
1

Ethereal Sting Working Group Meeting
June 10, 2003
Arlington, VA

Mobies Ethereal Sting OEP
The Ptolemy II Experiment

Edward A. Lee
Professor
UC Berkeley

Lee, U. C. Berkeley 2

E0 Implementation in Ptolemy II

Authors:
Mark Oliver (WPAFB)
Steve Neuendorffer
Edward Lee

2

Lee, U. C. Berkeley 3

Code Generation

Automatic code generation enables rapid implementation
from high-level component-based design.

We are developing a code generation technique based on
component specialization that transforms Ptolemy II
models into a Java system implementation.

Lee, U. C. Berkeley 4

From Model to Implementation

• Generator-based code generation
– Done in Ptolemy Classic
– Library maintenance is very expensive

• Native Java compiler
– Drags in the development environment
– Result is large, and has unpredictable timing

• Component specialization
– Produce minimized Java implementation
– Minimize or eliminate dynamic memory management
– Compile to the target platform using one of:

• Java to C translation
• Native Java compiler
• Just-in-time compiler
• Native Java platform (e.g. Dallas Tini boards)

3

Lee, U. C. Berkeley 5

Component Specialization

Model of Computation semantics defines communication, flow of control

Ptolemy II model

scheduler

Schedule:
- fire Gaussian0
- fire Ramp1
- fire Sine2
- fire AddSubtract5
- fire SequenceScope10

parser

method call

if

block

method call

block

…
for (int i = 0; i < plus.getWidth(); i++) {

if (plus.hasToken(i)) {

if (sum == null) {
sum = plus.get(i);

} else {

sum = sum.add(plus.get(i));
}

}

}
…

Java actor
definitions are
parsed and then
specialized for
their context.

target code

abstract syntax tree

Specialize for
data types
parameter values
scheduling

By
token unboxing
inlining
partial evaluation
dead code elimination

Lee, U. C. Berkeley 6

Limitations Exposed by the Experiment

• No actor for array maximum
– Added later by Mark Oliver, built into library
– Easy workaround used very wide signal busses

• Type resolution was very slow when using very
wide signal busses
– Fixed by Steve Neuendorffer

• AudioReader actor was unfinished
– Didn’t use FileAttribute
– Didn’t correctly deliver stereo signals

• FFT actor performs only radix-2 FFTs
– Could use MATLAB interface to generalize

• Component specialization framework limitations
– Didn’t handle FileAttributes
– Error handling the absolute() function
– Error specializing AudioReader

4

Lee, U. C. Berkeley 7

Log of Effort

• Three active participants, plus some spectators:
– 0.5 hours examining EtherealSting website and figuring

out what to do.
– 2 hours constructing and experimenting with the model

to detect the baud rate. This was built by modifying a
model constructed by Edward Lee at the Mobies PI
meeting (which took, perhaps, 1.5 hours to build).

– 1 hour fixing bug in AudioReader actor to use
FileAttribute.

– 4 hours experimenting with component specialization.
– Total time: 9 hours

• 6.5 hours fixing bugs exposed by the experiment.
• The experiment stimulated further work on

comm/signal processing libraries.

Lee, U. C. Berkeley 8

Actor Libraries – Signal Processing
actor

actor.lib

AbsoluteValue
Accumulator
AddSubtract
ArrayAppend
ArrayElement
ArrayExtract
ArrayLength
ArrayMaximum
ArrayMinimum
Average
Bernoulli
Const
Counter
DB
Differential
DiscreteRandomSource
Expression
Gaussian
IIR
Interpolator
Lattice
LevinsonDurbin
Limiter
LinearDifferenceEquationSystem
LookupTable
MathFunction
MaxIndex
Maximum
Minimum
MultiplyDivide
PhaseUnwrap
PoissonClock
Pulse
Quantizer
RandomSource
RecursiveLattice
Rician
Scale
TrigFunction
Uniform

ConvolutionalCoder
DeScrambler
HadamardCode
Scrambler
ViterbiDecoder

actor.lib.comm

ArrayPlotter
ArrowKeySensor
BarGraph
Display
HistogramPlotter
InteractiveShell
KeystrokeSensor
MatrixViewer
Plotter
PlotterBase
RealTimePlotter
SequencePlotter
SequenceScope
SketchedSource
SliderSource
TimedPlotter
TimedScope
XYPlotter
XYScope

actor.lib.gui

AudioCapture
AudioPlayer
AudioReadBuffer
AudioReader
AudioWriteBuffer
AudioWriter

actor.lib.javasound

ImageDisplay
ImageReader
ImageRotate
ImageToString
Transform
URLToImage

actor.lib.image

DoubleMatrixToJAI
JAIAffineTransform
JAIBMPWriter
JAIBandCombine
JAIBandSelect
JAIBorder
JAIBoxFilter
JAIConvolve
JAICrop
JAIDCT
JAIDFT
JAIDataCaster
JAIEdgeDetection
JAIIDCT
JAIIDFT
JAIImageReader
JAIImageToken
JAIInvert
JAIJPEGWriter
JAILog
JAIMagnitude
JAIMedianFilter
JAIPNMWriter
JAIPeriodicShift
JAIPhase
JAIPolarToComplex
JAIRotate
JAIScale
JAITIFFWriter
JAIToDoubleMatrix
JAITranslate
JAITranspose

actor.lib.jai

ColorFinder
JMFImageToken
PlaySound
VideoCamera

actor.lib.jmf

domains

sdf

lib

ArrayToSequence
Autocorrelation
DelayLine
DotProduct
DownSample
FFT
FIR
IFFT
LMSAdaptive
LineCoder
MatrixToSequence
RaisedCosine
Repeat
SampleDelay
SequenceToArray
SequenceToMatrix
UpSample
VariableFIR
VariableLattice
VariableRecursiveLattice

Capabilities:
• filtering

– multirate polyphase FIR, IIR, lattice,
LMS adaptive filter, dot product,
up/downsample

• random numbers/signals
– Bernouli, Gaussian, Rician, Rayleigh,

Uniform, arbitrary discrete
distributions.

• linear system generators
• spectral estimation library

– FFT, periodogram, maximum entropy
• comm functions:

– Viterbi decoder (MLSE),
convolutional/block coder/decoders, PN
sequence generation,
scrambling/descrambling, raised cosine

• array and matrix operations
• rich expression language / actor

– extensive function library
– MATLAB-like matrix comprehension
– higher-order functional semantics
– sophisticated, integrated type system

• interpolator, phase unwrap, lookup
table, signal generators, trig functions

• signal plotters
• extensive image processing library

– based on Java JAI, JMF
• audio interfaces

UML package
diagram of key
actor libraries
included with
Ptolemy II.

5

Lee, U. C. Berkeley 9

Supervisory Structure
Experimental SA Compute Resource

Model-based compute resource:

MobileModel actor accepts a
StringToken containing an XML
description of a model. It then
executes that model on a stream of
input data.

PushConsumer actor receives
pushed data provided via CORBA,
where the data is an XML model of an
SA algorithm.

Authors:
Yang Zhao
Steve Neuendorffer
Xiaojun Liu

Lee, U. C. Berkeley 10

Supervisory Structure
Experimental Task Manager

Model-based task manager:

PushConsumer actor
receives pushed data
provided via CORBA,
where the data is a user
request for signal
analysis.

PushSupplier send an
XML representation of an
SA model via CORBA

Supervisor state
machine has resource
allocation logic

Authors:
Yang Zhao
Steve Neuendorffer
Xiaojun Liu

6

Lee, U. C. Berkeley 11

Supervisory Structure
Experimental User Model

Model supplying
signal data

PullSupplier
actor
provides
signal data
on demand
from SA
algorithm

PushSupplier actor
sends a request for
signal analysis to
the task manager.

Authors:
Yang Zhao
Steve Neuendorffer
Xiaojun Liu

User model:

Lee, U. C. Berkeley 12

To Do

• Handle failures of mobile model
– use “model error handler” mechanism in Ptolemy II

• Secure execution of mobile model
– all Java code executed is locally defined
– mark actors and directors that convey no authority
– set MobileModel security level to restrict actors

• Encrypted communication of models & data
– currently XML plain text

• Authenticated access to MobileModels
– consider using “capability” mechanisms
– use peer-to-peer technology to “discover”

capabilities.

7

Lee, U. C. Berkeley 13

Another Application: Controlling
the Caltech Ducted Fan Vehicle

This effort is
applying Mobies
technology to the
SEC program

Lee, U. C. Berkeley 14

Caltech Vehicles

Localization
computer estimates
vehicle
locations

Vehicles with onboard controllers and 802.11b

Command computer:
Waypoints, trajectories,
Control changes

20
 f

ee
t

30 feet

Difficulties:
1) Complex control problem
2) Complex implementation

platform

8

Lee, U. C. Berkeley 15

A Detailed Heterogenous Model

Array of 3 Bytes:
{85, Left, Right}
Sent immediately after
controller computes value

Array of 50 Bytes:
{TimeStamp, ID, X, Y, Angle}
60 times a second

Measured Physical Parameters

Discrete Event
model convenient
for events that
do not occur at
the same time.

Model of
computation and
communication
delay.

Author:
Steve Neuendorffer

Lee, U. C. Berkeley 16

A Detailed Heterogenous Model

Data formatting

Fan Thrust Map

Continuous time model of
vehicle dynamics Author:

Steve Neuendorffer

9

Lee, U. C. Berkeley 17

A Detailed Heterogenous Model

Encapsulated
Control Law

Discrete-state
model of vehicle
software

Author:
Steve Neuendorffer

Lee, U. C. Berkeley 18

Towards Implementation

802.11b

RS-232

10

Lee, U. C. Berkeley 19

Hardware-in-the-loop

802.11b

RS-232

Replace hardware-true simulation model with actual
vehicle.

Allows validation of continuous dynamics model, and
hardware/software interface.

Lee, U. C. Berkeley 20

Simulation-in-the-loop

802.11b

RS-232

Code generation of the controller onto an
embedded platform.

Allows validation of generated code, and
execution delay.

Embedded Java Platform

11

Lee, U. C. Berkeley 21

System Implementation

802.11b

RS-232

The generated code forms the final
system implementation.

Embedded Java Platform

Lee, U. C. Berkeley 22

Controller Updates

Mobile model allows
substitution of different
controllers

Controller component
transmitted over
publish/subscribe
network

Simplified model of
base station

Authors:
Steve Neuendorffer
Yang Zhao

