
DESIGN METHODOLOGY FOR DSP

Edward A. Lee, Principal Investigator

Department of Electrical Engineering and Computer Science
University of California, Berkeley CA 94720

Final Report 1999-00, Micro Project #99-068
Industrial Sponsors: Cadence, Hewlett-Packard, Hughes, Philips

ABSTRACT

The Ptolemy project studies modeling, simulation, and design
of concurrent, real-time, embedded systems. The focus is on
assembly of concurrent components. The key underlying prin-
ciple in the project is the use of well-defined models of compu-
tation that govern the interaction between components. A
major problem area being addressed is the use of heteroge-
neous mixtures of models of computation. A software system
called Ptolemy II is being constructed in Java. The overall
Ptolemy project is fairly large, with additional support from
DARPA, GSRC, and a number of other companies, and is
strongly collaborative. The MICRO project has focused on
real-time signal processing, although the larger project is
broader.

1. The Context

The objectives of the Ptolemy Project include many aspects of
designing embedded systems, ranging from designing and sim-
ulating algorithms to synthesizing hardware and software, par-
allelizing algorithms, and prototyping real-time systems.
Research ideas developed in the project are implemented and
tested in the Ptolemy software environment. The Ptolemy soft-
ware environment, which serves as our laboratory, is a system-
level design framework that allows mixing models of computa-
tion and implementation languages.

In designing digital signal processing and communications sys-
tems, often the best available design tools are domain specific.
The tools must be able to interact. Ptolemy allows the interac-
tion of diverse models of computation by using the object-ori-
ented principles of polymorphism and information hiding. For
example, using Ptolemy, a high-level dataflow model of a sig-
nal processing system can be connected to a hardware simula-
tor that in turn may be connected to a discrete-event model of a
communication network.

A part of the Ptolemy project concerns programming method-
ologies commonly called “graphical dataflow programming”
that are used in industry for signal processing and experimen-
tally for other applications. By “graphical” we mean simply
that the program is explicitly specified by a directed graph
where the nodes represent computations and the arcs represent
streams of data. The graphs are typically hierarchical, in that a
node in a graph may represent another directed graph. In
Ptolemy II the nodes in the graph are subprograms specified in
Java.

It is common in the signal processing community to use a
visual syntax to specify such graphs, in which case the model is
often called “visual dataflow programming.” But it is by no
means essential to use a visual syntax.

Hierarchy in graphical program structure can be viewed as an
alternative to the more usual abstraction of subprograms via
procedures, functions, or objects. It is better suited than any of
these to a visual syntax, and also better suited to signal process-
ing.

Some other examples of graphical dataflow programming
environments intended for signal processing the Advanced
Development System (ADS), which is based on Ptolemy Clas-
sic, from Agilent, the signal processing worksystem (SPW),
from Cadence, CoCentric Design Studio, from Synopsys, and
Simulink, from The MathWorks. These software environments
all claim variants of dataflow semantics, with SPW and
CoCentric both using models that were developed as part of
this project.

All of these software environments define applications as
assemblies of components that are coordinated in some way.
Many possibilities have been explored for precise semantics of
the coordination. Many of these limit expressiveness in
exchange for considerable advantages such as compile-time
predictability. In Ptolemy, a domain defines the semantics of
the coordination between components. Domains are modular
objects that can be mixed and matched at will, thus getting a
rich and rigorous approach to heterogeneous modeling.

Graphical programs can be either interpreted or compiled. It is
common in signal processing environments to provide both
options. The output of compilation can be a standard proce-
dural language, such as C, assembly code for programmable
DSP processors, or even specifications of silicon implementa-
tions. A major part of the work in the next period will be on
such compilation.

2. Results of Micro Support

2.1. Ptolemy II

We have built a second generation of design software called
Ptolemy II. It is written in Java, is fully network-integrated, is
capable of operating within the worldwide web and enterprise
software architectures, and is multithreaded.

Ptolemy II offers a unified infrastructure for implementations
of a number of models of computation. The overall architecture
consists of a set of packages that provide generic support for all

models of computation and a set of packages that provide more
specialized support for particular models of computation. Exam-
ples of the former include packages that contain math libraries,
graph algorithms, an interpreted expression language, signal
plotters, and interfaces to media capabilities such as audio.
Examples of the latter include packages that support clustered
graph representations of models, packages that support execut-
able models, and domains, which are packages that implement a
particular model of computation.

2.2. Visual Syntaxes

Visual depictions of systems have always held a strong human
appeal, making them extremely effective in conveying informa-
tion about a design. Many of the domains of interest in the
Ptolemy project use such depictions to completely and formally
specify models. One of the principles of the Ptolemy project is
that visual depictions of systems can help to offset the increased
complexity that is introduced by heterogeneous modeling.

These visual depictions offer an alternative syntax to associate
with the semantics of a model of computation. Visual syntaxes
can be every bit as precise and complete as textual syntaxes, par-
ticularly when they are judiciously combined with textual syn-
taxes.

Figures 1 and 2 show two different visual renditions of Ptolemy
II models. Both renditions are constructed in Vergil, the visual
editor framework in Ptolemy II. In figure 1, a Ptolemy II model is
shown as a block diagram, which is an appropriate rendition for
many discrete event models. In this particular example, records

are constructed at the left by composing strings with integers rep-
resenting a sequence number. The records are launched into a
network that introduces random delay. The records may arrive at
the right out of order, but the Sequence actor is used to re-order
them using the sequence number.

Figure 2 also shows a visual rendition of a Ptolemy II model, but
now, the components are represented by circles, and the connec-
tions between components are represented by labeled arcs. This
visual syntax is a familiar way to represent finite state machines
(FSMs). Each circle represents a state of the model, and the arcs
represent transitions between states. The particular example in
the figure comes from a hybrid system model, where the two
states, Separate and Together, represent two different modes of
operation of a continuous-time system. The arcs are labeled with
two lines, the first of which is a guard, and the second of which is
an action. The guard is a boolean-valued expression that speci-
fies when the transition should be taken, and the action is a
sequence of commands that are executed when the transition is
taken.

The visual renditions in figures 1 and 2 are both constructed
using the same underlying infrastructure, Vergil, built by
Stephen Neuendorffer. Vergil, in turn, in built on top of a GUI
package called Diva, developed by John Reekie and Michael
Shilman at Berkeley. Diva, in turn, is built on top of Swing and
Java 2D, which are part of the Java platform from Sun Microsys-
tems. In Vergil, a visual editor is constructed as an assembly of
components in a Ptolemy II model. Thus, the system is config-

Figure 1. Visual rendition of a Ptolemy II model as a block diagram in Vergil (in the DE domain).

urable and customizable, and a great deal of infrastructure can be
shared between the two distinct visual editors of figures 1 and 2.

A subset of visual languages that are recognizable as “block dia-
grams” represent concurrent systems. There are many possible
concurrency semantics (and many possible models of computa-
tion) associated with such diagrams. Formalizing the semantics
is essential if these diagrams are to be used for system specifica-
tion and design. Ptolemy II supports exploration of the possible
concurrency semantics. A principle of the project is that the
strengths and weaknesses of these alternatives make them com-
plementary rather than competitive. Thus, interoperability of
diverse models is essential.

2.3. Status

At the end of this project we released the beta version of Ptolemy
II 1.0, which includes the Vergil user interface, a number of
domains, and an extensive actor library.

3. Code Generation

We have begun to make major progress on compiling Ptolemy II
models for efficient execution on embedded processors. Jeff
Tsay, in a masters project [8], did a pilot project that demon-
strates the concept we are following. The approach has elements
of a traditional compiler, but a major difference. Figure 3 out-
lines the approach. The “source code,” shown at the top, is a
block diagram defined within one of the Ptolemy II domains. It is
an assembly of components (called “actors”) that are intercon-
nected, where the meaning of the interconnection is determined
by the domain semantics.

The approach is to parse the Java code for the actors and con-
struct an abstract syntax tree (AST) for each actor. The AST pre-
sents a simple API, using the Visitor pattern, for writing code
transformers and back-end code generators, as would be found in
a traditional compiler. However, our approach uses the compo-
nent architecture (the block diagram and domain semantics),
which offer information about concurrency, flow of control, and
type dependencies that are not available to a traditional compiler.
Our approach, thus, is to blend the traditional compiler

Figure 2. Visual rendition of a Ptolemy II model as a state transition diagram in Vergil (FSM domain).

Ptolemy II model

scheduler

Schedule:
- fire Gaussian0
- fire Ramp1
- fire Sine2
- fire AddSubtract5
- fire SequenceScope10

actor parser

method call

i f

block

method call

block

method call

i f

block

method call

block

code generator

…
for (int i = 0; i < plus.getWidth(); i++) {
if (plus.hasToken(i)) {

if (sum == null) {
sum = plus.get(i);

} else {
sum = sum.add(plus.get(i));

}
}

} …

target code

abstract syntax tree

Figure 3. Outline of the code generation process.

approaches with novel techniques that operate at the component
architecture level.

Some generic optimizations, such as specialization of polymor-
phic data types (leveraging the sophisticated type system in
Ptolemy II), have been implemented. Some domain-specific opti-
mizations, such as static buffer allocation for communication
between dataflow actors, have been implemented for the syn-
chronous dataflow (SDF) domain, although we plan to also sup-
port other Ptolemy II domains.

Along the right path in figure 3, the domain semantics is used to
analyze the component architecture and construct schedules (if
appropriate to the domain) and generate run-time code support-
ing domain execution. The back end resynthesizes the trans-
formed Java code, stitched together as needed according to the
schedule and/or run-time support code.

There are a number of applications for this infrastructure. First, it
can be used simply to transform one Java program into a leaner
realization (faster and smaller). Second, it can be used to trans-
form a Java program into an embedded version, for execution on
a much smaller virtual machine. We have demonstrated both of
these applications with simple examples [2]. More interestingly,
embedded C or synthesizable VHDL could be generated to pro-
duce highly optimized implementations of the models. More-
over, within Ptolemy II, there are many more domains besides
SDF that might benefit from code generation, so that code gener-
ated systems may be run without the Ptolemy II software infra-
structure in memory or performance constrained scenarios.

The code generator for SDF might be modified to generate code
executable in parallel processing environments, if a suitable par-
allel scheduler were used instead of the existing scheduler. The
modifications to the code generator would entail generating a
main() method that executes actors in parallel, and modifying
certain buffer accesses to block, waiting for other execution
paths to complete.

Our plan over the next year is to improve the code generator
infrastructure so that it can serve as a laboratory for experiment-
ing with these approaches, and then to do the experimentation.

4. Publications

This project has generated a number of publications during this
reporting period. Here are some of the highlights.

4.1. Journal Articles
[1] Edward A. Lee, "What's Ahead for Embedded Software?,"

IEEE Computer, September 2000, pp. 18-26.

4.2. Conference Papers
[2] Jeff Tsay, Christopher Hylands and Edward Lee, "A Code

Generation Framework for Java Component-Based
Designs," CASES '00, November 17-19, 2000, San Jose,
CA.

[3] Jie Liu and Edward A. Lee, "Component-based Hierarchi-
cal Modeling of Systems with Continuous and Discrete
Dynamics," Proc. of the 2000 IEEE International Confer-
ence on Control Applications and IEEE Symposium on
Computer-Aided Control System Design (CCA/

CACSD'00), Anchorage, AK, September 25-27, 2000. pp.
95-100.

[4] Yuhong Xiong and Edward A. Lee, "An Extensible Type
System for Component-Based Design," 6th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Berlin, Germany, March/April
2000 . LNCS 1785.

[5] J. Liu, X. Liu, T. J. Koo, B. Sinopoli, S.Sastry, and E. A.
Lee, "Hierarchical Hybrid System Simulation," 38th IEEE
conference on Decision and Control, Dec. 1999, Phoenix,
AZ.

4.3. Ph.D. Dissertations
[6] John Davis II, "Order and Containment in Concurrent Sys-

tem Design," Ph.D. thesis, Memorandum UCB/ERL M00/
47, Electronics Research Laboratory, University of Cali-
fornia, Berkeley, September 8, 2000.

[7] Bilung Lee, "Specification and Design of Reactive Sys-
tems", Ph.D. thesis, Memorandum UCB/ERL M00/29,
Electronics Research Laboratory, University of California,
Berkeley, May, 2000.

4.4. Masters Reports
[8] Jeff Tsay, "A Code Generation Framework for Ptolemy II,"

ERL Technical Report UCB/ERL No. M00/25, Dept.
EECS, University of California, Berkeley, CA 94720, May
19, 2000.

4.5. Other Technical Reports
[9] Edward A. Lee, “Embedded Software - An Agenda for

Research,” ERL Technical Report UCB/ERL No. M99/63,
Dept. EECS, University of California, Berkeley, CA
94720, December 15, 1999.

[10] Edward A. Lee and Steve Neuendorffer, "MoML - A Mod-
eling Markup Language in XML, Version 0.4," Technical
Memorandum UCB/ERL M00/12, University of Califor-
nia, Berkeley, CA 94720, March 14, 2000.

[11] Edward A. Lee and Yuhong Xiong, "System-Level Types
for Component-Based Design, "Technical Memorandum
UCB/ERL M00/8, Electronics Research Lab, University o
f California, Berkeley, CA 94720, USA, February 29,
2000.

