
DESIGN METHODOLOGY FOR DSP

Edward A. Lee, Principal Investigator

Department of Electrical Engineering and Computer Science
University of California, Berkeley CA 94720

Final Report 2000-01, Micro Project #00-053
Industrial Sponsors: Agilent, Cadence, Hughes (Boeing), Philips

ABSTRACT

The Ptolemy project studies modeling, simulation, and design
of concurrent, real-time, embedded systems. The focus is on
assembly of concurrent components. The key underlying prin-
ciple in the project is the use of well-defined models of compu-
tation that govern the interaction between components. A
major problem area being addressed is the use of heteroge-
neous mixtures of models of computation. A software system
called Ptolemy II is being constructed in Java. The overall
Ptolemy project is fairly large, with additional support from
DARPA, GSRC, and a number of other companies, and is
strongly collaborative. The MICRO project has focused on
real-time signal processing, although the larger project is
broader.

1. The Context

The objectives of the Ptolemy Project include many aspects of
designing embedded systems, ranging from designing and sim-
ulating algorithms to synthesizing hardware and software, par-
allelizing algorithms, and prototyping real-time systems.
Research ideas developed in the project are implemented and
tested in the Ptolemy software environment. The Ptolemy soft-
ware environment, which serves as our laboratory, is a system-
level design framework that allows mixing models of computa-
tion and implementation languages.

In designing digital signal processing and communications sys-
tems, often the best available design tools are domain specific.
The tools must be able to interact. Ptolemy allows the interac-
tion of diverse models of computation by using the object-ori-
ented principles of polymorphism and information hiding. For
example, using Ptolemy, a high-level dataflow model of a sig-
nal processing system can be connected to a hardware simula-
tor that in turn may be connected to a discrete-event model of a
communication network.

A part of the Ptolemy project concerns programming method-
ologies commonly called “graphical dataflow programming”
that are used in industry for signal processing and experimen-
tally for other applications. By “graphical” we mean simply
that the program is explicitly specified by a directed graph
where the nodes represent computations and the arcs represent
streams of data. The graphs are typically hierarchical, in that a
node in a graph may represent another directed graph. In
Ptolemy II the nodes in the graph are subprograms specified in
Java.

It is common in the signal processing community to use a
visual syntax to specify such graphs, in which case the model is
often called “visual dataflow programming.” But it is by no
means essential to use a visual syntax.

Hierarchy in graphical program structure can be viewed as an
alternative to the more usual abstraction of subprograms via
procedures, functions, or objects. It is better suited than any of
these to a visual syntax, and also better suited to signal process-
ing.

Some other examples of graphical programming environments
intended for signal processing the Advanced Development
System (ADS), which is based on Ptolemy Classic, from Agi-
lent, the signal processing worksystem (SPW), from Cadence,
CoCentric Design Studio, from Synopsys, and Simulink, from
The MathWorks. SPW and CoCentric both use dataflow mod-
els that were developed as part of this project.

All of these software environments define applications as
assemblies of components that are coordinated in some way.
Many possibilities have been explored for precise semantics of
the coordination. Many of these limit expressiveness in
exchange for considerable advantages such as compile-time
predictability. In Ptolemy, a domain defines the semantics of
the coordination between components. Domains are modular
objects that can be mixed and matched at will, thus getting a
rich and rigorous approach to heterogeneous modeling.

Graphical programs can be either interpreted or compiled. It is
common in signal processing environments to provide both
options. The output of compilation can be a standard proce-
dural language, such as C, assembly code for programmable
DSP processors, or even specifications of silicon implementa-
tions. A major part of the work in the next period will be on
such compilation.

2. Results of Micro Support

2.1. Ptolemy II
We have built a second generation of design software called
Ptolemy II. It is written in Java, is fully network-integrated, is
capable of operating within the worldwide web and enterprise
software architectures, and is multithreaded.

Ptolemy II offers a unified infrastructure for implementations
of a number of models of computation. The overall architecture
consists of a set of packages that provide generic support for all
models of computation and a set of packages that provide more
specialized support for particular models of computation.

Examples of the former include packages that contain math
libraries, graph algorithms, an interpreted expression language,
signal plotters, and interfaces to media capabilities such as audio.
Examples of the latter include packages that support clustered
graph representations of models, packages that support execut-
able models, and domains, which are packages that implement a
particular model of computation.

2.2. Hardware in the loop
Embedded systems are a key application area for the Ptolemy
project. These systems are characterized by closely interacting
with the physical world through various sensors and actuators.
Ptolemy’s support for modeling heterogeneous systems allows us
to easily embed a discrete model of a digital system into the con-
tinuous model of its physical environment, and often this is an
appropriate modeling approach.

However, in many cases it would be preferable to execute the
model of the digital system directly in its physical context, rais-
ing the issue of interfacing a model to sensors and actuators.
Winthrop Williams has worked on extending the Ptolemy soft-
ware infrastructure to allow models to communicate with exter-
nal hardware.

The first such attempt successfully demonstrated remote teleop-
eration with force feedback at a sample rate of 125 Hz. Difficul-
ties encountered are raising questions of how models of
computation can and should interact with physical processes.
Models may be augmented to define how they engage physical-
ity, for example by encompassing threads which may block
awaiting hardware events.

A major objective of this work is to move towards software
development tools which facilitate understanding of the system
being designed. Models of computation are a part of this quest, as
are semantics and syntactic representations. This research is
biased towards syntactic systems like Ptolemy II which include
diagrams analogous to the schematic diagrams of electronic cir-
cuitry.

2.3. Network components
A large number of embedded systems applications require the
coordination of physically separated components. Distributing
system components across a network can improve robustness of
a system and simplify its architecture by allowing components to
run concurrently and independently. It also facilities exploitation

of the intrinsically parallel nature of specialized hardware, offer-
ing the promise of improved execution speed.

Traditional distributed computing is built on the client-server
model, which lacks object-orientation and is difficult to scale up.
Middleware technologies, like the Common Object Request Bro-
ker Architecture (CORBA) and the Distributed Common Object
Model (DCOM) offer object models and scalability, but the pro-
gramming model is too liberal to analyze formal properties of a
system.

As a first step, we have demonstrated importing a remote model
as a component of a larger model, executing the model in a dis-
tributed fashion over a network. We have also implemented a
publish/subscribe type of message passing mechanism based on
JINI and JavaSpaces. Current work includes the definition of a
clean interface for distributed components and their interaction,
and the exploration of real-time issues in the context of this
framework.

In order to support distributed components, four distributed
objects--- ports, receivers, parameters, and executable interfaces-
--were exported via CORBA. These objects together provide an
abstraction of components in Ptolemy II. A remote (composite)
actor is viewed as a service that can be accessed through these
objects.

2.4. Graphical modeling and animation
One of the many applications of heterogeneous modeling is the
construction of digital systems interacting with a mechanical
environment. Of course, such a system can be observed through a
number of variables, and the Ptolemy software infrastructure
contains a rich library of actors for displaying and graphing the
changes of such variables.

In the case of mechanical systems, however, a direct animation
of its movements provides a much clearer and more intuitive rep-
resentation of the changes in the system over time. Chamberlain
Fong worked on designing and implementing a 3D visualization
engine for in the Ptolemy II framework.

Figure 1. Hardware in the loop.
Figure 2. Specification of 3-D graphics display.

Based on the Java 3D infrastructure, he designed a visual lan-
guage for expressing three-dimensional models, which depend
on parameters that define, e.g., the position, size, color, or orien-
tation of some of the objects in the model (see figure 2). Actual
values for these parameters are supplied by an executing Ptolemy
model connected to the 3D-model. With these values changing
over time, the 3D-model produces an animation. Combined with
“traditional” displays of the change of values during the execu-
tion of a model, 3D-animation makes it much easier for users to
understand the operation of the system that they model (see fig-
ure 3).

2.5. Type system extensions: structured and
behavioral types
Type systems in modern programming languages are the most
widely used and effective (semi)formal verification tools for
software. The theory underlying type systems is simple, robust,
and extremely powerful. The mathematical structure of a set of
types is abstractly a lattice, and the theory can be applied to any
property of the software that can be characterized using a lattice.
In particular, it need not be restricted to classical data types. In
view of this, we have designed a set of Java classes in Ptolemy II
that provide support for any type system that can be represented

using such a lattice. This generic infrastructure has been first
applied to the basic type system problem, that of ensuring consis-
tent data typing, and supporting (polymorphic) type inference.
But the infrastructure is designed to be extended to more sophis-
ticated uses.

We are currently developing two extensions. One extension is to
add support for structured types such as array and record types.
The goal is to allow the elements of arrays and records to contain
data tokens of arbitrary types, including structured types, and be
able to specify type constraints on them. Type constraints and
type inference must propagate transparently across operators that
construct and disassemble such structures. One of the major diffi-
culties in this extension is that the type lattice becomes infinite,
which raises questions on the convergence of type checks and
inference.

A more innovative (and speculative) extension is to process-level
types. These types represent dynamic properties of an applica-
tion, rather than the static data types traditionally dealt with in a
type system. [7] One of the dynamic properties we have studied
is communication protocol. We have attempted to characterize
different communication protocols as types and describe these
types using automata. Furthermore, we have organized these
types into a system-level type lattice using the simulation rela-
tion. This lattice provides significant insight into the relation
between various protocols and may help design polymorphic
components that can work with multiple protocols. For example,
we can specify the behavior of a polymorphic component using a
non-deterministic automaton. If this automaton simulates the
automata of some specific protocols, the component will be able
to work with those protocols.

2.6. Status
This report period saw the release of the first full version of the
Ptolemy II software (version 1.0.1 in March 2001). This was the
first major release to include Vergil, a graphical user interface
supporting block diagram editing of Ptolemy II models. It also
includes a set of mature and experimental domains, and a more
comprehensive actor library than previous releases. Ptolemy II
1.0.1 supports an XML schema called MoML for specifying
component-based models.

On March 22-23, 2001 the 4th Biennial Ptolemy Mini conference
was held at the Claremont Hotel in Berkeley, with 93 attendees
from 44 organizations worldwide

3. Publications

This project has generated a number of publications during this
reporting period. Here are some of the highlights.

3.1. Journal Articles
[1] Edward A. Lee, "What's Ahead for Embedded Software?,"

IEEE Computer, September 2000, pp. 18-26.

3.2. Conference Papers
[2] Jozsef Ludvig, James McCarthy, Stephen Neuendorffer,

and Sonia R. Sachs, "Reprogrammable Platforms for High-
speed Data Acquisition," Thirty-Fifth Asilomar Confer-
ence on Signals, Systems, and Computers, Asilomar Hotel
Conference Grounds, November 4-7, 2001.Figure 3. 3-D graphics display animating a model.

[3] Johan Eker, Chamberlain Fong, Jörn W. Janneck, and Jie
Liu, "Design and Simulation of Heterogeneous Control
Systems using Ptolemy II," IFAC Conference on New
Technologies for Computer Control (NTCC'01), Hong
Kong, China, November 2001.

[4] Edward A. Lee and Yuhong Xiong, "System-Level Types
for Component-Based Design," First Workshop on Embed-
ded Software, EMSOFT2001, Lake Tahoe, CA, USA, Oct.
8-10, 2001.

[5] Jie Liu, Stan Jefferson, and Edward A. Lee, "Motivating
Hierarchical Run-Time Models in Measurement and Con-
trol Systems," 2001 American Control Conference, June
25-27, 2001, Arlington, VA, pp. 3457-3462.

[6] Edward A. Lee, "Computing for Embedded Systems,"
IEEE Instrumentation and Measurement Technology Con-
ference, Budapest, Hungary, May 21-23, 2001.

3.3. Ph.D. Dissertations
[7] Jie Liu, "Responsible Frameworks for Heterogeneous

Modeling and Design of Embedded Systems," Ph.D. the-
sis, Technical Memorandum UCB/ERL M01/41, Univer-
sity of California, Berkeley, CA 94720, December 20th,
2001.

3.4. Masters Reports
[8] Paul Whitaker, "The Simulation of Synchronous Reactive

Systems In Ptolemy II," Master's Report, Memorandum
UCB/ERL M01/20, Electronics Research Laboratory, Uni-
versity of California, Berkeley, May 2001.

[9] C. Fong, "Discrete-Time Dataflow Models for Visual Sim-
ulation in Ptolemy II," Master's Report, Memorandum
UCB/ERL M01/9, Electronics Research Laboratory, Uni-
versity of California, Berkeley, January 2001

3.5. Other Technical Reports
[10] Stephen A. Edwards and Edward A. Lee, "The Semantics

and Execution of a Synchronous Block-Diagram Lan-
guage,"Technical Memorandum UCB/ERL M01/33, Uni-
versity of California, Berkeley, CA 94720, October 25,
2001

[11] Edward A. Lee, "Soft Walls - Modifying Flight Control
Systems to Limit the Flight Space of Commercial Aircraft
(Draft 2),"Revised from Technical Memorandum UCB/
ERL M01/31, University of California, Berkeley, CA
94720, October 3, 2001.

[12] Edward A. Lee, "Overview of the Ptolemy Project," Tech-
nical Memorandum UCB/ERL M01/11, University of Cali-
fornia, Berkeley, March 6, 2001.

