
1

1

Model-Based
Verification and Testing
Bruce H. Krogh
PhD students:

Ajinkya Bhave
Stacey Ivol
Hitashyam Maka

MURI Review Meeting
Frameworks and Tools for High-Confidence Design of Adaptive,
Distributed Embedded Control Systems
Berkeley, CA
September 6, 2007

Post doc:
Dilsun Kaynar

Visiting professor:
Goran Frehse

2

Model-Based Verification
Timing in Networked Control Systems

(Bhave, Krogh)
– impact on performance and stability

of feedback loops
– analytical and simulation tools

Verification of Numerical Code
(Maka, Freshe, Krogh)
– verification for target environment
– reachability with polyhedral domains
– widening for iterative computations

Inner Loop Model

φ,θ,ψ,p,q,r

φ,θ,ψ

6
Inner Loop State

5
Euler Angles

4
Angular Rates

3
Velocity

2
Position

1
Body vel

y

xyz

x

velocity

pqr

attitude

thrust1

thrust2
thrust3

thrust4

motor1

motor2
motor3

motor4

TTActuatorNetwork

Actual Sensed

Saturation

Thrust Command 1-4

Body vel

Position

Velocity

Angular Rates

Euler Angles

Non-Linear Dynamics

Outer Loop Request

Attitude State

z State

Thrust Command

Inner Loop State

Inner Loop Controller

m

m

eulreq

Attitude Request

1
Outer Loop Request

x,y ,z

x,y ,z

p,q,r

xdot,y dot,zdot

2

3

Model-Based Testing Generation

Testing Environmental Assumptions
(Ivol, Kaynar, Krogh)
– new application of conformance testing
– initial implementation with timed i/o

automata

4

Timing Analysis in
Networked Control Systems

• Timing Variations in Feedback Control Loops

• Analytical Tools

• Co-Simulation Tool

• Future Work

3

5

Timing Variations in
Feedback Control Loops

• Sources
– single processor: interrupt routines, task scheduling,

hardware (e.g., ADC)
– multi-processor: buses, shared memory and DMA
– physical interface: networked I/O*, sensors, actuators

• Types
– jitter (sampling and input-output)*
– skipped/lost packets (noise and data rate limits)
– race conditions

• Impact
– performance degradation*
– loss of stability*
– incorrect decisions

* Focus of first year work

6

Analytical Tools

• Time delay robustness is a large and extensively studied area with
numerous theoretical results [Gu, K., Niculescu S.I]

• Results categorized into
– delay dependent or delay independent stability criteria
– frequency domain or time domain approaches

• Majority of time domain results based on extensions of Lyapunov
methods to infinite-dimensional systems

– Razumikhin method allows for bounded but arbitrarily time varying delays
– Krasovskii method allows for delays bounded in both length and time

variation

• Most results are sufficient conditions
– may be excessively conservative or complex for practical application

4

7

Frequency Domain Stability Analysis

• Criteria for sampled-data, LTI control systems [Kao, Lincoln]

• Uses the Small Gain Theorem with delay modeled as
uncertainty in the loop

• Current analysis done on SISO, stable, strictly proper
continuous plant and discrete controller

• Extendable to MIMO via Integral Quadratic Constraint (IQC)
approach with LMI [Kao, Rantzer]

• Delay is bounded with known worst-case bound but otherwise
arbitrarily varying

• Stability is easily checked using closed-loop Bode plot

8

Frequency Domain Stability Analysis

Formula for Stability:

0 <= Delay Δ <= Nh where h is the sampling period

5

9

Co-Simulation: TrueTime Simulink Blockset

• Co-simulation of
– Control task execution
– Network communication
– Plant dynamics

• Investigate timing behavior of control loops
implemented on digital computers

• System is subject to delays, jitter and lost
samples

• Created at the Dept. of Automatic Control, Lund
University

10

TrueTime – cont’d.

• A Kernel block, 3 Network blocks, 1 Battery block
– Simulink S-functions written in C++
– Event-based execution using zero-crossing functions
– Portable to other simulation environments

6

11

STARMAC Example Scenario

• Attitude/Altitude controller connected to nonlinear plant through
10 Mbit Ethernet

• Motor thrust commands transmitted with jitter because of the
random backoff network algorithm

• Pre/post processing of packets explicitly simulated with random
delays at each node

• Each motor receives control signal at differing intervals which
leads to deterioration in tracking

• Extreme jitter (order of plant dynamics) can cause instability of
system

12

STARMAC Vehicle Model

Inner Loop Model

φ,θ,ψ,p,q,r

φ,θ,ψ

6
Inner Loop State

5
Euler Angles

4
Angular Rates

3
Velocity

2
Position

1
Body vel

y

xyz

x

velocity

pqr

attitude

thrust1

thrust2

thrust3

thrust4

motor1

motor2

motor3

motor4

TTActuatorNetwork

Actual Sensed

Saturation

Thrust Command 1-4

Body v el

Position

Velocity

Angular Rates

Euler Angles

Non-Linear Dynamics

Outer Loop Request

Attitude State

z State

Thrust Command

Inner Loop State

Inner Loop Controller

em

em

eulreq

Attitude Request

1
Outer Loop Request

x,y ,z

x,y ,z

p,q,r

xdot,y dot,zdot

TrueTime Network

Nonlinear Plant

InnerLoop Controller

7

13

Actuator Network

TrueTime Ethernet Block

Receiving Nodes

Sending Nodes with Jitter

14

STARMAC Step Response

Position in X,Y,Z

Velocity in X,Y,Z

z
x,y

8

15

STARMAC Response with Jitter

Jitter = Gaussian with zero mean and 0.001 var
Maximum delay 0.2s

16

STARMAC Response with Instability

Jitter = Gaussian with zero mean and 0.005 variance
Maximum delay 0.5s

9

17

References – Timing Analysis & Simulation

• Lincoln, B. (2002), “A simple stability criterion for control systems with varying
delays”, In Proceedings of the 15th IFAC World Congress, Barcelona.

• Kao, C.-Y., & Lincoln, B. (2004), “Simple stability criteria for systems with time-
varying delays”, In Automatica 40 (2004), 1429-1434.

• Kao, C.-Y., & Rantzer, A. (2003). Stability criteria for systems with bounded
uncertain time-varying delays. In Proceedings of the 2003 European Control
Conference. Cambridge, UK.

• Gu, K., Niculescu S.I., “Survey on recent results in the stability and control of
time-delay systems”, Journal of Dynamic Systems, Measurement, and Control,
vol. 125, pp. 158- 165, June 2003.

• Cervin, A., “How does control timing affect performance”, IEEE Contr. Syst
Mag., vol. 2, no. 2, pp. 16–30, June 2003.

• K. Gu, V. L. Kharitonov, and J. Chen, “Stability of Time-Delay Systems”, 1st ed.
Boston, MA: Birkhauser, 2003

18

Verification of Numerical Code

• Numerical code verification
• Verification for target processors using polyhedra
• Widening for iterative computations
• Future work

10

19

Issues in Numerical Code

• numerical representations
– integer, fixed point, floating point

• round-off error
• error accumulation
• divide-by-zero, overflow
• different results for different environments

– compiler (optimizations)
– OS (exception handling)
– processor (word length, instruction set)

20

Verifying Numerical Code
• error models

– interval arithmetic
– ellipsoids
– affine arithmetic
– octagonal abstract domain (Cousot et al.)

• control-flow automaton (CFA)
– states: precede program instructions (control locations)
– edges: program guards (conditions)/actions (operations)
– error model introduced in the actions

• verification (static analysis)
– given initial ranges of input variables
– propagate sets of variable values at each control location
– check safety conditions

11

21

Verification for Target Processors
design model

code generation

target processor
compiler

disassembler

CFA generator

assembly code

target processor
error model

PHAVer

reachability
results

CFA

22

Verification for Target Processors
design model

code generation

target processor
compiler

disassembler

CFA generator

assembly code

target processor
error model

PHAVer

reachability
results

CFA

Advantages of using target .exe rather than
source code:

– incorporates compiler optimizations
– focus on binary operations

12

23

Verification for Target Processors
design model

code generation

target processor
compiler

disassembler

CFA generator

assembly code

target processor
error model

PHAVer

reachability
results

CFA

Polyhedral reachability computations*
– full variable-space representation
– infinite precision implementation (PPL)
– currently for linear operations

* G. Frehse, PHAVer: Algorithmic Verification of Hybrid Systems past
HyTech, Software Tools for Technology Transfer, to appear

24

Widening for Iterative Computations

Accelerates convergence to a fixed point.

For a lattice L with preorder relation v and join t,
∇ : L× L→ L is a widening operator if:

i. For any P,Q ∈ L, P tQ v P∇Q.
(overapproximation)

ii. For any increasing sequence Q1 v Q2 v Q3 . . . the
increasing sequence defined by P0 = Q0 and Pi+1 =
Pi∇Qi+1 is not stricly increasing. (termination)

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proceedings of the Fourth Annual ACM Symposium on Principles
of Programming Languages, pp. 238-252, New York, 1977. ACM Press.

13

25

A New Widening Operator
For polyhedra P,Q represented as linear inequalities

with integer coeffcients

P∇CLQ = coeflimit(P tQ, k),

where for a polyhedron R, coeflimit(R, k) is a polyhe-

dron that contains R with all coefficients with less than
k bits.

• performs better than standard widening when
reachable sets are contracting

• this is often the case in iterative numerical
computations

26

Example

Reachable Region of Prog.1

Standard widening. CL widening.

14

27

Rate-Limiter Application*

• Y tries to follow the value of X
with the step size of D.

• X and D change on each
iteration

• Verify bounds on Y

Results:
• Using standard widening (Miné & Cousot) : |Y| < 144
• Using CL widening (Maka & Frehse) : |Y| < 128.046

* Antoine Miné. Relational abstract domains for the detection of floating-point run-time errors. In David A.
Schmidt, editor, ESOP, volume 2986 of Lecture Notes in Computer Science, pages 3–17. Springer, 2004.

28

Model-Based Test Generation

• Standard conformance testing (SCT)
• Testing environmental assumptions
• Mapping SCT to our problem
• Test generation for timed-automata
• Current implementation
• Next steps

15

29

system
model

Implementation

Specification model of
environment

implemented
system

real
environment

test inputs

test outputs

expected outputs

Standard Conformance Testing

equivalent?

30

system
model

Implementation

Specification model of
environment

implemented
system

real
environment

test inputs

test outputs

expected outputs

Conformance Testing

equivalent?

assumes
equivalent
environments

16

31

Model-based Development

environment
model

control prog.
model

Our Scenario

32

Model-based Development

environment
model

control prog.
model

Our Scenario

formal verification

17

33

control program

Implementation

Model-based Development

environment
model

control prog.
model

Our Scenario

code generation

formal verification

34

control program

Implementation

Model-based Development

environment
model

control prog.
model

Our Scenario

code generation

If the design passes verification
and code generation is correct,
what needs to be tested?

formal verification

18

35

Our Scenario

control program

other program

other program

pl
at

fo
rm

command
generator

physical
world

Implementation

Model-based Development

environment
model

control prog.
model

outputs

Is the real environment
“correct”?

36

control program

other program

other program

pl
at

fo
rm

command
generator

physical
world

Implementation

Model-based Development

environment
model

control prog.
model

outputs

Testing Environmental Assumptions

test
commands

physical
conditions

test suite

test outputs

formal model

Goal: Generate a test suite that is
• complete
• sound
• minimal

19

37

Train Gate Example

Train-Gate Specification
– train sends approach signal
– controller sends lower command

to gate
– train sends exit signal
– controller sends raise command

Safety Requirement
Gate must be down when a train
is passing.train gate controller

38

Train Gate Timed I/O Automata Model

at_gate := 1

at_gate := 0

at_gate := 0

at_gate := 0

at_gate := 0

compiled to target platform

raise, lower

app, exit

Verifies correctly

For standard conformance testing:

System: controller, gate

Environment: train

20

39

Train Gate Timed I/O Automata Model

at_gate := 1

at_gate := 0

at_gate := 0

at_gate := 0

at_gate := 0

compiled to target platform

raise, lower

app, exit

Possible vulnerability:

Controller accepts approach signal
only from the idle state.

Environmental assumption:

Single train with at least a 60
second delay before next approach

40

at_gate := 1

at_gate := 0

at_gate := 0

at_gate := 0

at_gate := 0

compiled to target platform

raise, lower

app, exit

We aim to

• identify critical environmental
assumptions

• generate test suite automatically

Train Gate Timed I/O Automata Model

21

41

Approach: Apply conformance testing
to environmental assumptions

system
model

model of
environment

implemented
system

real
environment

test inputs

test outputs

expected outputs

equivalent?

assume
equivalent
systems

42

Conformance Testing for TIOA*

* R. Cardell-Oliver, Conformance Tests for Real-Time Systems with Timed
Automata Specifications, Formal Aspects of Computing (2000) 12: 350-371

Timed Automaton

Testable Timed
Transition System

(T3S)

Digitizing
Algorithm

Test View

Hide and Elide
Algorithm

Simplified T3S
(T3SV)

T3S Conformance
Test Algorithm

Test Suite

Run through
Implementation

(Impl.)

Set of Outputs

Set of Outputs

Run through
Specification

(Spec.)

Comparator test results

Henzinger, Manna, Pnueli time digitization
(preserves soundness)

selected I/O reduces model scope

merging to eliminate unobservable transitions

22

43

Tool Development

• Specifications - UPPAAL TIOA
• XML interface to test generation program (C)
• Completed: digitization, test view hide/elide
• Currently debugging test suite generation

44

Model-Based Verification and Testing
- Next Steps -

Timing in Networked Control Systems
– extensions to distributed systems
– develop analytical/simulation toolbox

Verification of Numerical Code
– extensions to nonlinear computations
– verification of Simulink/Stateflow designs

Testing Environmental Assumptions
– test suite reduction
– extensions to richer dynamics

