
Making Concurrency
Mainstream

Edward A. Lee
Professor, Chair of EECS
UC Berkeley

Joint Invited Talk
CONCUR: Concurrency Theory &
FMICS: Formal Methods for Industrial Critical Systems

Bonn, Germany, August 27, 2006

Lee, Berkeley 2

Concurrency in Software Practice,
As of 2006

Threads
Shared memory, semaphores, mutexes,
monitors…

Message Passing
Synchronous, asynchronous, buffered, …

Everything else, regrettably, remains largely in
the domain of research…

Lee, Berkeley 3

The Buzz

“Multicore architectures will (finally) bring parallel
computing into the mainstream. To effectively
exploit them, legions of programmers must
emphasize concurrency.”

The vendor push:

“Please train your computer science students to
do extensive multithreaded programming.”

Lee, Berkeley 4

Is this a good idea?

Lee, Berkeley 5

My Claim

Nontrivial software written with threads,
semaphores, and mutexes are
incomprehensible to humans and cannot
and should not be trusted!

Lee, Berkeley 6

Consider a Simple Example

“The Observer pattern defines a one-to-many
dependency between a subject object and any
number of observer objects so that when the
subject object changes state, all its observer
objects are notified and updated
automatically.”

Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John
Vlissides (Addison-Wesley Publishing Co., 1995. ISBN:
0201633612):

Lee, Berkeley 7

Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Thanks to Mark S. Miller for the details
of this example.

Will this work in a
multithreaded context?

Lee, Berkeley 8

Observer Pattern
With Mutual Exclusion (Mutexes)

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Javasoft recommends against this.
What’s wrong with it?

Lee, Berkeley 9

Mutexes are Minefields

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}
valueChanged() may attempt to acquire
a lock on some other object and stall. If
the holder of that lock calls
addListener(), deadlock!

Lee, Berkeley 10

After years of use without problems, a Ptolemy Project code review found
code that was not thread safe. It was fixed in this way. Three days later, a
user in Germany reported a deadlock that had not shown up in the test suite.

Lee, Berkeley 11

Simple Observer Pattern Becomes
Not So Simple

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}

while holding lock, make copy
of listeners to avoid race
conditions

notify each listener outside of
synchronized block to avoid
deadlock

This still isn’t right.
What’s wrong with it?

Lee, Berkeley 12

Simple Observer Pattern:
How to Make It Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}
Suppose two threads call setValue(). One of them will set the value last,
leaving that value in the object, but listeners may be notified in the opposite
order. The listeners may be alerted to the value changes in the wrong order!

Lee, Berkeley 13

If the simplest design patterns yield such
problems, what about non-trivial designs?

/**
CrossRefList is a list that maintains pointers to other CrossRefLists.
…
@author Geroncio Galicia, Contributor: Edward A. Lee
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $
@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bart)
*/
public final class CrossRefList implements Serializable {

…
protected class CrossRef implements Serializable{

…
// NOTE: It is essential that this method not be
// synchronized, since it is called by _farContainer(),
// which is. Having it synchronized can lead to
// deadlock. Fortunately, it is an atomic action,
// so it need not be synchronized.
private Object _nearContainer() {

return _container;
}

private synchronized Object _farContainer() {
if (_far != null) return _far._nearContainer();
else return null;

}
…

}
}

Code that had been in
use for four years,
central to Ptolemy II,
with an extensive test
suite with 100% code
coverage, design
reviewed to yellow, then
code reviewed to green
in 2000, causes a
deadlock during a demo
on April 26, 2004.

Lee, Berkeley 14

What it Feels Like to Use the synchronized
Keyword in Java

Im
ag

e
“b

or
ro

we
d”

fr
om

 a
n

Io
m

eg
a

ad
ve

rt
is

em
en

t
fo

r
Y2

K
so

ft
wa

re
 a

nd
 d

is
k

dr
iv

es
, S

ci
en

ti
fi

c
Am

er
ic

an
, S

ep
te

m
be

r
19

99
.

Lee, Berkeley 15

Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

“humans are quickly overwhelmed by
concurrency and find it much more difficult to
reason about concurrent than sequential code.
Even careful people miss possible interleavings
among even simple collections of partially
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue, 3(7), 2005.

Lee, Berkeley 16

If concurrency were intrinsically hard, we
would not function well in the physical world

It is not
concurrency that
is hard…

Lee, Berkeley 17

…It is Threads that are Hard!

Threads are sequential processes that
share memory. From the perspective of
any thread, the entire state of the universe
can change between any two atomic
actions (itself an ill-defined concept).

Imagine if the physical world did that…

Lee, Berkeley 18

The Following are Only Partial Solutions

Training programmers to use threads.
Improve software engineering processes.
Devote attention to “non-functional” properties.
Use design patterns.

None of these deliver a rigorous, analyzable,
and understandable model of concurrency.

Lee, Berkeley 19

We Can Incrementally Improve Threads

Object Oriented programming
Coding rules (Acquire locks in the same order…)
Libraries (Stapl, Java 5.0, …)
Patterns (MapReduce, …)
Transactions (Databases, …)
Formal verification (Blast, thread checkers, …)
Enhanced languages (Split-C, Cilk, Guava, …)
Enhanced mechanisms (Promises, futures, …)

But is it enough to refine a mechanism
with flawed foundations?

Lee, Berkeley 20

Do Threads Have a Sound Foundation?

If the foundation is
bad, then we either
tolerate brittle
designs that are
difficult to make
work, or we have to
rebuild from the
foundations.

Note that this whole enterprise is
held up by threads

Lee, Berkeley 21

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the
nondeterminism by imposing constraints on
execution order (e.g., mutexes) and limiting
shared data accesses (e.g., OO design).

Lee, Berkeley 22

Succinct Solution Statement

Instead of starting with a wildly nondeterministic
mechanism and asking the programmer to rein in
that nondeterminism, start with a deterministic
mechanism and incrementally add
nondeterminism where needed.

Under this principle, even the most effective of
today’s techniques (OO design, transactions,
message passing, …) require fundamental
rethinking.

Lee, Berkeley 23

Problems with the Foundations

The 20-th century notion of “computation”:

Bits: B = {0, 1}
Set of finite sequences of bits: B∗

Computation: f : B∗→ B∗

Composition of computations: f • f '
Programs specify compositions of computations

Threads augment this model to admit concurrency.

But this model does not admit concurrency gracefully.

Lee, Berkeley 24

Composition of Computations

initial state: b0 ∈ B∗

final state: bN

sequential
composition

bn = fn (bn-1)

Lee, Berkeley 25

When There are Threads,
Everything Changes

suspend

A program no longer
computes a function.

resume

another thread can
change the state

bn = fn (bn-1)

b'n = fn (b'n-1)

Apparently, programmers find this
model appealing because nothing has
changed in the syntax.

Lee, Berkeley 26

Instead of a Program Specifying…

f : B∗ → B∗

Lee, Berkeley 27

… a Program Should Specify

f : (T → B∗)n → (T → B∗)n

Composition of concurrent components now
becomes function composition.
This is called the “tagged signal model”
[Lee & Sangiovanni-Vincentelli, 1998]

This is a function from the set of tuples of
(possibly partial) functions from T to B∗

into itself, for some partially ordered set of
tags T.

Lee, Berkeley 28

Example: Tag Set T for
Kahn Process Networks

Each signal maps a
totally ordered subset
of T into values.

x ∈ (T → B∗)

signal process

Ordering constraints on tags imposed
by communication:

Example from Xiaojun Liu, Ph.D. Thesis, 2005.

u

v

x

y

z

Lee, Berkeley 29

Example: Tag Set T for
Kahn Process Networks

Ordering constraints on tags imposed
by computation:

Example from Xiaojun Liu, Ph.D. Thesis, 2005.

u

z

v

y

x

Composition of these constraints with the
previous reveals deadlock.

Lee, Berkeley 30

A Rich Family of Examples:
Timed Concurrent Systems

Tag set is totally ordered.
Example: T = , with lexicographic order
(“super dense time”).

Used to model
hardware,
continuous dynamics,
hybrid systems,
embedded software

Gives semantics to “cyber-physical systems”.

See [Liu, Matsikoudis, Lee, CONCUR 2006].

Lee, Berkeley 31

The Catch…

This is not what (mainstream)
programming languages do.

This is not what (mainstream) software
component technologies do.

Let’s tackle the second problem first…

f : (T → B∗)n → (T → B∗)n

Lee, Berkeley 32

Object Oriented vs. Actor Oriented

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

evolving data

class name

data

methods

call return

What flows through
an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Lee, Berkeley 33

The First (?) Actor-Oriented Programming Language
The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother,
Ivan Sutherland) to create the first actor-oriented
programming language (which had a visual syntax).

Lee, Berkeley 34

Examples of Actor-Oriented “Languages”

CORBA event service (distributed push-pull)
ROOM and UML-2 (dataflow, Rational, IBM)
VHDL, Verilog (discrete events, Cadence, Synopsys, ...)
LabVIEW (structured dataflow, National Instruments)
Modelica (continuous-time, constraint-based, Linkoping)
OPNET (discrete events, Opnet Technologies)
SDL (process networks)
Occam (rendezvous)
Simulink (Continuous-time, The MathWorks)
SPW (synchronous dataflow, Cadence, CoWare)
…

Many of these are
domain specific.

Many of these
have visual
syntaxes.

The semantics of these differ considerably,
but all can be modeled as

f : (T → B∗)n → (T → B∗)n

with appropriate choices of the set T.

Lee, Berkeley 35

Recall the Observer Pattern

“The Observer pattern defines a one-to-many
dependency between a subject object and any
number of observer objects so that when the
subject object changes state, all its observer
objects are notified and updated
automatically.”

Lee, Berkeley 36

Observer Pattern using an Actor-Oriented
Language with Rendezvous Semantics

Each actor is a process, communication is via
rendezvous, and the Merge explicitly represents
nondeterministic multi-way rendezvous.

This is realized here in a coordination language with a visual syntax.

Lee, Berkeley 37

Now that we’ve made a trivial design pattern
trivial, we can work on more interesting aspects
of the design.

E.g., suppose we don’t care how long notification
of the observer is deferred, as long as the
observer is notified of all changes in the right
order?

Lee, Berkeley 38

Observer Pattern using an Actor-Oriented
Language with Kahn Semantics (Extended
with Nondeterministic Merge)

Each actor is a process, communication is via
streams, and the NondeterministicMerge
explicitly merges streams nondeterministically.

Again a coordination language with a visual syntax.

Lee, Berkeley 39

Suppose further that we want to explicitly specify
the timing of producers?

Lee, Berkeley 40

Observer Pattern using an Actor-Oriented
Language with Discrete Event Semantics

Messages have a (semantic) time, and actors react to
messages chronologically. Merge now becomes
deterministic.

Again a coordination language with a visual syntax.

Lee, Berkeley 41

Composition Semantics

Each actor is a function:

Composition in three forms:
Cascade connections
Parallel connections
Feedback connections

The nontrivial part of this is feedback, but
this community knows how to handle that.

The model of computation
determines the set T:

• Process Networks
• Synchronous/Reactive
• Time-Triggered
• Discrete Events
• Dataflow
• Rendezvous
• Continuous Time
• …

f : (T → B∗) n → (T → B∗) n

Lee, Berkeley 42

Recall The Catch …

f : (T → B∗)n → (T → B∗)n

This is not what (mainstream)
programming languages do.

What to do here?

This is not what (mainstream) software
component technologies do.

Actor-oriented components

Lee, Berkeley 43

Nothing!
(Almost)

Lee, Berkeley 44

Do Not Ignore the Challenges

Computation is deeply rooted in the sequential paradigm.
Threads appear to adhere to this paradigm, but throw out its essential
attractiveness.

Programmers are reluctant to accept new syntax.
Regrettably, syntax has a bigger effect on acceptance than semantics,
as witnessed by the wide adoption of threads.

Only general purpose languages get attention.
A common litmus test: must be able to write the compiler for the
language in the language.

Lee, Berkeley 45

Opportunities

New syntaxes can be accepted when their purpose is orthogonal to
that of established languages.

Witness UML, a family of languages for describing object-oriented
design, complementing C++ and Java.

Coordination languages can provide capabilities orthogonal to
those of established languages.

The syntax can be noticeably distinct (as in the diagrams shown
before).

Actor-oriented design can be accomplished through
coordination languages that complement rather than
replace existing languages.

Lee, Berkeley 46

The Solution

Actor-oriented component architectures
implemented in coordination languages that
complement rather than replace existing
languages.

With good design of these coordination
languages, this will deliver understandable
concurrency.

See the Ptolemy Project for explorations of several such
languages: http://ptolemy.org

Lee, Berkeley 47

Conclusion

Transformation of bits is the foundation of computation.
Threads are the foundation of concurrent programming practice.

The foundations are flawed.
Threads discard the most essential features of computation.
Threads are incomprehensible to humans.
They appeal because they make (almost) no changes to syntax.

Concurrent computation needs a new foundation.
Actor oriented component models.
Coordination languages with actor semantics.
Visual syntaxes to seduce users.
These have a chance of acceptance!

Lee, Berkeley 48

References

1. The Ptolemy Project: http://ptolemy.org
2. X. Liu, E. Matsikoudis, and E. A. Lee, "Modeling Timed Concurrent Systems,"

in CONCUR 2006 - Concurrency Theory, Bonn, Germany, (LNCS 4137,
Springer), August 27-30, 2006.

3. E. A. Lee, "The Problem with Threads," Computer, vol. 39, pp. 33-42, 2006.
4. X. Liu and E. A. Lee, "CPO Semantics of Timed Interactive Actor Networks,"

UC Berkeley, Berkeley, CA, Technical Report EECS-2006-67, May 18 2006.
5. A. Cataldo, E. A. Lee, X. Liu, E. Matsikoudis, and H. Zheng, "A Constructive

Fixed-Point Theorem and the Feedback Semantics of Timed Systems," in
Workshop on Discrete Event Systems (WODES), Ann Arbor, Michigan, July 10-
12, 2006.

6. X. Liu, "Semantic Foundation of the Tagged Signal Model," EECS Department,
University of California, Berkeley, CA, PhD Thesis December 20 2005.

7. E. A. Lee, "Concurrent Models of Computation for Embedded Software: Lecture
Notes for EECS 290N," EECS Department, University of California, Berkeley,
CA, Technical Report UCB/ERL M05/2, January 4 2005.

8. E. A. Lee and A. Sangiovanni-Vincentelli, "A Framework for Comparing Models
of Computation," IEEE Transactions on Computer-Aided Design of Circuits and
Systems, vol. 17, pp. 1217-1229, 1998.

http://ptolemy.org/

	Making Concurrency Mainstream
	Concurrency in Software Practice,�As of 2006
	The Buzz
	My Claim
	Consider a Simple Example
	Observer Pattern in Java
	Observer Pattern�With Mutual Exclusion (Mutexes)
	Mutexes are Minefields
	Simple Observer Pattern Becomes�Not So Simple
	Simple Observer Pattern:�How to Make It Right?
	If the simplest design patterns yield such problems, what about non-trivial designs?
	What it Feels Like to Use the synchronized Keyword in Java
	Perhaps Concurrency is Just Hard…
	If concurrency were intrinsically hard, we would not function well in the physical world
	…It is Threads that are Hard!
	The Following are Only Partial Solutions
	We Can Incrementally Improve Threads
	Do Threads Have a Sound Foundation?
	Succinct Problem Statement
	Succinct Solution Statement
	Problems with the Foundations
	Composition of Computations
	When There are Threads,�Everything Changes
	Instead of a Program Specifying…
	… a Program Should Specify
	Example: Tag Set T for �Kahn Process Networks
	Example: Tag Set T for �Kahn Process Networks
	A Rich Family of Examples:�Timed Concurrent Systems
	The Catch…
	Object Oriented vs. Actor Oriented
	The First (?) Actor-Oriented Programming Language�The On-Line Graphical Specification of Computer Procedures�W. R. Sutherland,
	Examples of Actor-Oriented “Languages”
	Recall the Observer Pattern
	Observer Pattern using an Actor-Oriented Language with Rendezvous Semantics
	Observer Pattern using an Actor-Oriented Language with Kahn Semantics (Extended with Nondeterministic Merge)
	Observer Pattern using an Actor-Oriented Language with Discrete Event Semantics
	Composition Semantics
	Recall The Catch …
	Do Not Ignore the Challenges
	Opportunities
	The Solution
	Conclusion
	References

