Controller Coefficient Truncation Using Lyapunov Performance Certificates

Stephen Boyd Joëlle Skaf

Information Systems Laboratory Electrical Engineering Department Stanford University

Specifier/implementer interface

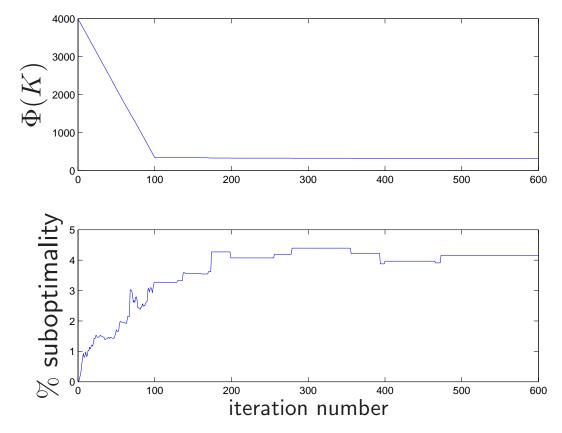
- specifier (control/system designer) and implementer (hardware/ software/network implementer) interact through an interface
- specifier provides *reference design* and *performance certificate*
- implementer uses any method, provided implementation passes certification.
- system designer warrants that over all system will work, if implemented controller passes certification
- this work: implementing controller with fixed-point coefficients, with Lyapunov/ LMI certificate

State feedback controller with LQR cost specification

- plant: x(t+1) = Ax(t) + Bu(t); controller: u(t) = Kx(t)
- reference controller K^{nom} is LQR optimal
- goal: minimize $\Phi(K)$, total number of bits in K, while guaranteeing LQR cost is ϵ -suboptimal
- \bullet controller K passes certification if

$$(1+\epsilon)(A+BK)^T P^{\text{nom}}(A+BK) - (1+\epsilon)P^{\text{nom}} + Q + K^T RK \succeq 0$$

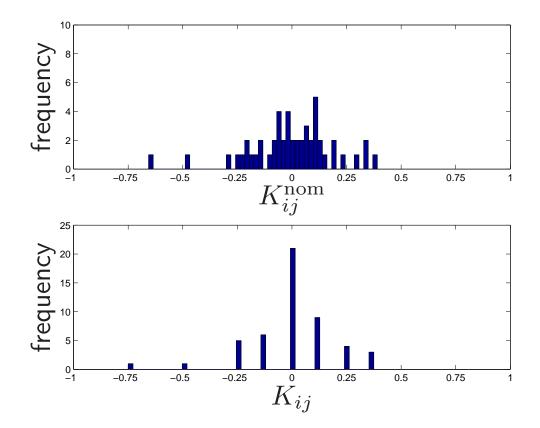
where $P^{\rm nom}$ is solution of ${\sf DARE}$


$$(A + BK^{\text{nom}})^T P(A + BK^{\text{nom}}) - P + Q + K^{\text{nom}}TRK^{\text{nom}} = 0$$

Algorithm

- initialize with nominal design (truncated to 40-bit coefficients)
- at each step choose an index pair $\left(i,j\right)$ at random; fix all other entries in K
- use Lyapunov certificate to find an interval [l, u] of admissible values for K_{ij} (by solving convex optimization problem)
- truncate K_{ij} to value in interval with fewest bits
- stop when design does not change over one pass over all coefficients
- run algorithm several times; take best design found as final choice

Example run


10 states, 5 inputs; certificate requires 15% suboptimality

final controller is 4.1%-suboptimal, with 6.3 bits/coeff.

Final design

best design in 100 runs is 14.9%-suboptimal, has only 1.5 bits/coeff.

Conclusions & observations

the method described

- extends to many other problems
 - dynamic controllers
 - nonlinear effects (saturation, underflow)
 - filters
- often achieves extremely aggressive coefficient truncation, with little decrease in performance (when implementation is over parametrized)

next: handling timing errors (jitter, late/lost packets, ...)