
DESIGN METHODOLOGY FOR DSP

Edward A. Lee, Principal Investigator

Department of Electrical Engineering and Computer Science
University of California, Berkeley CA 94720

Final Report 2002-03, Micro Project #02-037
Industrial Sponsors: Agilent, Atmel, National Semiconductor

ABSTRACT

The Ptolemy project studies modeling, simulation, and design
of concurrent, real-time, embedded systems. The focus is on
assembly of concurrent components. The key underlying prin-
ciple in the project is the use of well-defined models of compu-
tation that govern the interaction between components. A
major problem area being addressed is the use of heteroge-
neous mixtures of models of computation. A software system
called Ptolemy II is being constructed in Java. The overall
Ptolemy project is fairly large, with additional support from
DARPA, GSRC, and a number of other companies, and is
strongly collaborative. The MICRO project has focused on
real-time signal processing, although the larger project is
broader.

1. The Context

The objectives of the Ptolemy Project include many aspects of
designing embedded systems, ranging from designing and sim-
ulating algorithms to synthesizing hardware and software, par-
allelizing algorithms, and prototyping real-time systems.
Research ideas developed in the project are implemented and
tested in the Ptolemy software environment. The Ptolemy soft-
ware environment, which serves as our laboratory, is a system-
level design framework that allows mixing models of computa-
tion and implementation languages.

In designing digital signal processing and communications sys-
tems, often the best available design tools are domain specific.
The tools must be able to interact. Ptolemy allows the interac-
tion of diverse models of computation by using the object-ori-
ented principles of polymorphism and information hiding. For
example, using Ptolemy, a high-level dataflow model of a sig-
nal processing system can be connected to a hardware simula-
tor that in turn may be connected to a discrete-event model of a
communication network.

A part of the Ptolemy project concerns programming method-
ologies commonly called “graphical dataflow programming”
that are used in industry for signal processing and experimen-
tally for other applications. By “graphical” we mean simply
that the program is explicitly specified by a directed graph
where the nodes represent computations and the arcs represent
streams of data. The graphs are typically hierarchical, in that a
node in a graph may represent another directed graph. In
Ptolemy II the nodes in the graph are subprograms specified in
Java.

It is common in the signal processing community to use a
visual syntax to specify such graphs, in which case the model is
often called “visual dataflow programming.” But it is by no
means essential to use a visual syntax.

Hierarchy in graphical program structure can be viewed as an
alternative to the more usual abstraction of subprograms via
procedures, functions, or objects. It is better suited than any of
these to a visual syntax, and also better suited to signal process-
ing.

Some other examples of graphical programming environments
intended for signal processing the Advanced Development
System (ADS), which is based on Ptolemy Classic, from Agi-
lent, the signal processing worksystem (SPW), from Cadence,
CoCentric Design Studio, from Synopsys, and Simulink, from
The MathWorks. SPW and CoCentric both use dataflow mod-
els that were developed as part of this project.

All of these software environments define applications as
assemblies of components that are coordinated in some way.
Many possibilities have been explored for precise semantics of
the coordination. Many of these limit expressiveness in
exchange for considerable advantages such as compile-time
predictability. In Ptolemy, a domain defines the semantics of
the coordination between components. Domains are modular
objects that can be mixed and matched at will, thus getting a
rich and rigorous approach to heterogeneous modeling.

Graphical programs can be either interpreted or compiled. It is
common in signal processing environments to provide both
options. The output of compilation can be a standard proce-
dural language, such as C, assembly code for programmable
DSP processors, or even specifications of silicon implementa-
tions. A major part of the work in the next period will be on
such compilation.

2. Results of Micro Support

2.1. Ptolemy II
We have built a second generation of design software called
Ptolemy II. It is written in Java, is fully network-integrated, is
capable of operating within the worldwide web and enterprise
software architectures, and is multithreaded.

Ptolemy II offers a unified infrastructure for implementations
of a number of models of computation. The overall architecture
consists of a set of packages that provide generic support for all
models of computation and a set of packages that provide more
specialized support for particular models of computation.

Examples of the former include packages that contain math
libraries, graph algorithms, an interpreted expression language,
signal plotters, and interfaces to media capabilities such as audio.
Examples of the latter include packages that support clustered
graph representations of models, packages that support execut-
able models, and domains, which are packages that implement a
particular model of computation.

2.2. Checking valid composition
Modern programming languages and design systems have
heavily embraced the use of data type systems for robust specifi-
cation of programs. Ptolemy II, in particular, includes a rather
sophisticated data type system that allows for insertion of auto-
matic conversions between types. Data types systems generally
focus on the analysis of properties of a program or model by
approximating all behaviors of the system. By formally guaran-
teeing type-safety properties, data type systems ensure that run-
time type errors (such as interpreting an integer as a floating
point number) cannot happen.

However, there may be many properties of a model that a
designer cares about, in addition to type-safety. In component-
based design systems the varied interactions between compo-
nents often result in complex interactions. While it is easy for a
designer to specify the behavioral constraints that these interac-
tions must satisfy, it is somewhat more difficult for a designer to
ensure that those constraints are satisfied. In this period, we have
developed the notion of behavioral type systems that extend data
type systems to include these behavioral constraints. The goal of
a behavioral type system is to automatically verify that these con-
straints are satisfied.

We have worked on development of a behavioral type system
with the goal to ensure that actors in Ptolemy II satisfy the con-
straints of the model of computation in which they are used. This
system-level type system is based on interface automata to
express the assumptions and guarantees of a model of computa-
tion and actor and uses model checking techniques to explore the
state space of the product automata to ensure correctness. This
work has required extending existing notions of interface autom-
ata to more directly represent method calls and synchronization
monitors to properly represent actor interfaces.

We have also developed an independent behavioral type system
that focuses on system reconfiguration. This reconfiguration type
system analyzes a model to determine which parameters are
reconfigured and at what points during the execution of a model
reconfiguration occurs. This information can be used to guaran-
tee that particular parameters (such as parameters representing
data types, or parameters used for dataflow scheduling) are not
reconfigured at run-time. The information can also be used at a
finer level of granularity to support parameterized dataflow
scheduling where parameters are allowed to change, as long as
they are not reconfigured during the execution of a schedule.
Information about reconfiguration can also be used during code
generation to balance optimization trade-offs or guide selection
of an appropriate implementation architecture, such as an FPGA.
This type system is particular interesting in the context of
Ptolemy II because it is independent of how the reconfiguration
is modeled and also independent of the particular models of com-
putation used.

The reconfiguration type system analyzes the reconfiguration in
a model through quiescent points. The quiescent points of an

actor are those execution points where the actor is inactive and
not performing communication or computation. The structure of
quiescent points of actors in a hierarchical model is also hierar-
chical; when a model is quiescent, every actor in the model must
also be quiescent. During a quiescent points of an actor, the actor
is allowed to reconfigure the model by modifying the value of a
single parameter. Ptolemy II responds to this reconfiguration by
updating the values of all parameters dependent on the reconfig-
ured parameter. Essentially, the reconfiguration type system
incorporates all possible sources of reconfiguration and all
parameter dependencies to describe the set of quiescent points
during which reconfiguration can occur.

We have also developed a behavioral type system that will
improve the ability of Ptolemy II to deal effectively with hierar-
chical components. This dependence type system describes how
data produced from individual output ports of a hierarchically
described component depend on data received from individual
input ports. This dependence information is often required to
ensure that models have unique and well-defined behaviors, par-
ticularly in the discrete-event model of computation. Without this
dependence information, the model can still be executed, but is
not guaranteed to be consistent or deterministic.

2.3. Sensor Networks
A large number of embedded systems applications require the
coordination of physically separated components, or networked
embedded sub-systems. In particular, embedded systems consist-
ing of small sensor nodes communicating through ad-hoc wire-
less networks have recently become an interesting platform for
distributed monitoring and surveillance applications. However,
the embedded nature of these platforms and the complex interac-
tion between individual applications and ad-hoc network infra-
structure makes developing applications particularly difficult.

To address these issues, we have developed a version of Ptolemy
II that is targeted to modeling sensor networks. This tool, called
VisualSense, extends Ptolemy II to represent component models
where communication links are not explicitly specified. Instead,
output ports reference a communication channel by name and the
channel broadcasts messages to input ports that also reference the
channel by name. This model is appropriate for modeling sensor
networks where a communication broadcast can only be received
by other sensor nodes that are sufficiently close to receive data.

The goal of VisualSense is the construction of not only models of
sensor nodes, but to leverage hierarchical models in Ptolemy II to
describe different aspects of the system, including channel propa-
gation and interference, communication protocols for managing
the ad-hoc network, physical processes being monitored, signal
processing occurring in sensor nodes, and management and dis-
play functionality executing on a base station. This ability goes
directly to targeting the complex interactions in sensor networks.
We have already made significant progress in the capabilities of
the modeling environment, although this work will continue.

Currently, VisualSense contains several channel models that rep-
resent propagation delay, probabilistic message loss, communi-
cation range and power loss through propagation. These abstract
channel models can represent not only wireless radio communi-
cation in sensor networks, but also other communication media
such as sound or light. Models of sensor nodes can interact with
these propagation models to add transmitter or receiver specific
properties such as transmission power, receiver sensitivity, and

antenna directionality models. We have also demonstrated mod-
els of message collision and multi-hop propagation through the
ad-hoc network.

In addition to the above built-in channel models, VisualSense
includes the ability to model the behavior of a sensor node using
a hierarchical model. This capability allows the use of arbitrary
Ptolemy II models to represent individual sensor nodes. CT mod-
els can be used to represent a physical process being sensed.
Giotto models can be used to represent real-time operating sys-
tems. DE models can be used to represent the time of incoming
events and the triggering of how those events are processed. SDF
models can be used to represent embedded signal processing
algorithms running on the sensor.

By combining these various models, VisualSense allows the
complex interactions between the parts of these systems to be
simulated without concern for the low-level implementation. Our
future goals are to increase the expressiveness of the modeling
environment and look for a path to target existing implementa-
tion technologies through code generation. Although significant
optimization will have to occur in order to execute on heavily
resource-constrained sensor nodes, we anticipate that most high-
level design work can be done using VisualSense without con-
cern for premature optimization.

2.4. Cache-aware scheduling
When dealing with embedded systems with real-time constraints,
memory caches and memory hierarchy make analyzing systems
much more difficult. In particular, although caches tend to
improve average case performance of a signal processing system,
they do not appreciably affect worse-case performance. In our
approach to system design that is based on code generation, deal-
ing with caches systematically is even more important, since we
would like to abstract a designer from dealing with such issues at
the assembly-code level.

We have developed an approach to scheduling SDF models that
considers memory hierarchy when making scheduling decisions.
In particular, the approach deals with scheduling well-ordered
SDF models on a single embedded Digital Signal Processor
(DSP) with Harvard memory architecture (i.e., separate instruc-
tion and data memory). In order to achieve more predictable and
efficient behavior for SDF models, the data cache is managed
using a specialized hardware cache-replacement policy and the
instruction cache is managed as a scratchpad memory with soft-
ware-controlled replacement policy. By using these improved
cache-replacement policies, analyzing the behavior a schedule
without executing it becomes simpler. Simplified analysis allows
a greedy scheduling algorithm to make better trade-offs between
instruction cache usage and data cache usage.

The intuition behind the scheduling algorithm is that a static
scheduler essentially makes decisions about whether to continue
to execute a single actor (making use of more data memory,
while executing the actor code out of instruction cache) or to
switch to another actor (which will generally reduce the amount
of data memory used while possibly incurring an instruction-
cache miss. In other words, reducing data cache misses often
increases instruction cache misses and vice versa. Because of this
interaction, existing scheduling techniques often create schedules
that perform poorly with respect to cache usage. Sanjeev’s heu-
ristic algorithm approximates instruction and cache miss penal-

ties, resulting in a schedule that executes faster than a naive
schedule.

2.5. Status
In this report period a new major version of the Ptolemy II soft-
ware was released (version 3.0 in July 2003). This release also
included an updated release of the targeted HyVisual tool for
modeling hybrid systems. Hybrid systems are systems with con-
tinuous-time dynamics, discrete events, and discrete mode
changes. This visual modeler supports construction of hierarchi-
cal hybrid systems. It uses a block-diagram representation of
ordinary differential equations (ODEs) to define continuous
dynamics. It uses a bubble-and-arc diagram representation of
finite state machines to define discrete behavior.

HyVisual is illustrative of the ability to create domain-specific,
targetted, and separately branded tools that use the Ptolemy II
infrastructure. We expect to do much more of that in the future.

3. Publications

This project has generated a number of publications during this
reporting period. Here are some of the highlights.

3.1. Journal Articles
[1] Edward A. Lee and Yuhong Xiong, "A Behavioral Type

System and Its Application in Ptolemy II," to appear in
Aspects of Computing Journal, special issue on "Semantic
Foundations of Engineering Design Languages." This ver-
sion: November 10, 2003.

[2] Stephen A. Edwards and Edward A. Lee, "The Semantics
and Execution of a Synchronous Block-Diagram Lan-
guage," Science of Computer Programming, Vol. 48, no. 1,
July 2003.

[3] Edward A. Lee, Stephen Neuendorffer and Michael J.
Wirthlin, "Actor-Oriented Design of Embedded Hardware
and Software Systems," Invited paper, Journal of Circuits,
Systems, and Computers, Vol. 12, No. 3 pp. 231-260, 2003.

3.2. Conference Papers
[4] Jie Liu and Edward A. Lee, "On the Causality of Mixed-

Signal and Hybrid Models," 6th International Workshop on
Hybrid Systems: Computation and Control (HSCC '03),
April 3-5, 2003, Prague, Czech.

[5] Yan Jin, Robert Esser, Charles Lakos, Jörn W. Janneck,
"Modular Analysis of Dataflow Process Networks," Pro-
ceedings Fundamental Approaches to Software Engineer-
ing (FASE) 2003.

[6] Elaine Cheong, Judy Liebman, Jie Liu, and Feng Zhao,
"TinyGALS: A Programming Model for Event-Driven
Embedded Systems," Proceedings of the 18th Annual ACM
Symposium on Applied Computing (SAC'03), Melbourne,
FL, Mar. 9-12, 2003.

3.3. Masters Reports
[7] Ye Zhou, "Communication Systems Modeling in Ptolemy

II," Master's Report, Technical Memorandum No. UCB/

ERL M03/53, University of California, Berkeley, CA,
94720, USA, December 18, 2003.

[8] James Yeh, "Image and Video Processing Libraries in
Ptolemy II," Master's Report, Technical Memorandum No.
UCB/ERL M03/52, University of California, Berkeley,
CA, 94720, USA, December 16, 2003.

[9] Yang Zhao, "A Model of Computation with Push and Pull
Processing," Master's Report, Technical Memorandum No.
UCB/ERL M03/51, University of California, Berkeley,
CA, 94720, USA, December 16, 2003.

[10] Elaine Cheong, "Design and Implementation of TinyG-
ALS: A Programming Model for Event-Driven Embedded
Systems," Master's Report, Technical Memorandum No.
UCB/ERL M03/14, University of California, Berkeley, CA,
94720, USA, May 23, 2003.

[11] Adam Cataldo, "Control Algorithms for Soft Walls," Mas-
ter's Report, Technical Memorandum UCB/ERL M03/42,
University of California, Berkeley, CA 94720, January 21,
2004.

3.4. Other Technical Reports
[12] Stephen Neuendorffer and Edward A. Lee, "Hierarchical

Reconfiguration of Dataflow Models," Technical Memo-
randum UCB/ERL M04/2, University of California, Berke-
ley, CA 94720, USA, January 2004.

[13] Johan Eker and Jorn W. Janneck, "CAL Language Report:
Specification of the CAL actor language," Technical Mem-
orandum No. UCB/ERL M03/48, University of California,
Berkeley, CA, 94720, USA, December 1, 2003

[14] Christopher Hylands Brooks and Edward A. Lee, "Ptolemy
II Coding Style," Technical Memorandum UCB/ERL M03/
44, University of California at Berkeley, November 24,
2003.

[15] Edward A. Lee, "Soft Walls: Frequently Asked Questions,"
Technical Memorandum UCB/ERL M03/31, University of
California, Berkeley, CA 94720, July 21, 2003.

[16] Stephen Neuendorffer, "Implementation Issues in Hybrid
Embedded Systems," Technical Memorandum No. UCB/
ERL M03/22, University of California, Berkeley, CA,
94720, USA, June 24, 2003.

