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Model-Based Verification
Timing in Networked Control Systems

(Bhave, Krogh)
– impact on performance and stability 

of feedback loops
– analytical and simulation tools

Verification of Numerical Code 
(Maka, Freshe, Krogh)
– verification for target environment
– reachability with polyhedral domains
– widening for iterative computations
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Model-Based Testing Generation

Testing Environmental Assumptions
(Ivol, Kaynar, Krogh)
– new application of conformance testing
– initial implementation with timed i/o 

automata
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Timing Analysis in 
Networked Control Systems

• Timing Variations in Feedback Control Loops

• Analytical Tools

• Co-Simulation Tool

• Future Work
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Timing Variations in 
Feedback Control Loops

• Sources
– single processor: interrupt routines, task scheduling, 

hardware (e.g., ADC)
– multi-processor: buses, shared memory and DMA
– physical interface: networked I/O*, sensors, actuators 

• Types
– jitter (sampling and input-output)* 
– skipped/lost packets (noise and data rate limits) 
– race conditions

• Impact
– performance degradation* 
– loss of stability* 
– incorrect decisions

* Focus of first year work
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Analytical Tools

• Time delay robustness is a large and extensively studied area with 
numerous theoretical results [Gu, K., Niculescu S.I]

• Results categorized into 
– delay dependent or delay independent stability criteria
– frequency domain or time domain approaches

• Majority of time domain results based on extensions of Lyapunov 
methods to infinite-dimensional systems

– Razumikhin method allows for bounded but arbitrarily time varying delays
– Krasovskii method allows for delays bounded in both length and time 

variation

• Most results are sufficient conditions
– may be excessively conservative or complex for practical application
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Frequency Domain Stability Analysis

• Criteria for sampled-data, LTI control systems [Kao, Lincoln]

• Uses the Small Gain Theorem with delay modeled as 
uncertainty in the loop 

• Current analysis done on SISO, stable, strictly proper 
continuous plant and discrete controller 

• Extendable to MIMO via Integral Quadratic Constraint (IQC) 
approach with LMI [Kao, Rantzer]

• Delay is bounded with known worst-case bound but otherwise 
arbitrarily varying

• Stability is easily checked using closed-loop Bode plot 
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Frequency Domain Stability Analysis

Formula for Stability:

0 <= Delay Δ <= Nh where h is the sampling period
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Co-Simulation: TrueTime Simulink Blockset

• Co-simulation of 
– Control task execution 
– Network communication
– Plant dynamics

• Investigate timing behavior of control loops 
implemented on digital computers

• System is subject to delays, jitter and lost 
samples

• Created at the Dept. of Automatic Control, Lund 
University
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TrueTime – cont’d.

• A Kernel block, 3 Network blocks, 1 Battery block
– Simulink S-functions written in C++
– Event-based execution using zero-crossing functions
– Portable to other simulation environments
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STARMAC Example Scenario

• Attitude/Altitude controller connected to nonlinear plant through 
10 Mbit Ethernet

• Motor thrust commands transmitted with jitter because of the 
random backoff network algorithm

• Pre/post processing of packets explicitly simulated with random 
delays at each node 

• Each motor receives control signal at differing intervals which 
leads to deterioration in tracking

• Extreme jitter (order of plant dynamics) can cause instability of 
system 
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STARMAC Vehicle Model

Inner Loop Model 
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Actuator Network

TrueTime Ethernet Block

Receiving Nodes

Sending Nodes with Jitter
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STARMAC Step Response 
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STARMAC Response with Jitter

Jitter = Gaussian with zero mean and 0.001 var
Maximum delay 0.2s
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STARMAC Response with Instability

Jitter = Gaussian with zero mean and 0.005 variance
Maximum delay 0.5s
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Verification of Numerical Code

• Numerical code verification
• Verification for target processors using polyhedra 
• Widening for iterative computations
• Future work
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Issues in Numerical Code

• numerical representations
– integer,  fixed point, floating point

• round-off error
• error accumulation
• divide-by-zero, overflow
• different results for different environments

– compiler (optimizations)
– OS (exception handling)
– processor (word length, instruction set)

20

Verifying Numerical Code
• error models

– interval arithmetic
– ellipsoids
– affine arithmetic
– octagonal abstract domain (Cousot et al.)

• control-flow automaton (CFA)
– states: precede program instructions (control locations)
– edges: program guards (conditions)/actions (operations)
– error model introduced in the actions

• verification (static analysis)
– given initial ranges of input variables
– propagate sets of variable values at each control location
– check safety conditions
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Verification for Target Processors
design model

code generation

target processor
compiler

disassembler

CFA generator

assembly code

target processor
error model

PHAVer

reachability
results

CFA
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Verification for Target Processors
design model

code generation

target processor
compiler

disassembler

CFA generator

assembly code

target processor
error model

PHAVer

reachability
results

CFA

Advantages of using target .exe rather than 
source code:

– incorporates compiler optimizations
– focus on binary operations
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Verification for Target Processors
design model

code generation

target processor
compiler

disassembler

CFA generator

assembly code

target processor
error model

PHAVer

reachability
results

CFA

Polyhedral reachability computations*
– full variable-space representation
– infinite precision implementation (PPL)
– currently for linear operations

* G. Frehse, PHAVer: Algorithmic Verification of Hybrid Systems past
HyTech, Software Tools for Technology Transfer, to appear
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Widening for Iterative Computations

Accelerates convergence to a fixed point.

For a lattice L with preorder relation v and join t,
∇ : L× L→ L is a widening operator if:

i. For any P,Q ∈ L, P tQ v P∇Q.
(overapproximation)

ii. For any increasing sequence Q1 v Q2 v Q3 . . . the
increasing sequence defined by P0 = Q0 and Pi+1 =
Pi∇Qi+1 is not stricly increasing. (termination)

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by 
construction or approximation of fixpoints. In Proceedings of the Fourth Annual ACM Symposium on Principles 
of Programming Languages, pp. 238-252, New York, 1977. ACM Press.
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A New Widening Operator
For polyhedra P,Q represented as linear inequalities

with integer coeffcients

P∇CLQ = coeflimit(P tQ, k),

where for a polyhedron R, coeflimit(R, k) is a polyhe-

dron that contains R with all coefficients with less than
k bits.

• performs better than standard widening when 
reachable sets are contracting

• this is often the case in iterative numerical 
computations

26

Example

Reachable Region of Prog.1

Standard widening. CL widening.



14

27

Rate-Limiter Application*

• Y tries to follow the value of X 
with the step size of D.

• X and D change on each 
iteration

• Verify bounds on Y

Results:
• Using standard widening (Miné & Cousot ) :  |Y| < 144
• Using CL widening (Maka & Frehse) : |Y| < 128.046

* Antoine Miné. Relational abstract domains for the detection of floating-point run-time errors. In David A. 
Schmidt, editor, ESOP, volume 2986 of Lecture Notes in Computer Science, pages 3–17. Springer, 2004.
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Model-Based Test Generation

• Standard conformance testing (SCT)
• Testing environmental assumptions
• Mapping SCT to our problem
• Test generation for timed-automata
• Current implementation
• Next steps
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Model-based Development

environment
model

control prog.
model

Our Scenario
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Model-based Development

environment
model

control prog.
model

Our Scenario

formal verification
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control program

Implementation

Model-based Development

environment
model

control prog.
model

Our Scenario

code generation

formal verification
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control program

Implementation

Model-based Development

environment
model

control prog.
model

Our Scenario

code generation

If the design passes verification
and code generation is correct,
what needs to be tested?

formal verification
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Our Scenario

control program

other program

other program

pl
at

fo
rm

command
generator

physical
world

Implementation

Model-based Development

environment
model

control prog.
model

outputs

Is the real environment
“correct”?
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control program

other program

other program

pl
at

fo
rm

command
generator

physical
world

Implementation

Model-based Development

environment
model

control prog.
model

outputs

Testing Environmental Assumptions

test 
commands

physical
conditions

test suite

test outputs

formal model

Goal: Generate a test suite that is
• complete
• sound
• minimal 
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Train Gate Example

Train-Gate Specification
– train sends approach signal
– controller sends lower command 

to gate
– train sends exit signal
– controller sends raise command

Safety Requirement
Gate must be down when a train 
is passing.train gate controller
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Train Gate Timed I/O Automata Model

at_gate := 1

at_gate := 0

at_gate := 0

at_gate := 0

at_gate := 0

compiled to target platform

raise, lower

app, exit

Verifies correctly

For standard conformance testing:

System: controller, gate

Environment: train



20

39

Train Gate Timed I/O Automata Model

at_gate := 1

at_gate := 0

at_gate := 0

at_gate := 0

at_gate := 0

compiled to target platform

raise, lower

app, exit

Possible vulnerability:

Controller accepts approach signal 
only from the idle state.

Environmental assumption:

Single train with at least a 60 
second delay before next approach

40

at_gate := 1

at_gate := 0

at_gate := 0

at_gate := 0

at_gate := 0

compiled to target platform

raise, lower

app, exit

We aim to

• identify critical environmental 
assumptions

• generate test suite automatically

Train Gate Timed I/O Automata Model
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Approach: Apply conformance testing 
to environmental assumptions

system
model

model of
environment

implemented
system

real
environment

test inputs

test outputs

expected outputs

equivalent?

assume
equivalent
systems
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Conformance Testing for TIOA*

* R. Cardell-Oliver, Conformance Tests for Real-Time Systems with Timed 
Automata Specifications,  Formal Aspects of Computing (2000) 12: 350-371

Timed Automaton

Testable Timed 
Transition System

(T3S)

Digitizing 
Algorithm

Test View

Hide and Elide
Algorithm

Simplified T3S
(T3SV)

T3S Conformance 
Test Algorithm

Test Suite

Run through
Implementation

(Impl.)

Set of Outputs

Set of Outputs

Run through
Specification

(Spec.)

Comparator test results

Henzinger, Manna, Pnueli time digitization 
(preserves soundness)

selected I/O reduces model scope

merging to eliminate unobservable transitions
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Tool Development

• Specifications - UPPAAL TIOA
• XML interface to test generation program (C)
• Completed: digitization,  test view hide/elide
• Currently debugging test suite generation 
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Model-Based Verification and Testing
- Next Steps -

Timing in Networked Control Systems
– extensions to distributed systems
– develop analytical/simulation toolbox

Verification of Numerical Code
– extensions to nonlinear computations
– verification of Simulink/Stateflow designs

Testing Environmental Assumptions
– test suite reduction
– extensions to richer dynamics


