
TIMED DISTRIBUTED SYSTEMS

Edward A. Lee, Principal Investigator
EECS Department, UC Berkeley

Berkeley, CA 94720 USA
eal@eecs.berkeley.edu

Final Report 2006-07, Micro Project No. 06-168
Industrial Sponsors: Agilent, Hewlett-Packard, Microsoft

Abstract

This project seeks models of computation, software tech-
niques, and analytical models for distributed timed sys-
tems. Such systems coordinate components on a network,
and timeliness matters. Applications include industrial au-
tomation, instrumentation systems, and networked embed-
ded software systems. The introduction of network time
synchronization such as IEEE 1588 makes possible time
coherence that has not traditionally been part of the com-
putational models. Given time synchronization with some
known precision, we believe that distributed applications
should be designed and developed differently, and that time
synchronization can help with robust coordination of un-
reliable components. Existing methods such as real-time
operating systems, time-triggered networks, and network
time synchronization deal with parts of the problem. These
technologies, however, are used with relatively conventional
concurrency models (threads and processes). This project
seeks to elevate timing and distribution to the level of the
programmers model, so that applications are built by di-
rectly expressing timing and distribution properties. The
objective is a framework for designing deployable timed
distributed systems. Here we report on the outcomes dur-
ing the first two years of the project.

1 Introduction

Distributed timed systems are computer-based systems
where multiple computers are connected on a network and
interact with sensors and actuators. Applications include
manufacturing, instrumentation, surveillance, multi-vehicle
control, avionics systems, automotive systems and scientific
experiments. Since each computer interacts with physical
processes, the passage of time becomes a central feature; it

is this key constraint that distinguishes these systems from
distributed computing in general.

In addition to interacting over a communication network,
the nodes in a distributed embedded system interact through
the physical world. Driving an actuator at one node, for ex-
ample, may affect the data sensed at another node. More-
over, actuation may need to be orchestrated across nodes.
The required precision of that orchestration depends on the
application. Robotic applications, e.g. in manufacturing,
require precisions on the order of milliseconds. Instrumen-
tation, where stimuli are generated and responses are mea-
sured, may require precisions on the order of nanoseconds
or even higher. The question we address in this project is
how to construct the distributed software for such systems.

General-purpose distributed software is dominated by
distributed object-oriented programming [25] using frame-
works such as CORBA, SOAP, DCOM, EJB, and XML
Web Services. Some extensions of these frameworks, such
as ACE/TAO [24], support real-time scheduling concepts,
and have caught on in certain communities (such as avion-
ics) [23]. These technologies are viewed as being too
heavyweight for many embedded applications such as in-
dustrial control, where software may be written in spe-
cial purpose languages (e.g. based on the International
Electrotechnical Commission’s IEC 61131) and executed
on special purpose hardware called Programmable Logic
Controllers (PLCs). Extensions of these techniques to dis-
tributed control systems (e.g. IEC 61499), have not proved
satisfactory, because of the non-determinism of implemen-
tation. That is, the same standard-compliant application
running in two different implementations of the runtime en-
vironment may result in different behaviors [2].

Our approach to the nondeterminism challenge is to rely
on network time synchronization [14], where the comput-
ing nodes on the network share a common notion of time
to a known precision. This has the potential for being
lightweight and delivering repeatable and predictable be-

1



haviors at a variety of timing precisions.
Network time synchronization is available on various

platforms, including standard computers on the Internet
(e.g. NTP [22]), time-triggered buses such as TTA or
FlexRay [15], TCP/IP over Ethernet (e.g. IEEE 1588), and
wireless networks (e.g. RBS [26]). Implementations of
IEEE 1588 have shown time synchronization as precise as
tens of nanoseconds over networks that span hundreds of
meters, more than adequate for most manufacturing and in-
strumentation systems. Such precise time synchronization
enables coordinated actions over distances that are large
enough that fundamental limits (like the speed of light)
make it impossible to achieve the same coordination by con-
ventional stimulus-response or client/server mechanisms.

Our approach in this project builds on discrete-event
(DE) modeling techniques [1, 17, 27]. DE models are con-
current compositions of components that interact via events.
An event is a time-stamped value, where time is “logical
time” or “model time” [16]. Correct execution of such mod-
els requires only that the ordering of time stamps be re-
spected. DE is usually a simulation technology (e.g. in
hardware description languages such as Verilog and VHDL
and network modeling languages such as OPNET Modeler
and Ns-2). When DE models are executed on distributed
platforms, the objective is usually to accelerate simulation,
not to implement distributed real-time systems [1, 8, 27].

We call our programming model PTIDES (pronounced
“tides”), for Programming Temporally Integrated Dis-
tributed Embedded Systems. In our approach, DE is not
a simulation technology, but rather application specification
language, which serves as a semantic basis for obtaining de-
terminism in distributed real-time systems. Applications are
given as distributed DE models, where for certain events,
their modeling time is mapped to physical time. For exam-
ple, a programmer may specify that an actuator must pro-
duce a physical output at the time determined by the time
stamp of an event sent to the actuator. When these models
are executed in a runtime environment that ensures DE se-
mantics, we know that the applications will have determin-
istic behaviors regardless of the actual implementations.

Preserving DE semantics at runtime can be challenging,
since the global, consistent notion of time may lead to a total
ordering of execution in a distributed system, an unneces-
sary waste of resources. PTIDES takes an event-driven exe-
cution strategy. Unlike many hard real-time distributed sys-
tems that depend on domain specific network architectures,
our only assumption of communication behavior is that it
delivers packets reliably with a known bounded delay. We
divide our execution strategies into two layers: global coor-
dination, and local resource scheduling. When receiving an
event from the network, the global coordination layer deter-
mines whether the event can be processed immediately or
it has to wait for other potentially preceding events. Once

it is sure that the current event can be processed according
to DE semantics, it hands the event over to a local resource
scheduler, which may use existing real-time scheduling al-
gorithms, such as earliest deadline first (EDF) to prioritize
the processing of all pending events.

The approach in this project leverages the concept of
actor-oriented design [18], borrowing ideas from Simulink
and from Giotto [12]. It addresses a number of limitations
in Simulink and Giotto by building multitasking implemen-
tations from specifications that combine dataflow modeling
and distributed discrete-event modeling. In discrete-event
models, components interact with one another via events
that are semantically placed on a time line. Some level of
agreement about time across distributed components is nec-
essary for this model to have a coherent semantics. While
distribution of discrete-event models has long been used
to exploit parallel computing to accelerate execution [27],
our project is not concerned with accelerating execution.
The focus is instead on using a model of time as a bind-
ing coordination agent. This steers us away from conserva-
tive techniques (like Chandy and Misra [4]) and optimistic
techniques (like Time Warp [13]). The use of dataflow for-
malisms [19] supports mixing untimed and event-triggered
computation with timed and periodic computation.

1.1 Progress Report

The project started Fall 2005. The first step was to define
the computational models that we will use. We combine
discrete-event (DE) models, synchronous dataflow (SDF)
models, and finite state machines (FSM). This combination
overcomes significant weaknesses of prior models, in par-
ticular by supporting preemtable concurrent tasks (unlike
TinyOS and nesC) and aperiodic, event triggered tasks (un-
like Simulink and Giotto).

The ability of TinyOS and nesC to create thin wrap-
pers around hardware provides a simple and understand-
able mechanism for creating event-triggered, fine-grained,
atomic reactions to external events. When these external
events trigger significant computations, nesC programs will
post tasks that are executed later. These tasks all execute
atomically with respect to one another, and hence a long-
running task will block others. This can create unacceptable
latencies, and often forces software designers to manually
divide long-running tasks into more fine-grain ones.

Simulink and Giotto, by contrast, mix long-running
tasks with hard-real-time fine-grained tasks by exploiting
the properties of an underlying priority-driven multitask-
ing RTOS. They do this without requiring programmers to
specify priorities or use mutexes or semaphores. However,
these tasks are required to be periodic, and their latencies
are strongly related to their periods, so they lack the event-
triggered, reactive nature of nesC programs.



These two ideas can be combined within a dataflow
framework with elements borrowed from DE models
to specify timing properties. Dependencies within the
dataflow model can be statically analyzed, and with a care-
fully chosen variant of dataflow that combines SDF with
FSMs (heterochronous dataflow, HDF) [11], schedulabil-
ity becomes decidable and synthesis of efficient embedded
software becomes possible. The resulting language is ex-
pressive, efficient, understandable, and analyzable.

For the DE models, we have developed a framework that
we call the PTIDES [28]. PTIDES has DE semantics, but
with carefully chosen relations between model time and
real time. Model time and real time are related only at
sensor and actuator boundaries, using complementary in-
equalities. Specifically, time-stamped sensor data must be
delivered to actuators before real time matches the model
time stamp, and time-stamp sensor data is delivered to the
software after real time has passed the model time of the
time stamp. Key to making this model effective is to en-
sure that these inequality constraints are preserved at run-
time. In addition, the chronological semantics of model
time is respected throughout the execution. To accomplish
this, we give a distributed execution strategy that obeys
DE semantics without the penalty of totally ordered ex-
ecutions based on time stamps. Our technique relies on
having a distributed common notion of real time, known
to some precision, and on causality analysis of DE mod-
els. For the causality analysis, we define relevant depen-
dency and relevant orders to enable out-of-order execution
without compromising determinism and without requiring
backtracking. These concepts, adapted from causality inter-
faces [21], formally capture the ordering constraints of tem-
porally ordered events that have a dependency relationship.
This formal structure provides an algebra within which we
can perform schedulability analysis of distributed discrete-
event models given bounds on the accuracy of time synchro-
nization (using IEEE 1588 or more loosely coupled time
synchronization technologies). Details are given in [28].

We envision using the PTIDES model to provide tempo-
ral semantics. It will function as a coordination language for
distributed software components. The behavior of the com-
ponents themselves can be given in a low-level program-
ming language, such as C, but more usefully would also
be specified using a model-based mechanism. We will be
leveraging a code generation framework using the Ptolemy
II framework [5] that we have built, described in [29], that
synthesizes C code from HDF models. We are building a
small runtime kernel that uses the PTIDES semantics to co-
ordinate components synthesized by this code generator.

In January of 2006, we obtained from Agilent, our indus-
trial partner, three prototype implementations of networked
embedded computers implementing IEEE 1588 time syn-
chronization, shown in a lab setup in figure 1. These P1000

Figure 1. Time Synchronized Network Lab

systems include digital I/O that can time-stamp incoming
events with a (distributed) precision of about 10 ns, and can
generate digital output signals with the same precision. The
systems include a power-PC computer running embedded
Linux. We have instrumented the experimental setup and
made careful measurements of the real-time behaviors. The
next phase is to integrate our code generation to build non-
trivial applications on the distributed setup.

In the last year, we have extended the PTIDES model
to support a limited form of backtracking to enable fault
tolerance [6]. We have also developed an abstract execution
policy [7] that can be specialized in various ways. We also
helped organize an international workshop on the topic [10].

1.2 Importance

Existing methods for real-time computation deal with a
portion of the problem of constructing and executing real-
time programs. Real-time operating systems (RTOSs) pro-
vide mechanisms for prioritizing tasks and triggering com-
putations in response to timer or event interrupts. Time-
triggered networking techniques such as the Time Trig-
gered Architecture (TTA) provide deterministic sharing of
networking resources and insulation from faults. Network
time synchronization protocols such as NTP and IEEE 1588
provide a common time base across computers on a net-
work [14]. All of these technologies, however, are used
with relatively conventional concurrency models (threads
and processes) and conventional programming languages.
This project elevates timing and distribution to the level of
the programmer’s model, so that applications are built by
directly expressing timing and distribution properties [20].

Our use of DE models as a distributed programming
model for real-time software builds on distributed discrete-
event simulation, which has a rich history [9]. So-called



“conservative” techniques advance model time to t only
when each node can be assured that it has seen all events
time stamped t or earlier. In the well-known Chandy and
Misra technique [3], extra (null) messages are used for one
execution node to notify another that there are no such ear-
lier events. For our purposes, this technique binds the ex-
ecution at the nodes too tightly, making it very difficult to
meet realistic real-time constraints. So-called “optimistic”
techniques perform speculative execution and backtrack if
and when the speculation was incorrect [13]. Such opti-
mistic techniques will also not work in our context, since
backtracking physical interactions is not possible.

Our approach is conservative, in the sense that events are
processed only when we are sure it is safe to do so. But
we achieve significantly looser coupling than Chandy and
Misra using relevant dependency analysis.

References

[1] C. G. Cassandras. Discrete Event Systems, Modeling and
Performance Analysis. Irwin, 1993.

[2] G. Cengic, O. Ljungkrantz, and K. Akesson. Formal mod-
eling of function block applications running in iec 61499
execution runtime. In 11th IEEE International Conference
on Emerging Technologies and Factory Automation, Prague,
Czech Republic, 2006.

[3] K. M. Chandy and J. Misra. Distributed simulation: A
case study in design and verification of distributed programs.
IEEE Trans. on Software Engineering, 5(5), 1979.

[4] K. M. Chandy and J. Misra. Parallel Program Design: A
Foundation. Addison Wesley, 1988.

[5] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Lud-
vig, S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity—the Ptolemy approach. Proceedings of the
IEEE, 91(2):127–144, 2003.

[6] T. H. Feng and E. A. Lee. Real-time distributed discrete-
event execution with fault tolerance. In Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), St.
Louis, MO, USA, April 2008. IEEE.

[7] T. H. Feng, E. A. Lee, H. D. Patel, and J. Zou. Toward an ef-
fective execution policy for distributed real-time embedded
systems. In 14th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), St. Louis, MO,
USA, April 2008.

[8] G. S. Fishman. Discrete-Event Simulation: Modeling, Pro-
gramming, and Analysis. Springer-Verlag, 2001.

[9] R. Fujimoto. Parallel and Distributed Simulation Systems.
John Wiley and Sons, 2000.

[10] H. Giese, G. Karsai, E. Lee, B. Rumpe, and B. Schtz, edi-
tors. Model-based Engineering of Embedded Real-time Sys-
tems. Dagstuhl Seminar Proceedings 07451, Internationales
Begegnungs- und Forschungszentrum fur Informatik (IBFI).
Schloss Dagstuhl, Germany, 2007.

[11] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite state
machines with multiple concurrency models. IEEE Trans-
actions On Computer-aided Design Of Integrated Circuits
And Systems, 18(6):742–760, 1999.

[12] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto:
A time-triggered language for embedded programming. In
EMSOFT 2001, volume LNCS 2211, Tahoe City, CA, 2001.
Springer-Verlag.

[13] D. Jefferson. Virtual time. ACM Trans. Programming Lan-
guages and Systems, 7(3):404–425, 1985.

[14] S. Johannessen. Time synchronization in a local area net-
work. IEEE Control Systems Magazine, pages 61–69, 2004.

[15] H. Kopetz. Real-Time Systems : Design Principles for Dis-
tributed Embedded Applications. Springer, 1997.

[16] L. Lamport, R. Shostak, and M. Pease. Time, clocks, and the
ordering of events in a distributed system. Communications
of the ACM, 21(7):558–565, 1978.

[17] E. A. Lee. Modeling concurrent real-time processes using
discrete events. Annals of Software Engineering, 7:25–45,
1999.

[18] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-
oriented design of embedded hardware and software sys-
tems. Journal of Circuits, Systems, and Computers,
12(3):231–260, 2003.

[19] E. A. Lee and T. M. Parks. Dataflow process networks. Pro-
ceedings of the IEEE, 83(5):773–801, 1995.

[20] E. A. Lee and Y. Zhao. Reinventing computing for real time.
Technical Report UCB/EECS-2006-83, EECS Department,
University of California, Berkeley, May 30 2006.

[21] E. A. Lee, H. Zheng, and Y. Zhou. Causality interfaces and
compositional causality analysis. In Foundations of Inter-
face Technologies (FIT), Satellite to CONCUR, San Fran-
cisco, CA, 2005.

[22] D. L. Mills. A brief history of NTP time: confessions of an
internet timekeeper. ACM Computer Communications Re-
view, 33, 2003.

[23] J. L. Paunicka, D. E. Corman, and B. R. Mendel. A
CORBA-based middleware solution for UAVs. In Fourth In-
ternational Symposium on Object-Oriented Real-Time Dis-
tributed Computing, pages 261 – 267, Magdeburg, Ger-
many, 2001. IEEE.

[24] D. C. Schmidt, D. L. Levine, and S. Mungee. The design of
the TAO real-time object request broker. Computer Commu-
nications, 21(4), 1998.

[25] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture - Patterns for Con-
current and Networked Objects. Wiley, 2000.

[26] H. Wang, L. Yip, D. Maniezzo, J. Chen, R. Hudson, J. El-
son, and K. Yao. A wireless time-synchronized COTS sen-
sor platform part ii: applications to beamforming. In IEEE
CAS Workshop on Wireless Communications and Network-
ing, 2002.

[27] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Mod-
eling and Simulation. Academic Press, 2nd edition, 2000.

[28] Y. Zhao, E. A. Lee, and J. Liu. A programming model for
time-synchronized distributed real-time systems. In Real-
Time and Embedded Technology and Applications Sympo-
sium (RTAS), Bellevue, WA, USA, 2007. IEEE.

[29] G. Zhou, M. Leung, and E. A. Lee. A code generation
framework for actor-oriented models with partial evaluation.
Technical Report UCB/EECS-2007-29, University of Cali-
fornia, EECS Department, February 23 2007.


