Discrete Event Models:
Getting the Semantics Right

Edward A. Lee

Robert S. Pepper Distinguished Professor
Chair of EECS
UC Berkeley

With thanks to Xioajun Liu, Eleftherios Matsikoudis, and Haiyang Zheng

Invited Keynote Talk

Winter Simulation Conference
December 4, 2006
Monterey, CA

Ptolemy Il: Our Laboratory for Studying
Concurrent Models of Computation

Concurrency management supporting

dynamic model structure. Director from an

- extensible library
Ltilities = .

_Idlrectnrllbrary DE Director deflnes Component

2) soces] interaction semantics or

. I GENErC S0UrCEs

(11 H b2
= Dt sources _ model of computation.
= 'i.;. Clack Master Clock ~ String Sequence
e CurrentTime ;
. PoiszonClack L‘"@ Record Assembler Iil

- TimedSinewave
] TriggeredClock
LfE wariableClock

Channel Model

Record Disassembler

- | =eguence sources | [Display Resequenced
F-_] sinks
L= Gaussian
B o Square =
I | random)
. _I P The channel is modeled Sequenc

L Extensible component library. communicated
data

el real it ;I bya 1.:arial:lle delayrl, which
i here is random, with a
Rayeigh distribution.
i . . Type system for

Visual editor for defining models Lee, Berkeley 2

Some Models of Computation
Implemented in Ptolemy Il

o CSP — concurrent threads with rendezvous | This talk will

o CT — continuous-time modeling focus on

o DE — discrete-event systems Discrete

o DDE - distributed discrete events Events (DE)

o DDF — dynamic dataflow s vl 2llse

o DPN — distributed process networks serafe

o DT — discrete time (cycle driven) connections

o FSM — finite state machines with

o Giotto — synchronous periodic Continuous

o GR - 2-D and 3-D graphics Time (CT),

o PN — process networks Synchronous

o SDF — synchronous dataflow Reactive (SR)

o SR - synchronous/reactive and hybrid

o TM — timed multitasking systems (CT +
FSM)

Lee, Berkeley 3

Discrete Events (DE): A Timed Concurrent
Model of Computation

DE Director implements
timed semantics using an
DE Director

- event queue

imeaPioter | | ACtOrs communicate via
* “signals” that are marked

\ point processes (discrete,

valued, events in time).

PaissonClock

£

. ""llll"
2 I:I » ll" ¥
L

1810

4 oot | M M H |

Actor (in this case,
source of events)

n

(s}

0 5 f 15 20 25 a0

Plot of the value (marking) of a
signal as function of time.

Reactive actors produce
output events in response
to input events

Lee, Berkeley 4

Our Applications of DE

o Modeling and simulation of
Communication networks (mostly wireless)
Hardware architectures
Systems of systems

o Design and software synthesis for
Sensor networks (TinyOS/nesC)
Distributed real-time software
Hardware/software systems

Lee, Berkeley 5

First Attempt at a Model for Signals

Let R, be the non-negative real numbers. Let V' be an
arbitrary family of values (a data type, or alphabet). Let

V.=V

be the set of values plus “absent.” Let s be a signal, given
as a partial function:

s: Ry — V.

defined on an initial segment of R

Lee, Berkeley 6

First Attempt at a Model for Signals

s: Ry — Vo

+
T
201 . """llll
Y

Values V < of H
al |, m'rTTTT

0 5
-
\ T
\/

Initial segment I € R, where the signal is defined.

Absent: s(7) = for almostall €1

This model is not rich enough because it does not allow a signal to
have multiple events at the same time.
Lee, Berkeley 7

Example Motivating the Need for
Simultaneous Events Within a Signal

Newton’s Cradle:

o Steel balls on strings

o Collisions are events

o Momentum of the middle ball has three values at

the time of collision.
w This example has continuous dynamics as well
(I will return to this)

Other examples:
o Batch arrivals at a queue.
o Software sequences abstracted as instantaneous.

o Transient states.
Lee, Berkeley 8

A Better Model for Signals:
Super-Dense Time

Let 7" = R, x N be a set of “tags” where N is the natural
numbers, and give a signhal s as a partial function:

s: 1T — V.

defined on an Initial segment of 7", assuming a lexical or-
dering on 1"

(tl,ﬂ-l) < (tg,ﬂ-g) = t] <tg, Ort; =ty andny < ns.

This allows signals to have a sequence of values at any real time t.

Lee, Berkeley 9

Super Dense Time

Values V <

Time

=

R, x N where the signal is defined

C

~ i
Absent: s(7) = ¢ for almost all 7

Initial segment [/

Lee, Berkeley 10

Events and Firings

s:1"— V.

e Afagis atime-index pair,7 = (t,n) € T'=R, x N.
e An event is atag-value pair, e = (7.v) € T x V.

e s(7)Is an eventif s(7) # <.

Operationally, events are processed by presenting all
Input events at a tag to an actor and then firing it.

However, this is not always possible!

Lee, Berkeley 11

A Feedback Design Pattern

DE Director

Sensor

. Expression
previous * forget + x* (1.0 - forget) *—

Register

TimedPlotter

N
v\trigger input port

In this model, a sensor produces measurements that are combined with
previous measurements using an exponential forgetting function.

data input port

The feedback loop makes it impossible to present the Register actor with
all its inputs at any tag before firing it.

Lee, Berkeley 12

Solving Feedback Loops

Possible solutions:
o All actors have time delay

o Some actors have time delay,
and every directed loop must have an actor with time delay.

o All actors have delta delay

o Some actors have delta delay
and every directed loop must have an actor with delta delay.

Although each of these solutions is used, all are problematic.

The root of the problem is simultaneous events.

Lee, Berkeley 13

DE Director

SingleEvent

AddSubtract TimedFlotter
& [+ ooo
1} =~

Produce a single
event with value 1.0. Scale

—

Multiply value by 2.

Add values.

If all actors have time delay, this produces either:

o Event with value 1 followed by event with value 2, or
o Event with value 1 followed by event with value 3.
(the latter if signal values are persistent).

Neither of these is likely what we want.

Consider “All Actors Have Time Delay”

Lee, Berkeley 14

Consider “All Actors Have Delta Delay”

DE Director

SingleEvent

. AddSubtract TimedFlotter
| } —y -+ ‘ -
bl- — I

Produce a single
event with value 1.0. Scale

=

rl‘t.f’lultip::-j,»r valueTy 2.

With delta delays, if an input event is ((t, n), v), the corresponding

output event is ((t, n+1), v'). Every actor is assumed to give a delta
delay.

Add values.

This style of solution is used in VHDL.
Lee, Berkeley 15

Consider “All Actors Have Delta Delay

DE Director

SingleEvent

jI PN AddSubftract TimedPlotter
— + ooo
Bt — } l
Produce a single
event with value 1.0. Scale Add values.

—

Multiply value by 2.

If all actors have a delta delay, this produces either:

o Event with value 1 followed by event with value 2, or
o Event with value 1 followed by event with value 3
(the latter if signal values are persistent, as in VHDL).

Again, neither of these is likely what we want.
Lee, Berkeley 16

More Fundamental Problem: Delta Delay
Semantics is Not Compositional

The top composition of two actors will have a two delta delays,
whereas the bottom abstraction has only a single delta delay.

Under delta delay semantics, a composition of two actors
cannot have the semantics as a single actor.

Lee, Berkeley 17

DE Director

sSensor

o forget: 0.9

. Expression

M

Register

previous * forget + x* (1.0 - forget) *—

TimedPlotter
ooo

TimedDelay
u:ilelzq,.r of y
1 0

Consider “Some actors have time delay,
and every directed loop must have an
actor with time delay.”

Any non-zero time delay imposes an upper bound on the rate at
which sensor data can be accepted. Exceeding this rate will
produce erroneous results.

Lee, Berkeley 18

Consider “Some actors have delta delay,
and every directed loop must have an
actor with delta delay.”

DE Director

@ forget: 0.9

Sensor

. Expression
previous * forget + x* (1.0 - forget) *—

Register

TimedPlotter
ooo

|
v\trigger input port

data input port

The output of the Register actor must be at least one index later
than the data input, hence this actor has at least a delta delay.

To schedule this, could break the feedback loop at actors with delta

delay, then do a topological sort.
Lee, Berkeley 19

Naive Topological Sort is not
Compositional

Breaking loops where an actor has a delta delay and
performing a topological sort is not a compositional
solution:

Composite Actor

Does this composite actor have a
A
delta delay or not?

\

outl

DE Director

)

Register

FS

ou

Lee, Berkeley 20

Our Answer: No Required Delay, and
Feedback Loops Have Fixed Points
Semantics

DE Director

SingleEvent

AddSubftract TimedPlotter
— 1 o

o —
Produce a single
event with value 1.0. Scale Add values.

;.D_; Output is a
single event

1 Multiply valuTy 2. with value 3.0

Given an input event ((t, n), v), the corresponding output event is
((t, n), v'). The actor has no delay.

The challenge now is to establish a determinate semantics and a
scheduling policy for execution.

Lee, Berkeley 21

Register

How Does This Work? _7?
Execution of Ptolemy Il Actors

Flow of control: 1T]"

o Initialization
o Execution
o Finalization

Lee, Berkeley 22

Register

How Does This Work? _7?
Execution of Ptolemy Il Actors

Flow of control: 1]>—

O Post tags on the event queue

o EXxecution corresponding to any initial
L. events the actor wants to

o Finalization oroduce.

Lee, Berkeley 23

Register

How Does This Work? j
Execution of Ptolemy Il Actors

Flow of control: 1T]’—

o Initialization
o Execution
o Finalization

If (prefire()) {
fire();

& postfire();
}

Only the postfire() method can
change the state of the actor.

lterate

Lee, Berkeley 24

Register

How Does This Work? j
Execution of Ptolemy Il Actors

Flow of control: 1T]"

o Initialization
o Execution
o Finalization

Lee, Berkeley 25

Can the
actor fire?

React to
trigger
input.

Read the
data input
and update
the state.

<

<

Definition of the Register Actor (Sketch)

class Register {
private Object state;

- boolean prefire() {

iIT (trigger i1s known) { return true; }

-,
(VOid fire() { Register
iIT (trigger is present) {
send state to output; :i:g}
roelse { data input port v\triqger
assert output 1s absent; mbm
b port
L}
 void postfire() {
1T (trigger i1s present) {
state = value read from data i1nput;
¥
¥

Lee, Berkeley 26

Execution of a DE Model (Conceptually)

DE Director

@ forget: 0.9

o Start with all signals empty. Initialize all

Sensor

actors (some will post tags on the event Expression
eue) sy PrEVOUS ¥ forget + x* (1.0 - forget) *—
qu . Register
. TimedPlotter
o Take all earliest tag (t, n) from the event -
gueue. I i

o Mark all signals unknown at tag (t, n).

o Prefire and fire the actors in any order. If
enough is known about the inputs to an T
actor, it may make outputs known at (t, n). © Is this right?

Key guestions:

o Keep firing actors in any order until all o Can this be made efficient?
signals are known at (t, n). The answer, of course, is yes to both.
o When all signals are known, postfire all
actors (to commit state changes). This scheme underlies
Any actor may now post a tag synchronous/reactive languages
(t', n’) > (t, n) on the event queue. (Esterel, Lustre, Signal, etc.)

Lee, Berkeley 27

Where We Are

Proposed:

o Superdense time
o Zero delay actors
o Execution policy

Now: Show that it’s right.
o Conditions for unigueness (Scott continuity)
o Conditions for liveness (causality)

Lee, Berkeley 28

Observation: Any Composition Is a
Feedback Composition

e Signal: s: Ry xN — V.
o - e Set of signals: S
‘3‘2»—“ e Tuples of signals: s € S&
p3 'Fz)
> e Actor: F: SNV — sM
F, Pﬁ

If every actor is a function,
(2) (6) then the semantics of the

overall system is the least
s € SN such that F'(s) = s.

1 p4
ﬁ F E—,;EL » o= We have a least fixed point

semantics.

(c) (d)

Lee, Berkeley 29

Prefix Order™

e Recall that a signal s is a partial function: defined
on an initial segment of 7'. Such a function can be
given by its graph, s C 1" x V.

e A signal s, is a prefix of a signal s, if s; C s5. The
prefix relation is a partial order on the set S of sig-
nals.

e Fact: S with the prefix order is a complete semilat-
tice (and hence also a CPO).

e Generalizes easily to tuples of signals S*.

Lee, Berkeley 30

Monotonic and Continuous Functions™

A function F': S — S'is monotonic if it is order-preserving,

Vs1.80 €85, s1C sy = F(s1)C F(sy). = F p=

The same function is (Scott) continuous if for all directed
sets S C S, F(5’) Is a directed set and

F(\/s) =\ F(s.

Here, F(S’) Is defined in the natural way as {F(s) | s €
S’t, and VX denotes the least upper bound of the set X.

Every continuous function is monotonic, and behaves as follows:
Extending the input (in time or tags) can only extend the output.
Lee, Berkeley 31

Knaster-Tarski Fixed-Point Theorem™

A classic fixed point theorem states that if £'is continuous,
then it has a least fixed point, and that |least fixed point is

V{F"(Ls)|neN},

where 1 g is the least element of S (the empty sighal) and
N is the natural numbers.

o Start with empty signals.

o lteratively apply function F.
o Converge to the unique solution.

Lee, Berkeley 32

Summary: Existence and Unigueness of
the Least Fixed Point Solution.

e Signal: s: Ry xN — V.
o - e Set of signals: S
"2»—“ e Tuples of signals: s € S&
p3 'Fz)
> e Actor: F: SNV — sM
F, Fﬁ

A unique least fixed point,

o (®) cegN |SE SN such that F(s) = s,
exists and be constructively
found if S% is a CPO and

% i EZEE, L3 7 p— | Fis (Scott) continuous.
Under our execution
() (d) policy, actors are usually

(Scott) continuous.
Lee, Berkeley 33

DE Director

Sensor

. EXpression

Hl,

previous previous * forget + x* (1.0 - forget) *—

TimedPlotter

(i)

But: Need to Worry About Liveness:
Deadlocked Systems

Existence and unigueness of a solution is not enough.

The least fixed point of this system consists of empty
signals. It is deadlocked!

Lee, Berkeley 34

Another Liveness Concern:
Zeno Systems

DE Director Clack

DE systems may have

an in%nite numbér of B ﬁ@mm I Timidpmr
events in a finite amount =

of time. These “Zeno N 1
systems” can prevent VariableDelay

time from advancing.

tima: 0.0
value: 1.0

Exprassion

This model illustrates a Zeno condition, where an infinite number of events

¥8 .zeno. TimedPlotter oceur before time 2.0, and hence the Clock actor is unable to ever produce
File Edit Special Help its output at time 2.0,
- Zeno Conditions @MMU In this case, our execution policy
sk i fails to implement the Knaster-
1ot . Tarski constructive procedure
ol { 1 N H”ﬂ"l | | because some of the signals are
_ 0.0 nfz nf4 IIITE ufa Tj.n 1?2 1?4 1.6 1?8 zfn _ not total.

Lee, Berkeley 35

Liveness

o A signal is total if it is defined for all tags in T.
o A model with no inputs is live if all signals are total.

o A model with inputs is live if all input signals are total
Implies all signals are total.

Liveness ensures freedom from deadlock and Zeno.

o Whether a model is live Is, in general, undecidable.

o We have developed a useful sufficient condition
based on causality that ensures liveness.

Lee, Berkeley 36

Causality Ensures Liveness
of an Actor

A monotonic actor F'is causal if for all sets of input signals
S;, the corresponding set of output signals S, = F(S;)
satisty

ﬂ dom(s) C ﬂ dom(s) .

SES; SES,

An immediate consequence of this definition is that a causal
actor is live. Thus, whether a composition of actors is
causal will tell us whether it is live.

Causality does not imply continuity and continuity does not imply
causality. Continuity ensure existence and uniqueness of a least
fixed point, whereas causality ensures liveness.

Lee, Berkeley 37

Strict Causality Ensures Liveness of a
Feedback Composition

A composition of causal actors without directed cycles Is
itself a causal actor. With cycles, we need:

e A monotonic actor F' is strictly causal if for all sets of
Input signals S;, the corresponding set of output sig-
nals S, = F'(.5;) either consists only of total signals
(defined over all T") or

m dom(s) C ﬂ dom(s).

= '-E.IS-Q_ et E’S.G

(C denotes strict subset). If F' Is a strictly causal actor
with one input and one output, then F(s,) # s, . F must
“‘come up with something from nothing.”

Lee, Berkeley 38

Continuity, Liveness, and Causality

Theorem: Given atotally ordered tag set and a network of
causal and continuous actors where in every dependency
loop In the network there Is at least one strictly causal
actor, then the network is a causal and continuous actor.

This gives us sufficient, but not necessary condition for
freedom deadlock and Zeno.

Lee, Berkeley 39

Recall Deadlocked System

DE Director

e forget: 0.9

Sensor

. EXpression

Hl,

previous previous * forget + x* (1.0 - forget) *—

TimedPlotter

The feedback loop has no strictly causal actor.

Lee, Berkeley 40

Feedback Loop that is Not Deadlocked

DE Director

@ forget: 0.9

ensar

F \ . Expression
i PTEViOUs * forget + x* (1.0 - forget) *—

Register

Timif::F-"Intter
N _ﬂ Y [_D

A

This feedback loop also has no strictly causal actor, unless...

We aggregate the two actors as shown into one.

Lee, Berkeley 41

Causality Interfaces Make Scheduling of
Execution and Analysis for Liveness
Efficient

A causality lﬂDpﬁ p2
interface exposes @
just enough p7 p6
iInformation about D
an actor to make (a)
scheduling and

liveness analysis
efficient.

p1 pa

pl
An algebra of p3
Interfaces enables
Inference of the

causality interface (b) ©)
of a composition.

p4

pb

NI

Lee, Berkeley 42

Models of Computation
Implemented in Ptolemy Il

O OO0 OO O0OOO0OO0OO0OO0OO0OO0OOo

CSP - concurrent threads with rendezvous
CT — continuous-time modeling

DE — discrete-event systems

DDE - distributed discrete events
DDF — dynamic dataflow

DPN — distributed process networks
DT — discrete time (cycle driven)
FSM — finite state machines

Giotto — synchronous periodic

GR — 2-D and 3-D graphics

PN — process networks

SDF — synchronous dataflow

SR — synchronous/reactive

TM — timed multitasking

Done

But will also
establish
connections
with
Continuous
Time (CT) and
hybrid systems
(CT + FSM)

SR is a special
case of DE
where time
has no metric.

Lee, Berkeley 43

Standard Model for
Continuous-Time Signals

In ODESs, the usual formulation of the signals of interest
IS a function from the time line (a connected subset of
the reals) to the reals:

p: R, — R"”
p: R, — R"
p: Ry — R”

Such signals are continuous att e[R__ If (e.9.):

Ve>0,30>0,8t.V7r € (t—0,t4+0), ||p(t)—p(T)|| < €
Lee, Berkeley 44

Piecewise Continuous Signals

In hybrid systems of interest, signals have discontinuities.

p: Ry — R” —\

Ve}o«ﬁtiés

bR =R (ANOOL N

Lt

e 1] 2 4 B] 10 12 14 16 18
pr Ry —R™

Piecewise continuous signals are continuous at all
t e R.\ D where D cR, is a discrete set.!

1A set D with an order relation is a discrete set if there exists an order
embedding to the integers. Lee, Berkeley 45

Operational Semantics of Hybrid Systems

A computer execution of a hybrid system Is constrained
to provide values on a discrete set:

-,

Ny e . T

j", - R"‘ i | | . . I‘ufel;aétiesl \
1.0 I

TR Ll \]\é

p: Ry — R ,
-1.0T

jrR, SRel SR i

Given this constraint, choosing T < R as the domain of
these functions I1s an unfortunate choice. It makes it

Impossible to unambiguously represent discontinuities.
Lee, Berkeley 46

Discontinuities Are Not Just
Rapid Changes

=11 Iy

Correct Qutput

CT Director 101 [~
05 / T
. : . 0or]
ContinuousSinewave TimedPlotte
> 08| -
5 1.0} —T 1 1 1 I I MM-T' —— T A —
Modalliodel 00 01/02 03 04 085 06 07 08 04 1

-) X
) SREE

Correct Output with Dots
T T T . T T T
1.0 presereserrrersar

input <= 0.7 Discontinuities 05k
state outputValue = -1.0 must be '
. 0.0
semantically

distinguishable | J2f
from rapid L
continuous 045 050 055 0G0 0B5 070 0F5 0.80
changes.
N _ Nl
state outputalue =1. Incorrect Output JJJJ
CTEmbedded Director 1.0]
0.5
0.0
@ outputValue: -1.0 -0.5
1.0
Const output
045 050 055 060 0G5 070 0OF5 080 085

Lee, Berkeley 47

Solution Is the Same:
Superdense Time

p: Ry x N — R"” \

p: R xN— R"”

p: R x N — R” M N

This makes it quite easy to construct models that
combine continuous dynamics with discrete
dynamics.

Lee, Berkeley 48

ldeal Solver Semantics
[Liu and Lee, HSCC 2003]

In the ideal solver semantics, an ODE
governing the hybrid system has a unique
solution for intervals [t;, t.,,), the interval
between discrete time points. A discrete trace

w loses nothing by not representing values
within these intervals.

~—V

o T Bty ... t,

Common fixed point semantics enables hybrid discrete/continuous models.
Lee, Berkeley 49

The Hybrid
Plant Model

CT Director

Model of raw material buffer and
bottle being filled.

e bottlelnflowRate: 1.5

Const
I rawMaterialinflowRate

RMBuffer

AddSubtract
job + 1

»

Const2
B bottlelnflowRate

DE Director @ jobArrivalRate: 1.0/3.0 jobs/minute
- e setupTime: 1.0 minutes
, , e rawhMaterialinflowRate: 1.5 liters/minute
Hybrid model of a plant where a continuous flow . :
e o : @ maxnflowRate: 2.0 liters/minute
of raw material is directed into bottles as the . _
bottles (jobs) arrive. The top level is a discrete- s fargatContalner avel: 10.0 'fmrs
event model with a modal continuous-time model e initialRawMaterialLevel: 3.0 liters
ight.
etpTime Delay podalWodel
» p BufferLevel
PeriodicSampler I\ 0 h =[]
RMBufferLevel| 1. D >
}
Detect Empty Buffer yBufie
emptyBuffer 0
Taling eueStatus

pm

/oo

Detect Full Bottle

jobDone

i\

prote=ing RMBuffer.initialStata = initial RawhMatenalLawveal,
procke=iRg Bottle.initialState = 0.0;
procaz=ing. bottlelnflowRata = 0.0

This model is a
hierarchical mixture of
three models of
computation (MoCs): DE,
FSM, and CT.

processang.Botlle initial State = 0.0

Mot filling a bottle.
Collecting raw material.

idle
. job_isPresenl
jobDone_isPresent Jeo -
_ processng bottleinfiowRate = 0.0; processng. boltleinflowRale = maxinflowRale
! processng Bottle.initial State = 0.0
Filling the bottle at axRat

the in-flow rate (raw

material buffer is empty). Filling the bottle at

the maximum rate.

empiyBuffer_isPresent && ljobDone_isPresent
processing. bottlelnflowRate = rawhateral inflowRate

The Hybrid
Plant Model

DE Director

Hybrid model of a plant where a continuous flow

@ jobArrivalRate: 1.0/3.0 jobsfminute
e setupTime: 1.0 minutes

@& rawhaterialinflowRate: 1.5 liters/minute
e mazxnflowRate: 2.0 liters/minute

of raw material is directed into bottles as the

bottles (jobs) arrive. The top level is a discrete-
event model with a modal continuous-time model

inside. Model parameters are to the right.

PaoissonClock

SingleEvent

Merge

Raw material buffer
filling during setup time

@ targetContainerLevel: 10.0 liters
e initialRawMaterialLevel: 3.0 liters

BufferLevel

[=[=[=]
A

= 3 AR
W

QueueStatus

[=]=]=]
A

= 3 L
W

Bottle filling at
maximum rate

jobDone_isPresant
processang . bottleinflowRate = 0.0;

Dhebilon jridio | Cdmbe = (% 0

true

proceming RMBuffer.initialStata = initial RawhMatenalLavel;

proceming.Bottla

File

Edit / Speci

Help

Raw Materia ffar Level

Raw material buffer
filling during setup time

—

N

itle a
fe (raw

boe Sev o EPLY

jobDone_isPresent

job_isPresant
process ng Bottle initial State = 0.0

process ng botileinflowRate = 0.0,

axFa

Bottle filling at
limited rate

7

Daone_isPresent
rmwhdateralinflowRate

JinitialState = 0.0,
procaeming. bottlalnflowRata = 0.0

Mot filling a bottle.

Collecting raw material.

processing. bottlenflowRate = maxinflowRate

Filling the bottle at
the maximum rate.

Conclusions

We have given a rigorous semantics to
discrete-event systems that leverages
orinciples from synchronous/reactive
anguages and admits interoperability with
poth SR and continuous-time models.

Lee, Berkeley 52

Further Reading

[1] X. Liuand E. A. Lee, "CPO Semantics of Timed Interactive
Actor Networks," UC Berkeley, Berkeley, CA, Technical
Report EECS-2006-67, May 18 2006.

[2] X. Liu, E. Matsikoudis, and E. A. Lee, "Modeling Timed
Concurrent Systems," in CONCUR 2006 - Concurrency
Theory, Bonn, Germany, 2006.

[3] A. Cataldo, E. A. Lee, X. Liu, E. Matsikoudis, and H. Zheng,
"A Constructive Fixed-Point Theorem and the Feedback
Semantics of Timed Systems," in Workshop on Discrete
Event Systems (WODES), Ann Arbor, Michigan, 2006.

[4] E. A. Lee, "Modeling Concurrent Real-time Processes
Using Discrete Events," Annals of Software Engineering,
vol. 7, pp. 25-45, March 4th 1998 1999.

[5] E. A. Lee, H. Zheng, and Y. Zhou, "Causality Interfaces and
Compositional Causality Analysis," in Foundations of
Interface Technologies (FIT), Satellite to CONCUR, San
Francisco, CA, 2005.

Lee, Berkeley 53

Semantics of Merge

Merge

At time t, input sequences are interleaved. That is, if the
Inputs are s; and s and

51 {f, D} — 1.,
so(t,0) = wq, s1(t, 1) = wo

(otherwise absent) then the output s is

s(t,0) =vy, s(t,1)=wy, s(t.2)= ws.
Lee, Berkeley 54

Implementation of Merge

Merge

I.‘.r_-l I-‘.r_-l
N 5

private List pendingEvents;

fireQ {

foreach i1nput s {
IT (s 1s present) {
pendingEvents.append(event from s);
}

+
1T (pendingEvents has events) {

send to output (pendingEvents.first);
pendingEvents.removeFirst();

+
1T (pendingEvents has events) {

post event at the next index on the event queue;
+

+
Lee, Berkeley 55

	Discrete Event Models: �Getting the Semantics Right
	Ptolemy II: Our Laboratory for Studying Concurrent Models of Computation
	Some Models of Computation�Implemented in Ptolemy II
	Discrete Events (DE): A Timed Concurrent Model of Computation
	Our Applications of DE
	First Attempt at a Model for Signals
	First Attempt at a Model for Signals
	Example Motivating the Need for Simultaneous Events Within a Signal
	A Better Model for Signals:�Super-Dense Time
	Super Dense Time
	Events and Firings
	A Feedback Design Pattern
	Solving Feedback Loops
	Consider “All Actors Have Time Delay”
	Consider “All Actors Have Delta Delay”
	Consider “All Actors Have Delta Delay”
	More Fundamental Problem: Delta Delay Semantics is Not Compositional
	Consider “Some actors have time delay, �and every directed loop must have an actor with time delay.”
	Consider “Some actors have delta delay, �and every directed loop must have an actor with delta delay.”
	Naïve Topological Sort is not Compositional
	Our Answer: No Required Delay, and Feedback Loops Have Fixed Points Semantics
	How Does This Work?�Execution of Ptolemy II Actors
	How Does This Work?�Execution of Ptolemy II Actors
	How Does This Work?�Execution of Ptolemy II Actors
	How Does This Work?�Execution of Ptolemy II Actors
	Definition of the Register Actor (Sketch)
	Execution of a DE Model (Conceptually)
	Where We Are
	Observation: Any Composition is a �Feedback Composition
	Prefix Order**
	Monotonic and Continuous Functions**
	Knaster-Tarski Fixed-Point Theorem**
	Summary: Existence and Uniqueness of the Least Fixed Point Solution.
	But: Need to Worry About Liveness:�Deadlocked Systems
	Another Liveness Concern:�Zeno Systems
	Liveness
	Causality Ensures Liveness�of an Actor
	Strict Causality Ensures Liveness of a Feedback Composition
	Continuity, Liveness, and Causality
	Recall Deadlocked System
	Feedback Loop that is Not Deadlocked
	Causality Interfaces Make Scheduling of Execution and Analysis for Liveness Efficient
	Models of Computation�Implemented in Ptolemy II
	Standard Model for�Continuous-Time Signals
	Piecewise Continuous Signals
	Operational Semantics of Hybrid Systems
	Discontinuities Are Not Just �Rapid Changes
	Solution is the Same:�Superdense Time
	Ideal Solver Semantics�[Liu and Lee, HSCC 2003]
	The Hybrid �Plant Model
	Slide Number 51
	Conclusions
	Further Reading
	Semantics of Merge
	Implementation of Merge

