infty\}$, where $<$ is as usual, $0 = \infty$, and $1 = 0$.
 - \oplus is the *minimum* function, \otimes is addition.

\[\delta(p_1, p_2) = 0 \] means that P_2 depends immediately on P_1.

The \otimes identity, 1, means immediate dependency.

1 This set is also called a min-plus algebra [Baccelli, 1992].
Compositional Analysis

Problem

Given a set of actors, a set of connectors, and their causality interfaces, determine the causality interface of their composition.

In the following example, we want to determine the function:

\[\delta_a : \{ p1 \} \times \{ p4 \} \rightarrow D. \]
Solving the Example

Causalities interfaces of actors:
\[\delta_1(p_1, p_5) = 1 \quad \delta_3(p_7, p_6) = 1 \]
\[\delta_2(p_3, p_4) = 1 \quad \delta_2(p_2, p_4) \neq 1 \]

Causalities interfaces of connectors:
\[\forall p \in P_o, \ p' \in P_i, \ P_i \cup P_o = P_c, \]
\[\delta_c(p, p') = 1 \]

Combine the interfaces of connectors and actors using the \(\otimes \) operator for series compositions and the \(\oplus \) operator for parallel compositions.

\[\delta_a(p_1, p_4) = \delta_1(p_1, p_5) \otimes (\delta_c(p_5, p_2) \otimes \delta_2(p_2, p_4)) \]
\[\oplus \delta_c(p_5, p_7) \otimes \delta_3(p_7, p_6) \otimes \delta_c(p_6, p_3) \otimes \delta_2(p_3, p_4)) \]
\[= 1 \]
Existence and Uniqueness of Behaviors

Problem

Given the causality properties of a composition of a set of actors and connectors, determine the existence and uniqueness of the behaviors of the composition.

A unique behavior exists if there exists no port that has an immediate dependency (⊗ identity, “1”) on itself.
Application to Synchronous Languages

- Apply boolean dependencies, where 0 = true and 1 = false.
 Note that \(\oplus \) is \textit{logical and}, \(\otimes \) is \textit{logical or}.

- A unique behavior exists if there exists no port that has a dependency on itself with value “false”.

\[
\delta(p4, p4) = \delta_c(p4, p1) \otimes \delta_a(p1, p5) \otimes \delta_c(p5, p2) \\
\otimes (\delta_a(p2, p4) \oplus \delta_a(p2, p6) \otimes \delta_c(p6, p3) \otimes \delta_a(p3, p4)) \\
= \text{false} \otimes \text{false} \otimes \text{false} \otimes (\text{true} \oplus \text{false} \otimes \text{false} \otimes \text{false}) \\
= \text{false}.
\]
Apply weighted dependencies, where $0 = \infty$ and $1 = 0$. Note that \oplus is the minimum function, and \otimes is addition.

A unique behavior exists if there exists no port that has a dependency on itself with value “0”.

$$\delta(p4, p4) = \delta_c(p4, p1) \otimes \delta_a(p1, p5) \otimes \delta_c(p5, p2)$$
$$\otimes(\delta_a(p2, p4) \oplus \delta_a(p2, p6) \otimes \delta_c(p6, p3) \otimes \delta_a(p3, p4))$$
$$= 0 \otimes 0 \otimes 0 \otimes (2.0 \oplus 0 \otimes 0 \otimes 0)$$
$$= 0.$$
Causality interfaces of a modal mode may vary due to the change of its internal states. Let X denote the set of states, then the causality interfaces are given by a function

$$\delta' : P_i \times P_o \times X \rightarrow D.$$

A simple static and conservative analysis approach: for an input port $p_i \in P_i$ and an output port $p_o \in P_o$ of an actor,

$$\delta(p_i, p_o) = \bigoplus_{x \in X} \delta'(p_i, p_o, x).$$

This simple method may be too conservative in practice. A more precise static analysis may not be always available.
Summary

- An interface theory for causality interfaces of actors and their composition.

- Applications to determining existence and uniqueness of behaviors for synchronous languages and discrete-event models.