
DESIGN METHODOLOGY FOR DSP

Edward A. Lee

Department of Electrical Engineering and Computer Science

University of California, Berkeley CA 94720

Final Report 1990-91, Micro Project #90-089

Industrial Sponsors: Bell Northern Research, Comdisco Systems, Dolby Laboratories, Motorola, and Star Semiconductor.

ABSTRACT

This project explores design methodology for simulation and real-
time parallel computation for applications using digital signal pro-
cessing. The goal is to facilitate rapid prototyping of complex algo-
rithms by developing tools that are both efficient in their use of
hardware and easy for an algorithm designer to learn and use. In
previous years, we have succeeded with a class of applications with
deterministic control structure. This year, we have focussed on a
broader class of applications involving run-time decisions and
asynchronous real-time operations. The overall research problem
divides into investigating human interfaces for specifying real-time
systems (the language), developing algorithms for automated imple-
mentation (the compilation), and developing suitable target archi-
tectures (the architecture). The project has so far been extremely
productive. Two versions of the Ptolemy software system have been
widely distributed.

MOTIVATION

Digital signal processing, traditionally the domain of Government
labs, large telecommunications companies, and multinational oil
companies, is about to break out into the much broader computer-
user community. To better integrate computers with the telecommu-
nications network, and to invent real-time interfaces better suited to
human perception, DSP is mandatory. The beginnings of this evolu-
tion are evident; workstations and PCs come with A/D converters,
DSPs, telephone and ISDN interfaces, and FAX modems. But to
those of us who understand DSP, the evolution is frustratingly slow.
What holds it back?

Our opinion, and main motivation for this project, is that general-
purpose computing paradigms do not fit DSP very well. The C and
Unix world cannot alone drive the DSP engine. Fundamentally dif-
ferent approaches to software and hardware design are required.
Intuitively, the DSP community has always known this. The persis-
tence of DSP assembly languages and Fortran at one end of a spec-
trum, and block diagram languages at the other, speak of a general
mismatch with what computer science is offering as the newest and
best computing paradigms. Nonetheless, modern software engineer-
ing techniques, particularly object-oriented programming, enable
construction of high-level, application-specific environments that
encapsulate a great deal of expertise.

Dataflow techniques have been applied to DSP in the guise of
“block-diagram languages” since its very earliest days. Dataflow
representation of algorithms, in fact, is very natural in DSP, appeal-

ing even without the motivation of concurrency. Of course, auto-
matically exploiting concurrency can only increase the appeal. This
project exploits properties of DSP applications to develop design
methodologies for the development of hardware and software for
real-time DSP. A principal focus of the effort in on scheduling and
compilation of parallel computations.

RESULTS OF MICRO SUPPORT

Algorithms with predictable control flow have been successfully
addressed using the synchronous dataflow (SDF) model of compu-
tation [10] [11]. Recently, however, our effort has broadened to
include applications where control flow is not predictable. The
objective is to preserve the benefits (especially efficiency) of pre-
dictable control flow whenever possible, but to support dynamic
decision making, dynamic real-time response, and asynchrony.
This will broaden the application domain to include telecommuni-
cations systems, real-time control, and hardware and software co-
design. To do this, we are pursuing two lines of inquiry that avoid
discarding the SDF model of computation in favor of one that is
more general. The first is to mix models of computations, gaining
generality through heterogeneity. The Ptolemy system is focussed
on supporting this, but this effort is barely beginning. The second is
to extend the analytical techniques of SDF to dynamic dataflow
graphs. Atoken flow model [15] [16] has been devised that replaces
many numeric operations that worked under the SDF model with
symbolic operations. The dependence of control-flow on Booleans
is represented symbolically.

The Gabriel program, developed with MICRO support, relies on
the SDF model of computation. It should properly be viewed as the
second generation of such software environments at Berkeley. The
first generation (Blosim [19]) is a simulation environment that uses
dynamically scheduled dataflow programming principles. Gabriel,
by contrast, is a real-time prototyping environment for multipro-
cessor DSP systems. Efficiency demands predictable control flow.
The third generation (Ptolemy) is the next logical step that we hope
will solve many of the problems with the first two systems by per-
mitting multi-paradigm computation. This allows us to preserve
the benefits of the approach taken in Gabriel, while broadening the
application domain. More importantly, it permits in-depth experi-
mentation with a variety of computational models, and with the
interaction between computational models in a heterogeneous sys-
tem.

Overview of Ptolemy

Ptolemy, a system-level design framework, is the successor to Gab-
riel. Its ambitious objectives include practically all aspects of
designing signal processing and communications systems, ranging



from the design of algorithms and communication strategies,
through simulation, hardware and software design, and real-time
prototyping. To accommodate this breadth, Ptolemy must support a
plethora of widely differing design styles. Hence, the core of
Ptolemy is an object-oriented toolkit and library that makes few
assumptions about the system to be modeled; rather, standard inter-
faces are provided for generic objects and more specialized, applica-
tion-specific objects are derived from these.

Each design style is supported by one or moredomains, where a
domain is an extensible library of functional blocks and a model of
computation. For instance, the SDF domain models synchronous
multirate signal processing applications. Asynchronous signal pro-
cessing applications can be built using the dynamic dataflow (DDF)
domain in Ptolemy. An example is shown in figure 1. Here, a phase-
locked loop controls the downsampling of an amplitude-shift-keyed
(ASK) signal.

The DDF domain uses run-time scheduling, whereas the SDF
domain uses compile-time scheduling. In Ptolemy, these two sched-
uling techniques can be combined so that the cost of run-time sched-
uling is incurred only where it is absolutely required. This figure
also shows the hierarchy supported by the graphical interface.

A radically different application is shown in figure 2. It uses the dis-
crete-event (DE) domain in Ptolemy, in which signals consist of
sequences of data objects with associated time stamps. The execu-
tion is chronological rather than data-driven. The figure shows a
system with two queues and two servers, where the first queue dis-
cards incoming events when it fills up, whereas the second queue
blocks arrivals instead. The two signal plots monitor the sizes of the
queues.

The DE domain in Ptolemy is used not just for queueing systems,
but also to model communication networks and protocols. It is
equally useful for high-level modeling of hardware systems, where

FIGURE 1. An asynchronous signal processing application using the dynamic dataflow
domain in Ptolemy.



contention for shared resources, or asynchronous behavior is of
interest.

Overview of recent publications and software

The most visible concrete outputs from this group are the Gabriel
and Ptolemy software systems, described in detail in [5], [12] and
[2]. Version 0.2 of Ptolemy was released in March 1991, and version
0.3 in December. These systems have been distributed through our
Industrial Liaison Program office and electronically to hundreds of
sites. Perhaps more importantly, they have formed the testbed for a
number of research projects, including two masters projects and one
Ph.D. dissertation completed just in the last year. Gilbert Sih’s Ph.D.
dissertation describes innovative compile-time parallel scheduling
heuristics that have been implemented in Ptolemy [20]. Shuvra
Bhattacharyya produced a Masters thesis on detecting and exploit-
ing iteration in SDF graphs [1]. Phil Lapsley describes in his Mas-
ters thesis a block-diagram-level symbolic debugger for real-time
DSP programs [9]. Two more master’s theses are near completion.
Several undergraduate independent study projects were also based
on Ptolemy and Gabriel.

We described details of the implementation of Ptolemy at two tech-
nical conferences [5] [6]. Applications to multirate signals process-
ing [3] and to speech processing [4] were also published. The use of
Ptolemy in the classroom at Berkeley will be described at ICASSP
in March [17]. One book chapter [13], one conference paper [7], and
one journal article [8] on multiprocessor scheduling have been pub-
lished, and another has been accepted [21]. Our still theoretical
work with the Boolean Dataflow domain in Ptolemy has been
described in a journal article [15] and a conference [16]. Our joint
work with Comdisco Systems on optimized assembly code synthe-
sis for the Motorola DSP56000 family will also be described at
ICASSP [18]. Finally, an early paper on multiprocessor hardware

FIGURE 2. A queueing system implemented in
the discrete-event domain in Ptolemy.

design for compile-time scheduling has been reprinted in a book
[14].

Status of Ptolemy

In addition to the discrete-event (DE), dynamic dataflow (DDF),
and synchronous dataflow (SDF) domains that were included in ver-
sion 0.2, Ptolemy now includes the Thor and CG domains. The Thor
domain is built on the Thor hardware simulator from the VLSI
Group at Stanford University. It supports the simulation of circuits
from gate level to behavioral level. With the addition of the Thor
domain, Ptolemy users can simulate hardware, and can mix hard-
ware simulations with other simulations.

Also the Code Generation (CG) domain has been added. The CG
domain provides the base classes for future code generation capabil-
ities. The CG domain itself does not actually generate code for any
processor; it does, however, permit experimentation with parallel
schedulers and with the code generation infrastructure. A sophisti-
cated parallel scheduler developed by Gil Sih, one of our recent
graduates, and a tool for displaying Gantt charts are included with
the CG domain.

Ptolemy uses a new facility called a “target” to control the execution
of universes; this facility will eventually be used to specify, for
example, the behavior of a system for which code is being gener-
ated. At this time, it can be used to configure an abstract target for
the parallel scheduler, and to select schedulers for the SDF domain.
Both the interpreter and graphical interface have new commands to
manipulate targets.

Ptolemy also now supports “packets”, which are particles of arbi-
trary type. This facility permits stars to exchange arbitrary objects,
not just integer, real, and complex data as before. This can be used,
for example, to support vectors, arrays, images, video frames, or

packets in the simulation of a communication network.
Note, however, that vectors and arrays have always been
supported in the SDF domain through the use of SDF
principles. Many of the demos operate on vectors and
arrays.

There are many new stars in version 0.3. In the SDF
domain, there are a series of image processing stars that
use the packet facility to communicate two-dimensional
image objects: Dct, DctInv, DiffImage, DisplayImage,
DisplayRgb, Dpcm, DpcmInv, MedianImage, Motion-
Cmp, MotionCmpInv, ReadImage, ReadRgb, Rgb2Yuv,
RunLen, RunLenInv, and Yuv2Rgb. Other new SDF stars
include Average, BitsToInt, ComplexAverage, Compress,
CxDiff, CxGain, CxLMS, CxLMSPlot, CxRaisedCos,
CxTable, CxWaveForm, FloatPad, FloatTable, Hilbert,
IntTable, IntToBits, LMSPlot, ReadFile, Reverse, Trainer,
and Waterfall. There are a number of new demos under
pigi that show off these new stars.

New DE stars include And, Arbitrate, FIFOQueue, Hand-
Shake, Invert, Match, Or, Packetize, PassGate, Priority-
Queue, Stack, TestLevel, and UnPacketize.

The DE domain has been extensively re-worked. Prob-
lems in the 0.2 release with the order of event processing
have been corrected. Handling of simultaneous events is
substantially improved. A new technique is used for DE
stars to declare their data dependencies. Also, it is now
possible to load dynamically linked stars into pigi if you
edit them.



A number of technical improvements have been made to the code.
We now uses the g++ “#pragma interface” facility, which results in
substantially smaller object files. Also, Ptolemy now compiles
under AT&T cfront version 2.1, as ported to Suns.

Ptolemy in the classroom

Last Spring, Ptolemy was used by 24 students in our graduate statis-
tical signal processing class, EE225a. A network of DEC worksta-
tions was set up for this purpose. The students were given biweekly
assignments to design and implement signal processing systems
using Ptolemy. To illustrate the level of sophistication of these
experiments, I will describe one of the assignments.

Students first generate an AR random process and construct an opti-
mal one-step forward linear predictor for this process. They then
implement a similar adaptive linear predictor using the LMS algo-
rithm, and compare these by measuring the coding gain that can be
achieved in each case. One possible solution is shown in figure 3.
From left to right, top to bottom, we see a white Gaussian noise gen-
erator, an IIR filter to generate the AR process, a fork to broadcast
the signal, two unit delays (small diamonds), an adaptive LMS filter,
a fixed FIR filter, two subtracters, another fork, three power estima-
tion subsystems (galaxies), three “dB” blocks to convert the power
measurement to dB scale, and a display block.

The experiment is repeated with three random processes: the first is
an AR process with an extremely peaked power spectrum, the sec-
ond is an AR process with a much flatter power spectrum, and the
third is a segment of voiced speech. The first and last result in much
higher prediction gains than the middle signal. The students are
asked to explain this phenomenon.

CURRENT PROJECTS

The following specific projects are funded by the MICRO program
in cooperation with the industrial sponsors.

Multimedia Network Interfaces for Workstations

Unix workstations are not well suited to hard-real-time computing.
We are therefore augmenting our workstations with an Ariel card
containing a Motorola DSP56000 and Xilinx FPGA, both of which
will be programmed using Ptolemy. To test real-time applications,
we are interfacing this card to a 56kbps wireless radio modem and
an ISDN terminal adaptor. The DSP will manage encoding of real-

FIGURE 3. : Adaptive and fixed
linear prediction on an AR
process.

generate AR
process

adaptive predictor

fixed predictor
estimate
power

di
sp

la
y

time signals such as speech, audio, and video, and will multiplex
these signals with IP packets used for data communications. The
resulting infrastructure should be ideal for developing multimedia
applications.

Mixed-Domain Scheduling in Ptolemy

One of the key objective of the Ptolemy design environment is to
support coexistence and interaction of diverse computational mod-
els, calleddomains. For instance, a dataflow domain can exist
within a discrete-event domain, so that for example a signal process-
ing subsystem can be cleanly incorporated within a communication
network simulation. A Ptolemaic domain is implemented as a C++
object called aWormHole. We have designed Wormholes and their
interconnection mechanism for mixed domain applications. A
Wormhole is derived from the class Star, and behaves externally like
any other star. Internally, however, it encapsulates an entire foreign
domain invisible from the outside universe. The internal computa-
tional model can be totally different from the external model, in that
the specification language, semantics, and scheduling paradigm can
be totally different.

Since the kernel makes no assumptions about the internals of a
Wormhole but its external abstraction, Ptolemy can support an
effectively unlimited number of different scheduling paradigms.
Currently, Ptolemy supports four domains: two timed domains (DE,
THOR) and two untimed domains (SDF, DDF). We have been per-
forming several simulations that mix those domains and evaluating
the design of Wormhole interface. Mixed domains are also being
developed for real-time implementation of systems with run-time
decision making.

Optimized Code Generation

The goal of this project is to create a new domain in Ptolemy that
synthesizes efficient assembly code for programmable DSPs. In this
domain the user will be able to target various architectures including
stand-alone DSPs, workstations, and DSP/workstation combina-
tions. The DSPs to be targeted initially are Motorola DSP56001 and
96002. Direct assembly code generation for these processors is cur-
rently possible using Gabriel, the predecessor to Ptolemy. However,
the code generated by Gabriel has too much overhead for many
applications, particularly those constructed from fine-grain dataflow
graphs, and must be painstakingly written in assembly code. Our
approach will be to retarget a public-domain C compiler to produce
block definitions that do not commit to the allocation of registers.
These block definitions will then be processed by a back-end code
generator [18].

Image and Video Signal Processing in Ptolemy

Dataflow representations work well for one-dimensional signal pro-
cessing applications because streams of tokens are a natural repre-
sentation for signals. However, multidimensional signals are not so
easily represented. The aim of this project is to find graphical repre-
sentations for multidimensional signal processing algorithms that
are amenable to automated parallel implementation. Approaches
that are being studied include multidimensional streams, data-paral-
lel representations, and a variety of graphical representations for
iterated computations.



Heterogeneous Signal Processing Systems

In this project, we are studying a new type of multi-processor DSP
architecture made by Star Semiconductor Corporation, and called
the Sproc. This architecture is unique in that a single central mem-
ory is shared without contention among four processors on the same
die. Programming is via block diagrams with semantics closely
related to dataflow graphs. Blocks are “temporally” partitioned
among processors, meaning for example that block A will run first
on processor 1, then on processor 2, then 3, then 4, then back to 1. A
“turnstile” (semaphore) is used ensure that no two processors simul-
taneously execute the same block. Double buffering is used to
ensure that data is not overwritten before it is read. This achieves
global synchronization and parallelism via a mechanism quite dif-
ferent from that in Gabriel.

The objective of this project is first to study the Sproc architecture
and software methodology and test it against some applications.
Then we will experiment with variations on the scheduling, parti-
tioning, and code generation approaches, using Ptolemy as the test-
bed. The long term objective is to enhance the coding methodology
to cleanly support applications that mix real-time control with syn-
chronous signal processing.

REFERENCES

[1] S. Bhattacharyya, “Scheduling Synchronous Dataflow Graphs
for Efficient Iteration”, Master’s Thesis, EECS Dept., Univ. of
Calif., Berkeley, May, 1991.

[2] J. Bier, E. Goei, W. Ho, P. Lapsley, M. O’Reilly, G. Sih and
E.A. Lee, “Gabriel: A Design Environment for DSP,”IEEE
Micro Magazine, October 1990, Vol. 10, No. 5, pp. 28-45.

[3] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multi-
rate Signal Processing in Ptolemy”,Proc. of the Int. Conf. on
Acoustics, Speech, and Signal Processing, Toronto, Canada,
April, 1991.

[4] J. Buck, S. Ha, E.A. Lee, D.G. Messerschmitt, “Ptolemy: A
mixed Paradigm Simulation/ Prototyping Platform”,Proc. of
Speech Tech 1991, New York, NY, April 23-25, 1991.

[5] J. Buck, S. Ha, E. A. Lee, and D.G. Messerschmitt, “Ptolemy:
A Platform for Heterogeneous Simulation and Prototyping,
Proc. 1991 European Simulation Conference, Copenhagen,
Denmark, June 17-19, 1991.

[6] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:
A Mixed-Paradigm Simulation/Prototyping Platform in C++”,
C++ Conference, Santa Clara, CA, Nov. 1991.

[7] S. Ha, E. A. Lee, “Quasi-Static Scheduling for Multiprocessor
DSP”,Proc. of ISCAS, Singapore, June 1991.

[8] Soonhoi Ha and E.A. Lee, “Compile-Time Scheduling and
Assignment of Dataflow Program Graphs with Data-Depen-
dent Iteration,”IEEE Transactions on Computers, November,
1991.

[9] P. D. Lapsley, “Host Interface and Debugging of Dataflow
DSP Systems”, MS Thesis, Electronics Research Laboratory,
University of California, Berkeley, CA 94720, December,
1991.

[10] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Process-
ing” IEEE Transactions on Computers, January, 1987.

[11] E. A. Lee and D. G. Messerschmitt, “Synchronous Data
Flow” IEEE Proceedings, September, 1987.

[12] E. A. Lee, W.-H. Ho, E. Goei, J. Bier, and S. Bhattacharyya,
“Gabriel: A Design Environment for DSP”,IEEE Trans. on
ASSP, November, 1989.

[13] E. A. Lee, “Static Scheduling of Data-Flow Programs for
DSP,” inAdvanced Topics in Data-Flow Computing, ed. J.-L.
Gaudiot and L. Bic, Prentice-Hall, 1991.

[14] E. A. Lee and J. C. Bier, “Architectures for Statically Sched-
uled Dataflow”, reprinted inParallel Algorithms and Archi-
tectures for DSP Applications,ed. M. A. Bayoumi, Kluwer
Academic Pub., 1991.

[15] E. A. Lee, “Consistency in Dataflow Graphs”,IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 2, No. 2, April
1991.

[16] E. A. Lee, “Consistency in Dataflow Graphs”,Proc. of the
1991 Conference on Application Specific Array Processors,
Barcelona, Spain, Sept. 1991.

[17] E. A. Lee, “A Design Lab for Statistical Signal Processing,”
Proceedings of ICASSP,San Francisco, March, 1992.

[18] D. G. Powell, E. A. Lee, W. C. Newman, “Direct Synthesis of
Optimized DSP Assembly Code from Signal Flow Block Dia-
grams,”Proceedings of ICASSP,San Francisco, March, 1992.

[19] D. G. Messerschmitt, “A Tool for Structured Functional Sim-
ulation”, IEEE Journal on Selected Areas in Communications,
SAC-2(1), January, 1984.

[20] G. C. Sih, “Multiprocessor Scheduling to Account for Inter-
processor Communication”, Ph.D. Thesis, ERL, UC Berkeley,
CA 94720, April 22, 1991.

[21] G. Sih and E. A. Lee, “A Compile-Time Scheduling Heuristic
for Interconnection-Constrained Heterogeneous Processor
Architectures,” to appear in IEEE Trans. on Parallel and Dis-
tributed Systems, 1992.


