

Model-Based Verification and Testing

Bruce H. Krogh

PhD students:

Post doc:

Ajinkya Bhave Stacey Ivol

Hitashyam Maka

Dilsun Kaynar Visiting professor:

Goran Frehse

MURI Review Meeting

Frameworks and Tools for High-Confidence Design of Adaptive, Distributed Embedded Control Systems

Berkeley, CA

September 6, 2007

CarnegieMellon

Model-Based Verification

Timing in Networked Control Systems (Bhave, Krogh)

- impact on performance and stability of feedback loops
- analytical and simulation tools

Verification of Numerical Code

(Maka, Freshe, Krogh)

- verification for target environment
- reachability with polyhedral domains
- widening for iterative computations

CarnegicMeller

Timing Analysis in Networked Control Systems

- Timing Variations in Feedback Control Loops
- Analytical Tools
- Co-Simulation Tool
- Future Work

Timing Variations in Feedback Control Loops

Sources

- single processor: interrupt routines, task scheduling, hardware (e.g., ADC)
- multi-processor: buses, shared memory and DMA
- physical interface: networked I/O*, sensors, actuators

Types

- jitter (sampling and input-output)*
- skipped/lost packets (noise and data rate limits)
- race conditions

Impact

- performance degradation*
- loss of stability*
- incorrect decisions

5

Carnegie Mellon

Analytical Tools

- Time delay robustness is a large and extensively studied area with numerous theoretical results [Gu, K., Niculescu S.I]
- · Results categorized into
 - delay dependent or delay independent stability criteria
 - frequency domain or time domain approaches
- Majority of time domain results based on extensions of Lyapunov methods to infinite-dimensional systems
 - Razumikhin method allows for bounded but arbitrarily time varying delays
 - Krasovskii method allows for delays bounded in both length and time variation
- Most results are sufficient conditions
 - may be excessively conservative or complex for practical application

^{*} Focus of first year work

larnegie Mellon

Frequency Domain Stability Analysis

- Criteria for sampled-data, LTI control systems [Kao, Lincoln]
- Uses the Small Gain Theorem with delay modeled as uncertainty in the loop
- Current analysis done on SISO, stable, strictly proper continuous plant and discrete controller
- Extendable to MIMO via Integral Quadratic Constraint (IQC) approach with LMI [Kao, Rantzer]
- Delay is bounded with known worst-case bound but otherwise arbitrarily varying
- Stability is easily checked using closed-loop Bode plot

7

arnegieMellon

Frequency Domain Stability Analysis

Formula for Stability:

$$\left| \frac{P_{\text{alias}}(\omega)C(e^{j\omega})}{1 + P_{\text{ZOH}}(e^{j\omega})C(e^{j\omega})} \right| < \frac{1}{N|e^{j\omega} - 1|}, \quad \forall \omega \in [0, \infty)$$

$$\frac{d}{\Delta}$$

$$C(z)$$

$$S_h$$

 $0 \leftarrow Delay \Delta \leftarrow Nh$ where h is the sampling period

Co-Simulation: TrueTime Simulink Blockset

- Co-simulation of
 - Control task execution
 - Network communication
 - Plant dynamics
- Investigate timing behavior of control loops implemented on digital computers
- System is subject to delays, jitter and lost samples
- Created at the Dept. of Automatic Control, Lund University

9

larnegieMellon

TrueTime - cont'd.

- A Kernel block, 3 Network blocks, 1 Battery block
 - Simulink S-functions written in C++
 - Event-based execution using zero-crossing functions
 - Portable to other simulation environments

STARMAC Example Scenario

- Attitude/Altitude controller connected to nonlinear plant through 10 Mbit Ethernet
- Motor thrust commands transmitted with jitter because of the random backoff network algorithm
- Pre/post processing of packets explicitly simulated with random delays at each node
- Each motor receives control signal at differing intervals which leads to deterioration in tracking
- Extreme jitter (order of plant dynamics) can cause instability of system

References – Timing Analysis & Simulation

- Lincoln, B. (2002), "A simple stability criterion for control systems with varying delays", In Proceedings of the 15th IFAC World Congress, Barcelona.
- Kao, C.-Y., & Lincoln, B. (2004), "Simple stability criteria for systems with timevarying delays", In Automatica 40 (2004), 1429-1434.
- Kao, C.-Y., & Rantzer, A. (2003). Stability criteria for systems with bounded uncertain time-varying delays. In Proceedings of the 2003 European Control Conference. Cambridge, UK.
- Gu, K., Niculescu S.I., "Survey on recent results in the stability and control of time-delay systems", Journal of Dynamic Systems, Measurement, and Control, vol. 125, pp. 158- 165, June 2003.
- Cervin, A., "How does control timing affect performance", IEEE Contr. Syst Mag., vol. 2, no. 2, pp. 16–30, June 2003.
- K. Gu, V. L. Kharitonov, and J. Chen, "Stability of Time-Delay Systems", 1st ed. Boston, MA: Birkhauser, 2003

17

Carnegie Mellon

Verification of Numerical Code

- Numerical code verification
- · Verification for target processors using polyhedra
- Widening for iterative computations
- Future work

Issues in Numerical Code

- numerical representations
 - integer, fixed point, floating point
- round-off error
- error accumulation
- · divide-by-zero, overflow
- · different results for different environments
 - compiler (optimizations)
 - OS (exception handling)
 - processor (word length, instruction set)

19

Carnegie Mellon

Verifying Numerical Code

- error models
 - interval arithmetic
 - ellipsoids
 - affine arithmetic
 - octagonal abstract domain (Cousot et al.)
- control-flow automaton (CFA)
 - states: precede program instructions (control locations)
 - edges: program guards (conditions)/actions (operations)
 - error model introduced in the actions
- verification (static analysis)
 - given initial ranges of input variables
 - propagate sets of variable values at each control location
 - check safety conditions

Widening for Iterative Computations

For a lattice \mathbb{L} with preorder relation \sqsubseteq and join \sqcup , $\nabla: \mathbb{L} \times \mathbb{L} \to \mathbb{L}$ is a widening operator if:

- i. For any $P,Q\in\mathbb{L},\ P\sqcup Q\sqsubseteq P\nabla Q.$ (overapproximation)
- ii. For any increasing sequence $Q_1 \sqsubseteq Q_2 \sqsubseteq Q_3 \dots$ the increasing sequence defined by $P_0 = Q_0$ and $P_{i+1} = P_i \nabla Q_{i+1}$ is not strictly increasing. (termination)

Accelerates convergence to a fixed point.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In *Proceedings of the Fourth Annual ACM Symposium on Principles of Programming Languages*, pp. 238-252, New York, 1977. ACM Press.

A New Widening Operator

For polyhedra P,Q represented as linear inequalities with integer coeffcients

$$P\nabla_{CL}Q = coeflimit(P \sqcup Q, k),$$

where for a polyhedron R, coeflimit(R,k) is a polyhedron that contains R with all coefficients with less than k bits.

- performs better than standard widening when reachable sets are contracting
- this is often the case in iterative numerical computations

Rate-Limiter Application*

- Y tries to follow the value of X with the step size of D.
- X and D change on each iteration
- Verify bounds on Y

Results:

- Using standard widening (Miné & Cousot): |Y| < 144
- Using CL widening (Maka & Frehse): |Y| < 128.046

* Antoine Miné. Relational abstract domains for the detection of floating-point run-time errors. In David A. Schmidt, editor, ESOP, volume 2986 of Lecture Notes in Computer Science, pages 3–17. Springer, 2004.

27

CarnegieMellon

Model-Based Test Generation

- Standard conformance testing (SCT)
- Testing environmental assumptions
- Mapping SCT to our problem
- Test generation for timed-automata
- Current implementation
- Next steps

Train Gate Example

train gate controller

Train-Gate Specification

- train sends approach signal
- controller sends *lower* command to gate
- train sends *exit* signal
- controller sends raise command

Safety Requirement

Gate must be down when a train is passing.

Tool Development

- Specifications UPPAAL TIOA
- XML interface to test generation program (C)
- Completed: digitization, test view hide/elide
- · Currently debugging test suite generation

43

CarnegieMello

Model-Based Verification and Testing - Next Steps -

Timing in Networked Control Systems

- extensions to distributed systems
- develop analytical/simulation toolbox

Verification of Numerical Code

- extensions to nonlinear computations
- verification of Simulink/Stateflow designs

Testing Environmental Assumptions

- test suite reduction
- extensions to richer dynamics