
Interface-based
Design of
Embedded Systems

Thomas A. Henzinger
University of California, Berkeley

Interface-based Design

Interface-based Design

Interface-based Design

Interface-based Design

Compositional Component Models

If A||B is defined and A ≤ a and B ≤
b , then a||b is defined and A||B ≤
a||b.

enable independent component
verification

Compositional Interface Models

If a||b is defined and A ≤ a and B ≤
b , then A||B is defined and A||B ≤
a||b.

enable independent interface
implementation

x ∈ Nat ∧ y∈ Nat\{0} ⇒ z = x÷y

A Component Model

x ∈ Nat ∧ y∈ Nat\{0} ∧ z ∈ Nat

An Interface Model

-constrains the environment
-example: type declaration

-(mis)behaves in every environment
-examples: circuit; executable code

∀ x,y. ∃ z. (x ∈ Nat ∧ y∈ Nat\{0} ⇒ z = x÷y)

The Component Model

input-universal (adversarial environment)

∃ x,y. ∃ z. (x ∈ Nat ∧ y∈ Nat\{0} ∧ z ∈ Nat)

The Interface Model

input-existential (helpful environment)

The Interface Model

x ∈ Nat

y ∈ Nat\{0}
z ∈ Nat

Prescriptive:
“How can the component be put together with other components?”

Input assumption Output guarantee

x

y

z

x=0 ⇒ y=0 true

Propagation of Environment
Constraints

x

y

z

x=0 ⇒ y=0 true

Propagation of Environment
Constraints

x

y

z

x=0 ⇒ y=0 true

y = 0

∀ x,z. (true ∧ x=z ⇒ (x=0 ⇒ y=0))

Propagation of Environment
Constraints

y z

truey = 0

The resulting interface.

Propagation of Environment
Constraints

y z

truey = 0

Illegal connection.

Propagation of Environment
Constraints

Stateless interface models (traditional “types”):
value constraints

Stateful interface models (“behavioral types”):
temporal ordering constraints, real-time constraints, etc.

open_file?

close_file?

get_block?

get_blockclose_fileopen_file

put_block!

put_block

a!

b!

a?

b?

a

b

a!

b!

a?
?

a!

b!

a?

A Component Model: I/O Automata

This is an illegal
component,
because it is not
prepared to accept
input b.

[Lynch, also Lamport, Alur/H]

a!

b!

a?

a

Another Component Model: CSP

Composition may
lead to deadlocks,
and requires
verification if this is
undesirable.

[Hoare, also Milner, Harel]

a!

b!

a?

An Interface Model: Interface Automata

These interfaces are
incompatible, because
the receiver expects the
environment to provide
input b.

[de Alfaro/H, also Dill]

Component Models

-composition || is
conjunction/product
-abstraction ≤ is covariant

Interface Models

-composition || is game-theoretic
-implementation ≤ is contravariant

2

2

4042
msg? send! send!

nack?fail!

ok! ack?

acksend

msg failok

ack?

2

2

4042
msg? send! send!

fail!

ok! ack?

send

msg failok

msg!

ok?

msg ok fail

ack?

ack

2

4042
msg send! send!

fail!

ok ack?

acksend

Incompatible product
state, but environment
can prevent this state.

ack?

2

4042
msg send! send!

fail!

ok ack?

send

The Composite Interface.

ack?

ack

44
send!

send

The Composite Interface.

ack?

ack

send!

Computing the Composite Interface

• Construct product automaton.

• Mark deadlock states as incompatible.

• Until no more incompatible states can be added: mark state q
as incompatible if the environment cannot prevent an
incompatible state to be entered from q.

• If the initial state is incompatible, then the two interfaces are
incompatible. Otherwise, the composite interface is the
product automaton without the incompatible states.

This computes the states from which the environment has a
strategy to avoid deadlock. The propagated environment
constraint is that it will apply such a strategy.

x ∈ Odd ⇒ y = 2x
x ∈ Nat y

y = 2x
y

Component Abstraction

Abstraction is implication (simulation; trace containment).

x ∈ Nat
≤ ⇒

x ∈ Odd

Interface Implementation

Implementation is I/O contravariant.

x ∈ Nat
≤ ⇒
⇒

x ∈ Natx ∈ Even

x ∈ Nat

Interface Implementation

Implementation must obey output guarantee.

x ∈ Nat
≤ ⇒
⇒

x ∈ Oddx ∈ Nat

XX

x ∈ Nat

Interface Implementation

Implementation must accept all permissible inputs.

x ∈ Even
≤ ⇒
⇒

x ∈ Natx ∈ Nat

X X

2

2

4042
msg? send! send!

fail!

ok! ack?

acksend

msg failok

ack?

2

2

4042
msg? send! send!

fail!

ok! ack?

acksend

msg failok

1

1

6061
msg? send! send!

fail!

ok! ack?

acksend

msg failok

28
send! once?

2

2

fail!

ok!ack?

once

≤

ack?

ack?

Alternating Simulation

Q ≤ q

iff

1. for all inputs i, if q –i?-> q’ , then there
exists Q’ such that Q –i?-> Q’ and Q’ ≤ q’ ,

and

2. for all outputs o, if Q –o!-> Q’ , then
there exists q’ such that q –o!-> q’ and Q’
≤ q’ .

If there is a helpful environment at q, then there is a
helpful environment at Q [Alur/H/Kupferman/Vardi].

Algorithms & Tools

-interface compatibility (reachability game) can
be checked in linear time

-interface implementation (alternating simulation)
can be checked in quadratic time

We are currently implementing this in
JBuilder [Chakrabarti/de Alfaro/H/Jurdzinski/Mang].

