
Discrete Event Models: 
Getting the Semantics Right

Edward A. Lee
Robert S. Pepper Distinguished Professor
Chair of EECS
UC Berkeley

With thanks to Xioajun Liu, Eleftherios Matsikoudis, and Haiyang Zheng

Invited Keynote Talk
Winter Simulation Conference 
December 4, 2006 
Monterey, CA



Lee, Berkeley 2

Ptolemy II: Our Laboratory for Studying 
Concurrent Models of Computation

Director from an 
extensible library 
defines component 
interaction semantics or 
“model of computation.”

Extensible component library.

Visual editor for defining models

Type system for 
communicated 
data

Concurrency management supporting 
dynamic model structure.



Lee, Berkeley 3

But will also 
establish 
connections 
with 
Continuous 
Time (CT), 
Synchronous 
Reactive (SR) 
and hybrid 
systems (CT + 
FSM) 

Some Models of Computation 
Implemented in Ptolemy II

CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven) 
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

This talk will 
focus on 
Discrete 
Events (DE)



Lee, Berkeley 4

Discrete Events (DE): A Timed Concurrent 
Model of Computation

DE Director implements 
timed semantics using an 
event queue

Actor (in this case, 
source of events)

Reactive actors produce 
output events in response 
to input events

Actors communicate via 
“signals”

 

that are marked 
point processes (discrete, 
valued, events in time).

Plot of the value (marking) of a 
signal as function of time.



Lee, Berkeley 5

Our Applications of DE

Modeling and simulation of 
Communication networks (mostly wireless)
Hardware architectures
Systems of systems

Design and software synthesis for
Sensor networks (TinyOS/nesC)
Distributed real-time software
Hardware/software systems



Lee, Berkeley 6

First Attempt at a Model for Signals



Lee, Berkeley 7

This model is not rich enough because it does not allow a signal to 
have multiple events at the same time.

First Attempt at a Model for Signals



Lee, Berkeley 8

Example Motivating the Need for 
Simultaneous Events Within a Signal

Newton’s Cradle:
Steel balls on strings
Collisions are events
Momentum of the middle ball has three values at 
the time of collision.

This example has continuous dynamics as well 
(I will return to this)

Other examples:
Batch arrivals at a queue.
Software sequences abstracted as instantaneous.
Transient states. 



Lee, Berkeley 9

A Better Model for Signals: 
Super-Dense Time

This allows signals to have a sequence of values at any real time t.



Lee, Berkeley 10

Super Dense Time



Lee, Berkeley 11

Events and Firings

Operationally, events are processed by presenting all 
input events at a tag to an actor and then firing it.

However, this is not always possible!



Lee, Berkeley 12

A Feedback Design Pattern

In this model, a sensor produces measurements that are combined with 
previous measurements using an exponential forgetting function.

The feedback loop makes it impossible to present the Register actor with 
all its inputs at any tag before firing it.

trigger input port
data input port



Lee, Berkeley 13

Solving Feedback Loops

Possible solutions:
All actors have time delay
Some actors have time delay, 
and every directed loop must have an actor with time delay.
All actors have delta delay
Some actors have delta delay 
and every directed loop must have an actor with delta delay.

Although each of these solutions is used, all are problematic.

The root of the problem is simultaneous events.



Lee, Berkeley 14

Consider “All Actors Have Time Delay”

If all actors have time delay, this produces either:
Event with value 1 followed by event with value 2, or
Event with value 1 followed by event with value 3.

(the latter if signal values are persistent).
Neither of these is likely what we want.



Lee, Berkeley 15

Consider “All Actors Have Delta Delay”

With delta delays, if an input event is ((t, n), v), the corresponding 
output event is ((t, n+1), v’). Every actor is assumed to give a delta 
delay.

This style of solution is used in VHDL.



Lee, Berkeley 16

Consider “All Actors Have Delta Delay”

If all actors have a delta delay, this produces either:
Event with value 1 followed by event with value 2, or
Event with value 1 followed by event with value 3 

(the latter if signal values are persistent, as in VHDL).
Again, neither of these is likely what we want.



Lee, Berkeley 17

More Fundamental Problem: Delta Delay 
Semantics is Not Compositional

The top composition of two actors will have a two delta delays, 
whereas the bottom abstraction has only a single delta delay.

Under delta delay semantics, a composition of two actors 
cannot have the semantics as a single actor. 



Lee, Berkeley 18

Consider “Some actors have time delay, 
and every directed loop must have an 
actor with time delay.”

Any non-zero time delay imposes an upper bound on the rate at 
which sensor data can be accepted. Exceeding this rate will 
produce erroneous results.



Lee, Berkeley 19

Consider “Some actors have delta delay, 
and every directed loop must have an 
actor with delta delay.”

The output of the Register actor must be at least one index later 
than the data input, hence this actor has at least a delta delay.

To schedule this, could break the feedback loop at actors with delta 
delay, then do a topological sort.

trigger input port
data input port



Lee, Berkeley 20

Naïve Topological Sort is not 
Compositional

Does this composite actor have a 
delta delay or not?

Breaking loops where an actor has a delta delay and 
performing a topological sort is not a compositional 
solution:



Lee, Berkeley 21

Our Answer: No Required Delay, and 
Feedback Loops Have Fixed Points 
Semantics

Given an input event ((t, n), v), the corresponding output event is 
((t, n), v’). The actor has no delay.
The challenge now is to establish a determinate semantics and a 
scheduling policy for execution.

Output is a 
single event 
with value 3.0



Lee, Berkeley 22

How Does This Work? 
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization



Lee, Berkeley 23

How Does This Work? 
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

Post tags on the event queue 
corresponding to any initial 
events the actor wants to 
produce.



Lee, Berkeley 24

How Does This Work? 
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

Iterate
If (prefire()) {

fire();
postfire();

}

Only the postfire() method can 
change the state of the actor.



Lee, Berkeley 25

How Does This Work? 
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization



Lee, Berkeley 26

Definition of the Register Actor (Sketch)

class Register {
private Object state;
boolean prefire() {
if (trigger is known) { return true; }

}
void fire() {
if (trigger is present) {
send state to output;

} else {
assert output is absent;

}
}
void postfire() {
if (trigger is present) {
state = value read from data input;

}
}

Can the 
actor fire?

React to 
trigger 
input.

Read the 
data input 
and update 
the state.

trigger 
input 
port

data input port



Lee, Berkeley 27

Execution of a DE Model (Conceptually)

Start with all signals empty. Initialize all 
actors (some will post tags on the event 
queue).

Take all earliest tag (t, n) from the event 
queue.

Mark all signals unknown at tag (t, n).

Prefire and fire the actors in any order. If 
enough is known about the inputs to an 
actor, it may make outputs known at (t, n). 

Keep firing actors in any order until all 
signals are known at (t, n).

When all signals are known, postfire all 
actors (to commit state changes). 
Any actor may now post a tag 
(t’, n’) > (t, n) on the event queue.

Key questions:
Is this right?
Can this be made efficient?

The answer, of course, is yes to both.

This scheme underlies 
synchronous/reactive languages 
(Esterel, Lustre, Signal, etc.)



Lee, Berkeley 28

Where We Are

Proposed:
Superdense time
Zero delay actors
Execution policy

Now: Show that it’s right.
Conditions for uniqueness (Scott continuity)
Conditions for liveness (causality)



Lee, Berkeley 29

Observation: Any Composition is a 
Feedback Composition

s ∈

 

S N

We have a least fixed point 
semantics.



Lee, Berkeley 30

Prefix Order**



Lee, Berkeley 31

Monotonic and Continuous Functions**

Every continuous function is monotonic, and behaves as follows: 
Extending the input (in time or tags) can only extend the output.



Lee, Berkeley 32

Knaster-Tarski Fixed-Point Theorem**

Start with empty signals.
Iteratively apply function F.
Converge to the unique solution.



Lee, Berkeley 33

Summary: Existence and Uniqueness of 
the Least Fixed Point Solution.

s ∈

 

S N

Under our execution 
policy, actors are usually 
(Scott) continuous.



Lee, Berkeley 34

But: Need to Worry About Liveness: 
Deadlocked Systems

Existence and uniqueness of a solution is not enough.

The least fixed point of this system consists of empty 
signals.  It is deadlocked!



Lee, Berkeley 35

Another Liveness Concern: 
Zeno Systems

DE systems may have 
an infinite number of 
events in a finite amount 
of time. These “Zeno 
systems” can prevent 
time from advancing.

In this case, our execution policy 
fails to implement the Knaster- 
Tarski constructive procedure 
because some of the signals are 
not total.



Lee, Berkeley 36

Liveness

A signal is total if it is defined for all tags in T.
A model with no inputs is live if all signals are total.
A model with inputs is live if all input signals are total 
implies all signals are total.

Liveness ensures freedom from deadlock and Zeno.

Whether a model is live is, in general, undecidable.
We have developed a useful sufficient condition 
based on causality that ensures liveness.



Lee, Berkeley 37

Causality Ensures Liveness 
of an Actor

Causality does not imply continuity and continuity does not imply 
causality. Continuity ensure existence and uniqueness of a least 
fixed point, whereas causality ensures liveness.



Lee, Berkeley 38

Strict Causality Ensures Liveness of a 
Feedback Composition 



Lee, Berkeley 39

Continuity, Liveness, and Causality

This gives us sufficient, but not necessary condition for 
freedom deadlock and Zeno.



Lee, Berkeley 40

Recall Deadlocked System

The feedback loop has no strictly causal actor.



Lee, Berkeley 41

Feedback Loop that is Not Deadlocked

This feedback loop also has no strictly causal actor, unless…

We aggregate the two actors as shown into one.



Lee, Berkeley 42

Causality Interfaces Make Scheduling of 
Execution and Analysis for Liveness 
Efficient

A causality 
interface exposes 
just enough 
information about 
an actor to make 
scheduling and 
liveness analysis 
efficient.

An algebra of 
interfaces enables 
inference of the 
causality interface 
of a composition.



Lee, Berkeley 43

But will also 
establish 
connections 
with 
Continuous 
Time (CT) and 
hybrid systems 
(CT + FSM) 

Models of Computation 
Implemented in Ptolemy II

SR is a special 
case of DE 
where time 
has no metric.

CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven) 
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Done



Lee, Berkeley 44

Standard Model for 
Continuous-Time Signals

In ODEs, the usual formulation of the signals of interest 
is a function from the time line (a connected subset of 
the reals) to the reals:

Such signals are continuous at t ∈
 

if (e.g.):



Lee, Berkeley 45

Piecewise Continuous Signals

In hybrid systems of interest, signals have discontinuities.

Piecewise continuous signals are continuous at all 
t ∈

 
\ D where D ⊂

 
is a discrete set.1

1A set D with an order relation is a discrete set  if there exists an order 
embedding to the integers.



Lee, Berkeley 46

Operational Semantics of Hybrid Systems

A computer execution of a hybrid system is constrained 
to provide values on a discrete set:

Given this constraint, choosing T ⊂
 
as the domain of 

these functions is an unfortunate choice. It makes it 
impossible to unambiguously represent discontinuities.



Lee, Berkeley 47

Discontinuities Are Not Just 
Rapid Changes

Discontinuities 
must be 
semantically 
distinguishable 
from rapid 
continuous 
changes.



Lee, Berkeley 48

Solution is the Same: 
Superdense Time

This makes it quite easy to construct models that 
combine continuous dynamics with discrete 
dynamics.



Lee, Berkeley 49

Ideal Solver Semantics 
[Liu and Lee, HSCC 2003]

In the ideal solver semantics, an ODE 
governing the hybrid system has a unique 
solution for intervals [ti , ti+1 ), the interval 
between discrete time points. A discrete trace 
loses nothing by not representing values 
within these intervals. 

tt0 t1 t2t3 ts...

Common fixed point semantics enables hybrid discrete/continuous models.



Lee, Berkeley 50

The Hybrid 
Plant Model

This model is a 
hierarchical mixture of 
three models of 
computation (MoCs): DE, 
FSM, and CT.



Lee, Berkeley 51

Bottle filling at 
maximum rate

Raw material buffer 
filling during setup time

Raw material buffer 
filling during setup time

Bottle filling at 
limited rate

The Hybrid 
Plant Model



Lee, Berkeley 52

Conclusions

We have given a rigorous semantics to 
discrete-event systems that leverages 
principles from synchronous/reactive 
languages and admits interoperability with 
both SR and continuous-time models.



Lee, Berkeley 53

Further Reading

[1] X. Liu and E. A. Lee, "CPO Semantics of Timed Interactive 
Actor Networks," UC Berkeley, Berkeley, CA, Technical 
Report EECS-2006-67, May 18 2006.

[2] X. Liu, E. Matsikoudis, and E. A. Lee, "Modeling Timed 
Concurrent Systems," in CONCUR 2006 - Concurrency 
Theory, Bonn, Germany, 2006.

[3] A. Cataldo, E. A. Lee, X. Liu, E. Matsikoudis, and H. Zheng, 
"A Constructive Fixed-Point Theorem and the Feedback 
Semantics of Timed Systems," in Workshop on Discrete 
Event Systems (WODES), Ann Arbor, Michigan, 2006.

[4] E. A. Lee, "Modeling Concurrent Real-time Processes 
Using Discrete Events," Annals of Software Engineering, 
vol. 7, pp. 25-45, March 4th 1998 1999.

[5] E. A. Lee, H. Zheng, and Y. Zhou, "Causality Interfaces and 
Compositional Causality Analysis," in Foundations of 
Interface Technologies (FIT), Satellite to CONCUR, San 
Francisco, CA, 2005.



Lee, Berkeley 54

Semantics of Merge



Lee, Berkeley 55

Implementation of Merge

private List pendingEvents;
fire() {
foreach input s {
if (s is present) {
pendingEvents.append(event from s);

}
}
if (pendingEvents has events) {
send to output (pendingEvents.first);
pendingEvents.removeFirst();

}
if (pendingEvents has events) {
post event at the next index on the event queue;

}
}


	Discrete Event Models: �Getting the Semantics Right
	Ptolemy II: Our Laboratory for Studying Concurrent Models of Computation
	Some Models of Computation�Implemented in Ptolemy II
	Discrete Events (DE): A Timed Concurrent Model of Computation
	Our Applications of DE
	First Attempt at a Model for Signals
	First Attempt at a Model for Signals
	Example Motivating the Need for Simultaneous Events Within a Signal
	A Better Model for Signals:�Super-Dense Time
	Super Dense Time
	Events and Firings
	A Feedback Design Pattern
	Solving Feedback Loops
	Consider “All Actors Have Time Delay”
	Consider “All Actors Have Delta Delay”
	Consider “All Actors Have Delta Delay”
	More Fundamental Problem: Delta Delay Semantics is Not Compositional
	Consider “Some actors have time delay, �and every directed loop must have an actor with time delay.”
	Consider “Some actors have delta delay, �and every directed loop must have an actor with delta delay.”
	Naïve Topological Sort is not Compositional
	Our Answer: No Required Delay, and Feedback Loops Have Fixed Points Semantics
	How Does This Work?�Execution of Ptolemy II Actors
	How Does This Work?�Execution of Ptolemy II Actors
	How Does This Work?�Execution of Ptolemy II Actors
	How Does This Work?�Execution of Ptolemy II Actors
	Definition of the Register Actor (Sketch)
	Execution of a DE Model (Conceptually)
	Where We Are
	Observation: Any Composition is a �Feedback Composition
	Prefix Order**
	Monotonic and Continuous Functions**
	Knaster-Tarski Fixed-Point Theorem**
	Summary: Existence and Uniqueness of the Least Fixed Point Solution.
	But: Need to Worry About Liveness:�Deadlocked Systems
	Another Liveness Concern:�Zeno Systems
	Liveness
	Causality Ensures Liveness�of an Actor
	Strict Causality Ensures Liveness of a Feedback Composition 
	Continuity, Liveness, and Causality
	Recall Deadlocked System
	Feedback Loop that is Not Deadlocked
	Causality Interfaces Make Scheduling of Execution and Analysis for Liveness Efficient
	Models of Computation�Implemented in Ptolemy II
	Standard Model for�Continuous-Time Signals
	Piecewise Continuous Signals
	Operational Semantics of Hybrid Systems
	Discontinuities Are Not Just �Rapid Changes
	Solution is the Same:�Superdense Time
	Ideal Solver Semantics�[Liu and Lee, HSCC 2003]
	The Hybrid �Plant Model
	Slide Number 51
	Conclusions
	Further Reading
	Semantics of Merge
	Implementation of Merge

