-PTOLEMY I -

HETEROGENEOUS CONCURRENT
MODELING AND DESIGN IN JAVA

John Davis, |1
Christopher Hylands
Bart Kienhuis
Edward A. Lee
JieLiu

Xiaojun Liu
Lukito Muliadi
Seve Neuendorffer
Jeff Tsay

Brian Vogel
Yuhong Xiong

Previous Authors:
Mudit Goel
Lukito Muliadi
John Reekie

Neil Smyth

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
http: //ptolemy.eecs.berkeley.edu

Originally published as Memorandum UCB/ERL M99/40
Document Version 1.0alpha, , for use with Ptolemy I '
1.0alpha

November 9, 2000

This project is supported by the Defense Advanced Research Projects
Agency (DARPA), the Microelectronics Advanced Research Corporation
(MARCO) , the Sate of California MICRO program, and the following
companies. Cadence Design Systems, Hewlett Packard, Hitachi, Hughes
Space and Communications, Motorola, NEC, and Philips.

Copyright © 1998-2000 The Regents of the University of California.
All rights reserved.

“Java’ isaregistered trademark of Sun Microsystems.

Contents

Part 1. Using Ptolemy 11

1. Introduction 1-1

1.1.Modeling and Design 1-1

1.2. Architecture Design 1-3

1.3.Models of Computation 1-4
1.3.1. Communicating Sequential Processes- CSP 1-4
1.3.2. Continuous Time- CT 1-4
1.3.3. Discrete-Events- DE 1-5
1.3.4. Distributed Discrete Events - DDE 1-6
1.3.5. Discrete Time- DT 1-6
1.3.6. Finite-State Machines- FSV 1-6
1.3.7. Process Networks - PN 1-7
1.3.8. Synchronous Dataflow - SDF 1-7
1.3.9. Synchronous/Reactive - SR 1-7

1.4. Choosing Models of Computation 1-8

1.5.Visua Syntaxes 1-8

1.6. Ptolemy 1l 1-9
1.6.1. Package Sructure 1-9
1.6.2. Overview of Key Classes 1-12
1.6.3. Domains1-13
1.6.4. Capabilities1-13
1.6.5. Future Capabilities 1-15

Appendix: UML — Unified Modeling Language 1-17
Package Diagrams 1-17
Satic Sructure Diagrams 1-17

Appendix: Ptolemy Il Naming Conventions 1-21
Classes 1-21
Members 1-21
Methods 1-21

2. Building Models 2-1

2.1.Introduction 2-1

2.2.MoML Principles 2-2
2.21. Clustered Graphs 2-3
2.2.2. Abdtraction 2-4
2.2.3. Level-Crossing Connections 2-5

2.3. Specification of aModel 2-6
2.3.1. Data Organization 2-6
2.3.2. Overview of XML 2-8
2.3.3. Names and Classes 2-9

Heter ogeneous Concurrent M odeling and Design

4,

2.3.4. Modd Element 2-10
2.3.5. Entity Element 2-10
2.3.6. Properties2-11
2.3.7. Doc Element 2-13
2.3.8. Ports2-14
2.3.9. Relationsand Links2-14
2.3.10. Classes2-15
2.3.11. Directors2-17
2.3.12. Import Element 2-18
2.3.13. Annotations for Visual Rendering 2-18
2.4.Ptolemy Il Implementation 2-20
24.1. Applications 2-20
24.2. Applets2-23
2.4.3. Importsin MoML 2-25
2.4.4. Support Methods 2-25
24.5. Special Attributes 2-26
2.4.6. Inheritance 2-26
2.5. Acknowledgements 2-28
Appendix: Example 2-30
Snewave Generator 2-30
Modulation 2-31
Custom Applets 3-1
3.1.Introduction 3-1
3.2.HTML Files Containing Applets 3-1
3.21. Creating Models 3-3
3.2.2. Compiling 3-4
3.2.3. Reporting Errors 3-4
3.2.4. Graphical Elements 3-4
3.2.5. Controlling Execution Time 3-6
3.2.6. Controlling Model Parameters 3-8
3.2.7. Adding Custom Actors 3-12
3.2.8. Using Jar Files3-12
3.2.9. Hintsfor Developing Applets 3-14
Appendix: Inspection Paradox Example 3-15
Description of the Problem 3-15
Observations 3-15
Code Listing 3-16
Actor Libraries4-1
4.1.Overview 4-1
4.2. Library Organization 4-1
42.1. Actor.Lib4-2
4.2.2. Actor.GUI 4-3
4.3. Data Polymorphism 4-3
4.4.Domain Polymorphism 4-5
44.1. lterations4-6
4.4.2. Domainswith Fixed Point Semantics 4-6
44.3. Actorswith State 4-7

Ptolemy 11

4.5. Descriptions of Libraries 4-7
45.1. Functional Actors4-9
45.2. Polymorphic Sources 4-10
45.3. Polymorphic Snksand Displays 4-12
45.4. Expression Actor 4-14
455. Other Actors4-14
45.6. Actorsin actor.lib.logic package. 4-15
45.7. Actorsin actor.lib.conversions package. 4-15

5. Designing Actors 5-1

5.1.Overview 5-1

5.2. Anatomy of an Actor 5-2
5.2.1. Ports5-2
5.2.2. Parameters5-5
5.2.3. Constructors 5-9
5.2.4. Cloning 5-9

5.3. Action Methods 5-11
5.3.1. Initialize5-11
5.3.2. Prefire5-12
53.3. Fire5-13
5.3.4. Podtfire 5-15
5.3.5. Wrapup 5-15

5.4.Time5-15

5.5. Code Format 5-16
55.1. Indentation 5-17
55.2. Spaces5-17
55.3. Comments5-17
55.4. Names5-17
5.5.5. Exceptions5-18
5.5.6. Javadoc 5-18
5.5.7. Code Organization 5-19

Part 2. Software Architecture

6. TheKernel 6-1

6.1. Abstract Syntax 6-1

6.2. Non-Hierarchical Topologies 6-2
6.2.1. Links6-2
6.2.2. Consistency 6-3

6.3. Support Classes 6-5
6.3.1. Containers6-5
6.3.2. Name and Full Name 6-5
6.3.3. Workspace 6-5
6.3.4. Attributes 6-6
6.3.5. List Classes6-6

6.4. Clustered Graphs 6-6
6.4.1. Abstraction 6-8
6.4.2. Level-Crossing Connections 6-9
6.4.3. Tunneling Entities 6-10

Heter ogeneous Concurrent M odeling and Design

7.

6.4.4. Cloning 6-11

6.4.5. An Elaborate Example 6-11
6.5. Opague Composite Entities 6-11
6.6. Concurrency 6-12

6.6.1. Limitations of Monitors 6-14

6.6.2. Read and Write Access Permissions for Workspace 6-16

6.6.3. Making a Workspace Read Only 6-18
6.7. Mutations 6-18
6.7.1. Change Requests 6-18
6.7.2. Managers and Listeners 6-20
6.8. Exceptions 6-20
6.8.1. BaseClass6-20
6.8.2. Less Severe Exceptions 6-20
6.8.3. More Severe Exceptions 6-20
Actor Package 7-1
7.1. Concurrent Computation 7-1
7.2.Message Passing 7-2
7.2.1. Data Transport 7-2
7.2.2. Example7-5
7.2.3. Transparent Ports 7-6
7.2.4. Data Transfer in Various Models of Computation 7-8
7.2.5. Discussion of the Data Transfer Mechanism 7-11
7.3. Execution 7-11
7.3.1. Director 7-14
7.3.2. Manager 7-15
7.3.3. ExecutionListener 7-18
7.3.4. Mutations7-18
7.3.5. Opague Composite Actors 7-19
7.3.6. Scheduler and Process Support 7-20
Data Package 8-1
8.1.Introduction 8-1
8.2. Data Encapsulation 8-1
8.3. Polymorphism 8-3
8.3.1. Polymorphic Arithmetic Operators 8-3
8.3.2. Lossless Type Conversion 8-4
8.3.3. Limitations 8-6
8.4.Variables and Parameters 8-6
8.4.1. Values8-8
8.4.2. Types8-8
8.4.3. Dependencies 8-10
8.5. Expressions 8-10
8.5.1. ThePtolemy Il Expression Language 8-10
8.5.2. Functions 8-12
8.5.3. Limitations 8-12
8.6. Fixpoint Data Type 8-13
8.6.1. Fixpoint Implementation 8-13
8.6.2. Fixpoint 8-14

Ptolemy 11

8.6.3. FixToken 8-14
8.6.4. Expression Language. 8-14
Appendix: Expression Evauation 8-17
Generating the parse tree 8-17
Evaluating the parse tree 8-18
9. Graph Package 9-1
9.1.Introduction 9-1
9.2. Classes and Interfaces in the Graph Package 9-2
9.2.1. Graph9-3
9.2.2. Directed Graphs 9-3
9.2.3. Directed Acyclic Graphs and CPO 9-4
9.2.4. Ineguality Terms, Inequalities, and the Inequality Solver 9-4
9.3. Example Use 9-5
9.3.1. Generating A Schedule for A Composite Actor 9-5
9.3.2. Forming and Solving Constraints over a CPO 9-6
10. Type System 10-1
10.1.Introduction 10-1
10.2.Formulation 10-3
10.2.1. Type Constraints 10-3
10.2.2. Run-time Type Checking and Lossless Type Conversion 10-6
10.3.Structured Types 10-6
10.4.Implementation 10-7
10.4.1. Implementation Classes 10-7
10.4.2. Type Checking and Type Resolution 10-8
10.4.3. Setting Up Type Constraints 10-10
10.4.4. Some Implementation Details 10-11
10.5.Examples 10-12
10.5.1. Polymorphic Downsampler 10-12
10.5.2. Fork Connection 10-12
10.6.Conversion Between Array and Sequence 10-13
Appendix: The Type Resolution Algorithm 10-14
11. Plot Package 11-1
11.1.0Overview 11-1
11.2.Using Plots 11-2
11.2.1. Zooming and filling 11-3
11.2.2. Printing and exporting 11-3
11.2.3. Editing the data 11-4
11.2.4. Modifying the format 11-5
11.3.Class Structure 11-7
11.3.1. Toolkit classes 11-7
11.3.2. Applets and applications 11-7
11.3.3. Writing applets 11-12
11.4.PlotML File Format 11-12
11.4.1. Data organization 11-13
11.4.2. Configuring the axes 11-14
11.4.3. Configuring data 11-17
11.4.4. Specifying data 11-18

Heter ogeneous Concurrent M odeling and Design

11.4.5. Bar graphs11-19
11.4.6. Histograms 11-19
11.5.0Id Textua File Format 11-20
11.5.1. Commands Configuring the Axes 11-20
11.5.2. Commands for Plotting Data 11-21
11.6.Compatibility 11-23
11.7.Limitations 11-23
Part 3: Domains

12. CT Domain 12-1
12.1.Introduction 12-1
12.1.1. Basic Terminology 12-1
12.1.2. Time 12-3
12.1.3. Fixed-Point Behavior 12-3
12.1.4. Discontinuity 12-4
12.2.System Specification 12-4
12.2.1. An Example 12-5
12.3.CT Actors 12-7
12.3.1. Integrator and ODE Solvers 12-7
12.3.2. Actor Library 12-9
12.3.3. Domain Polymorphic Actors 12-10
12.4.CT Directors 12-11
12.4.1. CT Director Parameters 12-11
12.4.2. CTSngleSolverDirector 12-12
12.4.3. CTMultiSolverDirector 12-12
12.4.4. CTMixedSgnalDirector 12-13
12.4.5. CTEmbeddedDirector 12-13
12.5.CT Domain Demos 12-14
12.5.1. Lorenz System 12-14
12.5.2. Micro Accelerator with Digital Feedback. 12-14
12.5.3. Thermostat System 12-15
12.6.Implementations 12-16
12.7.Technical Details 12-17
12.7.1. Scheduling 12-17
12.7.2. Controlling Step Szes 12-20
12.7.3. Interaction with other domains 12-21
Appendix: Brief Mathematical Background 12-22
13. DE Domain 13-1
13.1.Introduction 13-1
13.1.1. Model Time 13-1
13.1.2. Smultaneous events 13-2
13.1.3. Iteration 13-3
13.1.4. Getting a Model Started 13-4
13.1.5. Pure Events at the Current Time 13-4
13.1.6. Stopping Execution 13-4
13.2.0verview of The Software Architecture 13-4
13.3.The DE Actor Library 13-6

Ptolemy 11

13.4.Mutations 13-6
13.5.Writing DE Actors 13-9
13.5.1. General Guidelines 13-9
13.5.2. Examples 13-10
13.5.3. Thread Actors 13-12
13.6.Composing DE with Other Domains 13-15
13.6.1. DE inside Another Domain 13-15
13.6.2. Another Domain inside DE 13-17

14. SDF Domain 14-1

15.

16.

14.1.0verview 14-1
14.1.1. Properties 14-1
14.1.2. Scheduling 14-2
14.2.Kernel 14-3
14.2.1. SDF Director 14-3
14.2.2. Scheduling 14-5
14.2.3. SDF ports and receivers 14-6
14.2.4. ArrayFIFOQueue 14-6
14.2.5. SDFAtomicActor 14-6
CSP Domain 15-1
15.1.Introduction 15-1
15.2.CSP Communication Semantics 15-2
15.2.1. Atomic Communication: Rendezvous 15-2
15.2.2. Choice: Nondeter ministic Rendezvous 15-2
15.2.3. Deadlock 15-4
15.2.4. Time 15-4
15.2.5. Differences from Original CSP Model as Proposed by Hoare 15-5
15.3.Example CSP Applications 15-5
15.3.1. Dining Philosophers 15-6
15.3.2. Hardware Bus Contention 15-7
15.3.3. Seve of Eratosthenes 15-7
15.3.4. An M/M/1 Queue 15-7
15.4.Building CSP Applications 15-9
15.4.1. Rendezvous 15-9
15.4.2. Conditional Communication Constructs 15-9
15.4.3. Time 15-10
15.5.The CSP Software Architecture 15-11
15.5.1. Class Srructure 15-11
15.5.2. Sarting the model 15-12
15.5.3. Detecting deadlocks: 15-12
15.5.4. Terminating the model 15-15
15.5.5. Pausing/Resuming the Model 15-15
15.6.Technical Details 15-16
15.6.1. Brief Introduction to Threads in Java 15-16
15.6.2. Rendezvous Algorithm 15-17
15.6.3. Conditional Communication Algorithm 15-19
15.6.4. Modification of Rendezvous Algorithm 15-21
DDE Domain 16-1

Heter ogeneous Concurrent M odeling and Design

17.

16.1.Introduction 16-1
16.2.DDE Semantics 16-1
16.2.1. Enabling Communication: Advancing Time 16-2
16.2.2. Maintaining Communication: Null Tokens 16-3
16.2.3. Alternative Distributed Discrete Event Methods 16-5
16.3.Example DDE Applications 16-5
16.4.Building DDE Applications 16-6
16.4.1. DDEActor 16-6
16.4.2. DDEIOPort 16-6
16.4.3. Feedback Topologies 16-7
16.5.The DDE Software Architecture 16-7
16.5.1. Local Time Management 16-8
16.5.2. Detecting Deadlock 16-9
16.5.3. Ending Execution 16-10
16.6.Technical Details 16-11
16.6.1. Synchronization Hierarchy 16-11
PN Domain 17-1
17.1.Introduction 17-1
17.2.Process Network Semantics 17-2
17.2.1. Asynchronous Communication 17-2
17.2.2. Bounded Memory Execution 17-2
17.2.3. Time 17-3
17.2.4. Mutations 17-3
17.3.The PN Software Architecture 17-4
17.3.1. PN Domain 17-4
17.3.2. The Execution Sequence 17-4
17.3.3. Detecting deadlocks. 17-6
17.3.4. Terminating the model: 17-8
17.3.5. Mutations of a Graph 17-9
17.4.Technical Details 17-9
17.4.1. Mutual Exclusion using Monitors 17-9
17.4.2. Hierarchy of Locks 17-10
17.4.3. Undetected Deadlocks 17-11

References R-1
Glossary G-1
Index I-1

Ptolemy 11

PART 1.

USING PTOLEMY ||

The chapters in this part describe how to construct Ptolemy Il models for web-based modeling or
building applications. The first chapter includes an overview of Ptolemy Il software, and a brief
description of each of the models of computation that have been implemented (and some that are just
planned). It describes the package structure of the software, and includes as an appendix abrief tutorial
on UML notation, which is used throughout this document to explain the structure of the software. The
second chapter includes a tutorial on constructing applets. The third chapter gives an overview of
domain-polymorphic actor libraries. Model builders will also want to refer to the domain chapter for
the particular domain(s) they are using, since domain-specific actors are described there.

| ntroduction

Author: Edward A. Lee

1.1 Modeling and Design

The Ptolemy project studies heterogeneous modeling, simulation, and design of concurrent sys-
tems. The focusis on embedded systems, particularly those that mix technologies including, for exam-
ple, anadlog and digital eectronics, hardware and software, and electronics and mechanical devices
(including MEM S, microelectromechanical systems). The focusis also on systems that are complex in
the sense that they mix widely different operations, such as signal processing, feedback control,
sequential decision making, and user interfaces.

Modeling is the act of representing a system or subsystem formally. A model might be mathemati-
cal, inwhich case it can be viewed as a set of assertions about properties of the system such asitsfunc-
tionality or physical dimensions. A model can also be constructive, in which case it defines a
computational procedure that mimics a set of properties of the system. Constructive models are often
used to describe behavior of a system in response to stimulus from outside the system. Constructive
models are also called executable models.

Design is the act of defining a system or subsystem. Usually this involves defining one or more
models of the system and refining the models until the desired functionality is obtained within a set of
constraints.

Design and modeling are obviously closely coupled. In some circumstances, models may be
immutable, in the sense that they describe subsystems, constraints, or behaviors that are externally
imposed on a design. For instance, they may describe a mechanical system that is not under design, but
must be controlled by an electronic system that is under design.

Executable models are sometimes called simulations, an appropriate term when the executable
model isclearly distinct from the system it models. However, in many electronic systems, amodel that
starts as a simulation mutates into a software implementation of the system. The distinction between
the model and the system itself becomes blurred in this case. This is particularly true for embedded
software.

Heter ogeneous Concurrent M odeling and Design 1-1

Introduction

Embedded software is software that resides in devices that are not first-and-foremost computers. It
is pervasive, appearing in automobiles, telephones, pagers, consumer electronics, toys, aircraft, trains,
security systems, weapons systems, printers, modems, copiers, thermostats, manufacturing systems,
appliances, etc. A technically active person probably interacts regularly with more pieces of embedded
software than conventional software.

A major emphasis in Ptolemy Il is on the methodology for defining and producing
embedded software together with the systems within which it is embedded.

Executable models are constructed under a model of computation, which is the set of “laws of
physics’ that govern the interaction of components in the model. If the model is describing a mechani-
cal system, then the model of computation may literally be the laws of physics. More commonly, how-
ever, itisaset of rules that are more abstract, and provide a framework within which a designer builds
models. A set of rulesthat govern the interaction of componentsis called the semantics of the model of
computation. A model of computation may have more than one semantics, in that there might be dis-
tinct sets of rules that impose identical constraints on behavior.

The choice of model of computation depends strongly on the type of model being constructed. For
example, for a purely computational system that transforms a finite body of data into another finite
body of data, the imperative semantics that is common in programming languages such as C, C++,
Java, and Matlab will be adequate. For modeling a mechanical system, the semantics needs to be able
to handle concurrency and the time continuum, in which case a continuous-time model of computation
such that found in Simulink, Saber, Hewlett-Packard’s ADS, and VHDL-AMS is more appropriate.

The ability of amodel to mutate into an implementation depends heavily on the model of compu-
tation that is used. Some models of computation, for example, are suitable for implementation only in
customized hardware, while others are poorly matched to customized hardware because of their intrin-
sically sequential nature. Choosing an inappropriate model of computation may compromise the qual-
ity of design by leading the designer into a more costly or less reliable implementation.

A principle of the Ptolemy project is that the choices of models of computation
strongly affect the quality of a system design.

For embedded systems, the most useful models of computation handle concurrency and time. This
is because embedded systems consist typically of components that operate simultaneously and have
multiple simultaneous sources of stimuli. In addition, they operatein atimed (real world) environment,
where the timeliness of their response to stimuli may be as important as the correctness of the
response.

The objective in Ptolemy |1 is to support the construction and interoperability of
executable models that are built under a wide variety of models of computation.

Ptolemy 11 takes a component view of design, in that models are constructed as a set of interacting
components. A model of computation governs the semantics of the interaction, and thusimposesadis-
cipline on the interaction of components.

Component-based design in Ptolemy |1 involves disciplined interactions between
components gover ned by a model of computation.

1-2 Ptolemy 11

Introduction

1.2 Architecture Design

Architecture description languages (ADLS), such as Wright [3] and Rapide [53], focus on formal-
isms for describing the rich sorts of component interactions that commonly arise in software architec-
ture. Ptolemy |1, by contrast, might be called an architecture design language, because its objective is
not so much to describe existing interactions, but rather to promote coherent software architecture by
imposing some structure on those interactions. Thus, while an ADL might focus on the compatibility
of asender and receiver in two distinct components, we would focus on a pattern of interactions among
aset of components. Instead of, for example, verifying that a particular protocol in a single port-to-port
interaction does not deadlock [3], we would focus on whether an assemblage of components can dead-
lock.

It is arguable that our approach is less modular, because components must be designed to the
framework. Typical ADLs can describe pre-existing components, whereas in Ptolemy |1, such pre-
existing components would have to wrapped in Ptolemy Il actors. Moreover, designing components to
a particular interface may limit their reusability, and in fact the interface may not match their needs
well. All of these are valid points, and indeed a major part of our research effort isto ameliorate these
limitations. The net effect, we believe, is an approach that is much more powerful than ADLs.

First, we design components to be domain polymorphic, meaning that they can interact with other
components within awide variety of domains. In other words, instead of coming up with an ADL that
can describe a number of different interaction mechanisms, we have come up with an architecture
where components can be easily designed to interact in a humber of ways. We argue that this makes
the components more reusable, not less, because disciplined interaction within a well-defined seman-
tics is possible. By contrast, with pre-existing components that have rigid interfaces, the best we can
hope for is ad-hoc synthesis of adapters between incompatible interfaces, something that is likely to
lead to designs that are very difficult to understand and to verify. Whereas ADLs draw an analogy
between compatibility of interfaces and type checking [3], we use a technique much more powerful
than type checking aone, namely polymorphism.

Second, to avoid the problem that a particular interaction mechanism may not fit the needs of a
component well, we provide arich set of interaction mechanisms embodied in the Ptolemy |1 domains.
The domains force component designersto think about the overall pattern of interactions, and trade off
uniformity for expressiveness. Where expressiveness is paramount, the ability of Ptolemy I1 to hierar-
chically mix domains offers essentially the same richness of more ad-hoc designs, but with much more
discipline. By contrast, a non-trivial component designed without such structure is likely to use a
melange, or ad-hoc mixture of interaction mechanisms, making it difficult to embed it within a com-
prehensible system.

Third, whereas an ADL might choose a particular model of computation to provide it with a for-
mal structure, such as CSP for Wright [3], we have developed a more abstract formal framework that
describes models of computation at a meta level [49]. This means that we do not have to perform awk-
ward tranglations to describe one model of computation in terms of another. For example, stream based
communication via FIFO channels are awkward in Wright [3].

We make these ideas concrete by describing the models of computation implemented in the
Ptolemy Il domains.

Heter ogeneous Concurrent M odeling and Design 1-3

Introduction

1.3 Models of Computation

Thereis arich variety of models of computation that deal with concurrency and time in different
ways. Each gives an interaction mechanism for components. In this section, we describe models of
computation that are implemented in Ptolemy |l domains, plus a couple of additional ones that are
planned. Our focus has been on models of computation that are most useful for embedded systems. Al
of these can lend a semantics to the same bubble-and-arc, or block-and-arrow diagram shown in figure
1.1. Ptolemy Il models are (clustered, or hierarchical) graphs of the form of figure 1.1, where the nodes
are entities and the arcs are relations. For most domains, the entities are actors (entities with function-
aity) and the relations connecting them represent communication between actors.

1.3.1 Communicating Sequential Processes - CSP

In the CSP domain (communicating sequential processes), created by Neil Smyth [78], actors rep-
resent concurrently executing processes, implemented as Java threads. These processes communicate
by atomic, instantaneous actions called rendezvous (or sometimes, synchronous message passing). If
two processes are to communicate, and one reaches the point first at which it is ready to communicate,
then it stalls until the other process is ready to communicate. “Atomic” means that the two processes
are simultaneously involved in the exchange, and that the exchange isinitiated and completed in asin-
gle uninterruptable step. Examples of rendezvous models include Hoare's communicating sequential
processes (CSP) [36] and Milner’s cal culus of communicating systems (CCS) [57]. Thismodel of com-
putation has been redized in a number of concurrent programming languages, including Lotos and
Occam.

Rendezvous models are particularly well-matched to applications where resource sharing is a key
element, such as client-server database models and multitasking or multiplexing of hardware
resources. A key feature of rendezvous-based models is their ability to cleanly model nondeterminate
interactions. The CSP domain implements both conditional send and conditional receive. It aso
includes an experimental timed extension.

1.3.2 ContinuousTime-CT

Inthe CT domain (continuoustime), created Jie Liu [51], actors represent components that interact
via continuous-time signals. Actorstypically specify algebraic or differential relations between inputs
and outputs. The job of the director in the domain isto find a fixed-point, i.e., a set of continuous-time
functions that satisfy al the relations.

FIGURE 1.1. A single syntax (bubble-and-arc or block-and-arrow diagram)
can have anumber of possible semantics (interpretations).

14 Ptolemy 11

Introduction

The CT domain includes an extensible set of differential equation solvers. The domain, therefore,
is useful for modeling physical systemswith linear or nonlinear algebraic/differential equation descrip-
tions, such as analog circuits and many mechanical systems. Its model of computation is similar to that
used in Simulink, Saber, and VHDL-AMS, and is closely related to that in Spice circuit simulators.

Embedded systems frequently contain components that are best modeled using differential equa-
tions, such as MEMS and other mechanical components, analog circuits, and microwave circuits.
These components, however, interact with an electronic system that may serve as a controller or a
recipient of sensor data. This electronic system may be digital. Joint modeling of a continuous sub-
system with digital electronics is known as mixed signal modeling. The CT domain is designed to
interoperate with other Ptolemy domains, such as DE, to achieve mixed signal modeling. To support
such modeling, the CT domain models of discrete events as Dirac delta functions. It also includes the
ability to precisely detect threshold crossings to produce discrete events.

Physical systems often have simple models that are only valid over a certain regime of operation.
Outside that regime, another model may be appropriate. A modal model is one that switches between
these simple models when the system transitions between regimes. The CT domain interoperates with
the FSM domain to create modal models.

1.3.3 Discrete-Events - DE

In the discrete-event (DE) domain, created by Lukito Muliadi [61], the actors communicate via
sequences of events placed in time, aong areal timeline. An event consists of a value and time stamp.
Actors can either be processes that react to events (implemented as Java threads) or functions that fire
when new events are supplied. This model of computation is popular for specifying digital hardware
and for simulating telecommunications systems, and has been realized in alarge number of simulation
environments, simulation languages, and hardware description languages, including VHDL and Ver-
ilog.

DE models are excellent descriptions of concurrent hardware, although increasingly the globally
consistent notion of timeis problematic. In particular, it over-specifies (or over-models) systemswhere
maintaining such a globally consistent notion is difficult, including large VLSI chips with high clock
rates. Every event is placed precisely on aglobally consistent time line.

The DE domain implements a fairly sophisticated discrete-event simulator. DE simulators in gen-
eral need to maintain a globa queue of pending events sorted by time stamp (thisis called a priority
gueue). This can be fairly expensive, since inserting new eventsinto the list requires searching for the
right position at which to insert it. The DE domain uses a calendar queue data structure [11] for the
global event queue. A calendar queue may be thought of as a hashtable that uses quantized time as a
hashing function. As such, both enqueue and dequeue operations can be done in time that is indepen-
dent of the number of eventsin the queue.

In addition, the DE domain gives deterministic semantics to simultaneous events, unlike most
competing discrete-event simulators. This means that for any two events with the same time stamp, the
order in which they are processed can be inferred from the structure of the model. Thisis done by ana
lyzing the graph structure of the model for data precedences so that in the event of simultaneous time
stamps, events can be sorted according to a secondary criterion given by their precedence relation-
ships. VHDL, for example, uses deltatime to accomplish the same objective.

Heter ogeneous Concurrent M odeling and Design 1-5

Introduction

1.3.4 Distributed Discrete Events - DDE

The distributed discrete-event (DDE) domain, created by John Davis, can be viewed either as a
variant of DE or as a variant of PN (described below). Still highly experimental, it addresses a key
problem with discrete-event modeling, namely that the global event queue imposes a central point of
control on amodel, greatly limiting the ability to distribute a model over a network. Distributing mod-
els might be necessary either to preserve intellectua property, to conserve network bandwidth, or to
exploit parallel computing resources.

The DDE domain maintains alocal notion of time on each connection between actors, instead of a
single globally consistent notion of time. Each actor is a process, implemented as a Java thread, that
can advance its local time to the minimum of the local times on each of its input connections. The
domain systematizes the transmission of null events, which in effect provide guarantees that no event
will be supplied with atime stamp less than some specified value.

1.3.5 Discrete Time-DT

The discrete-time (DT) domain, which has not been written yet, will extend the SDF domain
(described below) with a notion of time between tokens. Communication between actors takes the
form of a sequence of tokens where the time between tokens is uniform. Multirate models, where dis-
tinct connections have distinct time intervals between tokens, will be supported.

1.3.6 Finite-Sate Machines - FSM

The finite-state machine (FSM) domain, written by Xiaojun Liu, is radically different from the
other Ptolemy Il domains. The entities in this domain represent not actors but rather state, and the con-
nections represent transitions between states. Execution is a strictly ordered sequence of state transi-
tions. The FSM domain leverages the built-in expression language in Ptolemy Il to evaluate guards,
which determine when state transitions can be taken.

FSM models are excellent for control logic in embedded systems, particularly safety-critical sys-
tems. FSM models are amenable to in-depth formal analysis, and thus can be used to avoid surprising
behavior.

FSM models have a number of key weaknesses. First, at a very fundamental level, they are not as
expressive as the other models of computation described here. They are not sufficiently rich to
describe al partia recursive functions. However, this weakness is acceptable in light of the formal
analysis that becomes possible. Many questions about designs are decidable for FSM s and undecidable
for other models of computation. A second key weaknessisthat the number of states can get very large
even in the face of only modest complexity. This makes the models unwieldy.

The latter problem can often be solved by using FSMs in combination with concurrent models of
computation. This was first noted by David Harel, who introduced that Statecharts formalism. State-
charts combine a loose version of synchronous-reactive modeling (described below) with FSMs [30].
FSMs have also been combined with differential equations, yielding the so-called hybrid systems
model of computation [32].

The FSM domain in Ptolemy Il can be hierarchically combined with other domains. We call the
resulting formalism “*charts” (pronounced “starcharts’) where the star represents a wildcard [28].
Since most other domains represent concurrent computations, * charts model concurrent finite state
machines with avariety of concurrency semantics. When combined with CT, they yield hybrid systems
and modal models. When combined with SR (described below), they yield something close to State-

1-6 Ptolemy |1

Introduction

charts. When combined with process networks, they resemble SDL [77].
1.3.7 Process Networks- PN

In the process networks (PN) domain, created by Mudit Goel [29], processes communicate by
sending messages through channels that can buffer the messages. The sender of the message need not
wait for the receiver to be ready to receive the message. This style of communication is often called
asynchronous message passing. There are several variants of this technique, but the PN domain specif-
ically implements one that ensures determinate computation, namely Kahn process networks [40].

In the PN model of computation, the arcs represent sequences of data values (tokens), and the enti-
ties represent functions that map input sequences into output sequences. Certain technical restrictions
on these functions are necessary to ensure determinacy, meaning that the sequences are fully specified.
In particular, the function implemented by an entity must be prefix monotonic. The PN domain realizes
asubclass of such functions, first described by Kahn and MacQueen [41], where blocking reads ensure
monotonicity.

PN models are loosely coupled, and hence relatively easy to parallelize or distribute. They can be
implemented efficiently in both software and hardware, and hence leave implementation options open.
A key weakness of PN modelsis that they are awkward for specifying control logic, although much of
this awkwardness may be ameliorated by combining them with FSM.

The PN domainin Ptolemy Il has a highly experimental timed extension. This addsto the blocking
reads a method for stalling processes until time advances. We anticipate that this timed extension will
make interoperation with timed domains much more practical.

1.3.8 Synchronous Dataflow - SDF

The synchronous dataflow (SDF) domain, created by Steve Neuendorffer, handles regular compu-
tations that operate on streams. Dataflow models, popular in signal processing, are a specia case of
process networks (for the complete explanation of this, see [48]). Dataflow models construct processes
of a process network as sequences of atomic actor firings. Synchronous dataflow (SDF) is a particu-
larly restricted specia case with the extremely useful property that deadlock and boundedness are
decidable. Moreover, the schedule of firings, paralel or sequential, is computable statically, making
SDF an extremely useful specification formalism for embedded real-time software and for hardware.

Certain generalizations sometimes yield to similar analysis. Boolean dataflow (BDF) models
sometimes yield to deadlock and boundedness analysis, athough fundamentally these questions are
undecidable. Dynamic dataflow (DDF) uses only run-time analysis, and thus makes no attempt to stat-
ically answer questions about deadlock and boundedness. Neither a BDF nor DDF domain has yet
been written in Ptolemy 11. Process networks (PN) serves in the interrim to handle computations that
do not match the restrictions of SDF.

1.3.9 Synchronous/Reactive - SR

In the synchronous/reactive (SR) model of computation [7], the arcs represent data values that are
aligned with global clock ticks. Thus, they are discrete signals, but unlike discrete time, a signal need
not have avalue at every clock tick. The entities represent relations between input and output values at
each tick, and are usually partial functions with certain technical restrictions to ensure determinacy.
Examples of languages that use the SR model of computation include Esterel [9], Signal [8], Lustre
[17], and Argos[54].

Heter ogeneous Concurrent M odeling and Design 1-7

Introduction

SR models are excellent for applications with concurrent and complex control logic. Because of
the tight synchronization, safety-critical real-time applications are a good match. However, aso
because of the tight synchronization, some applications are overspecified in the SR model, limiting the
implementation alternatives. Moreover, in most realizations, modularity is compromised by the need
to seek aglobal fixed point at each clock tick. An SR domain has not yet been implemented in Ptolemy
I1, although the methods used by Stephen Edwards in Ptolemy Classic can be adapted to this purpose
[20].

1.4 Choosing M odels of Computation

The rich variety of concurrent models of computation outlined in the previous section can be
daunting to a designer faced with having to select them. Most designers today do not face this choice
because they get exposed to only one or two. Thisis changing, however, asthe level of abstraction and
domain-specificity of design software both rise. We expect that sophisticated and highly visual user
interfaces will be needed to enable designers to cope with this heterogeneity.

An essentia difference between concurrent models of computation is their modeling of time.
Some are very explicit by taking time to be area number that advances uniformly, and placing events
on atime line or evolving continuous signals along the time line. Others are more abstract and take
time to be discrete. Others are still more abstract and take time to be merely a constraint imposed by
causality. This latter interpretation results in time that is partially ordered, and explains much of the
expressiveness in process networks and rendezvous-based models of computation. Partially ordered
time provides a mathematical framework for formally analyzing and comparing models of computa-
tion [49].

A grand unified approach to modeling would seek a concurrent model of computation that serves
al purposes. This could be accomplished by creating a melange, a mixture of al of the above, but such
a mixture would be extremely complex and difficult to use, and synthesis and simulation tools would
be difficult to design.

Another dternative would be to choose one concurrent model of computation, say the rendezvous
model, and show that all the others are subsumed as special cases. Thisisrelatively easy to do, in the-
ory. It is the premise of Wright, for example [3]. Most of these models of computation are sufficiently
expressive to be able to subsume most of the others. However, this fails to acknowledge the strengths
and weaknesses of each model of computation. Rendezvous is very good at resource management, but
very awkward for loosely coupled data-oriented computations. Asynchronous message passing is the
reverse, where resource management is awkward, but data-oriented computations are natural®. Thus,
to design interesting systems, designers need to use heterogeneous models.

1.5 Visual Syntaxes

Visual depictions of electronic systems have aways held a strong human appeal, making them
extremely effective in conveying information about a design. Many of the domains of interest in the
Ptolemy project use such depictions to completely and formally specify models.

1. Consider the difference between the telephone (rendezvous) and email (asynchronous message passing). If you
aretrying to schedule a meeting between four busy people, getting them all on a conference call would lead to a
quick resolution of the meeting schedule. Scheduling the meeting by email could take several days, and may in
fact never converge. Other sorts of communication, however, are far more efficient by email.

1-8 Ptolemy |1

Introduction

One of the principles of the Ptolemy project is that visual depictions of systems can
help to offset the increased complexity that is introduced by heterogeneous modeling.

These visual depictions offer an alternative syntax to associate with the semantics of a model of com-
putation. Visual syntaxes can be every bit as precise and complete as textua syntaxes, particularly
when they are judiciously combined with textual syntaxes.

Visual representations of models have a mixed history. In circuit design, schematic diagrams used
to be routinely used to capture all of the essential information needed to implement some systems.
Schematics are often replaced today by text in hardware description languages such as VHDL or Ver-
ilog. In other contexts, visual representations have largely failed, for example flowcharts for capturing
the behavior of software. Recently, anumber of innovative visual formalisms have been garnering sup-
port, including visual dataflow, hierarchical concurrent finite state machines, and object models. The
UML visual language for object modeling has been receiving a great deal of attention, and in fact is
used fairly extensively in the design of Ptolemy Il itself (see appendix A of this chapter).

A subset of visua languages that are recognizable as “block diagrams’ represent concurrent sys-
tems. There are many possible concurrency semantics (and many possible models of computation)
associated with such diagrams. Formalizing the semantics is essentia if these diagrams are to be used
for system specification and design. Ptolemy |l supports exploration of the possible concurrency
semantics. A principle of the project is that the strengths and weaknesses of these aternatives make
them complementary rather than competitive. Thus, interoperability of diverse modelsis essential.

1.6 Ptolemy I

Ptolemy |1 offers a unified infrastructure for implementations of a number of models of computa-
tion. The overal architecture consists of a set of packages that provide generic support for all models
of computation and a set of packages that provide more specialized support for particular models of
computation. Examples of the former include packages that contain math libraries, graph algorithms,
an interpreted expression language, signa plotters, and interfaces to media capabilities such as audio.
Examples of the latter include packages that support clustered graph representations of models, pack-
ages that support executable models, and domains, which are packages that implement a particular
model of computation.

1.6.1 Package Structure

The package structure is shown in figure 1.2. Thisisa UML package diagram. The name of each
package is in the tab at the top of each box. Subpackages are contained within their parent package.
Dependencies between packages are shown by dotted lines with arrow heads. For example, actor
depends on kernel .event which depends on kernel which depends on kernel.util. Actor also depends on
data and graph. Therole of each package is explained below.

actor This package supports executabl e entities that receive and send data through ports.

It includes both untyped and typed actors. For typed actors, it implements a sophis-
ticated type system that supports polymorphism. It includes the base class Director
for domain-specific classes that control the execution of a model.

actor.event Event Handling (see also kernel .event)

actor.gui Thissubpackageisalibrary of polymorphic actorswith user interface components,

plus some convenience base classes for applets and applications.

Heter ogeneous Concurrent M odeling and Design 19

Introduction

kernel

CPO
DirectedAcyclicGraph
DirectedGraph

Graph
Inequality
InequalitySolver
InequalityTerm

math

ArrayStringFormat Complex
ComplexArrayMath DoubleArrayMath
DoubleArrayStat DoubleMatrixMath
ExtendedMath FixPoint
FloatArrayMath FloatMatrixMath
Fraction IntegerArrayMath
IntegerMatrixMath Interpolation
LongArrayMath LongMatrixMath
MatrixMath Precision
Quantizer SampleGenerator
SignalProcessing

ComponentEntity kernel.util <
ComponentPort
ComponentRelation | atribute
CompositeEntity CrossRefList
Entity DebuglListener
Port - Debuggable
Relation llegalActionException
InternalErrorException
InvalidStateException
KernelException
NameDuplicationException
Nameable
NamedList
NamedObj
NoSuchltemException
PtolemyThread
RecorderListener
Kkemel.event StreamListener
Workspace
ChangeFailedException
ChangelList
ChangelListener
ChangeRequest
StreamChangeListener
i
[\
actor —
Actor
AtomicActor actor.util
Con:positglActor actor.lib CQComparator
Configurable
Director AbsolutevValue | CalendarQueue
Executable AddSubtract DoubleCQComparator
ExecutionListener Average FIFOQueue
10Port Bermnoulli TimedEvent
|ORelation Clock _
Mailbox Commutator actor.gui }7
Manager Const .
NoRoomException CurrentTime i(églrirg:losneAclorAppl
NoTokenException Distributor Displa
QueueReceiver Expression E d'tporganeFacto
Receiver FileWriter ExtlacEvent v
StreamExecutionListener | Gaussian ExecEventListener
TypeConflictException Maximum HTsto \r/amP:Otter
TypeEvent Minimum Matrisview
TypeListener MultiplyDivide MoMLApplet
TypedActor Poisson MoMLAppIication
TypedAtomicActor Pulse ModeIFr‘;Fr)ne
TypedCompositeActor Quantizer ModelPane
TypedIOPort Ramp Placeable
TypedIORelation RandomSource Plotter
gs;; rder PtolemyApplet
PtolemyApplication
SequenceActor PtolemyQuery
S_equenceSource SequencePlotter
2::5 SketchedSource
Source TimedPlotter
TimedActor XYPlotter
TimedSource
actor.process Transformer
NotifvThread VariableClock
otify Threa Writer
ProcessDirector dB actor.sched
ProcessReceiver NotSchedulableException
ProcessThread Scheduler

TerminateProcessException

StaticSchedulingDirector

}

FIGURE 1.2. The package structure of Ptolemy |1, without the domains.

data
ArrayToken
BoolyeanM atrixToken data.expr
BooleanToken ASCII_CharStream
ComplexMatrixToken ASTPBitwiseNode
ComplexToken ASTPtFunctionNode
DoubleMatrixToken | AsTptFunctionallfNode
DoubleToken ASTPtLeafNode
FixMatrixToken ASTPtLogicalNode
FixToken ASTPtMatrixConstructNode
IntMatrixToken ASTPtMethodCallNode
InfToken) ASTPtProductNode
LongMatrixToken | AsTptRelationalNode
LongToken ASTPtRootNode
Matr!xLowerBound ASTPtSumNode
MatrixToken ASTPtUnaryNode
MatrlxgpperBound FixPointFunctions
Numerlcal JJTPtParserState
ot ObjectToken Node
P chilarToken Parameter
CmdLineArgException ?gLr;%]Token ParseException
EPSGraphics PtParser
EditListener PtParserConstants
EditablePlot PtParserTokenManager
Histogram PtParserTreeConstants
HistogramApplet SetParameter
Plot SimpleNode
PlotApplet Token
PlotApplication TokenMgrError
PlotBox UtilityFunctions
PlotDataException ValueListener
PlotFrame Variable
PlotLive
PlotLiveApplet
PlotPoint
Pxgraph qui
BasicJApplet
ComponentDialog
Query
QueryListener
StatusBar
media
Audio
AudioViewer
Picture

1-10

Ptolemy 11

Introduction

actor.lib
actor.process

actor.sched

actor.util

data

data.expr

data.type
domains
graph

gui

kernel

kernel.event

kernel.util

math

media

This subpackage is alibrary of polymorphic actors.

This subpackage provides infrastructure for domains where actors are processes
implemented on top of Java threads.

This subpackage provides infrastructure for domains where actors are statically
scheduled by the director.

This subpackage contains utilities that support directors in various domains. Spe-
cifically, it contains asimple FIFO Queue and a sophisticated priority queue called
acaendar queue.

This package provides classes that encapsulate and manipul ate data that is trans-
ported between actors in Ptolemy models.

This class supports an extensible expression language and an interpreter for that
language. Parameters can have values specified by expressions. These expressions
may refer to other parameters. Dependencies between parameters are handled
transparently, asin a spreadsheet, where updating the value of one will result in the
update of all those that depend on it.

This package contains classes and interfaces for the type system.
This package contains one subpackage for each Ptolemy 11 domain.

This package provides algorithms for manipulating and analyzing mathematical
graphs. Mathematical graphs are simpler than Ptolemy |1 clustered graphs in that
there is no hierarchy, and arcs link exactly two nodes. This package is expected to
supply agrowing library of algorithms.

This package contains generically useful user interface components.

This package provides the software architecture for the key abstract syntax, clus-
tered graphs. The classes in this package support entities with ports, and relations
that connect the ports. Clustering is where a collection of entitiesis encapsulatedin
asingle composite entity, and a subset of the ports of the inside entities are exposed
as ports of the cluster entity.

This package contains classes and interfaces that support controlled mutations of
clustered graphs. Mutations are modifications in the topology, and in general, they
are permitted to occur during the execution of a model. But in certain domains,
where maintaining determinacy isimperative, the director may wish to exercise
tight control over precisely when mutations are performed. This package supports
queueing of mutation requests for later execution. It uses a publish-and-subscribe
design pattern.

This subpackage of the kernel package provides a collection of utility classes that
do not depend on the kernel package. It is separated into a subpackage so that these
utility classes can be used without the kernel. The utilities include a collection of
exceptions, classes supporting named obj ects with attributes, lists of named
objects, a specialized cross-reference list class, and athread class that hel ps
Ptolemy keep track of executing threads.

This package encapsul ates mathematical functions and methods for operating on
matrices and vectors. It aso includes a complex number class and a class support-
ing fractions.

This package encapsulates a set of classes supporting audio and image processing.

Heter ogeneous Concurrent Modeling and Design 1-11

Introduction

moml

plot

This package contains classes for Model Markup Language (MoML) which is used
to describe Ptolemy || models.

This package provides two-dimensional signal plotting widgets.

1.6.2 Overview of Key Classes

Some of the key classes in Ptolemy |1 are shown in figure 1.3. Thisisa UML dtatic structure dia-
gram (see appendix A of this chapter). The key syntactic elements are boxes, which represent classes,
the hollow arrow, which indicates generalization, and other lines, which indicate association. Some
lines have a small diamond, which indicates aggregation. The details of these classes will be discussed
in subsequent chapters.

Instances of all of the classes shown can have names; they all implement the Nameabl e interface.

Most of the classes generalize NamedObj, which in addition to being nameable can have a list of
attributes associated with it. Attributes themselves are instances of NamedObj.

«Interface» «Interface»
Debuggable Nameable
< — —— - 1
‘ ‘ Workspace
) I NamedObj 0.n 1
Attribute
0.1
0..
container 0..n 0..n link
«Interface» o—————]
Executable Entity 0.1 Port link 0..n Relation
‘ TZ‘& ‘ ComponentPort
«Interface»
‘ Actor ComponentEntity CompositeEntity
0..n container
‘ 4 A /* 0.1
| ‘ / container | 0..1 ComponentRelation
| 4
‘ ‘ {con5|/$tancy} o.n
AtomicActor //
. /
0.n o 1 | CompositeActor
k>
. :
[:
0.2 Director
0.1
Manager

FIGURE 1.3. Some of the key classesin Ptolemy Il. These are defined in the kernel, kernel.util, and actor

112

Ptolemy 11

Introduction

Entity, Port, and Relation are three key classes that extend NamedObj. These classes define the
primitives of the abstract syntax supported by Ptolemy II. They will be fully explained in the kernel
chapter. ComponentPort, ComponentRelation, and ComponentEntity extend these classes by adding
support for clustered graphs. CompositeEntity extends ComponentEntity and represents an aggrega
tion of instances of ComponentEntity and ComponentRel ation.

The Executable interface, explained in the actors chapter, defines objects that can be executed. The
Actor interface extends this with capability for transporting data through ports. AtomicActor and Com-
positeActor are concrete classes that implement this interface.

An executable Ptolemy Il model consists of atop-level CompositeActor with an instance of Direc-
tor and an instance of Manager associated with it. The manager provides overal control of the execu-
tion (starting, stopping, pausing). The director implements a semantics of a model of computation to
govern the execution of actors contained by the CompositeActor.

Director is the base class for directors that implement models of computation. Each such director
is associated with a domain. We have defined in Ptolemy Il directors that implement continuous-time
modeling (ODE solvers), process networks, synchronous dataflow, discrete-event modeling, and com-
municating sequential processes.

1.6.3 Domains

The domains in Ptolemy |1 are subpackages of the ptolemy.domains package, as shown in figure
1.4. These packages generally contain a kernel subpackage, which defines classes that extend classes
in the actor or kernel packages of Ptolemy I1. The gui subpackage contains a domain-specific applet
class, which provides facilities for easily creating applets that use that domain. The lib subpackage,
when it exists, includes domain-specific actors.

1.6.4 Capabilities

Ptolemy 11 is a second generation system. Its predecessor, Ptolemy Classic, still has many active
users and developers, and may continue to evolve for some time. Ptolemy Il has a somewhat different
emphasis, and through its use of Java, concurrency, and integration with the network, is aggressively
experimental. Some of the major capabilities in Ptolemy 1l that we believe to be new technology in
modeling and design environments include;

» Higher level concurrent designin Java™. Java support for concurrent design is very low level,
based on threads and monitors. Maintaining safety and liveness can be quite difficult [43]. Ptolemy
Il includes a number of domains that support design of concurrent systems at a much higher level
of abstraction, at the level of their software architecture. Some of these domains use Java threads
as an underlying mechanism, while others offer an alternative to Java threads that is much more
efficient and scalable.

» Better modularization through the use of packages. Ptolemy |1 isdivided into packages that can be
used independently and distributed on the net, or drawn on demand from a server. This breaks with
tradition in design software, where tools are usually embedded in huge integrated systems with
interdependent parts.

» Complete separation of the abstract syntax from the semantics. Ptolemy designs are structured as
clustered graphs. Ptolemy Il defines a clean and thorough abstract syntax for such clustered
graphs, and separates into distinct packages the infrastructure supporting such graphs from mecha-
nisms that attach semantics (such as dataflow, analog circuits, finite-state machines, etc.) to the

graphs.

Heter ogeneous Concurrent Modeling and Design 1-13

Introduction

]
actor !
domains
csp ct
kernel gui kernel lib
CSPActor CSPApplet CTActor CTButtonEvent
CSPDirector CTBaselntegrator CTIntegrator
CSPReceiver CTCompositeActor CTPeriodicSampler
ConditionalBranch demo CTDirector CTSaberSubsys
ConditionalReceive CTDynamicActor CTSquareWave
ConditionalSend CTEmbeddedDirector CTThresholdMonitor
CTEmbeddedNRDirector CTZeroCrossingDetector
CTEventGenerator CTZeroOrderHold
CTEventinterpreter demo ‘ Delay
dde CTMixedSignalDirector IPClinterface
CTMultiSolverDirector
CTReceiver
kernel qui CTScheduler
CTSingleSolverDirector gui
DDEActor CSPApplet CTStatefulActor
DDEDirector CTStepSizeControlActor CTApplet
DDEIOPort NumericalNonconvergenceException
DDEThread demo ODESolver
NullToken
TimeKeeper
TimedQueueReceiver
de pn
kernel gui ‘ lib kernel ‘ gui ‘
DEActor DEApplet Delay BasePNDirector PNApplet
DECQEventQueue DETransformer PNDirector
DEDirector WaitingTime PNQueueReceiver
DEEvent TimedPNDirector demo
DEEventQueue
DEEventTag demo
DEIOPort
DEReceiver
DEThreadActor
sdf
kernel gui ‘ lib
ArrayFIFOQueue SDFApplet Delay
SDFAtomicActor FIR
SDFDirector LineCoder
SDFIOPort RaisedCosine
SDFReceiver
SDFScheduler demo

FIGURE 1.4. Package structure of Ptolemy || domains.

114

Ptolemy 11

Introduction

* Improved heterogeneity. Ptolemy Classic provided a wormhole mechanism for hierarchically cou-
pling heterogeneous models of computation. This mechanism isimproved in Ptolemy |1 through
the use of opaque composite actors, which provide better support for models of computation that
are very different from dataflow, the best supported model in Ptolemy Classic. These include hier-
archical concurrent finite-state machines and continuous-time modeling techniques.

» Thread-safe concurrent execution. Ptolemy models are typically concurrent, but in the past, sup-
port for concurrent execution of a Ptolemy model has been primitive. Ptolemy |1 supports concur-
rency throughout, alowing for instance for amodel to mutate (modify its clustered graph
structure) while the user interface simultaneously modifies the structure in different ways. Consis-
tency is maintained through the use of monitors and read/write semaphores [36] built upon the
lower level synchronization primitives of Java.

» A software architecture based on object modeling. Since Ptolemy Classic was constructed, soft-
ware engineering has seen the emergence of sophisticated object modeling [56][73][75] and
design pattern [25] concepts. We have applied these concepts to the design of Ptolemy 11, and they
have resulted in amore consistent, cleaner, and more robust design. We have also applied asimpli-
fied software engineering process that includes systematic design and code reviews [71].

e Atruly polymorphic type system. Ptolemy Classic supported rudimentary polymorphism through
the “anytype” particle. Even with such limited polymorphism, type resolution proved challenging,
and the implementation is ad-hoc and fragile. Ptolemy 11 has a more modern type system based on
apartial order of types and monotonic type refinement functions associated with functional blocks.
Type resolution consists of finding afixed point, using agorithmsinspired by the type systemin
ML [59].

» Domain-polymorphic actors. In Ptolemy Classic, actor libraries were separated by domain.
Through the notion of subdomains, actors could operate in more than one domain. In Ptolemy I1,
thisideaistaken much further. Actors with intrinsically polymorphic functionality can be written
to operate in amuch larger set of domains. The mechanism they use to communicate with other
actors depends on the domain in which they are used. Thisis managed through a concept that we
call aprocess level type system.

» Extensible XML-based file formats. XML is an emerging standard for representation of informa-
tion that focuses on the logical relationships between pieces of information. Human-readable rep-
resentations are generated with the help of style sheets. Ptolemy 11 will use XML asits primary
format for persistent design data.

1.6.5 Future Capabilities

Capabilities that we anticipate making available in the future include:

* Interoperability through software components. Ptolemy |1 will use distributed software component
technology such as CORBA, JavaRMI, or DCOM, in anumber of ways. Components (actors) in a
Ptolemy 11 model will be implementable on aremote server. Also, components may be parameter-
ized where parameter values are supplied by a server (this mechanism supports reduced-order
modeling, where the model is provided by the server). Ptolemy 1| models will be exported via a
server. And finally, Ptolemy |1 will support migrating software components.

» Embedded software synthesis. Pertinent Ptolemy |1 domains will be tuned to run on a Java virtual
machine on an embedded CPU. Hardware, firmware, and configurable hardware components will
expose abstractions to this Java software that obey the model of computation of the pertinent
domain. Java's native code interface will be used to define a stub for the embedded hardware com-

Heter ogeneous Concurrent Modeling and Design 1-15

Introduction

ponents so that they are indistinguishable from any other Java thread within the model of computa-
tion. Domains that seem particularly well suited to this approach include PN and CSP.

« Embedded hardware synthesis. Ptolemy Classic had only very weak mechanisms for migrating
designs from idealized floating-point simulations through fixed-point simulations to embedded
software, FPGA, and hardware designs. Ptolemy |1 will leverage polymorphism, allowing libraries
to be constructed where compatibility across implementation technologiesis assured [74].

» Integrated verification tools. Modern verification tools based on model checking [33] could be
integrated with Ptolemy 11 at least to the extent that finite state machine models can be checked.
We believe that the separation of control logic from concurrency will greatly facilitate verification,
since only much smaller cross-sections of the system behavior will be offered to the verification
tools.

» Reflection of dynamics. Java supports reflection of static structure, but not of dynamic properties
of process-based aobjects. For example, the data layout required to communicate with an object is
avail able through the reflection package, but the communication protocol is not. We plan to extend
the notion of reflection to reflect such dynamic properties of objects.

1-16 Ptolemy |1

Introduction

Appendix A: UML — Unified Modeling L anguage

UML (the unified modeling language) [23][70] defines a suite of visual syntaxes for describing
various aspects of software architecture. We make heavy use of two of these visua syntaxes, package
diagrams and static structure diagrams. These syntaxes are summarized here. As with most descriptive
syntaxes, any use of the syntax involves certain stylistic choices. These stylistic choices are not part of
UML, but nonetheless can be important to understanding the diagrams. We explain the style that we
use here.

A.1 Package Diagrams

Figures 1.2 and 1.4 show UML package diagrams, which have a simple syntax. A package is
given as a box with atab, with the tab containing the name of the package. Subpackages are enclosed
in the box of the parent package, and package dependencies are indicated with arrows. A package
dependency occurs when a Java file in a package includes a class in another package (using import in
Java).

A.2 Satic Sructure Diagrams

Figure 1.3 isadifferent kind of UML diagram, called a static structure diagram or class diagram.
It represents the relationships between classes, including inheritance relationships, containment rela-
tionships, and cross references. These relationships are called an object model, and represent many
essential features about the design.

A.2.1 Classes

A simplified static structure diagram for some Ptolemy Il classesis shownin figure 1.5. In thisdia-
gram, each class is shown in a box. The class name is at the top of each box, its attributes are below
that, and its methods below that. Thus, each box is divided into three segments separated by horizontal
lines. The attributes are members of the Java classes, which may be public, package friendly, pro-
tected, or private. Private members are prefixed by a minus sign “-”, as for example the _container
attribute of Port. Although private members are not visible directly to users of the class, they may
nonetheless be a useful part of the object model because they indicate the state information contained
by an instance of the class. Public members have aleading “+” and protected methods aleading “#” in
aUML diagram. There are no public or protected members shown in figure 1.5. The type of a member
isindicated after acolon, so for example, the _container method of Port is of type Entity.

Methods, which are shown below attributes, also have aleading “+” for public, “#’ for protected,
and “-” for private. Our object models do not show private methods, since they are not inherited and
are not visible in the interface to the object. Figure 1.5 shows a humber of public methods and one pro-
tected method, _link() in Port. The return value of a method is given after a colon, so for example, get-
Container() of Port returns an Entity.

Although not usually included in UML diagrams, our diagrams show class constructors. They are
listed first among the methods and have names that are the same as the name of the class. No return
typeis shown. For completeness, our object models typically show all public and protected methods of
these classes, athough a proper object model might only show those relevant to the issues being dis-
cussed. Figure 1.5 does not show all methods, so that we can simplify the discussion of UML. Our dia

Heter ogeneous Concurrent Modeling and Design 1-17

Introduction

grams do not include deprecated methods or methods that are present in parent classes.

Argumentsto a method or constructor are shown in parentheses, with the types after acolon, so for
example, ComponentEntity shows a single constructor that takes two arguments, one of type Compos-
iteEntity and the other of type String.

A.2.2 Inheritance

Subclasses are indicated by lines with white triangles (or outlined arrow heads). The class on the
side of the arrow head is the superclass or base class. The class on the other end is the subclass or
derived class. The derived classis said to specialize the base class, or conversely, the base classto gen-
eralize the derived class. The derived class inherits all the methods shown in the base class and may
override or some of them. In our object models, we do not explicitly show methods that override those
defined in a base class or are inherited from a base class. For example, in figure 1.5, ComponentEntity
has all the methods of Entity and NamedObj, and may override some of those methods, but only shows

NamedObj
0.1

«Interface»

Executable Entity container 0.n Port
-_container : Entity

+fire() +Entity() +Port())
+getPorts() : Enumeration +getContainer() : Entity|

#_link(r : Relation)

ComponentEntity CompositeEntity

-_container : CompositeEntity
+ComponentEntity(container : CompositeEntity, name : String)!

o.n container - [+CompositeEntity(container : CompositeEntity, name : String)

+getContainer() : CompositeEntity ” X N
+isAtomic() : boolean W‘ +getEntities() : Enumeration

+inputPorts() : Enumeration L‘ L

«Interface»
Actor

+outputPorts() : Enumeration|

b4

AtomicActor

‘ +AtomicActor(container : CompositeActor, name : String),

0.1 CompositeActor

+CompositeActor(container : CompositeActor, name : String)

FIGURE 1.5. Simplified static structure diagram for some Ptolemy |1 classes. This diagram illustrates fea-
tures of UML syntax that we use.

1-18 Ptolemy |1

Introduction

the one method it adds. Thus, the complete set of methods of a classis cumulative. Every class hasits
own methods plus those of all its superclasses.

An exception to thisis constructors. In Java, constructors are not inherited. Thus, in our class dia-
grams, the only constructors available for a class are those shown in the box defining the class. Figure
1.5 does not show all the constructors of these classes, for smplicity.

Classes shown in boxes outlined with dashed lines, such as NamedObj in figure 1.5, are fully
described elsewhere. Thisis not standard UML notation, but it gives us a convenient way to partition
diagrams. Often, these classes belong to another package.

A.2.3 Interfaces

Figure 1.5 a so shows two examples of interfaces, Executable and Actor. An interface is indicated
by the label “<<Interface>>" and by italics in the name. An interface defines a set of methods without
providing an implementation for them. It cannot be instantiated, and therefore has no constructors.
When a class implements an interface, the object model shows the relationship with a dotted-line with
an arrow. Any concrete class (one that can be instantiated) that implements an interface must provide
implementations of al its methods. In our object models, we do not show those methods explicitly in
the concrete class, just like inherited methods, but their presence is implicit in the relationship to the
interface.

One interface can extend another. For example, in figure 1.5, Actor extends Executable. This
means that any concrete class that implements Actor must implement the methods of Actor and Exe-
cutable.

We will occasionally show abstract classes, which are like interfaces in that they cannot be instan-
tiated, but unlike interfaces in that they may provide default implementations for some methods and
may even have private members. Abstract classes are indicated by italics in the class name. There are
no abstract classesin figure 1.5.

A.2.4 Associations

Inheritance and implementation are types of associations between entities in the object model.
Associations of other types are indicated by other lines, often annotated with ranges like “0..n" or with
diamonds on one end or the other.

Aggregations are shown as associations with diamonds. For example, an Entity is an aggregation
of any number (0..n) instances of Port. More strongly, we say that a Port is contained by 0 or 1
instances of Entity. By containment, we mean that a port can only be contained by a single Entity. In a
weaker form of aggregation, more than one aggregate may refer to the same component. The stronger
form of aggregation (containment) is indicated by the filled diamond, while the weaker form is indi-
cated by the unfilled diamond. There are no unfilled diamonds in figure 1.5. In fact, they arefairly rare
in Ptolemy |1, since many of its architectural features depend on containment relationships, where an
object can have at most one container.

The relationship between ComponentEntity and CompositeEntity is particularly interesting. An
instance of CompositeEntity can contain any number of instances of ComponentEntity, but Composi-
teEntity is derived from ComponentEntity. Thus, a CompositeEntity can contain any number of
instances of either ComponentEntity or CompositeEntity. This is the classic Composite design pattern
[25], which supports arbitrarily deeply nested containment hierarchies.

In figure 1.5, a CompositeActor is an aggregation of AtomicActors and CompositeActors. These

Heter ogeneous Concurrent Modeling and Design 1-19

Introduction

two aggregation relations are derived from the aggregation relationship between ComponentEntity and
CompositeEntity. This derived association is indicated with a dashed line with an open arrowhead.

1-20 Ptolemy |1

Introduction

Appendix B: Ptolemy |1 Naming Conventions

We have made an effort to be consistent about naming of classes, methods and members. This
appendix describes our policy.

B.1 Classes

Class names are capitalized with internal word boundaries also capitaized (as in “ CompositeEn-
tity”). Most names are made up of complete words (“ CompositeEntity” rather than “CompEnt”)?.
Interface names suggest their potential (asin “Executable,” which means “can be executed”).

Despite having packages to divide up the namespace, we attempt nonetheless to keep class hames
unigue. This helps avoid confusion and bugs that may arise from having Java import statementsin the
wrong order. In many cases, a domain includes a specialized version of some more generic class. In
this case, we create a unigue name by prefixing the generic name with the domain name. For example,
while Director is abase classin the actor package, DEDirector is a derived classin the DE domain.

For the most part, we try to avoid prefixing actor names with the domain name. e.g., we define
Delay rather than DEDelay. Occasionaly however, the domain prefix is useful to distinguish two ver-
sions of some similar functionality, both of which might be useful in a domain. For example, the DE
domain can use actors derived from Transformer or from DETransformer, where the latter is special-
ized to DE.

B.2 Members

Member names are not capitalized, although internal word boundaries usualy are (e.g. “declared-
Type”). If the member is private or protected, then its name begins with a leading underscore (e.g.
“_declaredType”).

B.3 Methods

Method names are similar to member names, in that they are not capitalized, except on internal
word boundaries. Private and protected methods have a leading underscore. In text referring to meth-
ods, the method name is followed by open and close parentheses, asin “getName().” Usually, no argu-
ments are given, even if the method takes arguments.

Method names that are plural, such as getPorts(), usually return an enumeration (or sometimes an
array, or an iterator). Methods that return Lists are usually of the form portList().

1. There are some (perhaps regrettable) exceptions to this, such as NamedObj.

Heter ogeneous Concurrent Modeling and Design 1-21

Introduction

1-22 Ptolemy |1

Building Models

Authors:
Edward A. Lee
Seve Neuendorffer

2.1 Introduction

Ptolemy |1 models can be specified in a number of ways and used in a number of ways. They
might be simulations (executable models of some other system) or implementations (the system itself).
They might be classical computer programs (applications), or any of a number of network-integrated
programs (applets, servlets, or CORBA services, for example). One way to construct modelsisto cre-
ate XML text files using an XML schema called MoML. This provides a simple and standard user
interface to the model. If a more customized user interface is required, then you may wish to write a
custom applet, as described in the next chapter. Eventually, you will be able to construct models using
ablock diagram editor.

MoML is a modeling markup schemain XML. It is intended for specifying interconnections of
parameterized components. A MoML file can be executed as an application using the command-line
interface,

ptolemy filename.xml

This assumes that the directory $PTII/bin is in your path, where spT11 is the location of the
Ptolemy 1l installation. The same XML file can beused in an appletl, as explained below in “ Applets’
on page 28.

To get aquick start, try entering the following into afile called test .xml (Thisfileis also avail-
able as $PTI1/ptolemy/moml/demo/test.xml):

1. AnappletisaJavaprogram that is downloaded from aweb server by abrowser and executed in the client’s
computer (usually within a plug-in for the browser).

Heter ogeneous Concurrent M odeling and Design 2-1

Building Models

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML 1.dtd">

<model name="test" class="ptolemy.actor.TypedCompositeActor">
<director class="ptolemy.domains.sdf.kernel.SDFDirector"/>
<entity name="ramp" class="ptolemy.actor.lib.Ramp"/>
<entity name="plot" class="ptolemy.actor.gui.SequencePlotter"/>
<relation name="r" class="ptolemy.actor.TypedIORelation"/>
<link port="ramp.output" relation="r"/>
<link port="plot.input" relation="r"/>

</model >

and then
$PTII/bin/ptolemy test.xml

You should get a window looking like that in figure .2.1. Enter “10” in the iterations box and hit the
“Go" button to execute the model for 10 iterations (leaving the default “0” in the iterations box exe-
cutesit forever, until you hit the “ Stop” button).

The structure of the above MoML text is explained in detail in this chapter. A more interesting
example is given in the appendix to this chapter. You may wish to refer to that example as you read
about the details. The next chapter explains how to bypass MoML and write applets directly. The chap-
ter after that describes the actors libraries that are included in the current Ptolemy Il version.

2.2 MoML Principles

The key features of MoML include:

* Wb integration. MoOML is an XML didect. XML, the popular extensible markup language, pro-
vides a standard syntax and a standard way of defining the content within that syntax. The syntax

[test o[=]
File Help
stop I I I I I I I I I I fill
Director parameters: di |
iterations: lm— #

7k

&k

sk

ne

2 b

5k

s

oL

1 2 3 4 5 G 7 8 9 10

execution finished. —

FIGURE 2.1. Simple example of a Ptolemy || model execution control window.

2-2 Ptolemy 11

Building M odels

isasubset of SGML, and issimilar to HTML. It isintended for use on the Internet, and is intended
for precisely this sort of specialization into dialects. File references are via URIs (in practice,
URLSs), both relative and absolute, so MoML is equally comfortable working in applets and appli-
cations.

» Implementation independence. The MoML language is designed to work with avariety of tools. A
modeling tool that reads MoML filesis expected to provide a class |oader in some form. Given the
name of aclass, the class|oader must be able to instantiate it. In Java, the class loader could be that
built in to the VM. In C++ or other languages, the class loader would have to implemented by the
modeling tool. Ptolemy |1 can be viewed as a reference implementation of aMoML tool.

» Extensibility. Components can be parameterized in two ways. First, they can have named proper-
ties with string values. Second, they can be associated with an external configuration file that can
be in any format understood by the component. Typically, the configuration will be in some other
XML dialect, such as PlotML or GraphicML.

e Support for visual rendering. Modelsin MoML can provide annotations that serve as hints or spec-
ificationsfor avisual rendering tool, such as ablock diagram editor. For example, components can
specify alocation and can reference an external configuration file that defines a visual rendition,
such as an icon.

* Classes and inheritance. Components can be defined in MoML as classes which can then be
instantiated in a model. Components can extend other components through an object-oriented
inheritance mechanism.

* Semantics independence. MoML defines no semantics for an interconnection of components. It
instead provides a mechanism for attaching a director to a model. The director defines the seman-
tics of the interconnection. MoML knows nothing about directors except that they are instances of
classes that can be loaded by the class loader.

The key observation in the design of MoML is that the most important decision for such a lan-
guage is the abstract syntax supported by the language, not the concrete syntax. It is far less important
what punctuation is used, and how the textual data is structured, than what the data represents. We
have chosen a very flexible abstract syntax called clustered graphs, described below. The concrete
syntax follows from the abstract syntax by designing an XML dialect to most concisely represent this
abstract syntax.

A MoML tool has been constructed using Ptolemy I1. Some of the examples below illustrate how
MoML isused with Ptolemy I1, but keep in mind that MoML is designed carefully to be tool indepen-
dent. Its key dependence is on the abstract syntax, and in principle, it can be used with any tool that is
compatible with the abstract syntax (clustered graphs).

2.2.1 Clustered Graphs

A model is given as a clustered graph, an abstract syntax for netlists, state transition diagrams,
block diagrams, etc. An abstract syntax is a conceptual data organization. It can be contrasted with a
concrete syntax, which is a syntax for a persistent, readable representation of the data, such as EDIF
for netlists. MoML is aconcrete syntax for the clustered graph abstract syntax. A particular graph con-
figuration is called a topology.

A topology is acollection of entities and relations. We use the graphica notation shown in figure
2.2, where entities are depicted as rounded boxes and relations as diamonds. Entities have ports,
shown as filled circles, and relations connect the ports. We consistently use the term connection to

Heter ogeneous Concurrent M odeling and Design 2-3

Building Models

denote the association between connected ports (or their entities), and the term link to denote the asso-
ciation between ports and relations. Thus, a connection consists of arelation and two or more links.

The use of portsand hierarchy distinguishes our topol ogies from mathematical graphs. In a mathe-
matical graph, an entity would be avertex, and an arc would be a connection between entities. A vertex
could be represented in our schema using entities that always contain exactly one port. In a directed
graph, the connections are divided into two subsets, one consisting of incoming arcs, and the other of
outgoing arcs. The vertices in such a graph could be represented by entities that contain two ports, one
for incoming arcs and one for outgoing arcs. Thus, in mathematical graphs, entities always have one or
two ports, depending on whether the graph is directed. Our schema generalizes this by permitting an
entity to have any number of ports, thus dividing its connections into an arbitrary number of subsets.

A second difference between our graphs and mathematical graphs is that our relations are multi-
way associations, whereas an arc in agraph is atwo-way association. A third difference is that mathe-
matical graphs normally have no notion of hierarchy (clustering).

Relations are intended to serve amediators, in the sense of the Mediator design pattern of Gamma,
et al. “Mediator promotes loose coupling by keeping objects from referring to each other explicitly...”
For example, arelation could be used to direct messages passed between entities. Or it could denote a
transition between states in a finite state machine, where the states are represented as entities. Or it
could mediate rendezvous between processes represented as entities. Or it could mediate method calls
between loosely associated objects, as for example in remote method invocation over a network.

2.2.2 Abstraction

Composite entities (clusters) are entities that can contain a topology (entities and relations). Clus-
tering isillustrated by the example in figure 2.3. A port contained by a composite entity has inside as
well as outside links. Such a port serves to expose ports in the contained entities as ports of the com-
posite. This is the converse of the “hiding” operator often found in process algebras. Ports within an
entity are hidden by default, and must be explicitly exposed to be visible (linkable) from outside the
entity’. The composite entity with ports thus provides an abstraction of the contents of the composite.

-¢—— Connection—»
Link

Relation/(

Connectioné Connection

RSV

FIGURE 2.2. Visual notation and terminol ogy.

1. Unlesslevel-crossing links are allowed. MoML supports these, but they are discouraged.

2-4 Ptolemy 11

Building M odels

2.2.3 Level-Crossing Connections

For a few applications, such as Statecharts, level-crossing links and connections are needed. The
example shown in figure 2.4 has three level-crossing connections that are dightly different from one
another. The simplest level-crossing connection in figure 2.4 is at the bottom, connecting P2 to P7 via
therelation R5. The relation is contained by E1, but the connection would be essentialy identical if it

f/a O ©)

A D,

FIGURE 2.3. Transparent ports (P3 and P4) are linked to relations (R1 and R2) below their container (E1)
in the hierarchy. They may also be linked to relations at the same level (R3 and R4).

< B

R5

¢

N Y,
- ~ Y,

FIGURE 2.4. An example with level-crossing transitions.

Heter ogeneous Concurrent M odeling and Design 2-5

Building Models

were contained by any other entity. Thus, the notion of composite entities containing relations is some-
what weaker when level-crossing connections are allowed.

The other two level-crossing connectionsin figure 2.4 are mediated by transparent ports. This sort
of hybrid could come about in heterogeneous representations, where level-crossing connections are
permitted in some parts but not in others. It is important, therefore, for the classes to support such
hybrids.

2.3 Specification of a M odel

In this section, we describe the XML elements that are used to define MoML models.

2.3.1 Data Organization

Aswith al XML files, MoML files have two parts, one defining the MoML language and one con-
taining the model data. The first part is called the document type definition, or DTD. This dual specifi-
cation of content and structureisakey XML innovation. The DTD for MoML isgivenin figure 2.5. If
you are adept at reading these, it is a complete specification of the language. However, since it is not
particularly easy to read, we explain its key features here.

Every MoML file must either contain or refer to a DTD. The simplest way to do thisis with the
following file structure:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML 1.dtd">
<model name="modelname" class="classname">
model definition ...
</model>

Here, “model definition” isaset of XML eementsthat specify a clustered graph. The syntax for
these elements is described in subsequent sections. The first line above is required in any XML file. It
assertsthe version of XML that thisfileis based on (1.0) and states that the file includes external refer-
ences (in this case, to the DTD). The second and third lines declare the document type (model) and
provide referencesto the DTD.

The references to the DTD aboverefer to a“public’ DTD. The name of the DTD is
-//UC Berkeley//DTD MoML 1//EN

which follows the standard naming convention of public DTDs. The leading dash “-" indicates that
thisisnot aDTD approved by any standards body. The first field, surrounded by double slashes, in the
name of the “owner” of the DTD, “Uc Berkeley.” The next field is the name of the DTD, “DTD
MoML 1" wherethe®1” indicates version 1 of the MoML DTD. Thefina field, “EN" indicates that the
language assumed by the DTD is English.

In addition to the name of the DTD, the pocTyPE element includes a URL pointing to a copy of
the DTD on the web. If a particular MoML tool does not have accessto alocal copy of the DTD, then
it findsit at this web site.

The “model” element may be replaced by a“class’ element, asin:

2-6 Ptolemy |1

Building M odels

< !ELEMENT

<!ATTLIST

< !ELEMENT

<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT

<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST
< !ELEMENT

<!ATTLIST

< !ELEMENT
<!ATTLIST

< !ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

model (class | configure | deleteEntity | deletePort | deleteRelation | director | doc
entity | group | import | input | link | property | relation | rendition | unlin
model name CDATA #REQUIRED
class CDATA #IMPLIED>
class (class | configure | deleteEntity | deletePort | deleteRelation | director | doc
entity | group | import | input | link | property | relation | rendition | unlin
class name CDATA #REQUIRED
extends CDATA #IMPLIED>
configure (#PCDATA) >
configure source CDATA #IMPLIED>

deleteEntity EMPTY>
deleteEntity name CDATA #REQUIRED>

deletePort EMPTY>
deletePort name CDATA #REQUIRED>

deleteProperty EMPTY>
deleteProperty name CDATA #REQUIRED>

deleteRelation EMPTY>
deleteRelation name CDATA #REQUIRED>

director (configure | property)*>

director name CDATA "director"
class CDATA #REQUIRED>

doc (#PCDATA) >

doc name CDATA " _doc_ ">

entity (class | configure | deleteEntity | deletePort | deleteRelation | director | doc
entity | group | import | input | link | port | property | relation | rendition
unlink) *>

entity name CDATA #REQUIRED
class CDATA #IMPLIED>

group ANY>

group name CDATA #IMPLIED>

import EMPTY>
import source CDATA #REQUIRED
base CDATA #IMPLIED>

input EMPTY>

input source CDATA #REQUIRED
base CDATA #IMPLIED>

link EMPTY>

link insertAt CDATA #IMPLIED
port CDATA #REQUIRED
relation CDATA #REQUIRED
vertex CDATA #IMPLIED>

location EMPTY>

location value CDATA #REQUIRED>

port (configure | doc | property)*>
port class CDATA #IMPLIED
name CDATA #REQUIRED>

property (configure | doc | property) *>
property class CDATA #IMPLIED

name CDATA #REQUIRED

value CDATA #IMPLIED>
relation (property | vertex)*>
relation name CDATA #REQUIRED

class CDATA #IMPLIED>
rendition (configure | location | property)*>
rendition class CDATA #REQUIRED>

unlink EMPTY>

unlink index CDATA #IMPLIED
insideIndex CDATA #IMPLIED
port CDATA #REQUIRED
relation CDATA #REQUIRED>

vertex (location | property)*>

vertex name CDATA #REQUIRED
pathTo CDATA #IMPLIED>

FIGURE 2.5. MoML version 1.1 DTD.

Heter ogeneous Concurrent M odeling and Design

Building Models

<?xml version="1.0" standalone="no"?>
<!DOCTYPE class PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML 1.dtd">
<class name="modelname" class="classname">
class definition
</class>

We will say more about class definitions below.

The DTD may be given directly as arelative or absolute URL instead of a public DTD, using the
following syntax:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE model SYSTEM "DTD location">

<model name="modelname" class="classname">
model definition

</model >

Here “DTD location” isardative or absolute URL.

A third option isto create a standalone MoML file that includes the DTD. The result is rather ver-
bose, but has the general structure shown below:

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE model [
DTD information
1>
<model name="modelname" class="classname">
model definition
</model>

2.3.2 Overview of XML

An XML document consists of the header tags“<?xm1 ... 2" and“<!DOCTYPE ... 5" fol-
lowed by exactly one element. The element has the structure:

start tag
body
end tag

where the start tag has the form
<elementName attributess>
and the end tag has the form

</elementName>

2-8 Ptolemy |1

Building M odels

The body, if present, can contain additional elements as well as arbitrary text. If the body is not
present, then the element is said to be empty; it can optionally be written using the shorthand:

<elementName attributes/>

where the body and end tag are omitted.
The attributes are given as follows:

<elementName attributeName="attributeValue" .../>

Which attributes are legal in an element is defined by the DTD. The quotation marks delimit the
attributes, so if the attribute value needs to contain quotation marks, then they must be given using the
special XML entity “ squot ;" asin the following example:

<elementName attributeName="" ; foo""/>
The value of the attribute will be
n foo n

(with the quotation marks).

In XML “squot;” is caled an entity, creating possible confusion with our use of entity in
Ptolemy 1I. In XML, an entity is a named storage unit of data. Thus, “squot ;" references an entity
called “quot” that stores a double quote character.

The keyword “sysTEM” (which was seen above) indicates that an external URL or URI gives an
entity (above it isthe location of the DTD). This choice of keyword is positively peculiar, but we must
live with it. The keyword “cpaTa” (which we will encounter below) refers to “character data.”

2.3.3 Names and Classes

Most MoML elements have name and class attributes. The name is a handle for the object being
defined or referenced by the element. In MoML, the same syntax is used to reference a pre-existing
object asto create a new object. If anew object is being created, then the class attribute (usually) must
be given. If apre-existing object is being referenced, or if the MoML reader has a built-in default class
for the element, then the class attribute is optional. If the class attribute is given, then the pre-existing
object must be an instance of the specified class.

A name is either absolute or relative. Absolute names begin with a period “.” and consist of a
series of name fields separated by periods, asin “.x.y.z". Each name field can have a phanumeric char-
acters or the underscore“_” character. Thefirst field isthe name of the top-level model or class object.
The second field is the name of an object immediately contained by that top-level.

Any name that does not begin with a period is relative to the current context, the object defined or
referenced by an enclosing element. The first field of such a name refersto or defines an object imme-
diately contained by that object. For example, inside of an object with absolute name “ .x” the name
“y.Z" refersto an object with absolute name “.x.y.z".

A name is required to be unique within its container. That is, in any given model, the absolute
names of all the objects must be unique. There can be two objects named “z”, but they must not be

Heter ogeneous Concurrent M odeling and Design 29

Building Models

both contained by “.x.y”.

2.3.4 Model Element
A very simple MoML filelooks like this:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd" >

<model name="modelname" class="classname">

</model >

A model element has name and class attributes. This value of the class attribute must be a class that
instantiable by the MoML tool. For example, in Ptolemy I, we can define a model with:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd" >

<model name="ptIImodel" class="ptolemy.actor.TypedCompositeActor">

</model>

Here, ptolemy.actor. TypedCompositeActor IS aclass that a Java class loader can find and that
the MoML parser can instantiate. In Ptolemy 11, it isacontainer class for clustered graphs representing
executable models or libraries of instantiable model classes. A model can be an instance of NamedObj
or any derived class, although most useful models will be CompositeEntity or a derived class. Typed-
CompositeActor, as in the above example, is derived from CompositeEntity.

2.3.5 Entity Element

A model typically contains entities, asin the following Ptolemy Il example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd" >
<model name="ptIImodel" class="ptolemy.actor.TypedCompositeActor">
<entity name="source" class="ptolemy.actor.lib.Ramp"/>
<entity name="sink" class="ptolemy.actor.lib.SequencePlotter"/>
</model>

Notice the common XML shorthand here of writing “<entity ... /5" rather than “<entity
..></entity>.” Of course, the shorthand only works if there is nothing in the body of the entity
element.

An entity can contain other entities, as shown in this example:

<model name="ptIImodel" class="ptolemy.actor.TypedCompositeActor">
<entity name="container" class="ptolemy.actor.TypedCompositeActor">
<entity name="source" class="ptolemy.actor.lib.Ramp"/>
</entitys>
</model >

2-10 Ptolemy |1

Building M odels

An entity must specify a class unless the entity already exists in the containing entity or model. The
name of the entity reflects the container hierarchy. Thus, in the above example, the source entity has
thefull name*“ .ptIImodel.container.source”.

The definition of an entity can be distributed in the MoML file. Once created, it can be referred to
again by name as follows:

<model name="top" class="classname">
<entity name="x" class="classname"/>

<entity name="x">
<property name="y">
</entitys>
</model >

The property element (see section 2.3.6 below) is added to the pre-existing entity with name “x” when
the second entity element is encountered.

In principle, MoML supports multiple containment, as in the following:

<model name="top" class="classname">
<entity name="x" class="classname"/>

<entity name="y" class="classname">
<entity name=".top.x"/>
</entity>
</model>

Here, the element named “Xx” appears both in “top” and in “.top.y”. Thus, it would have two full
names, “.top.x" and “.top.y.x”. However, Ptolemy |1 does not support this, as it implements a strict
container relationship, where an object can have only one container. Thus, attempting to parse the
above MoML will result in an exception being thrown.

2.3.6 Properties

Entities (and some other elements) can be parameterized. There are two mechanisms. The simplest
one is to use the property element:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="init" value="5"
class="ptolemy.data.expr.Parameter"/>
</entity>
The property element has a name, at minimum (the value and class are optional). It is common for the
enclosing class to aready contain properties, in which case the property element is used only to set the
value. For example:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="init" value="5"/>
</entitys>

Heter ogeneous Concurrent Modeling and Design 2-11

Building Models

In the above, the enclosing object (source, an instance of ptolemy.actor.lib.Ramp) must already
contain a property with the name init. Thisistypically how library components are parameterized. In
Ptolemy 11, the value of a property may be an expression, asin “p1/50”. The expression may refer to
other properties of the containing entity or of its container. Note that the expression language is not
part of MOML, but is rather part of Ptolemy Il. In MoML, a property value is ssmply an uninterpreted
string. It isup to aMoML tool, such as Ptolemy |1, to interpret that string.

A property can be declared without a class and without a pre-existing property if it isa pure prop-
erty, one with only a name and no value. For example:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="abc"/>
</entity>

A property can aso contain a property, asin

<property name="x" value="5">
<property name="y" value="10"/>
</property>

A second, much more flexible mechanism is provided for parameterizing entities. The configure
element can be used to specify arelative or absolute URL pointing to a file that configures the entity,
or it can be used to include the configuration information in line. That information need not be MoML
information. It need not even be XML, and can even be binary encoded data (although binary data can-
not bein line; it must be in an external file). For example,

<entity name="sink" class="ptolemy.actor.lib.SequencePlotter">
<configure source="filename"/>
</entitys>

Here, filename can give the name of afile containing data. (For the SequencePlotter actor, that external
data will have PlotML syntax; PlotML is another XML dialect for configuring plotters.) Configure
information can also be given in the body of the MoML file asfollows:

<entity name="sink" class="ptolemy.actor.lib.SequencePlotter">
<configures>
configure information
</configure>
</entitys>

With the above syntax, the configure information must be textual data without any markup (no “<” or
“>™). The one exception is that the configure information may include processing instructions, which
have the form:

<?target body?>

The target is an arbitrary name (that obviously must be recognized by the object you are configuring,

2-12 Ptolemy 11

Building M odels

and the body is arbitrary text that can contain markup (except, obviously, the sequence “?>"). If you
wish to include other markup besides processing instructions, use the standard XML syntax for pre-
venting the parsing of the markup:

<entity name="sink" class="ptolemy.actor.lib.SequencePlotter">
<configure> <! [CDATA [
configure information with markup
11></configure>
</entitys>

Everything between “<! [cDATA [” and “1] >" will be passed to the class as configuration information.
The data must be textual, but it can now contain markup. The only constraint is that it cannot contain
the termination string “11 >”, so it cannot itself contain a similarly escaped body of CDATA informa-
tion. This mechanism is particularly useful if the configuration is XML data conforming to some other
DTD (i.e.,, non-MoML XML or HTML).

You can give both a source attribute and in-line configuration information, as in the following:

<entity name="sink" class="ptolemy.actor.lib.SequencePlotter">
<configure source="filename">
configure information
</configure>
</entitys>

In this case, the file data will be passed to the application first, followed by the in-line configuration
data.

In Ptolemy 11, the configure element is supported by any class that implements the Configurable
interface. That interface defines a configure() method that accepts an input stream. Both external file
data and in-line data are provided to the class as a character stream by calling this method.

2.3.7 Doc Element

Some elements can be documented using the doc element. For example,

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="init" value="5">
<doc>Initialize the ramp above the default because... </doc>
</property>
<doc>
This actor produces an increasing sequence beginning with 5.
</doc>
</entity>

With the above syntax, the documentation information must be textual data without any markup (no
“<” or “>"). If you wish to include markup, the prefered method is to use an XML processing instruc-
tion asfollows:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<doc><?html <H1>Using HTML</H1>Text with <Ismarkup</I>.?></doc>

Heter ogeneous Concurrent Modeling and Design 2-13

Building Models

</entitys>

This requires that any utility that uses the documentation information be able to handle the htm1 pro-
cessing instruction. An aternative is to use the standard XML syntax for preventing the parsing of the
markup. For example, to use HTML in the documentation, do something like this:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<doc><! [CDATA [
<Hl>Source Actor</Hl>
This actor produces an <I>increasing</I> sequence.
1] ></doc>
</entitys>

Everything between “ <! [cDATA [” and “11>" will be recorded as documentation. The only constraint
is that it cannot contain the termination string “11>", so it cannot itself contain a similarly escaped
body of CDATA information.t

More than one doc element can be included in an element. To do this, give each doc element a
name, as follows:

<entity name="entityname" class="classname">
<doc name="docname" >
doc contents
</doc>
</entity>

The name must not conflict with any preexisting property. If adoc element or a property with the spec-
ified name exists, then it is removed and replaced with the property. If no name is given, then the doc
element is assigned the name“_doc .

A common convention, used in Ptolemy I, is to add doc elements with the name “tooltip” to
define a tooltip for GUI views of the component. A tooltip is a small window with short documenta
tion that pops up when the mouse lingers on the graphical component.

2.3.8 Ports

An entity can declare a port:

<entity name="A" class="classname">
<port name="out"/>
</entitys>

In the above example, no classis given for the port. If a port with the specified name already existsin
the class for entity a, then that port is the one referenced. Otherwise, a new port is created in Ptolemy
Il by calling the newPort() method of the container. Alternatively, we can specify aclass name, asin

1. InPtolemy Il, there is amajor drawback with using the CDATA technique. When a Ptolemy |1 model exports
MoML, it does not embed documentation between “< ! [CDATA [" and“]] >" . Thiscould result in parse
errors when the exported MoML isreread. Thus, for Ptolemy 11, the preferred technique is to use processing
instructions.

2-14 Ptolemy 11

Building M odels

<entity name="A" class="classname">
<port name="out" class="classname"/>
</entitys>

In this case, aport will be created if one does not already exist. If it does already exist, thenitsclassis
checked for consistency with the declared class (the pre-existing port must be an instance of the
declared class). In Ptolemy 11, the typical classname for a port would be

ptolemy.actor.TypedIOPort

In Ptolemy 11, the container of a port isrequired to be an instance of Entity.

In Ptolemy 11, it is often useful to declare a port to be an input, an output, or both. To do this,
enclose in the port a property named “input” or “output” or both, asin the following example:

<port name="out" class="ptolemy.actor.IOPort"s>
<property name="output"/>
</port>

Thisis an example of a pure property.
It is also sometimes necessary to declare that a port is a multiport. To do this, enclose in the port a
property named “multiport” asin the following example:

<port name="out" class="ptolemy.actor.IOPort"s>
<property name="multiport"/>
</port>

The enclosing port must be an instance of 1OPort (or a derived class such as Typedl OPort), or else the
property istreated as an ordinary property.

If aport is an instance of TypedIOPort (for library actors, most are), then you can set the type in
MoML asfollows:

<port name="out" class="ptolemy.actor.IOPort"s>
<property name="type"
value="double"
class="ptolemy.actor.TypeAttribute"/>
</port>

Thisis occasionally useful when you need to constrain the types beyond what the built-in type system
takes care of. The names of the built-in types are (currently) boolean, booleanMatrix, complex, com-
plexMatrix, double, doubleMatrix, fix, fixMatrix, int, intMatrix, long, longMatrix, object, string, and
general. These are defined in the class ptolemy.data.type.BaseType.

2.3.9 Rdationsand Links

To connect entities, you create relations and links. The following example describes the topology
shown in figure 2.6:

Heter ogeneous Concurrent Modeling and Design 2-15

Building Models

<model name="top" class="classname">
<entity name="A" class="classname">
<port name="out"/>
</entitys>
<entity name="B" class="classname">
<port name="out"/>
</entitys>
<entity name="C" class="classname">
<port name="in">
<property name="multiport"/>
</port>
</entitys>
<relation name="rl" class="classname"/>
<relation name="r2" class="classname"/>
<link port="A.out" relation="rl"/>
<link port="B.out" relation="r2"/>
<link port="C.in" relation="r1"/>
<link port="C.in" relation="r2"/>
</model>

In Ptolemy I, the typical classname for a relation would be ptolemy.actor.TypedIORelation.
The classname may be omitted, in which case the newRelation() method of the container is used to cre-
ate a new relation. The container is required to be an instance of CompositeEntity. As usual, the class
attribute may be omitted if the relation aready exists in the containing entity.

Notice that this example has two distinct linksto ¢. in from two different relations. The order of
these links may be important to a MoML tool, so any MoML tool must preserve the order in which
they are specified. We say that C has two links, indexed 0 and 1.

The 1ink element can explicitly give the index number at which to insert the link. For example,
we could have achieved the same effect above by saying

<link port="C.in" relation="rl" insertAt="0"/>
<link port="C.in" relation="r2" insertAt="1"/>

FIGURE 2.6. Example topology.

2-16 Ptolemy |1

Building M odels

Whenever the insertAt option is not specified, the link is always appended to the end of the list of
links.

When the insertAt option is specified, the link is inserted at that position, so any pre-existing links
with larger indices will have their index numbers incremented. For example, if we do

<link port="C.in" relation="rl1l" insertAt="0"/>
<link port="C.in" relation="r2" insertAt="1"/>
<link port="C.in" relation="r3" insertAt="1"/>

then there will be alink to rl with index O, alink to r2 with index 2 (note! not 1), and alink to r3 with
index 1.

If the specified index is beyond the existing number of links, then null links are created to fill in.
So for example, if the first link we create is given by

<link port="C.in" relation="r2" insertAt="1"/>

then the port will have two links, not one, but the first one will be an empty link. If we then say
<link port="C.in" relation="r2"/>

then the port will have three links, with the first one being empty. If we then say
<link port="C.in" relation="r2" insertAt="0"/>

then there will be four links, with the second one being empty.

Note that the index number is not the same thing as the channel number in Ptolemy 1. In Ptolemy
I, arelation may have awidth greater than one, so asingle link may represent more than one channel
(actualy, it could even represent zero channels if that relation is not linked to another ports).

2.3.10 Classes

So far, entities have been instances of externally defined classes accessed via a class loader. They
can also be instances of classes defined in MoML. To define a classin MoML, use the class element,
asin the following example from Ptolemy |I:

<class name="Gen" extends="ptolemy.actor.TypedCompositeActor">

<entity name="ramp" class="ptolemy.actor.lib.Ramp">

<port name="output"/>

<property name="step" value="2*PI/50"/>
</entity>
<entity name="sine" class="ptolemy.actor.lib.Sine">

<port name="input"/>

<port name="output"/>
</entity>
<port name="output" class="ptolemy.actor.TypedIOPort"/>
<relation name="r1l" class="ptolemy.actor.TypedIORelation"/>
<relation name="r2" class="ptolemy.actor.TypedIORelation"/>
<link port="ramp.output" relation="rl"/>

Heter ogeneous Concurrent Modeling and Design 2-17

Building Models

<link port="sine.input" relation="rl"/>

<link port="sine.output" relation="r2"/>

<link port="output" relation="r2"/>
</class>

The class element may be the top-level element in a file, in which case the pocTypE should be
declared as “class’. It can also be nested within a model. The above example specifies the topol ogy
shown in figure 2.7. Once defined, can beinstantiated as if it were a class |loaded by the class |oader:

<entity name="instancename" class="classname"/>

The class name follows the same convention as entity names. In fact, a classis an entity with the addi-
tional feature that one can create new instances of it with the entity element.

In the above example, the relative name of the classis “Gen”. The class name might be “ . Gen” if
the classis defined at the top level, asfollows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE class PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd" >
<class name="Gen" extends="ptolemy.actor.TypedCompositeActor">
class definition
</class>

Alternatively, it may have full name* . top.Gen” if it is defined asfollows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd" >
<model name="top" extends="ptolemy.kernel.CompositeEntity">
<class name="Gen" extends="ptolemy.actor.TypedCompositeActor">
class definition
</class>
</model >

Thisallowsalibrary of class definitions to be conveniently collected within asingle MoML file.
The Gen class given at the beginning of this subsection generates a sine wave with a period of 50

FIGURE 2.7. Sinewave generator topology.

2-18 Ptolemy |1

Building M odels

samples. It isnot all that useful without being parameterized. Let us extend it and add properties:

<class name="Sinegen" extends="Gen">
<property name="samplingFrequency"
value="8000.0"
class="ptolemy.data.expr.Parameter">
<doc>The sampling frequency in Hertz.</doc>
</property>
<property name="frequency"
value="440.0"
class="ptolemy.data.expr.Parameter">
<doc>The frequency in Hertz.</doc>
</property>
<property name="phase"
value="0.0"
class="ptolemy.data.expr.Parameter">
<doc>The phase, in radians.</doc>
</propertys>
<property name="ramp.step"
value="frequency*2+*PI/samplingFrequency">
<doc>Formula for the step size.</doc>
</propertys>
<property name="ramp.init"
value="phase">
</propertys>
</class>

This class extends Gen by adding three properties, and then sets the properties of the component enti-
ties to have values that are expressions.

2.3.11 Directors

Recall that a clustered graph in MoML has no semantics. However, a particular model has seman-
tics. It may be a dataflow graph, a state machine, a process network, or something else. To give it
semantics, MOoML allows the specification of a director associated with a model, an entity, or a class.
The following example gives discrete-event semantics to a Ptolemy |1 model:

<model name="top" class="ptolemy.actor.TypedCompositeActor">
<director class="ptolemy.domains.de.kernel.DEDirector">
<property name="stopTime" value="100.0"/>
</director>

</ﬁ$del>
This example aso sets a property of the director. In Ptolemy 11, a director can only be declared within
an instance of TypedCompoasiteActor.

Heter ogeneous Concurrent Modeling and Design 2-19

Building Models

2.3.12 Import Element

Given the ability to have class definitions and clusters, it is unlikely that interesting designs will
residein asinglefile. You can import definitions in another file by giving arelative or absolute URL in
an element like this:

<import source="URL"/>
or
<import base="URL" source="URL" />

The (optional) base specifies a URL with respect to which the relative source URL should be inter-
preted. If no base is specified, then the base of the current document (the one containing the import
statement) is used, or if the current document has no base, then the current working directory is used,
or if that fails, the current classpath.

For example, you might import a library of classes. The imported file must be a MoML file. If it
defines classes with names that match classes previously defined, then the new definitions replace the
old. Imported models are always defined at the top level of the hierarchy, regardless of where the
import element is found. Thus, if the imported file contains

<model name="top" class="ptolemy.actor.CompositeEntity">
<class name="Gen" extends="ptolemy.actor.TypedCompositeActor">

</class>
</model >

then the class should be referenced by the absolute name* . top . Gen” aways, even if the import ele-
ment occurs within an entity definition.

Notice that since an import element may result in a class definition that replaces a previous class
definition, it matters where in a MoML file you place the import element. Any elements before it use
definitions in place before the imported file isread. Any elements after it will use the new definitions.

2.3.13 Input Element

It is also possible to insert MoML from another file into a particular point in your model. For
example:

<model name="top" class="...">
<entity name="a" class="...">
<input base="URL" source="URL" />
</entity>
</model>

This takes the contents of the URL specified in the source attribute of the input element and places
them inside the entity named “a’. The (optional) base specifies a URL with respect to which the rela-
tive source URL should be interpreted. If no base is specified, then the base of the current document
(the one containing the import statement) is used, or if the current document has no base, then the cur-

2-20 Ptolemy |1

Building M odels

rent working directory is used, or if that fails, the current classpath.

In summary, the difference between “import” and “input” is that “input” reads the specified
MoML code in place, whereas “import” uses the referenced MoML to create a new top-level object,
ignoring the current context. Typically, import is used to define classes that are later instantiated,
whereas input is used to create a copy of amodel defined in another file.

2.3.14 Annotationsfor Visual Rendering

The abstract syntax of MoML, clustered graphs, is amenable to visual renditions as bubble and arc
diagrams or as block diagrams. To support tools that display and/or edit MoML files visually, there are
two simple annotations that can be attached to entities and relations. A tool that does not support visua
renditions just ignores these annotations. A visual rendition might be anicon, the layout of acircuit, an
image of the structure of acomponent, or anything else that can be rendered visually.

First, an entity can specify arendition asin the following example:

<entity name="ramp" class="ptolemy.actor.lib.Ramp">
<port name="output"/>
<rendition class="iconClass">
<location value="100, 100"/>
</rendition>
</entitys>

The iconClass depends on the visual rendering tool being used. The location element specifies the
location of theicon in the visual field. MoML makes no assumptions about how this location is speci-
fied; itsvalueisjust astring. The location element is not required, so aMoML tool should be prepared
to place the icon without a specified location.

The second type of annotation supports paths that connect ports. Consider the following example:

<relation name="r" class="ptolemy.actor.TypedIORelation">
<vertex name="v1">
<location value="100, 100"/>
</vertex>
<vertex name="v2" pathTo="v1">
<location value="100, 200"/>
</vertex>
</relation>
<link port="A.out" relation="r" vertex="v1"/>
<link port="B.in" relation="r" vertex="v1"/>
<link port="C.in" relation="r" vertex="v2"/>

This assumes that there are three entities named A, B, and C. The relation is annotated with a set of ver-
tices, which will normally be rendered as graphical objects with a location. The vertices are linked
together with paths, which in a smple visual tool might be straight lines, or in a more sophisticated
tool might be autorouted paths.

Figure 2.8 illustrates how the above fragment might be rendered. The sgquare boxes are icons for
the three entities. They have ports with arrowheads suggesting direction. There is a single relation,
which shows up visually only as a set of lines and two vertices. The vertices are shown as small
squares.

Heter ogeneous Concurrent Modeling and Design 2-21

Building Models

The link elements specify not just a relation, but also a vertex within that relation. This tells the
visual rendering tool to draw a path from the specified port to the specified vertex.

2.4 Incremental Parsing

MoML may be used as a command language to modify existing models, as well as being used to
specify complete models. This technique is known as incremental parsing.

2.4.1 Adding Entities

Consider for example the simple model created as follows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd" >
<model name="top" class="ptolemy.actor.TypedCompositeActor">
contents of the model ...
</model>

Then the following segment of MoML can be used to add an entity to the model:

<entity name=".top">
<entity name="inside" class="ptolemy.actor.TypedCompositeActor"/>
</entitys>

The name of the outer entity “ . top” isthe name of the top-level model created by the first segment of
MoML. Theline

<entity name=".top">
defines the context for evaluation of the line
<entity name="inside" class="ptolemy.actor.TypedCompositeActor"/>

Any entity constructed in a previous parsing phase can be specified as the context for evaluation of a
new segment of MoML.

FIGURE 2.8. Example showing how MoML might be visually rendered.

2-22 Ptolemy 11

Building M odels

2.4.2 Using Absolute Names

Above, we have used the fact that an entity element can refer to a pre-existing element by name.
That name can be relative to the context in which the entity element exists, or it can be absolute. If it is
absolute, then it must nonethel ess be properly contained by the enclosing entity. The following exam-
pleisincorrect, and will trigger an exception:

<model name="top" class="ptolemy.actor.TypedCompositeActor">
<entity name="a" class="ptolemy.actor.TypedCompositeActor"/>
<entity name="b" class="ptolemy.actor.TypedCompositeActor">
<entity name=".top.a"/>
</entitys>
</model >

Thenthe“.top.a” cannot be specified within “b” becauseit is aready contained within “top.”

2.4.3 Adding Ports, Relations, and Links

A port or relation can be added to an entity that has been previously constructed by the parser. For
example, assuming that . top. inside has been constructed as before, we can add a port to it with the
following MoML segment:

<entity name=".top.inside">
<port name="input" class="ptolemy.actor.TypedIOPort"/>
</entity>

A relation and link can then be added as follows:

<entity name=".top">
<relation name="r" class="ptolemy.actor.TypedIORelation"/>
<link port="inside.input" relation="r"/>

</entity>

2.4.4 Deleting Entities, Relations, and Ports

An entity that has been previously constructed by the parser can be deleted by evaluating MoML.
For example, assuming that . top.inside has been constructed as before, we can delete it with the
following MoML segment:

<entity name=".top">
<deleteEntity name="inside"/>
</entity>

Any links to ports of the entity will also be deleted. Similarly, relations can be deleted using the dele-
teRelation element, and ports can be deleted using the deletePort element.

Heter ogeneous Concurrent Modeling and Design 2-23

Building Models

2.4.5 Changing Documentation, Properties, and Directors

Documentation is attached to entities using the doc element (see section 2.3.7). A doc element can
optionaly be given a name; if no name is given, then the nameisimplicitly “_doc_". To replace adoc
element, just give a new doc element with the same name. To remove a doc element, give a doc ele-
ment with the same name and an empty body, asin

<doc name="docname"></doc>
or
<doc name="docname" />

Properties can have their va ue changed using the property element (see section 2.3.6) with a new
value, for example:

<property name="propertyname" value="propertyvalue"/>
A property can be deleted using the deleteProperty element
<deleteProperty name="propertyname"/>

Note that there is ho mechanism for removing directors, but specifying a director has the result of
replacing any previously defined director, so changing directors by incremental parsing is easy.

2.4.6 Removing Links

To removeindividual links, use theunlink element. This element hasthree forms. Thefirstis

<unlink port="portname" relation="relationname"/>

Thisunlinks aport from the specified relation. If the port islinked more than once to the specified rela-
tion, then al linksto thisrelation are removed. It makes no difference whether thelink is an inside link
or an outside link, since this can be determined from the containers of the port and the relation.

The second and third forms are

<unlink port="portname" index="Ilinknumber"/>
<unlink port="portname" insideIndex="I1linknumber"/>

These both remove alink by index number. The first is used for an outside link, and the second for an
inside link. The valid indices range from O to one less than the number of links that the port has. If the
port is not a multiport, then there is at most one valid index, number 0. If an invalid index is given then
the element isignored.

The unlink element can be used to remove even null links. For example, if we have created alink
with

<link port="portname" relation="r" insertAt="1"/>

2-24 Ptolemy 11

Building M odels

where there was previously no link on this port, then this leaves a null link (not linked to anything)
with index O (see section 2.3.9), and of course alink to relation r with index 1. The null link can be
removed with

<unlink port="portname" insideIndex="0"/>

which leavesthe link to r asthe sole link, having index O.

Note that the index is not the same thing as the channel number. A relation may have a width
greater than one, so a single link may represent more than one channel (actualy, it could even repre-
sent zero channels if that relation is not linked to other suitable ports).

2.4.7 Grouping Elements

Occasionally, you may wish to incrementally parse a set of elements. For example, in the Ptolemy
Il implementation, the parser has a method for setting the context, so you could set the context to a
CompositeEntity and then create severa entities by parsing the following MoML.:

<entity name="firstEntity" class="classname"/>
<entity name="firstEntity" class="classname"/>
<entity name="firstEntity" class="classname"/>

However, the XML parser will fail to parse this because it requires that there be a single top-level ele-
ment. The group element is provided for this purpose:

<group>
<entity name="firstEntity" class="classname"/>
<entity name="firstEntity" class="classname"/>
<entity name="firstEntity" class="classname"/>
</group>

This element is ignored by the parser, in that it does not define a new container for the enclosed enti-
ties. It simply aggregates them, leaving the context the same as it is for the group element itself.

The group element may be given a name attribute, in which case it defines a namespace. All
named objects (such as entities) that are immediately inside the group will have their names modified
by prepending them with the name of the group and a colon. For example,

<group name="a'">
<entity name="b" class="classname">
<entity name="c" class="classname"/>
</entitys>
</group>

The entity “b” will actually be named “ab”. The entity “c” will not be affected by the group name.

Heter ogeneous Concurrent Modeling and Design 2-25

Building Models

2.5 Ptolemy |l Implementation

MoML is intended to be a generic modeling markup language, not one that is specialized to
Ptolemy 11. As such, Ptolemy Il may be viewed as a reference implementation of a MoML tool. In
Ptolemy 11, MoML is supported by two packages, the moml package and the actor.gui package.

The moml package contains the classes shown in figure 2.9 (see appendix A of chapter 1 for UML
syntax). The basis for the MoML parser is the parser distributed by Microstar. This parser is used in
Ptolemy Il in both applications and applets, as shown in figure 2.10. The moml package (figure 2.9)
aso includes a set of attribute classes that decorate the objects in a model with MoM L-specific infor-
mation.

The parse() methods of the MoM L Parser class read MoML data and construct a Ptolemy |1 model.
They return the top-level model. The same parser can then be used to incrementally parse MoML seg-
ments to modify that model. The exportMoM L () methods of Ptolemy |1 objects can be used to produce
aMoML file given amodel. Thus, MoML can be used as the persistent file format for Ptolemy 11 mod-
els.

2.5.1 Applications
A model defined asa MoML file may be executed on the command-line by typing

ptolemy filename.xml

This assumes that the directory $pTI1/bin is in your path, where $pTIT is the location of the
Ptolemy Il installation. That directory contains a script that creates an instance of the class PtolemyAp-
plication, shown in figure 2.10. That class contains an instance of Model Frame, which defines a top-
level window that serves as an interface for executing a model. An example of such a top-level win-
dow isshown in figure 2.11. The ModelFrame is actually just a top-level window and a menubar con-
taining an instance of ModelPane. The ModelPane has two parts. On the left, it displays al the top-
level parameters of amodel and its director, permitting the user to interactively edit them. On theright,
it stacks the displays of any components at the top level of the model that implement the Placeable
interface, such as signal plotters.

The ptolemy script has the following usage:

Usage: ptolemy [options] [file ...]

Options that take values:
-class <classname>
-<parameter name> <parameter values

Boolean flags:
-help -test -version

Notice that more than one MoML file can be given. The result is that multiple files will be executed in
the same Java virtual machine, in separate threads. By default, models are opened using the Ptole-
myApplication class. However, any other class with amain() method can be specified instead using the
-class option.

If amodel hastop-level parameters, the default value of those parameters can be given on the com-

2-26 Ptolemy |1

Building M odels

com.microstar.xml.HanderBase

+charData(data : charf], start : int, length : int)

+endDocument()
+endElement(name : String)
+endExternalEntity(systemID : String)

+processinglinstruction(target : String, data : String)
+resolveEntity(publicID : String, systemID : String)
+startDocument()

+startElement(name : String)
+startExternalEntity(systemID : String)

+attribute(name : String, value : String, isSpecified : boolean)

MoMLParser

+docTypeDecl(name : String, publicID : String, systemID : String)

+error(message : String, systemiD : String, line : int, column : int)
+ignorableWhitespace(data : char[], start : int, length : int)

+MoML_DTD_1 : String
-_base : URL

-_current : Object
-_currentElement : String
-_manager : Manager
-_panel : Container
-_parser : XmlParser
-_toplevel : NamedObj
-_workspace : Workspace

com.microstar.xml.XmlParser

+MoMLParser()

+MoMLParser(w : Workspace)

+MoMLParser(w : Workspace, container : Container)
+parse(base : URL, input : InputStream) : NamedObj
+parse(base : URL, reader : Reader) : NamedObj
+parse(input : String) : NamedObj

+reset()

+setToplevel(toplevel : NamedObj)
#_currentExternalEntity() : String

ChangeRequest

+execute()

uses
MoMLChangeRequest
0..n
-_parser : MoMLParser
-_staticParser : MoMLParser
+MoMLChangeRequest(originator : Object, parser : MoMLParser, request : String)
+MoMLChangeRequest(originator : Object, context : NamedObj, request : String)
«Interface»
Locatable
Attribute
+getLocation() : double[]
+setLocation(location : double[]) FgetContainer() : NamedObj
_ | i
Vertex Icon Documentation

-_location : int[]

-_location : int[]

-_value : String

-_linked : Vertex

+lcon(container : TypedCompositeActor, name : String)

-_ports : LinkedList

+Vertex(container : Relation, name : String),
+getLinkedVertex() : Vertex
+setLinkedVertex(vertex : Vertex)

Relation

Port

+remove(linkNumber : int) : Vertex
+size() : int

+consolidate(object : NamedObj) : String|
+getValue() : String

+setValue(value : String)

+Links(container : Port, name : String),
+add(linkNumber : int, vertex : Vertex)
+clear()

+get(linkNumber : int) : Vertex
+isEmpty() : boolean

+iterator() : Iterator

FIGURE 2.9. Classes supporting MoML in the moml package.

MoMLAttribute

-_momlDescription : String

+setMoMLDescription(moml : String)

Heter ogeneous Concurrent M odeling and Design

2-27

Building Models

«Interface»

ExecutionListener JApplet
+execut?onE_rr9r(m : Manager, ex : Exception) +destroy()
-+executionFinished(m : Man_ager) 7777777777777777777777777777777 +getAppletinfo() : String
+managerStateChanged(m : Manager) +getParameterinfo() : String[l[]

-+init()
] +start()
| +stop()
CompositeActorApplication \
BasicJApplet
#_models : List
+ComponentActorApplication(args : String[]) -
+add(model : CompositeActor) +report(ex : Exception)
+main(args : String[]) +report(message : String)
+remove(model : CompositeActor) +report(message : String, ex : Exception)
[+ . i #_concatStringArrays(first : Strin , second : Strin : Strin
report(message : String) 1¢] ! l¢] g g
+report(ex : Exception) #_getStackTrace(ex : Exception) : String
+report(message : String, ex : Exception)
+startRun(model : CompositeActor)
+waitForFinish() PtolemyApplet
#_parseArg(arg : String) : boolean
’ >
#_parseArgs(a(gs : String[]) #_manager : Manager
#_usage() : String #_setupOK : boolean

#_toplevel : CompositeActor
#_workspace : Workspace

MoMLParser #_createRunControls(number : int) : JPanel
I~ #_go()
MoMLApplication 4 stop()
uses +parse(base : URL, in : InputStream)
0.n
+MoMLApplication(args : String[])
+main(args : String[]) MoMLApplet
_read(base : URL, in : InputStream) CompositeActor creates PP
uses
creates
1.1 1.1
PtolemyApplication JFrame JPanel
-_frames : HashMap
+PtolemyApplication(args : String[])
+createFrame(model : CompositeActor) : ModelFrame
+main(args : String[])
‘ ModelPane
ModelFrame -_model : CompositeActor
+ModelPane(model : CompositeActor)
-_application : GUIApplication :g::alsgle%?acngg :ocs(i)t:fggrr
-_model : CompositeActor +getDefauItB.utton($
-_pane : ModelPane
P - - - — +setDisplayPane(pane : Container)
+ModelFrame(model : CompositeActor, app : GUIApplication) creates +setModel(model : CompositeActor)
+getModel() : CompositeActor +startRun()
+modelPane() : ModelPane +stopRun()
+report(ex : Exception)
+report(message : String)
+report(ex : Exception, message : String)
+setModel(model : CompositeActor)
#_about() StatusBar
#_close()
#_help() 1.1
#_open()
#_print()
#_save()
#_saveAs()
JMenuBar
1.1

FIGURE 2.10. Applet and application classesin the actor.gui package.

2-28 Ptolemy |1

Building M odels

mand line. Also, the director parameters can be set by the same mechanism. For example,

bash-2.02$ cd $PTII/ptolemy/moml/demo
bash-2.02$ ptolemy -iterations 1000 modulation.xml

results in the display shown in figure 2.11.
2.5.2 Applets

The same XML file can be used in an application or an applet. The applet mechanism is explained
in detail in this subsection.

An applet is a Java class that can be referenced by an HTML file and accessed over the web.
Unfortunately, most browsers available today do not have built-in support for the (relatively recent)
version of Javathat Ptolemy Il is based on. The workaround is to use the Java Plug-In, which invokes
Sun's Java Runtime Environment (JRE), instead of the default Java runtime in the browser. The table
below lists platform and plug-in avail ability.

Table 18: Plug-in Availability

Platform Availability
Windows 95, 98, NT JDK1.2.2 Plug-in installed as part of the JDK or JRE. See http://www.javasoft.com/products/plugin/
Irix Asof 2/15/00, JDK 1.2 Plug-in not yet available, see http://www.sgi.com/Products/Eval uation/#java_plugin
Solaris 2.6, 2.7 Custom version of Netscape Navigator available, see http://www.sun.com/solaris/netscape
Linux Asof 2/15/00, JIDK 1.2 Plug-in not yet available, see http://www.blackdown.org/. Use the appletviewer pro-
gram
Solaris 2.5.1 and all Use the appletviewer program to run the applets.
other platforms with
JOK 1.2
Egamodulalion =] E3
File Help
Stop Modulated Waveform Example fil

Model parameters:

frequency1: |p1*0.2
frequency?: \pi=o.02

bbb

sample count ®1 03

execution finished. /1

Director parameters:

iterations: |1000

o2 E - —T 3@

FIGURE 2.11. Sinusoidal modulation example specified in MoML.

Heter ogeneous Concurrent Modeling and Design 2-29

Building Models

Platforms that do not have the Java Plug-in 1.2.2, but do have the Java Development Kit (JDK)
1.2.2 can use Sun’s appletviewer command to run applets locally. Each demonstration directory has a
makefile rule that sets the cLASSPATH appropriately and then calls appletviewer, so the demo can be

run by typing
make demo

However, the appletviewer does not render the HTML text in the web page, so you get only a subset of
the information.

Regrettably, the way the plug-in is invoked depends on the browser being used. One approach to
creating appletsthat use the plug-in isto write them asif they were to use the native Java runtime envi-
ronment of the browser, and then invoke Sun’s Plug-In HTML Converter, available on their web site.
The converter does not always work, however. Thus, we recommend writing the HTML files directly
rather than using the converter.

Sample HTML is shown inis shown in figure 2.12. Thisinstantiates an instance of the MoMLAp-
plet class, and gives it a MoML file to read. The incredible ugliness and awkwardness of this text is
hopefully transitory, while browser vendors agree on how to properly support plug-ins. You should be
able to essentially copy what we have, making very few modifications, and get things to work.

The code in figure 2.12, amazingly, relies on the fact that Microsoft's Internet Explorer under-

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 680
HEIGHT = 300
NAME = "Query"
codebase="http://java.sun.com/products/plugin/1.2.2/jinstall-1 2 2-win.cab#\
Version=1,2,2,0">
<PARAM NAME = CODE VALUE = ptolemy.actor.gui.MoMLApplet>
<PARAM NAME = CODEBASE VALUE = ../../..>
<PARAM NAME=ARCHIVE VALUE="
ptolemy/ptsupport.jar,
ptolemy/domains/sdf/sdf.jar">
<PARAM NAME NAME VALUE = "MoML" >
<PARAM NAME "type" VALUE="application/x-java-applet;version=1.2.2">
<PARAM NAME "background" VALUE = "#faf0e6">
<PARAM NAME "model" VALUE = "modulation.xml"s>
<COMMENT >
<EMBED type="application/x-java-applet;version=1.2.2"
code="ptolemy.actor.gui.MoMLApplet"
codebase=../../..
archive="
ptolemy/ptsupport.jar,
ptolemy/domains/sdf/sdf.jar"
NAME = "MoML"
WIDTH = 680
HEIGHT = 300
background="#faf0e6"
model="modulation.xml"
pluginspage="http://java.sun.com/products/plugin/1.2.2/plugin-install.html">
<NOEMBED>< /COMMENT >

<I>If you were able to run applets, you would have one here.</I>

</NOEMBED>< /EMBED>
</OBJECT>

FIGURE 2.12. An HTML segment that invokes the Java 1.2.2 Plug-in under both Netscape and Internet
Explorer (it is regrettable how complex thisis). Thistext can be found in $PTI1/ptolemy/moml/demo/mod-
ulation.htm.

2-30 Ptolemy |1

Building M odels

stands some HTML tags that Netscape Navigator does not, and vice versa. |E uses the OBJECT ele-
ment to specify plug-ins. The “classid” is a magic string that is always the same (it identifies the Java
version 1.2.2 run-time environment, in a not very user-friendly way).

The coMMENT element is understood only by Internet Explorer, so it is used to hide from IE the
EMBED element, which Netscape uses to support plug-ins. The Sun appletviewer, a utility program for
invoking applets without rendering the surrounding HTML, also uses this tag.

In the case of the oBJECT element, the specified “ codebase” is the place to find the plug-inif it is
not adready installed. The codebase for the applet itself (the root of the tree to search for classes) is
given by a pArRAM element with name “codebase.” This is confusing, especialy given that for the
EMBED element, the plug-in location is given by the pluginspage parameter, and codebase refers to the
code base for the applet. We can only hope that some day there will be standardization of HTML.

In the case of the oBgECT element, if there were any additional applet parameters, they would be
given in <PARAM> tags. For the EMBED element, applet parameters are given as parameters of the
<EMBED> tag.

An HTML file containing the segment shown in figure 2.12 can be found in $PT1/ptolemy/moml/
demo/modulation.htm, where $PT11 is the home directory of the Ptolemy |1 installation. For example,
on aWindows NT machine using bash asa shell, Ptolemy |l might beinstalled in d:\ptll; using the sys-
tem control panel, set the environment variable PTI1I set to d:/ptll.

Since our example applets are in a directory $PTI1/ptolemy/moml/demo, the codebase for the
appletis“../../.." in figure 2.12, which is the directory $PTII. This permits the applets to refer to any
classin the Ptolemy I tree.

There are some parameters in the HTML in figure 2.12 that you may want to change. The width
and the height, for example, specify the amount of space on the screen that the browser gives to the
applet. Unfortunately, they are specified twice in thefile.

2.5.3 Importsin MoM L

MoML supports importing external files. As usual with network based software, there can be con-
siderable subtlety identifying where the external files are. The import element in MoML can specify a
URL, in which case the file can only be found on a computer that is connected to the internet. To sup-
port standalone execution of Ptolemy models on a non-networked machine, for applications, imports
can berelative to the classpath. Thus, the following MoML segment can be used to import a composite
actor that generates a sine wave:

<import source="ptolemy/moml/demo/sinewave.xml"/>

Thiswill work regardless of the directory location of the XML file, since the classpath has to point to
the Ptolemy Il root in order for the applications to be run. Note however that an applet cannot use an
XML file that gives this import element, since it is not allowed to know the classpath, and therefore
cannot identify thefile.

2.5.4 Exporting MoM L

Almost any Ptolemy |1 object can export of MoML description of itself. The following methods of
NamedObj (and derived class) are particularly useful:

exportMoML () : String

Heter ogeneous Concurrent Modeling and Design 2-31

Building Models

exportMoML (output: Writer)

exportMoML (output: Writer, depth: int)

exportMoML (output: Writer, depth: int, name: String)
_exportMoMLContents (output: Writer, depth: int)

Since any object derived from NamedObj can export MoML, MoML becomes an effective persistent
format for Ptolemy Il models. It is much more compact than seriaizing the objects

There is one significant subtlety that occurs when an entity is instantiated from a class defined in
MoML. Consider the example:

<model name="top" class="ptolemy.kernel.CompositeEntity">
<class name="master" extends="ptolemy.kernel.ComponentEntity"s>
<port name="p" class="ptolemy.kernel.ComponentPort"/>
</class>
<entity name="derived" class="master"/>
</model >

Thismodel defines one class and one entity that instantiates that class. When we export MoML for this
top-level model, we get:

<model name="top" class="ptolemy.kernel.CompositeEntity">
<class name="master" extends="ptolemy.kernel.ComponentEntity"s>
<port name="p" class="ptolemy.kernel.ComponentPort"s>
</port>
</class>
<entity name="derived" class=".top.master"s>
</entitys>
</model >

Aside from some minor differencesin syntax, thisisidentical to our specification above. In particular,
note that the entity “derived” does not describe its port “p” even though it certainly has such a port.
That port isimplied because the entity instantiates the class.

Suppose that using incremental parsing we subsequently modify the model as follows:

<entity name=".top.derived"s>
<port name="qg" class="ptolemy.kernel.ComponentPort"/>
</entity>

That is, we add a port to the instantiated entity. Then the added port is exported when we export
MoML. That is, we get:

<model name="top" class="ptolemy.kernel.CompositeEntity">
<class name="master" extends="ptolemy.kernel.ComponentEntity">
<port name="p" class="ptolemy.kernel.ComponentPort"s>
</port>
</class>
<entity name="derived" class=".top.master"s>
<port name="g" class="ptolemy.kernel.ComponentPort"s>

2-32 Ptolemy |1

Building M odels

</port>
</entitys>
</model >

This is what we would expect. The entity is based on the specified class, but actually extends it with
additional features. Those features are persistent.

Properties are treated more simply. They are always described when MoML is exported, regardless
of whether they are defined in the class on which an entity is based. The reason for thisis that proper-
ties are usually modified in instances, for example by giving them new values.

The NamedObj API exposes the fact that an entity is an instance of aclass defined elsewhere. The
following two methods can be used to determine, respectively, what class a given entity was instanti-
ated from, and what objects have been instantiated from a given class.

getDeferMoMLDefinitionTo (deferTo: NamedObj)
deferredMoMLDefinitionFrom() : List

There is an additional subtlety. If a topology is modified by directly making kernel calls, then
exportMoML () will normally export the modified topology. However, if a derived component is modi-
fied by direct kernel calls, then exportMoML() will fail to catch the changes. In fact, only if the
changes are made by evaluating MoML will the modifications be exported. This actualy can prove to
be convenient. It means that if a model mutates during execution, and is later saved, that a user inter-
face can ensure that only the original model, before mutations, is saved. It does this by creating a class
for the model, instantiating the class, and executing the instance.

2.5.5 Special Attributes

A number of classes derived from Attribute are shown in figure 2.9. These classes are used to dec-
orate a Ptolemy Il object with additional information that is relevant to a GUI or other user interface.
Some of these are described here.

Doc element. When aMoML fileis parsed by Ptolemy 11, a doc element is converted to an instance of
the specia property of class Documentation. This property is contained by the entity, port, or relation
that encloses the doc element. There may be more than one instance of Documentation contained by a
single object. To extract all documentation that has been so associated with an object, use code like the
following:

import ptolemy.kernel.util.NamedObj;
import ptolemy.moml.Documentation;

NamedObj obj = object with documentation;
Iterator docs = obj.attributelList (Documentation.class) ;
while (docs.hasNext ()) {
Documentation doc = (Documentation)docs.next () ;
System.out.println (doc.getValue()) ;

}

This code would be used, for example, by a GUI wishing to present documentation.

Heter ogeneous Concurrent Modeling and Design 2-33

Building Models

2.5.6 Inheritance

MoML supports inheritance by permitting you to extend existing classes. Ptolemy Il reads MoML
that uses this inheritance mechanism. For example, consider the following MoML file:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd" >
<model name="top" class="ptolemy.kernel.CompositeEntity">
<class name="base" extends="ptolemy.kernel.CompositeEntity">
<entity name="el" class="ptolemy.kernel.ComponentEntity">
</entitys>
</class>
<class name="derived" extends="base">
<entity name="e2" class="ptolemy.kernel.ComponentEntity"/>
</class>
</model>

Here, the “derived” class extendsthe “base” class by adding another entity to it.

2.5.7 Support for Incremental Parsing

Incremental parsing is when a MoML parser is used to modify a pre-existing model (see section
2.4). A MoML parser that was used to create the pre-existing model can be used to modify it. If thereis
no such parser, then it is necessary to call the setToplevel () method of MoMLParser to associate
the parser with the pre-existing model.

Incremental parsing should (usually) be done using a change request. A change request is queued
with a composite entity container by calling its requestChange() method. This ensures that the muta-
tion is executed only when it is safe to modify the structure of the model. The class MoML ChangeRe-
guest (see figure 2.9) can be used for this purpose. Simply create an instance of this class, providing
the constructor with a string containing the MoML code that specifies the change.

2.6 Acknowledgements

Many thanks to Ed Willink of Racal Research Ltd. and Simon North of Synopsys for many helpful
suggestions, only some of which have made it into this version of MoML. Also, thanks to Tom Henz-
inger, Alberto Sangiovanni-Vincentelli, and Kees Vissers for helping clarify issues of abstract syntax.

2-34 Ptolemy |1

Building M odels

Appendix C: Example

Figure 2.11 shows the execution window of a ssimple Ptolemy 1l model in the SDF domain. This
model generatestwo sinusoidal waveforms and multiplies them together. This appendix gives the com-
plete MOML code. The MoML codeis divided into two files. Thefirst of these defined a component, a
sinewave generator. The second creates two instances of this sinewave generator and multiplies their
outputs. The code listings are (hopefully) self-explanatory.

C.1 Sinewave Gener ator

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<class name="sinewave" extends="ptolemy.actor.TypedCompositeActor">
<doc>
This composite actor generates a sine wave.
</doc>
<property name="samplingFrequency"
value="8000.0"
class="ptolemy.data.expr.Parameter">
<doc>The sampling frequency, in the same units as the frequency.</doc>
</propertys>
<property name="frequency"
value="440.0"
class="ptolemy.data.expr.Parameter">
<doc>
The frequency of the sinusoid, in the same units as the
sampling frequency.
</doc>
</propertys>
<property name="phase"
value="0.0"
class="ptolemy.data.expr.Parameter">
<doc>The phase, in radians.</doc>
</property>
<!-- Define the actors. -->
<entity name="ramp" class="ptolemy.actor.lib.Ramp">
<property name="step"
value="frequency*2+*PI/samplingFrequency">
</property>
<property name="init" value="phase"></propertys>
<port name="output"s></port>
</entity>
<entity name="sine" class="ptolemy.actor.lib.Sine">
<port name="input"></ports>
<port name="output"s></port>
</entity>
<!-- Define the ports. -->
<port name="output" class="ptolemy.actor.TypedIOPort">
<property name="output"/>
<doc>Sinusoidal waveform output.</doc>
</port>

<!-- Make the connections -->

<relation name="rl" class="ptolemy.actor.TypedIORelation"></relation>
<link port="ramp.output" relation="rl"/>

<link port="sine.input" relation="rl"/>

<relation name="r2" class="ptolemy.actor.TypedIORelation"></relation>
<link port="sine.output" relation="r2"/>
<link port="output" relation="r2"/>

</class>

Heter ogeneous Concurrent Modeling and Design 2-35

Building Models

C.2 Modulation

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<model name="modulation" class="ptolemy.actor.TypedCompositeActor">
<doc>Multiply a low-frequency sine wave (the signal)
by a higher frequency one (the carrier).</doc>
<property name="frequencyl" value="PI*0.2"
class="ptolemy.data.expr.Parameter">
<doc>Frequency of the carrier</doc>
</propertys>
<property name="frequency2" value="PI*0.02"
class="ptolemy.data.expr.Parameter">
<doc>Frequency of the sinusoidal signal</doc»>
</propertys>
<director class="ptolemy.domains.sdf.kernel.SDFDirector">
<property name="iterations" value="100">
<doc>Number of iterations in an execution.</doc>
</propertys>
</director>

<import source="sinewave.xml"/>
<!-- Define the actors -->
<entity name="carrier" class=".sinewave">
<property name="samplingFrequency" value="2*PI"></property>
<property name="frequency" value="frequencyl"></propertys>
<port name="output"s></ports>
</entity>

<entity name="signal" class=".sinewave'">
<property name="samplingFrequency" value="2*PI"></property>
<property name="frequency" value="frequency2"></propertys>
<port name="output"></ports>

</entity>

<entity name="mult" class="ptolemy.actor.lib.MultiplyDivide">

<port name="multiply"s></ports>
<port name="output"s></ports>

</entity>

<entity name="display" class="ptolemy.actor.gui.SequencePlotter">
<port name="input"s></ports

<!-- Configure provided in both a referenced file and local data -->

<configure source="plotConfigure.xml"><! [CDATA [
<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD PlotML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/PlotML_1.dtd">
<plot>
<size width="450" height="300"/>
<title>Modulated Waveform Example</titles
</plot>
]11></configure>
</entity>
<!-- Make the connections -->

<relation name="r1l" class="ptolemy.actor.TypedIORelation"></relation>

<link port="carrier.output" relation="rl"/>
<link port="mult.multiply" relation="rl1"/>

<relation name="r2" class="ptolemy.actor.TypedIORelation"></relation>

<link port="signal.output" relation="r2"/>
<link port="mult.multiply" relation="r2"/>
<link port="display.input" relation="r2"/>

<relation name="r3" class="ptolemy.actor.TypedIORelation"></relations>

<link port="mult.output" relation="r3"/>
<link port="display.input" relation="r3"/>
</model>

2-36

Ptolemy 11

Custom Applets

Authors:
Edward A. Lee
Christopher Hylands

3.1 Introduction

Ptolemy 1l models can be embedded in applets. In most cases, the MoM LA pplet class can be used,
as described in the previous chapter. Sometimes, however, it is useful to be able to define a custom
applet class with a more sophisticated user interface or a more elaborate method for model construc-
tion or manipulation. This chapter explains how to do that.

For convenience, most domains include a base class XXApplet, where XX is replaced by the
domain name. This section uses a DE domain applet to illustrate the basic concepts, so the base classis
DEApplet. Refer to subsequent chapters and to the code documentation for more compl ete information
about the classes and methods being used. DEApplet is derived from PtolemyApplet, as shown in fig-
ure 3.1 (see appendix A of chapter 1 for UML syntax).

3.2 HTML FilesContaining Applets

An applet is a Java class that can be referenced by an HTML file and accessed over the web.
Unfortunately, most browsers available today do not have built-in support for the (relatively recent)
version of Javathat Ptolemy 11 is based on. The work around is to use the Java Plug-1n, which invokes
Sun's Java Runtime Environment (JRE), instead of the default Java runtime in the browser. For details
on how to use the Java Plug-In, refer to section 2.4.2.

Sample HTML for a custom applet is shown in figure 3.2. The incredible ugliness and awkward-
ness of thistext is hopefully transitory, while browser vendors agree on how to properly support plug-
ins. You should be able to essentially copy what we have, making very few modifications. An HTML
file containing the segment shown in figure 3.2 can be found in $PTI1/doc/tutorial/tutorial.htm, where
$PTII isthe home directory of the Ptolemy |1 installation. Also in that directory are anumber of sample

Heter ogeneous Concurrent M odeling and Design 31

Custom Applets

«Interface»

ExecutionListener Applet
+executionError(m : Manager, ex : Exception) +getAppletinfo() : String
+executionFinished(m : Manager) +getParameterinfo() : String[][]
+managerStateChanged(m : Manager) +init()

+start()
+stop()
listener

PtolemyApplet
Manager f
notifies

-_manager : Manager

-_toplevel : TypedCompositeActor

+PtolemyApplet()

+report(e : Exception)

+report(msg : String, e : Exception)

#_concatStringArrays(first : String[][], second : String[][]) : String[][]
1 [|#_createRunControls(numButtons : int) : Panel

#_go()

#_stop()

SDFApplet

#_director : SDFDirector

DEApplet

#_director : DEDirector:

FIGURE 3.1. UML static structure diagram for PtolemyApplet, a convenience base class for constructing
applets. PtolemyApplet isin the ptolemy.actor.gui package.

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
width="700"
height="300"
codebase="http://java.sun.com/products/plugin/1.2.2/jinstall-1 2 2-win.cab#V\
ersion=1,2,2,0">
<PARAM NAME="code" VALUE="doc.tutorial.TutorialApplet.class">
<PARAM NAME="codebase" VALUE="../..">
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.2.2">
<COMMENT >
<EMBED type="application/x-java-applet;version=1.2.2"
width="700"
height="300"
code="doc/tutorial/TutorialApplet.class"
codebase="../.."
pluginspage="http://java.sun.com/products/plugin/1.2.2/plugin-install.html">
</COMMENT >
<NOEMBED>
No JDK 1.2 support for applet!
</NOEMBED>
</EMBED>
</OBJECT>

FIGURE 3.2. An HTML segment that invokes the Java 1.2 Plug-in under both Netscape and Internet
Explorer (it is regrettable how complex thisis). Thistext can be found in $PTI1/doc/tutorial/tutorial .htm.

Ptolemy 11

Custom Applets

Java files for applets, each named Tutorial Appletn.java, where n is an integer starting with 1. These
files contain a series of applet definitions, each with increasing sophistication, that are discussed
below. To compile and use each file, it must be copied into Tutorial Applet.java (without the n).

Since our example applets are in adirectory $PT1I/doc/tutorial, the codebase for the appletis“../..”
in figure 3.2, which is the directory $PTII. This permits the applets to refer to any classin the Ptolemy
Il tree.

There are some parametersin the HTML in figure 3.2 that you may want to change. The width and
the height, for example, specify the amount of space on the screen that the browser givesto the applet.
Unfortunately, they are specified twice in thefile.

Fortunately, getting the Java code right is easy compared to getting the HTML right.
3.2.1 Creating Models

Infigure 3.3 isalisting of an extremely simple applet that runs in the discrete-event (DE) domain.
Thefirst line declares that the applet isin a package called “doc.tutorial,” which matches the directory
name relative to the codebase specified inthe HTML file.

In the next three lines, the applet imports three classes from Ptolemy I1:

* DEApplet: A baseclassfor DE appletsthat is provided for convenience. This base class creates a
top-level composite actor called toplevel, amanager called manager, and adirector caled
_director (al protected members of the class, shown in figure 3.1). We will see shortly how to
use these.

* Clock: Thisisan actor that generates aclock signal, which by default is a sequence of events
placed one time unit apart and alternating in value between 1 and 0.

* TimedPlotter: Thisisan actor that plots functions of time.

Next, the construct
public class TutorialApplet extends DEApplet { ... }

defines a class called Tutorial Applet that extends DEApplet. The new class overrides the init() method
of the base class with the following body:

package doc.tutorial;

import ptolemy.domains.de.gui.DEApplet;
import ptolemy.actor.lib.Clock;

import ptolemy.actor.gui.TimedPlotter;

public class TutorialBApplet extends DEApplet {
public void init() {

super.init () ;

try {
Clock clock = new Clock(_toplevel, "clock") ;
TimedPlotter plotter = new TimedPlotter(_ toplevel, "plotter");
_toplevel.connect (clock.output, plotter.input);

} catch (Exception ex) {}

}
}

FIGURE 3.3. An extremely simple applet that runsin the DE domain. Thistext can be found in $PTII/tuto-
rial/Tutorial Appletl.java. It should be copied to Tutorial Applet.java before compiling. Thistext can be
found in $PTI1/doc/tutorial/Tutorial Appletl.java.

Heter ogeneous Concurrent M odeling and Design 3-3

Custom Applets

super.init () ;

try {
Clock clock = new Clock(toplevel, "clock") ;

TimedPlotter plotter = new TimedPlotter(toplevel, "plotter");
_toplevel.connect (clock.output, plotter.input) ;
} catch (Exception ex) ({}

Thisfirst invokes the base class, then creates an instance of Clock and an instance of TimedPlotter, and
connects them together.

The constructors for Clock and TimedPlotter take two arguments, the container (a composite
actor), and an arbitrary name (which must be unique within the container). This example uses the vari-
able toplevel, provided by the base class, as a container. The connection is accomplished by the
connect() method of the composite actor, which takes two ports as arguments. Instances of Clock have
one output port, output, which is a public member, and instances of TimedPlotter have one input
port, input, which is also a public member. We will discussthetry . .. catch statement below.

3.2.2 Compiling

To compile this class definition, you must first copy Tutorial Appletl.javainto Tutorial Applet.java
(Java requires that file names match the names of the classes they contain). Then set the CLASSPATH
environment variable to point to the root of the Ptolemy Il tree. For example, in bash, assuming the
variable PT11 is set,

bash-2.02$% cd $PTII/doc/tutorial
bash-2.02% cp TutorialAppletl.java TutorialApplet.java
bash-2.023 javac -classpath ../.. TutorialApplet.java

(The part before the “$” is the prompt issued by bash). You should now be able to run the applet with
the command:

bash-2.02$ appletviewer tutorial.htm

The result of running the applet is a new window which should ook like that shown in figure 3.4. This
isnot (yet) avery interesting applet. Let usimprove onit.

3.2.3 Reporting Errors

The codein figure 3.3 has atry ... catch statement that does something that is amost never a good
idea it discards exceptions. If an error were to occur during construction of the model, this statement
would mask the error, and the applet would silently fail.

The base class PtolemyApplet, fortunately, provides a report() method (see figure 3.1) for report-
ing errorsin auniform way. The modified codeis shown in figure 3.5.

3.2.4 Graphical Elements

The applet, as written so far, has the annoying feature that it opens a new window to display the

34 Ptolemy 11

Custom Applets

plotted results, as shown in figure 3.4. Most applets will want to display their results in the browser
window, as part of the text of aweb page.

The TimedPlotter actor, and most other Ptolemy |1 components with graphical elements, imple-
ments the Placeable interface. This interface has a si