# **The Ptolemy Project**



**Modeling and Design of Reactive Systems** 

## **Presenter:**

Praveen Murthy, PhD Postdoc and Presenter

Edward A. Lee Professor and PI UC Berkeley

**Dept. of EECS** 

Copyright © 1997, The Regents of the University of California All rights reserved.

UNIVERSITY OF CALIFORNIA AT BERKELEY

# **Organizational**

### Staff

Diane Chang, administrative assistant Kevin Chang, programmer Christopher Hylands, programmer analyst Edward A. Lee, professor and PI Mary Stewart, programmer analyst

## **Postdocs**

Praveen Murthy
Seehyun Kim
John Reekie
Dick Stevens (on leave from NRL)

## **Students**

Cliff Cordeiro John Davis Stephen Edwards Ron Galicia Mudit Goel Michael Goodwin Bilung Lee Jie Liu Michael C. Williamson

Yuhong Xiong

talk.fm

## **Undergraduate Students**

Sunil Bhave Luis Gutierrez

## **Key Outside Collaborators**

Shuvra Bhattacharyya (Hitachi) Joseph T. Buck (Synopsys) Brian L. Evans (UT Austin) Soonhoi Ha (Seoul N. Univ.) Tom Lane (SSS) Thomas M. Parks (Lincoln Labs) José Luis Pino (Hewlett Packard)

## **Sponsors**

DARPA MICRO The Alta Group of Cadence Hewlett Packard Hitachi Hughes LG Electronics NEC

> Philips Rockwell

> > © 1997, p. 3 of 24

UNIVERSITY OF CALIFORNIA AT BERKELEY

## **Abstract**

Ptolemy is a research project and software environment focused on the design and modeling of reactive systems, providing high-level support for signal processing, communication, and real-time control. The key underlying principle in the project is the use of multiple models of computation in a hierarchical heterogeneous design and modeling environment. This talk gives an overview of some of the models of computation of interest, with a focus on their concurrency, thier ability to model and specify real-time systems, and their ability to mix control logic with signal processing.

talk.fm

© 1997, p. 2 of 24

### UNIVERSITY OF CALIFORNIA AT BERKELE

# **Types of Computational Systems**

## **Transformational**

• transform a body of input data into a body of output data

## Interactive

• interact with the environment at their own speed

## Reactive

talk.fm

react continuously at the speed of the environment

This project focuses on design of reactive systems

- real-time
- embedded
- concurrent
- network-aware
- adaptive
- heterogeneous

© 1997, p. 4 of 24

# Interactive, High-Level Simulation and Specification Author: Uwe Trautwein, Technical University of Ilmenau, Germany talk.fm © 1997, p. 5 of 24

UNIVERSITY OF CALIFORNIA AT BERKELEY

## **Heterogeneous Implementation Architectures** network controller real-time process operating system ser interface microcontroller **ASIC** process system interconnect host port **FPGA** microwave. programmable microfluidic CODEC DSP MEMS memory interface control panel audio/ DSP video assembly code Heterogeneity is a major source of complexity in such systems. talk.fm © 1997, p. 7 of 24 UNIVERSITY OF CALIFORNIA AT BERKELEY

## **Properties of Such Specifications**

## • Modular

- · Large designs are composed of smaller designs
- Modules encapsulate specialized expertise

## Hierarchical

- Composite designs themselves become modules
- · Modules may be very complicated

## Concurrent

- Modules logically operate simultaneously
- Implementations may be sequential or parallel or distributed

## Abstract

- The interaction of modules occurs within a "model of computation"
- · Many interesting and useful MoCs have emerged

## Domain Specific

• Expertise encapsulated in MoCs and libraries of modules.

talk.fm

© 1997, p. 6 of 24

UNIVERSITY OF CALIFORNIA AT BERKELEY

# Two Approaches to the Design of Such Systems

# • The grand-unified approach

- Find a common representation language for all components
- Develop techniques to synthesize diverse implementations from this

## The heterogeneous approach

- Find domain-specific models of computation (MoC)
- · Hierarchically mix and match MoCs to define a system
- Retargetable synthesis techniques from MoCs to diverse implementations

# The Ptolemy project is pursuing the latter approach

- Domain specific MoCs match the applications better
- Choice of MoC can profoundly affect system architecture
- Choice of MoC can limit implementation options
- Synthesis from specialized MoCs is easier than from GULs.

talk.fm © 1997, p. 8 of 24

# problem level (heterogeneous models of computation) mapping, synthesis, & modeling implementation level (heterogeneous implementation technologies) talk.fm © 1997, p. 9 of 24

# **Example** — **Process Networks**

Note: Dataflow is a special case.



## **Strengths:**

- Good match for signal processing
- Loose synchronization (distributable)
- Determinate
- Maps easily to threads
- · Dataflow special cases map well to hardware and embedded software

## Weakness:

· Control-intensive systems are hard to specify

talk.fm © 1997, p. 11 of 24

UNIVERSITY OF CALIFORNIA AT BERKELEY

# **Some Problem-Level Models of Computation**

- Gears
- Differential equations
- Difference equations
- Discrete-events
- Petri nets
- Dataflow
- Process networks
- Actors
- Threads
- Synchronous/reactive languages
- Communicating sequential processes
- Hierarchical communicating finite state machines

talk.fm

© 1997, p. 10 of 24

© 1997, p. 12 of 24

UNIVERSITY OF CALIFORNIA AT BERKELEY

# **Sequential Example — Finite State Machines**



Guards determine when a transition may be made from one state to another, in terms of events that are visible, and outputs assert other events.

# **Strengths:**

- Natural description of sequential control
- · Behavior is decidable
- Can be made determinate (often is not, however)
- Good match to hardware or software implementation

## Weaknesses:

talk.fm

- · Awkward to specify numeric computation
- Size of the state space can get large

# Essential Differences — Models of Time Continuous time Salvador Dali, The Persistence of Memory, 1931 discrete time E1 F1 F2 F3 F4 F1 F2 F3 F4 Synchronous/reactive partially-ordered discrete events talk.fm © 1997, p. 13 of 24 UNIVERSITY OF CALIFORNIA AT BERKELEY

# **Choosing Models of Computation**

## Validation methods

- By construction
  - property is inherent.
- By verification
  - property is provable syntactically.
- By simulation
  - check behavior for all inputs.
- By testing
  - observation of a prototype.
- By intuition
  - property is true, I think.
- By assertion
  - property is true. That's an order.

It is generally better to be higher in this list

talk.fm

© 1997, p. 15 of 24

Meret Oppenheim, Object, 1936

# UNIVERSITY OF CALIFORNIA AT BERKELEY

## **Key Issues in these Models of Computation**

- Maintaining determinacy.
- Supporting nondeterminacy.
- Bounding the queueing on channels.
- Scheduling processes.
- Synthesis: mapping to hardware/software implementations.
- Providing scalable visual syntaxes.
- Resolving circular dependencies.
- Modeling causality.
- Achieving fast simulations.
- Supporting modularity.
- Composing multiple models of computation.

talk.fm

© 1997, p. 14 of 24

UNIVERSITY OF CALIFORNIA AT BERKELEY

# **Usefulness of Modeling Frameworks**

The following objectives are at odds with one another:

- Expressiveness
- Generality

VS.

- Verifiability
- $\bullet \ Compilability/Synthesizability$

The Conclusion?
Heterogeneous modeling.

talk.fm

© 1997, p. 16 of 24



# **Contributions (contd.)**

- A synchronous-reactive modeling technique that is modular and can be combined with dataflow, finite-state machines, and discrete-event modeling.
- A hierarchical finite-state machine model of computation that can be combined with dataflow, discrete-event, and synchronous reactive modeling.
- A mathematical semantic framework for comparing models of computation, and analysis within this framework of the discrete-event semantics of VHDL and the formal semantics of dataflow.
- Public distribution of three major versions of the Ptolemy software and two versions of the Tycho user-interface framework. This software serves as our laboratory and as a major vehicle for technology transfer.

talk.fm © 1997, p. 19 of 24

UNIVERSITY OF CALIFORNIA AT BERKELEY

# **Major Contributions under RASSP**

- Static scheduling of synchronous dataflow (SDF) graphs for optimum memory utilization, for partitioning into mixed hardware/software implementations, and for synthesis of VHDL.
- Mixed modeling and design of hardware, embedded software, and the test environment.
- Integrated symbolic processing with numeric and demonstrated heterogeneous design tools that leverage commercial tools such as Matlab, Mathematica, and VHDL simulators.
- Generalizations of dataflow to multidimensional streams and to process networks.
- Robust dynamic dataflow scheduling for bounded memory.
- Visual programming and use of higher-order functions.
- Optimized synchronization for multiprocessors.

talk.fm © 1997, p. 18 of 24
UNIVERSITY OF CALIFORNIA AT BERKELEY



# Example: DE, Dataflow, and FSMs This is a one-player roffer game. 1. Press Transfy will far synul alor resely and synutry to the synul alor synul alor synutry to the synul alor synutry to the synutry to

# Ptolemy Software as a Tool and as a Laboratory

UNIVERSITY OF CALIFORNIA AT BERKELEY

# **Ptolemy software is**

Extensible

talk.fm

- Publicly available
- An open architecture
- Object-oriented

# Allows for experiments with:

- Models of computation
- Heterogeneous design
- Domain-specific tools
- Design methodology
- Software synthesis
- Hardware synthesis
- Cosimulation
- Cosynthesis
- Visual syntaxes (Tycho)

© 1997, p. 23 of 24

UNIVERSITY OF CALIFORNIA AT BERKELEY

# **Technology Transfer**

Our policy of free and open software distribution has proven to be a very effective facilitator for technology transfer.

- 1995 The Alta Group at Cadence announces software using Ptolemy dataflow and mixed dataflow/discrete-event technology (SPW 3.5).
- 1995 DQDT uses and extends Ptolemy VHDL generation for ASIC designs.
- 1995 BDTI uses the Ptolemy kernel to integrate commercial tools (SPW and Bones from Alta).
- 1996 Lockheed/Martin develops architecural tradeoff analysis tool based on Ptolemy.
- 1997 Hewlett-Packard (EEsof) announces "HP Ptolemy," an integration of Ptolemy dataflow technology with analog RF and microwave design and modeling tools.
- 1997 BNED, Technologies Lyre, White Eagle Systems, ...

talk.fm © 1997, p. 22 of 24

UNIVERSITY OF CALIFORNIA AT BERKELEY

## **Further Information**



- Software distributions
- Small demonstration versions
- · Project overview
- The Almagest (software manual)
- Current projects summary
- Project publications
- · Keyword searching
- Project participants
- · Sponsors
- · Copy of the FAQh
- Newsgroup info
- · Mailing lists info

# http://ptolemy.eecs.berkeley.edu

talk.fm © 1997, p. 24 of 24