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ABSTRACT

The Ptolemy project studies modeling, simulation, and design
of concurrent, real-time, embedded systems. The focus is on
assembly of concurrent components. The key underlying prin-
ciple in the project is the use of well-defined models of compu-
tation that govern the interaction between components. A
major problem area being addressed is the use of heteroge-
neous mixtures of models of computation. A software system
called Ptolemy II is being constructed in Java. The overall
Ptolemy project is fairly large, with additional support from
DARPA, GSRC, and a number of other companies, and is
strongly collaborative. The MICRO project has focused on
real-time signal processing, although the larger project is
broader.

1.  The Context

The objectives of the Ptolemy Project include many aspects of
designing embedded systems, ranging from designing and sim-
ulating algorithms to synthesizing hardware and software, par-
allelizing algorithms, and prototyping real-time systems.
Research ideas developed in the project are implemented and
tested in the Ptolemy software environment. The Ptolemy soft-
ware environment, which serves as our laboratory, is a system-
level design framework that allows mixing models of computa-
tion and implementation languages. 

In designing digital signal processing and communications sys-
tems, often the best available design tools are domain specific.
The tools must be able to interact. Ptolemy allows the interac-
tion of diverse models of computation by using the object-ori-
ented principles of polymorphism and information hiding. For
example, using Ptolemy, a high-level dataflow model of a sig-
nal processing system can be connected to a hardware simula-
tor that in turn may be connected to a discrete-event model of a
communication network. 

A part of the Ptolemy project concerns programming method-
ologies commonly called “graphical dataflow programming”
that are used in industry for signal processing and experimen-
tally for other applications. By “graphical” we mean simply
that the program is explicitly specified by a directed graph
where the nodes represent computations and the arcs represent
streams of data. The graphs are typically hierarchical, in that a
node in a graph may represent another directed graph. In
Ptolemy II the nodes in the graph are subprograms specified in
Java.

It is common in the signal processing community to use
visual syntax to specify such graphs, in which case the mode
often called “visual dataflow programming.” But it is by no
means essential to use a visual syntax.

Hierarchy in graphical program structure can be viewed as
alternative to the more usual abstraction of subprograms 
procedures, functions, or objects. It is better suited than any
these to a visual syntax, and also better suited to signal proc
ing.

Some other examples of graphical dataflow programmi
environments intended for signal processing (including ima
processing) are HP-Ptolemy, from Agilent, the signal proce
ing worksystem (SPW), from Cadence, COSSAP, from Syno
sys, and Simulink, from The MathWorks. These softwa
environments all claim variants of dataflow semantics.

Most graphical signal processing environments do not defin
language in a strict sense. In fact, some designers of such e
ronments advocate minimal semantics, arguing that the grap
cal organization by itself is sufficient to be useful. Th
semantics of a program in such environments is determined
the contents of the graph nodes, either subgraphs or sub
grams. Subprograms are usually specified in a conventio
programming language such as C. Most such environme
however, including HP-Ptolemy, SPW, Simulink, and COS
SAP, take a middle ground, permitting the nodes in a graph
subgraph to contain arbitrary subprograms, but defining p
cise semantics for the interaction between nodes. We call 
language used to define the subprograms in nodes the host lan-
guage. We call the language defining the interaction betwe
nodes the coordination language.

Many possibilities have been explored for precise semantics
coordination languages. Many of these limit expressiveness
exchange for considerable advantages such as compile-t
predictability. In Ptolemy, a domain defines the semantics of a
coordination language, but domains are modular objects t
can be mixed and matched at will. Thus we gain flexibilit
without the sloppiness of unspecified semantics in the coor
nation language.

Graphical programs can be either interpreted or compiled. I
common in signal processing environments to provide bo
options. The output of compilation can be a standard pro
dural language, such as C, assembly code for programma
DSP processors, or even specifications of silicon implemen
tions. We have put considerable effort into optimized compil
tion in the past, although current work is focussing o
modeling rather than compilation.
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2.  Results of Micro Support

2.1.  Ptolemy II

We are building a second generation of design software that we
are calling Ptolemy II. It is written in Java, is fully network-inte-
grated, is capable of operating within the worldwide web and
enterprise software architectures, and is multithreaded.

Ptolemy II offers a unified infrastructure for implementations of
a number of models of computation. The overall architecture
consists of a set of packages that provide generic support for all
models of computation and a set of packages that provide more
specialized support for particular models of computation. Exam-
ples of the former include packages that contain math libraries,
graph algorithms, an interpreted expression language, signal
plotters, and interfaces to media capabilities such as audio.
Examples of the latter include packages that support clustered
graph representations of models, packages that support execut-
able models, and domains, which are packages that implement a
particular model of computation.

Some of the major capabilities in Ptolemy II that we believe to be
new technology in modeling and design environments include:

• Higher level concurrent design in JavaTM. Java support for
concurrent design is very low level, based on threads and
monitors. Maintaining safety and liveness can be quite diffi-
cult. Ptolemy II includes a number of domains that support
design of concurrent systems at a much higher level of
abstraction, at the level of their software architecture. Some
of these domains use Java threads as an underlying mecha-
nism, while others offer an alternative to Java threads that is
much more efficient and scalable. The Java Language Spec-
ification allows for platform dependent threading imple-
mentations, which can result in non-determinism. Ptolemy
II helps insulate the naive programmer from some of these
difficult issues. 

• Better modularization through the use of packages. Ptolemy
II is divided into packages that can be used independently
and distributed on the net, or drawn on demand from a
server. This breaks with tradition in design software, where
tools are usually embedded in huge integrated systems with
interdependent parts.

• Complete separation of the abstract syntax from the seman-
tics. Ptolemy designs are structured as clustered graphs.
Ptolemy II defines a clean and thorough abstract syntax for
such clustered graphs, and separates into distinct packages
the infrastructure supporting such graphs from mechanisms
that attach semantics (such as dataflow, analog circuits,
finite-state machines, etc.) to the graphs.

• Improved heterogeneity. Ptolemy Classic provided a worm-
hole mechanism for hierarchically coupling heterogeneous
models of computation. This mechanism is improved in
Ptolemy II through the use of opaque composite actors,
which provide better support for models of computation that
are very different from dataflow, the best supported model
in Ptolemy Classic. These include hierarchical concurrent
finite-state machines and continuous-time modeling tech-
niques.

• Thread-safe concurrent execution. Ptolemy models are typi-
cally concurrent, but in the past, support for concurrent exe-
cution of a Ptolemy model has been primitive. Ptolemy II
supports concurrency throughout, allowing for instance for

a model to mutate (modify its clustered graph structure)
while the user interface simultaneously modifies the struc-
ture in different ways. Consistency is maintained through
the use of monitors and read/write semaphores built upon
the lower level synchronization primitives of Java.

• A software architecture based on object modeling. Since
Ptolemy Classic was constructed, software engineering has
seen the emergence of sophisticated object modeling and
design pattern concepts. We have applied these concepts to
the design of Ptolemy II, and they have resulted in a more
consistent, cleaner, and more robust design. We have also
applied a simplified software engineering process that
includes systematic design and code reviews.

• A truly polymorphic type system. Ptolemy Classic supported
rudimentary polymorphism through the “anytype” particle
Even with such limited polymorphism, type resolutio
proved challenging, and the implementation is ad-hoc a
fragile. Ptolemy II has a more modern type system based
a partial order of types and monotonic type refinement fun
tions associated with functional blocks. Type resolutio
consists of finding a fixed point, using algorithms inspire
by the type system in ML.

• Domain-polymorphic actors. In Ptolemy Classic, actor
libraries were separated by domain. Through the notion of
subdomains, actors could operate in more than one domain.
In Ptolemy II, this idea is taken much further. Actors with
intrinsically polymorphic functionality can be written to
operate in a much larger set of domains. The mechanism
they use to communicate with other actors depends on the
domain in which they are used. This is managed through a
concept that we call a process level type system.

• Extensible XML-based file formats. XML is an emerging
standard for representation of information that focuses on
the logical relationships between pieces of information.
Human-readable representations are generated with the help
of style sheets. Ptolemy II uses XML as its primary format
for persistent design data.

2.2.  Status

We have released a version of Ptolemy II that includes the fol-
lowing domains:

2.2.1 Communicating Sequential Processes - CSP

In the CSP domain (communicating sequential processes), actors
represent concurrently executing processes, implemented as Java
threads.  These processes communicate by atomic, instantaneous
actions called rendezvous (sometimes called synchronous mes-
sage passing). If two processes are to communicate, and one
reaches the point first at which it is ready to communicate, then it
stalls until the other process is ready to communicate. “Atom
means that the two processes are simultaneously involved in
exchange, and that the exchange is initiated and completed 
single uninterruptable step. Rendezvous models are particul
well-matched to applications where resource sharing is a key 
ment, such as client-server database models and multitaskin
multiplexing of hardware resources. A key feature of rende
vous-based models is their ability to cleanly model nondeterm
nate interactions. 
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2.2.2 Continuous Time - CT

In the CT domain (continuous time), actors represent compo-
nents that interact via continuous-time signals. Actors typically
specify algebraic or differential relations between inputs and out-
puts. The job of the director in the domain is to find a fixed-point,
i.e., a set of continuous-time functions that satisfy all the rela-
tions. The CT domain includes an extensible set of differential
equation solvers. The domain, therefore, is useful for modeling
physical systems with linear or nonlinear algebraic/differential
equation descriptions, such as analog circuits and many mechan-
ical systems. Its model of computation is similar to that used in
Simulink, Saber, and VHDL-AMS, and is closely related to that
in Spice circuit simulators. The CT domain is designed to inter-
operate with other Ptolemy domains, such as DE, to achieve
mixed signal modeling. Physical systems often have simple mod-
els that are only valid over a certain regime of operation.  Outside
that regime, another model may be appropriate.  A modal model
is one that switches between these simple models when the sys-
tem transitions between regimes. The CT domain interoperates
with the FSM domain to create modal models.

2.2.3 Discrete-Events - DE

In the discrete-event (DE) domain, the actors communicate via
sequences of events placed in time, along a real time line. An
event consists of a value and time stamp. Actors can either be
processes that react to events (implemented as Java threads) or
functions that fire when new events are supplied. This model of
computation is popular for specifying digital hardware and for
simulating telecommunications systems, and has been realized in
a large number of simulation environments, simulation lan-
guages, and hardware description languages, including VHDL
and Verilog. DE models are excellent descriptions of concurrent
hardware, although increasingly the globally consistent notion of
time is problematic. In particular, it over-specifies (or over-mod-
els) systems where maintaining such a globally consistent notion
is difficult, including large VLSI chips with high clock rates.
Every event is placed precisely on a globally consistent time line.
The DE domain implements a fairly sophisticated discrete-event
simulator. DE simulators in general need to maintain a global
queue of pending events sorted by time stamp (this is called a
priority queue). This can be fairly expensive, since inserting new
events into the list requires searching for the right position at
which to insert it. The DE domain uses a calendar queue data
structure for the global event queue. In addition, the DE domain
gives deterministic semantics to simultaneous events, unlike
most competing discrete-event simulators. This means that for
any two events with the same time stamp, the order in which they
are processed can be inferred from the structure of the model.
This is done by analyzing the graph structure of the model for
data precedences so that in the event of simultaneous time
stamps, events can be sorted according to a secondary criterion
given by their precedence relationships. VHDL, for example,
uses delta time to accomplish the same objective.

2.2.4 Distributed Discrete Events - DDE

The distributed discrete-event (DDE) domain can be viewed
either as a variant of DE or as a variant of PN (described below).
Still highly experimental, it addresses a key problem with dis-
crete-event modeling, namely that the global event queue
imposes a central point of control on a model, greatly limiting the
ability to distribute a model over a network. Distributing models

might be necessary either to preserve intellectual property, to
conserve network bandwidth, or to exploit parallel computing
resources. The DDE domain maintains a local notion of time on
each connection between actors, instead of a single globally con-
sistent notion of time. Each actor is a process, implemented as a
Java thread, that can advance its local time to the minimum of the
local times on each of its input connections. The domain system-
atizes the transmission of null events, which in effect provide
guarantees that no event will be supplied with a time stamp less
than some specified value.

2.2.5 Finite-State Machines - FSM

The finite-state machine (FSM) domain is radically different
from the other Ptolemy II domains. The entities in this domain
represent not actors but rather state, and the connections repre-
sent transitions between states. Execution is a strictly ordered
sequence of state transitions. The FSM domain leverages the
built-in expression language in Ptolemy II to evaluate guards,
which determine when state transitions can be taken. FSM mod-
els are excellent for control logic in embedded systems, particu-
larly safety-critical systems. FSM models are amenable to in-
depth formal analysis, and thus can be used to avoid surprising
behavior. The FSM domain in Ptolemy II can be hierarchically
combined with other domains. We call the resulting formalism
“*charts” (pronounced “starcharts”) where the star represent
wildcard. Since most other domains represent concurrent com
tations, *charts model concurrent finite state machines with
variety of concurrency semantics. When combined with CT, th
yield hybrid systems and modal models. When combined w
SR (described below), they yield something close to Statecha
When combined with process networks, they resemble SDL.

2.2.6 Process Networks - PN

In the process networks (PN) domain, processes communicat
sending messages through channels that can buffer the mess
The sender of the message need not wait for the receiver to
ready to receive the message. This style of communication
often called asynchronous message passing. There are se
variants of this technique, but the PN domain specifically imp
ments one that ensures determinate computation, namely K
process networks. In the PN model of computation, the arcs r
resent sequences of data values (tokens), and the entities r
sent functions that map input sequences into output sequen
Certain technical restrictions on these functions are necessar
ensure determinacy, meaning that the sequences are fully sp
fied. In particular, the function implemented by an entity must 
prefix monotonic. The PN domain realizes a subclass of su
functions, first described by Kahn and MacQueen, where block-
ing reads ensure monotonicity. The PN domain in Ptolemy II ha
a highly experimental timed extension. This adds to the block
reads a method for stalling processes until time advances. 
anticipate that this timed extension will make interoperation w
timed domains much more practical.

2.2.7 Synchronous Dataflow - SDF

The synchronous dataflow (SDF) domain handles regular co
putations that operate on streams. Dataflow models, popula
signal processing, are a special case of process networks. D
flow models construct processes of a process network 
sequences of atomic actor firings. Synchronous dataflow (SDF)
is a particularly restricted special case with the extremely use
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property that deadlock and boundedness are decidable. More-
over, the schedule of firings, parallel or sequential, is computable
statically, making SDF an extremely useful specification formal-
ism for embedded real-time software and for hardware.

3.  Future Capabilities

Capabilities that we anticipate making available in the future
include:

• Interoperability through software components. Ptolemy II
will use distributed software component technology such as
CORBA, JINI, or DCOM, in a number of ways. Compo-
nents (actors) in a Ptolemy II model will be implementable
on a remote server. Also, components may be parameterized
where parameter values are supplied by a server. Ptolemy II
models will be exported via a server. And finally, Ptolemy II
will support migrating software components.

• The discrete-time (DT) domain will extend the SDF domain
with a notion of time between tokens. Communication
between actors takes the form of a sequence of tokens where
the time between tokens is uniform. Multirate models,
where distinct connections have distinct time intervals
between tokens, will be supported.

• In the synchronous/reactive (SR) domain, the arcs will rep-
resent data values that are aligned with global clock ticks.
Thus, they are discrete signals, but unlike discrete time, a
signal need not have a value at every clock tick. The entities
represent relations between input and output values at each
tick, and are usually partial functions with certain technical
restrictions to ensure determinacy. Examples of languages
that use the SR model of computation include Esterel, Sig-
nal, Lustre, and Argos.

• Embedded software synthesis. Pertinent Ptolemy II domains
will be tuned to run on a Java virtual machine on an embed-
ded CPU. Domains that seem particularly well suited to this
approach include PN and CSP.

• Integrated verification tools. Modern verification tools
based on model checking could be integrated with Ptolemy
II at least to the extent that finite state machine models can
be checked. We believe that the separation of control logic
from concurrency will greatly facilitate verification, since
only much smaller cross-sections of the system behavior
will be offered to the verification tools.

• Reflection of dynamics. Java supports reflection of static
structure, but not of dynamic properties of process-based
objects. For example, the data layout required to communi-
cate with an object is available through the reflection pack-
age, but the communication protocol is not. We plan to
extend the notion of reflection to reflect such dynamic prop-
erties of objects.

4.  Publications

This project has generated a number of publications during this
reporting period. Here are some of the highlights.
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