
1

Process-Based
Software Components
Final Mobies Presentation

Edward A. Lee
Professor
UC Berkeley

PI Meeting, Savannah, GA
January 21-23, 2004

PI: Edward A. Lee, 510-642-0455, eal@eecs.berkeley.edu
Co-PI: Tom Henzinger, 510-643-2430, tah@eecs.berkeley.edu
PM: John Bay
Agent: Dale Vancleave, dale.vancleave@wpafb.af.mil
Award end date: December, 2003
Contract number: F33615-00-C-1703
AO #: J655

Lee, UC Berkeley 2

Ptolemy Project ParticipantsPtolemy Project Participants
Director:Director:

Edward A. LeeEdward A. Lee

Staff:Staff:
Christopher Christopher HylandsHylands
Susan Gardner (Chess)Susan Gardner (Chess)
NualaNuala MansardMansard
Mary P. StewartMary P. Stewart
Neil E. Turner (Chess)Neil E. Turner (Chess)
Lea Turpin (Chess)Lea Turpin (Chess)

PostdocsPostdocs, Etc.:, Etc.:
JoernJoern JanneckJanneck, , PostdocPostdoc
Rowland R. Johnson, Visiting Scholar Rowland R. Johnson, Visiting Scholar
KeesKees VissersVissers, Visiting Industrial Fellow, Visiting Industrial Fellow
Daniel Daniel LLáázarozaro CuadradoCuadrado, Visiting Scholar, Visiting Scholar

Graduate Students:Graduate Students:

J. Adam J. Adam CataldoCataldo
Chris ChangChris Chang
Elaine Elaine CheongCheong
SanjeevSanjeev KohliKohli
XiaojunXiaojun LiuLiu
EleftheriosEleftherios D. D. MatsikoudisMatsikoudis
Stephen Stephen NeuendorfferNeuendorffer
James James YehYeh
Yang ZhaoYang Zhao
HaiyangHaiyang ZhengZheng
Rachel ZhouRachel Zhou

2

Lee, UC Berkeley 3

Project Goals and Problem
Description

Our focus is on component-based design using
principled models of computation and their runtime
environments for embedded systems. The emphasis of
this project is on the dynamics of the components,
including the communication protocols that they use to
interface with other components, the modeling of their
state, and their flow of control. The purpose of the
mechanisms we develop is to improve robustness and
safety while promoting component-based design.

Lee, UC Berkeley 4

Where We Are

Major Accomplishments
Actor-oriented design
Behavioral types
Component specialization (vs. code generation)
Hierarchical heterogeneous models
Hierarchical modal models
Hybrid systems operational semantics
Hybrid system modeling and simulation with HSIF import
Giotto and timed-multitasking models of computation
Network integrated models (P&S, push-pull, discovery)
Actor definition language principles

3

Lee, UC Berkeley 5

Where We Are Going

Current Efforts
Actor-oriented classes, inheritance, interfaces and aspects
Security with distributed and mobile models
Higher-order components
Model-based lifecycle management
Behavioral and resource Interfaces for practical verification
Modeling of Wireless Sensor nets
Construction of Scientific Workflows

Lee, UC Berkeley 6

Platforms

A platform is a set of
designs.

Relations between
platforms represent
design processes.

big gap

4

Lee, UC Berkeley 7

Progress

Many useful technical
developments
amounted to creation of
new platforms.

microarchitectures
operating systems
virtual machines
processor cores
configurable ISAs

Lee, UC Berkeley 8

Desirable
Properties

From above:
modeling
expressiveness

From below:
correctness
efficiency

5

Lee, UC Berkeley 9

Model-Based
Design

Model-based design
is specification of
designs in platforms
with “useful
modeling
properties.”

Lee, UC Berkeley 10

Recent
Action

Giving the red platforms
useful modeling
properties (e.g.
verification, SystemC,
UML, MDA)

Getting from red
platforms to blue
platforms (e.g.
correctness, efficiency,
synthesis of tools)

6

Lee, UC Berkeley 11

Better
Platforms

Platforms with
modeling properties
that reflect
requirements of the
application, not
accidental
properties of the
implementation.

Lee, UC Berkeley 12

How to View This Design

From above: Signal flow graph with linear, time-
invariant components.

From below: Synchronous concurrent
composition of components

7

Lee, UC Berkeley 13

Embedded
Platforms

The modeling
properties of these
platforms are about
the application
problem, not about
the implementation
technology.

Lee, UC Berkeley 14

Embedded
Platforms

The modeling
properties of these
platforms are about
the application
problem, not about
the implementation
technology.

8

Lee, UC Berkeley 15

Actor-Oriented
Platforms

Actor oriented models
compose concurrent
components according
to a model of
computation.

Time and concurrency
become key parts of the
programming model.

Lee, UC Berkeley 16

Actor-Oriented Design

Actor orientation:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

streams of data

class name

data

methods

call return

What flows through
an object is

sequential control

Object orientation:

9

Lee, UC Berkeley 17

Actor Orientation
vs. Object Orientation

Identified problems with object orientation:
Says little or nothing about concurrency and time
Concurrency typically expressed with threads, monitors, semaphores
Components tend to implement low-level communication protocols
Re-use potential is disappointing

Actor orientation offers more potential for useful modeling properties, and hence
for model-based design.

OO interface definition gives procedures
that have to be invoked in an order not
specified as part of the interface definition.

TextToSpeech

initialize(): void
notify(): void
isReady(): boolean
getSpeech(): double[]

actor-oriented interface definition says
“Give me text and I’ll give you speech”

Actor orientedObject oriented

Lee, UC Berkeley 18

But… New Design Methods Need to
Offer Best-Of-Class Methods

Abstraction
procedures/methods
classes

Modularity
subclasses
inheritance
interfaces
polymorphism
aspects

Correctness
type systems

10

Lee, UC Berkeley 19

Example of an Actor-Oriented
Framework: Simulink

basic abstraction
mechanism is
hierarchy.

Lee, UC Berkeley 20

Less Conventional Actor-Oriented
Framework: VisualSense

Based on Ptolemy II
Connectivity is wireless
Customized visualization
Location-aware models
Channel models include:

packets losses
power attenuation
distance limitations
collisions

Component models include:
Antenna gains
Terrain models
Jamming

model of a sensor node

model of a channel

11

Lee, UC Berkeley 21

Also Uses Hierarchy for Abstraction

These 49 sensor nodes are
actors that are instances of
the same class, defined as:

Lee, UC Berkeley 22

Observation

By itself, hierarchy is a very weak
abstraction mechanism.

12

Lee, UC Berkeley 23

Tree Structured Hierarchy

Does not
represent
common class
definitions. Only
instances.

Multiple
instances of the
same hierarchical
component are
copies.

hierarchical
component copy

leaf components: instances of an OO class

container container

Lee, UC Berkeley 24

Using Copies for Instances is
Awkward

Models become unmaintainable.
Changes have be performed on
all 49 copies of this:

13

Lee, UC Berkeley 25

Alternative Hierarchy:
Roles and Instances

class

role hierarchy
(“design-time” view)

instance hierarchy
(“run time” view)

instance instance

one definition,
multiple containers

Lee, UC Berkeley 26

Role Hierarchy

Multiple instances of
the same hierarchical
component are
represented by classes
with multiple
containers.

This makes hierarchical
components are more
similar to leaf
components.

hierarchical
class

14

Lee, UC Berkeley 27

Example Ptolemy II now supports
a role hierarchy.

The definition below is a
class and objects at the
left are instances, not
copies.Making these objects

instances of a class
rather than copies
reduced the XML
representation of the
model from 1.1
Mbytes to 87 kBytes,
and offered a number
of other advantages.

Lee, UC Berkeley 28

Subclasses, Inheritance?
Interfaces, Subtypes? Aspects?

Now that we have classes, can we bring in
more of the modern programming world?

subclasses?
inheritance?
interfaces?
subtypes?
aspects?

15

Lee, UC Berkeley 29

Actor Interfaces:
Ports and Parameters

input ports
output port

p1

p2

p3

parameters:
a1 = value
a2 = value

input/output
port

port

Example:

Lee, UC Berkeley 30

Subclasses? Inheritance?
Interfaces? Subtypes? Aspects?
Yes We Can!

Actor-oriented design:
subclasses and inheritance

hierarchical models that inherit structure from a base class
interfaces and subtypes

ports and parameters of actors form their interface
aspects

heterarchical models interweave multiple hierarchies, providing
true multi-view modeling.

All of these operate at the abstract syntax level, and are
independent of the model of computation, and therefore can
be used with any model of computation! Thus, they become
available in domain-specific actor-oriented languages.

These are a part of what the
Berkeley Center for Hybrid and
Embedded Software Systems
(Chess) is doing.

16

Lee, UC Berkeley 31

Example
A Simple Resource Interface

out: Double
in: Double

out: Double

subtype
relation

power: Double

energy: Double

EnergyConsumer interface has a single
output port that produces a Double
representing the energy consumed by a firing.

Filter interface for a
stream transformer
component.

in: Double

EnergyConsumingFilter
composed interface.

in: Event

Lee, UC Berkeley 32

Ethereal Sting OEP: Lessons on
Dataflow Design Patterns

Solution to E0 Challenge
Problem

E1 Challenge Problem
Components

Input data sequence, at
samplingFrequency Hz

Output data sequence,
at detected baud rate.
(not known apriori)

17

Lee, UC Berkeley 33

SDF is More Flexible Than We
Realized

The Synchronous Dataflow (SDF) model of
computation can be easily augmented to make
it much more expressive without sacrificing
static analyzability.

Model-based lifecycle management can
provide systematic ways to construct
supervisory structures (resource management,
task management).

Lee, UC Berkeley 34

Dataflow Taxonomy

Synchronous dataflow (SDF)
Balance equation formalism
Statically schedulable
Decidable resource requirements

Heterochronous Dataflow (HDF)
Combines state machines with SDF graphs
Very expressive, yet decidable
Scheduling complexity can be high

Boolean & Integer Dataflow (BDF, IDF)
Balance equations are solved symbolically
Turing-complete expressiveness
Undecidable, yet often statically schedulable

Process Networks (PN)
Turing-complete expressiveness
Undecidable (schedule and resource requirements)
Thread scheduling with interlocks provably executes with bounded
resources when that is possible.

With higher-order
components and
modal models,
SDF is sufficiently
expressive for the
SW radio OEP.

18

Lee, UC Berkeley 35

SDF Principles

Fixed production/consumption rates
Balance equations (one for each channel):

Schedulable statically
Decidable:

buffer memory requirements
deadlock

fire B {
…
consume M
…

}

fire A {
…
produce N
…

}

channel
N M

MfNf BA =
number of tokens consumed

number of firings per “iteration”

number of tokens produced

Lee, UC Berkeley 36

Undecidability: What SDF Avoids
(Buck ’93)

Sufficient set of actors for undecidability:
boolean functions on boolean tokens
switch and select
initial tokens on arcs

Undecidable:
deadlock
bounded buffer memory
existence of an annotated schedule

boolean
function se

le
ct

sw
itc

h

initial token

1

1

1

1

1 1

1

b

1- b

b

1- b

T

F

T

F

19

Lee, UC Berkeley 37

Resampling Design Pattern Using
Token Routing

This pattern requires the use of a semantically richer
dataflow model than SDF because the BooleanSwitch
is not an SDF actor.
This has a performance cost and reduces the static
analyzability of the model.

Lee, UC Berkeley 38

Resampling Design Pattern using
Modal Models

Uses transition refinements
All SDF + FSM
Can be captured in a higher-order
component that makes the pattern
easy to use.

20

Lee, UC Berkeley 39

Scalability of Visual Syntaxes
Iteration by Replication

naïve approach:
8 tones
8 signal paths

hard to build
hardwired scale
distributor:

converts an
array of
dimension 8 to
a sequence of 8
tokens.

array in elements out

Lee, UC Berkeley 40

Scalability of Visual Syntaxes
Iteration by Dataflow

Although sometimes useful, this design pattern has limitations:
array size must be statically fixed
actor to iterate must be stateless, or
desired semantics must be to carry state across array elements

21

Lee, UC Berkeley 41

Structured Programming in SDF

A library of actors that encapsulate common design patterns:
IterateOverArray: Serialize an array input and provide it
sequentially to the contained actor.
MapOverArray: Provide elements of an array input to distinct
instances of the contained actor.
Zip, Scan, Case, …

Like the higher-order functions of functional languages, but
unlike functions, actors can have state.
The implementation leverages the abstract semantics of
Ptolemy II.

Lee, UC Berkeley 42

Abstract Semantics – The Key To
Hierarchical Heterogeneity

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

preinitialize()
declare static information, like
type constraints, scheduling
properties, temporal
properties, structural
elaboration

initialize()
initialize variables

22

Lee, UC Berkeley 43

Abstract Semantics – The Key To
Hierarchical Heterogeneity

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

iterate()

Lee, UC Berkeley 44

Abstract Semantics – The Key To
Hierarchical Heterogeneity

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

iterate()
prefire()
fire()
postfire()

stopFire()

23

Lee, UC Berkeley 45

Lifecycle Management

It is possible to hierarchically compose the Ptolemy II
abstract semantics.

Actors providing common patterns:
RunCompositeActor is a composite actor that, instead of
firing the contained model, executes a complete lifecycle
of the contained model.
ModelReference is an atomic actor whose function is
provided by a complete execution of a referenced model
in another file or URL.

Provides systematic approach to building systems of
systems.

Lee, UC Berkeley 46

Hierarchical Composition of the
Ptolemy II Abstract Semantics

flow of control
Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

iterate()
prefire()
fire()
postfire()

stopFire()

initialization
Execution
Finalization

24

Lee, UC Berkeley 47

Conclusion

We aren’t done yet…

Stay tuned…

