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Project Goals and Problem 
Description

Our focus is on component-based design using 
principled models of computation and their runtime 
environments for embedded systems. The emphasis of 
this project is on the dynamics of the components, 
including the communication protocols that they use to 
interface with other components, the modeling of their 
state, and their flow of control. The purpose of the 
mechanisms we develop is to improve robustness and 
safety while promoting component-based design.
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Where We Are

Major Accomplishments
Actor-oriented design
Behavioral types
Component specialization (vs. code generation)
Hierarchical heterogeneous models
Hierarchical modal models
Hybrid systems operational semantics
Hybrid system modeling and simulation with HSIF import
Giotto and timed-multitasking models of computation
Network integrated models (P&S, push-pull, discovery)
Actor definition language principles
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Where We Are Going

Current Efforts
Actor-oriented classes, inheritance, interfaces and aspects
Security with distributed and mobile models
Higher-order components
Model-based lifecycle management
Behavioral and resource Interfaces for practical verification
Modeling of Wireless Sensor nets
Construction of Scientific Workflows
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Platforms

A platform is a set of 
designs.

Relations  between 
platforms represent 
design processes.

big gap
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Progress

Many useful technical 
developments 
amounted to creation of 
new platforms.

microarchitectures
operating systems
virtual machines
processor cores
configurable ISAs
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Desirable 
Properties

From above:
modeling
expressiveness

From below:
correctness
efficiency
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Model-Based 
Design

Model-based design
is specification of 
designs in platforms 
with “useful 
modeling 
properties.”
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Recent
Action

Giving the red platforms 
useful modeling 
properties (e.g. 
verification, SystemC, 
UML, MDA)

Getting from red 
platforms to blue 
platforms (e.g. 
correctness, efficiency, 
synthesis of tools)
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Better
Platforms

Platforms with 
modeling properties 
that reflect 
requirements of the 
application, not 
accidental 
properties of the 
implementation.
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How to View This Design

From above: Signal flow graph with linear, time-
invariant components.

From below: Synchronous concurrent 
composition of components
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Embedded 
Platforms

The modeling 
properties of these 
platforms are about 
the application 
problem, not about 
the implementation 
technology.
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Embedded 
Platforms

The modeling 
properties of these 
platforms are about 
the application 
problem, not about 
the implementation 
technology.
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Actor-Oriented 
Platforms

Actor oriented models 
compose concurrent 
components according 
to a model of 
computation.

Time and concurrency 
become key parts of the 
programming model.
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Actor-Oriented Design

Actor orientation:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 
an object is 

streams of data

class name

data

methods

call return

What flows through 
an object is 

sequential control

Object orientation:
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Actor Orientation
vs. Object Orientation

Identified problems with object orientation:
Says little or nothing about concurrency and time
Concurrency typically expressed with threads, monitors, semaphores
Components tend to implement low-level communication protocols
Re-use potential is disappointing

Actor orientation offers more potential for useful modeling properties, and hence 
for model-based design.

OO interface definition gives procedures 
that have to be invoked in an order not 
specified as part of the interface definition.

TextToSpeech

initialize(): void
notify(): void
isReady(): boolean
getSpeech(): double[]

actor-oriented interface definition says 
“Give me text and I’ll give you speech”

Actor orientedObject oriented
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But… New Design Methods Need to 
Offer Best-Of-Class Methods

Abstraction
procedures/methods
classes

Modularity
subclasses
inheritance
interfaces
polymorphism
aspects

Correctness
type systems
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Example of an Actor-Oriented 
Framework: Simulink

basic abstraction 
mechanism is 
hierarchy.
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Less Conventional Actor-Oriented 
Framework: VisualSense

Based on Ptolemy II
Connectivity is wireless
Customized visualization
Location-aware models
Channel models include:

packets losses
power attenuation
distance limitations
collisions

Component models include:
Antenna gains
Terrain models
Jamming

model of a sensor node

model of a channel
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Also Uses Hierarchy for Abstraction

These 49 sensor nodes are 
actors that are instances of 
the same class, defined as:
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Observation

By itself, hierarchy is a very weak 
abstraction mechanism.
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Tree Structured Hierarchy

Does not 
represent 
common class
definitions. Only 
instances.

Multiple 
instances of the 
same hierarchical 
component are 
copies.

hierarchical
component copy

leaf components: instances of an OO class

container container
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Using Copies for Instances is 
Awkward

Models become unmaintainable. 
Changes have be performed on 
all 49 copies of this:
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Alternative Hierarchy:
Roles and Instances

class

role hierarchy
(“design-time” view)

instance hierarchy
(“run time” view)

instance instance

one definition,
multiple containers
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Role Hierarchy

Multiple instances of 
the same hierarchical 
component are 
represented by classes
with multiple 
containers.

This makes hierarchical 
components are more 
similar to leaf 
components.

hierarchical
class
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Example Ptolemy II now supports 
a role hierarchy.

The definition below is a 
class and objects at the 
left are instances, not 
copies.Making these objects 

instances of a class 
rather than copies 
reduced the XML 
representation of the 
model from 1.1 
Mbytes to 87 kBytes, 
and offered a number 
of other advantages.
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Subclasses, Inheritance?
Interfaces, Subtypes? Aspects?

Now that we have classes, can we bring in 
more of the modern programming world?

subclasses?
inheritance?
interfaces?
subtypes?
aspects?
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Actor Interfaces:
Ports and Parameters

input ports
output port

p1

p2

p3

parameters:
a1 = value
a2 = value

input/output
port

port

Example:
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Subclasses? Inheritance?
Interfaces? Subtypes? Aspects?
Yes We Can!

Actor-oriented design:
subclasses and inheritance

hierarchical models that inherit structure from a base class 
interfaces and subtypes

ports and parameters of actors form their interface
aspects

heterarchical models interweave multiple hierarchies, providing 
true multi-view modeling.

All of these operate at the abstract syntax level, and are 
independent of the model of computation, and therefore can 
be used with any model of computation! Thus, they become 
available in domain-specific actor-oriented languages.

These are a part of what the 
Berkeley Center for Hybrid and 
Embedded Software Systems 
(Chess) is doing. 
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Example
A Simple Resource Interface

out: Double 
in: Double

out: Double 

subtype
relation

power: Double 

energy: Double 

EnergyConsumer interface has a single 
output port that produces a Double 
representing the energy consumed by a firing.

Filter interface for a 
stream transformer 
component. 

in: Double

EnergyConsumingFilter
composed interface. 

in: Event

Lee, UC Berkeley 32

Ethereal Sting OEP: Lessons on
Dataflow Design Patterns

Solution to E0 Challenge 
Problem

E1 Challenge Problem 
Components

Input data sequence, at 
samplingFrequency Hz

Output data sequence, 
at detected baud rate.  
(not known apriori)
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SDF is More Flexible Than We 
Realized

The Synchronous Dataflow (SDF) model of 
computation can be easily augmented to make 
it much more expressive without sacrificing 
static analyzability.

Model-based lifecycle management can 
provide systematic ways to construct 
supervisory structures (resource management, 
task management).
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Dataflow Taxonomy

Synchronous dataflow (SDF)
Balance equation formalism
Statically schedulable
Decidable resource requirements

Heterochronous Dataflow (HDF)
Combines state machines with SDF graphs
Very expressive, yet decidable
Scheduling complexity can be high

Boolean & Integer Dataflow (BDF, IDF)
Balance equations are solved symbolically
Turing-complete expressiveness
Undecidable, yet often statically schedulable

Process Networks (PN)
Turing-complete expressiveness
Undecidable (schedule and resource requirements)
Thread scheduling with interlocks provably executes with bounded
resources when that is possible.

With higher-order 
components and 
modal models, 
SDF is sufficiently 
expressive for the 
SW radio OEP.
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SDF Principles

Fixed production/consumption rates
Balance equations (one for each channel):

Schedulable statically
Decidable:

buffer memory requirements
deadlock

fire B {
…
consume M
…

}

fire A {
…
produce N
…

}

channel
N M

MfNf BA =
number of tokens consumed

number of firings per “iteration”

number of tokens produced
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Undecidability: What SDF Avoids
(Buck ’93)

Sufficient set of actors for undecidability:
boolean functions on boolean tokens
switch and select
initial tokens on arcs

Undecidable:
deadlock
bounded buffer memory
existence of an annotated schedule

boolean
function se

le
ct

sw
itc

h

initial token

1

1

1

1

1 1

1

b

1- b

b

1- b

T

F

T

F
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Resampling Design Pattern Using 
Token Routing

This pattern requires the use of a semantically richer 
dataflow model than SDF because the BooleanSwitch
is not an SDF actor.
This has a performance cost and reduces the static 
analyzability of the model.
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Resampling Design Pattern using 
Modal Models

Uses transition refinements
All SDF + FSM
Can be captured in a higher-order 
component that makes the pattern 
easy to use.
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Scalability of Visual Syntaxes
Iteration by Replication

naïve approach:
8 tones
8 signal paths

hard to build
hardwired scale
distributor:

converts an 
array of 
dimension 8 to 
a sequence of 8 
tokens.

array in elements out
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Scalability of Visual Syntaxes
Iteration by Dataflow

Although sometimes useful, this design pattern has limitations:
array size must be statically fixed
actor to iterate must be stateless, or
desired semantics must be to carry state across array elements
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Structured Programming in SDF

A library of actors that encapsulate common design patterns:
IterateOverArray: Serialize an array input and provide it 
sequentially to the contained actor.
MapOverArray: Provide elements of an array input to distinct 
instances of the contained actor.
Zip, Scan, Case, …

Like the higher-order functions of functional languages, but 
unlike functions, actors can have state.
The implementation leverages the abstract semantics of 
Ptolemy II.
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Abstract Semantics – The Key To 
Hierarchical Heterogeneity

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

preinitialize()
declare static information, like 
type constraints, scheduling 
properties, temporal 
properties, structural 
elaboration

initialize()
initialize variables
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Abstract Semantics – The Key To 
Hierarchical Heterogeneity

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

iterate()
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Abstract Semantics – The Key To 
Hierarchical Heterogeneity

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

iterate()
prefire()
fire()
postfire()

stopFire()
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Lifecycle Management

It is possible to hierarchically compose the Ptolemy II 
abstract semantics.

Actors providing common patterns:
RunCompositeActor is a composite actor that, instead of 
firing the contained model, executes a complete lifecycle 
of the contained model.
ModelReference is an atomic actor whose function is 
provided by a complete execution of a referenced model 
in another file or URL.

Provides systematic approach to building systems of 
systems.
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Hierarchical Composition of the 
Ptolemy II Abstract Semantics

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

iterate()
prefire()
fire()
postfire()

stopFire()

initialization
Execution
Finalization
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Conclusion

We aren’t done yet…

Stay tuned…


