Process-Based
® G Software Components

A Final Mobies Presentation

Pl Meeting, Savannah, GA
January 21-23, 2004

Edward A. Lee
Professor
UC Berkeley

PI: Edward A. Lee, 510-642-0455, eal@eecs.berkeley.edu
Co-PI: Tom Henzinger, 510-643-2430, tah@eecs.berkeley.edu
PM: John Bay

Agent: Dale Vancleave, dale.vancleave@wpafb.af.mil

Award end date: December, 2003

Contract number: F33615-00-C-1703

AOQ #: J655

\ | a b..v,. A = ' ‘ % " _ l 0 T, I % _\ [Ty #
> Nuala Mansar A : ” é‘ os D§ @dls L
5 Mary P. Stew. N YYu ph | Newendo

o Neil E. Turtér (Chess 1 s Yeh

: hao
> Lea Turpin (Chess) ‘ Ha|y% Zheng

, Rachel’Zhou
Postdocs Etc

on, Visiting Seholar : g

Project Goals and Problem
Description

Our focus is on component-based design using
principled models of computationand their runtime
environments for embedded systems. The emphasis of
this project is on the dynamics of the components,
including the communication protocols that they use to
interface with other components, the modeling of their
state, and their flow of control. The purpose of the
mechanisms we develop is to improve robustness and
safety while promoting component-based design.

Lee, UC Berkeley 3

o Where We Are

o Major Accomplishments
Actor-oriented design
Behavioral types
Component specialization (vs. code generation)
Hierarchical heterogeneous models
Hierarchical modal models
Hybrid systems operational semantics
Hybrid system modeling and simulation with HSIF import
Giotto and timed-multitasking models of computation
Network integrated models (P&S, push-pull, discovery)
Actor definition language principles
Lee, UC Berkeley 4

® Where We Are Going

o Current Efforts

Actor-oriented classes, inheritance, interfaces and aspects
Security with distributed and mobile models

Higher-order components

Model-based lifecycle management

Behavioral and resource Interfaces for practical verification
Modeling of Wireless Sensor nets

Construction of Scientific Workflows

Lee, UC Berkeley 5

Platforms

A platform is a set of
designs.

Relations between
platforms represent
design processes.

\ + DSP ;\rstems
communications systems ~_ applications

:
synthesizable
WHOL programs

programs

)

ﬁ' { \" St?en'fam Java byte code pmgk
] -
FPGA configurations

Progress

Many useful technical
developments
amounted to creation of
new platforms.

o microarchitectures
o operating systems
o virtual machines
O processor cores
o configurable ISAs

+_DSP syster
\\ communications systems“"\ apm

Lprugrams

synthesizable
WHOL programs

b
\ standard

cell
desbgns

Pa-M 1.6GHz

FPGAS
microprocessors

silicon chips

Desirable
Properties

From above:
o modeling
o expressiveness

From below:
o correctness
o efficiency

- DS?
\\ communications s;rstems‘\.__ apm

programs:

i

Java byte code programs

FPGA configurations

B6 programs

Y

Pa-M 1.6GHz

| executables

A

MOSIES chips

FPGAs
MiCroprocessors

silicon chips

Model-Based
Design

Model-based design
is specification of
designs in platforms

communications systems

applications

synthesizable
WHOL programs

with “useful
modeling
properties.”
communications systems applications
o
Recent
Action

Giving the red platforms
useful modeling
properties (e.g.
verification, SystemC,
UML, MDA)

Getting from red
platforms to blue
platforms (e.g.
correctness, efficiency,
synthesis of tools)

silicon chips

+_DSP syster
\\ communications systems“"\ applications

o
—— N
B ette r ~ Real-time workshap
Platforms NN

synmeslable
VHDL PrOgrans

VHDL programs

Platforms with
modeling properties
that reflect
requirements of the
application, not

3
+

\‘mndard Java byte code programs.

cell
‘ desbgns
FPGA configurations i
BB programs

I. executables [

accidental [.
properties of the e '
implementation. o microprocessors
| How to View This Design

From above: Signal flow graph with linear, time-
invariant components.

™ S 4’
To Workspace
1 »
s
Integrator3 Matrix Integrator1 Matrix Scope
Gain3 Saln

Matrix
Gain

Matrix Integrator

Gain2

Integrator2

Figure C.12: A block diagram generating a plucked string sound with a
fundmental and three harmonics.

U From below: Synchronous concurrent

composition of components Lee. UG Berkeley 12

Embedded
Platforms

The modeling
properties of these
platforms are about
the application
problem, not about
the implementation

k| Pm

-
\\ camm.m:am 5ystems

& K
\Y — =

technology.
silicon chips
\\cammq.n:a;iw s;rstems apm
o
Embedded
Platforms

The modeling
properties of these
platforms are about
the application
problem, not about
the implementation
technology.

—\Y Emmes

silicon chips

» DSp
cammunications systems
I

S

k| Pm

Actor-Oriented

\ ot e

Platforms

Actor oriented models

compose concurrent
components according
to a model of
computation.

Time and concurrency
become key parts of the
programming model.

silicon chips

Object orientation:

class name

Actor-Oriented Design

data What row§ through
an object is
r methods sequential control
call return
Actor orientation:
actor name
data (state) What flows through
) | ometers | ™SSP an object is
streams of data
ports
Input data Output data Lee, UC Berkeley 16

Actor Orientation
vs. Object Orientation

Object oriented Actor oriented

TextToSpeech

Text to Speech

initialize(): void
notify(): void text iny, %}D bs:-eech out
isReady(): boolean

getSpeech(): double[]

OO interface definition gives procedures
that have to be invoked in an order not
specified as part of the interface definition.

actor-oriented interface definition says
“Give me text and I'll give you speech”

o Identified problems with object orientation:
Says little or nothing about concurrency and time
Concurrency typically expressed with threads, monitors, semaphores
Components tend to implement low-level communication protocols
Re-use potential is disappointing
o Actor orientation offers more potential for useful modeling properties, and hence
for model-based design. Lee, UC Berkeley 17

But... New Design Methods Need to
Offer Best-Of-Class Methods

o Abstraction
procedures/methods
classes

o Modularity
subclasses
inheritance
interfaces
polymorphism
aspects

o Correctness
type systems

Lee, UC Berkeley 18

Example of an Actor-Oriented
Framework: Simulink

P4 1= cruisecontrolonoff/Enabled Subsystem1 *

=1 cruisecontrolonoff *

File Edt Wiew Simulation Format Tools Help

F a
o | [~ zlon)

s

File Edt View Simulation Formab Tools Help NEEd&E EREL & »
Oeds £ =
Enabled
Subsystem Erable
IE—NM !
s n
Ine Wave
1 /] Ind Outt
” Zera-Order Iy
Pt > Hold tsimple gain)
Gain n
f ol Ready 100% oded5
Enabled Carmodel (F = ma)
Subsystem

basic abstraction
mechanism is
hierarchy.

peed [1
B

Desired fimass Integrator Integrater! Position
speed
@ tos0 eeed
attime 1) »
simple Cruise Control System
Ready 100%

Lee, UC Berkeley 19

Less Conventional Actor-Oriented
Framework: VisualSense

model of a sensor node:

This channel has range given by the

“range" parameter and probability of

delivery given by the "probability"
arameter.

Channel

model of a channel

O O O O o

Based on Ptolemy I
Connectivity is wireless
Customized visualization
Location-aware models
Channel models include:
packets losses
power attenuation
distance limitations
collisions
Component models include:
Antenna gains
Terrain models
Jamming

Lee, UC Berkeley 20

Also Uses Hierarchy for Abstraction

These 49 sensor nodes are
actors that are instances of
the same class, defined as:

DEDimciar ‘e nodeColor; {00, 10,00, 1.0}

w randomize: rndomize

Sand through anly the frst avent 1o arrive.
Ditscard the rest. BaslaanSwitsh

e T

Set to green i the signal is
BooleanSeikch; ansmited more than 1 hops.

2 Congt
----- 1.
f 11.0.00,00, 1.0}

This channel has range given by the
“range* parameter and probability of 9% 1" Basbidiwbind
delivery given by the "probability" Save Actor e o Dc: - = Lol

Channel

parameter.

Lee, UC Berkeley 21

Observation

By itself, hierarchy is a very weak
abstraction mechanism.

Lee, UC Berkeley 22

® Tree Structured Hierarchy

o Does not container container
represent
common class hierarchical
definitions. Only component copy
instances.

o Multiple

instances of the

same hierarchical
component are

copies.

leaf components: instances of an OO class

Lee, UC Berkeley 23

Awkward

Using Copies for Instances is

Models become unmaintainable.
Changes have be performed on
all 49 copies of this:

Canfigure (€|

Customize M;
Get Documer|

This channel has range given by the Configure Pol

“range" parameter and probability of
delivery given by the "probability”
parameter.

Channel Set Teon

Save Actor i
Listen to Act

DEDirsciar snodeColar: {0.0.1.0,00, 1.0}
wrandomize; rendomize

Sand through andy the Brst avent o amve,
i Ditscard the rest

=]

Bockeanwilch? Conet
Exprssion 00.1.0,0.0, 1.0
nee 1 Comn
110,00, 0.0, 1.0}
Sat i redT I SHGATE

aEwaen
Sel to while al I.n1 transmiled by 1 hop.

Cons2

TimedDeulay
Exprossion?, ot

et i + 1

raport.

Set 1o green if the signal is
ransmibed more than 1 haps.
Marge

ar

Is-_'.y_unnme
A roceCoicr |

Lee, UC Berkeley 24

Alternative Hierarchy:
Roles and Instances

one definition, I
multiple containers

class

role hierarchy
(“design-time” view)

instance

instance

instance hierarchy
(“run time” view)

Lee, UC Berkeley 25

| Role Hierarchy

o Multiple instances of
the same hierarchical
component are
represented by classes

with multiple hierarchical
i class
containers.
o This makes hierarchical |

components are more
similar to leaf
components.

Lee, UC Berkeley 26

® Example o Ptolemy Il now supports
a role hierarchy.

o The definition below is a
class and objects at the
left are instances, not

Making these objects copies.

instances of a class
rather than copies
reduced the XML
representation of the
model from 1.1
Mbytes to 87 kBytes,
and offered a number

DEDineciar snodeCalor; 0.0, 12,00, 1.0}

wrandomizs, ndomiz

Sand trough andy tha fest avant 1a Bre.
Driscard ih rest BoslaanGuiich Exrossion?,

=3
Sa

of other advantages.

Lee, UC Berkeley 27

Subclasses, Inheritance?
Interfaces, Subtypes? Aspects?

o Now that we have classes, can we bring in
more of the modern programming world?

subclasses?
inheritance?
interfaces?
subtypes?
aspects?

Lee, UC Berkeley 28

Actor Interfaces:

o
Ports and Parameters
parameters:
a, = value Example:
a, = value
input ports
output port ArrayPeakSearch
startindex Fpeakvalues
Py endlm%?ﬁE » . Poakindices
Ps
[)2 Edit parameters for ArrayPeakSearch E|
input/output port @ ap Io.o\
squelch: o0
port seale: hbsaiute 3|
startincle:: ||]
endinces: [preoart
mazimumhumberoPeaks [peoart
Cornmit add Remove | preferences | veb | cancel |
Lee, UC Berkeley 29
Subclasses? Inheritance?
) Interfaces? Subtypes? Aspects?

YeS We Can! These are a part of what the
Berkeley Center for Hybrid and
Actor-oriented design: Embedded Software Systems
. . Ch is doing.
o subclasses and inheritance (Chess) is doing

hierarchical models that inherit structure from a base class
o interfaces and subtypes

ports and parameters of actors form their interface
o aspects

heterarchical models interweave multiple hierarchies, providing
true multi-view modeling.

o All of these operate at the abstract syntax level, and are
independent of the model of computation, and therefore can
be used with any model of computation! Thus, they become
available in domain-specific actor-oriented languages.

Lee, UC Berkeley 30

Example

o
A Simple Resource Interface
EnergyConsumer interface has a single Filter interface for a
output port that produces a Double stream transformer
representing the energy consumed by a firing. component.
in: Event

in: Double

energy: Double out: Double

subtype
relation

in: Double out: Double

EnergyConsumingFilter Doubl
i ower: Double
composed interface. p Lee, UC Berkeley 31

Ethereal Sting OEP: Lessons on

. -
Dataflow Design Patterns
Input data sequence, at Solution to EO Challenge
samplingFrequency Hz Problem

PN Director Carrier Estimate

eorder: 15 £ -200.19531...

e samplingFrequency: 8000.0
baudRateD&tectionAlgorithm

AudioReader CartesianToComplex Demodulate

Resample ComplexToCartesian XYF:E:W

o : D S (0]

‘ Output data sequence,
E1 Challenge Problem at detected baud rate.
Components (not known apriori)
Lee, UC Berkeley 32

SDF is More Flexible Than We

® :

Realized

o The Synchronous Dataflow (SDF) model of
computation can be easily augmented to make
it much more expressive without sacrificing
static analyzability.

o Model-based lifecycle management can
provide systematic ways to construct
supervisory structures (resource management,
task management).

Lee, UC Berkeley 33
| Dataflow Taxonomy
o Synchronous dataflow (SDF) With higher-order
Balance equation formalism \ components and
Statically schedulable modal models,
Decidable resource requirements SDF is sufficiently
o Heterochronous Dataflow (HDF) expressive for the
Combines state machines with SDF graphs | SV radio OEP.
Very expressive, yet decidable
Scheduling complexity can be high
o Boolean & Integer Dataflow (BDF, IDF)
Balance equations are solved symbolically
Turing-complete expressiveness
Undecidable, yet often statically schedulable
o Process Networks (PN)

Turing-complete expressiveness
Undecidable (schedule and resource requirements)

Thread scheduling with interlocks provably executes with bounded
resources when that is possible. Lee, UC Berkeley 34

® SDF Principles

e Fixed production/consumption rates
e Balance equations (one for each channel):

f AN = f BM
\‘\1 number of tokens consumed ‘

‘ number of firings per “iteration”

e Schedulable statically
e Decidable:
e buffer memory requirements

‘ number of tokens produced ‘

e deadlock
fire A{ fire B{
‘p.).roduce M@ channel @ consume M
- N M =

Lee, UC Berkeley 35

Undecidability: What SDF Avoids
(Buck '93)

o Sufficient set of actors for undecidability:
boolean functions on boolean tokens
switch and select
initial tokens on arcs

boolean |1
function

1
=~
-

initial token

o Undecidable:
deadlock
bounded buffer memory

existence of an annotated schedule Lee, UC Berkeley 36

Resampling Design Pattern Using
Token Routing

PN Director

SignalSink

SignalSource Bool iitch
iy T]

ResamplingControl | Discard

o This pattern requires the use of a semantically richer
dataflow model than SDF because the BooleanSwitch
is not an SDF actor.

o This has a performance cost and reduces the static
analyzability of the model.

Lee, UC Berkeley 37

Resampling Design Pattern using
Modal Models

o Uses transition refinements

SDF Director

I o All SDF + FSM
SignaiSource nessimess | O CaN be captured in a higher-order
E 1 o] component that makes the pattern
ResamplingGontrpl easy to use.
‘—. .
»

control == fals

control

SDF Director

SDF Director

SignalSink in

Lee, UC Berkeley 38

Scalability of Visual Syntaxes

Iteration by Replication

Carmier Estimate2

Carrier Esimale

) Bandwidih Estimate

f> (26171875,

clor Aayverage

== Qrray in j elements out

yped composita actrd =
o E}n J Kurtosis
- Jutoss |
typed composits actars
typed composite actor
L] distributor
typed com pos te aciorT S}’C]
===
gistriputorp—14 1 1 | 4
— -
=ilal typed compasite acrd
| -
—
—
Arayength l
+| -]L +

o naive approach:

8 tones
8 signal paths

B - o hard to build
o hardwired scale
o distributor:

converts an
array of
dimension 8 to
a sequence of 8
tokens.

Lee, UC Berkeley 39

Scalability of Visual Syntaxes

lteration by Dataflow

SDF Director

ArrayToSequence _actor to iterate

510

SequenceToAray

o Although sometimes useful, this design pattern has limitations:

array size must be statically fixed
actor to iterate must be stateless, or

desired semantics must be to carry state across array elements

Lee, UC Berkeley 40

Structured Programming in SDF

Iterate OverArray

in E}D out

———— |

o Alibrary of actors that encapsulate common design patterns:

IterateOverArray: Serialize an array input and provide it
sequentially to the contained actor.

MapOverArray: Provide elements of an array input to distinct
instances of the contained actor.

Zip, Scan, Case, ...

o Like the higher-order functions of functional languages, but
unlike functions, actors can have state.

o The implementation leverages the abstract semantics of
Ptolemy II.

Lee, UC Berkeley 41

Abstract Semantics — The Key To
Hierarchical Heterogeneity

flow of control

o preinitialize()
o Execution declare static information, like
. . . type constraints, scheduling

o Finalization properties, temporal
properties, structural
elaboration

communication initialize()

o Structure of signal. initialize variables

o Send/receive protocols

Lee, UC Berkeley 42

Abstract Semantics — The Key To
Hierarchical Heterogeneity

flow of control
o Initialization
o Execution

o Finalization iterate()

communication
o Structure of signal
o Send/receive protocols

Lee, UC Berkeley 43

Abstract Semantics — The Key To
Hierarchical Heterogeneity

flow of control

o Initialization

o Execution A?\ prefire()

o Finalization iterate() | fire0
postfire()

communication ' |« stopFire()

o Structure of signals

o Send/receive protocols

Lee, UC Berkeley 44

® Lifecycle Management

o ltis possible to hierarchically compose the Ptolemy I
abstract semantics.

o Actors providing common patterns:

RunCompositeActor is a composite actor that, instead of
firing the contained model, executes a complete lifecycle
of the contained model.

ModelReference is an atomic actor whose function is
provided by a complete execution of a referenced model
in another file or URL.

o Provides systematic approach to building systems of
systems.

Lee, UC Berkeley 45

Hierarchical Composition of the
Ptolemy Il Abstract Semantics

flow of control

o Initializati |

o Execu ﬁ? prefire() initialization

o Finaliza iterate() f"e()f_ : Execution
|| postfirei; Finalization

communicatio | stopFire()

o Structure of siy
o Send/receive protocols

Lee, UC Berkeley 46

Conclusion

o We aren’t done yet...

o Stay tuned...

Lee, UC Berkeley 47

