Modal Models in Vehicle-Vehicle Coordination Control

Xiaojun Liu
The Ptolemy Group
EECS Department, UC Berkeley

Berkeley, CA, March 12, 2002

Vehicle-Vehicle Coordination Control

- Part of the MoBIES Automotive Open Experimental Platform (OEP)
- Used on vehicles in an intelligent vehicle highway system
 - **■** Platoon formation

- Maintain safety
- Reduce traffic delay
- Maximize fuel efficiency
- Give passengers a comfortable ride

Control Modes in Vehicle-Vehicle Coordination

- The controller works in different modes due to
 - Operational requirements
 - Tracking
 - Collision avoidance
 - Quality of communication among vehicles
 - Reliable real-time update of speed/distance among neighboring vehicles
 - Complete loss of inter-vehicle communication
 - Various failure conditions, etc.
- A modeling paradigm is needed for designing and validating modal controllers

Motivation of Modal Models

- Finite state machines (FSM) are used extensively to describe modes and transitions
 - Formal analysis and verification methods available

FSMs are in general not practical to describe the control algorithms

Motivation of Modal Models, Continued

FSMs need to be hierarchically composed with other computational models

Motivation of Modal Models, Continued

The composition may involve multiple computational models

Modal Models in Ptolemy II

- Leverage the Ptolemy II infrastructure that supports hierarchical heterogeneity
- Capable of modeling modal systems that involve various models of computation, such as continuous time (CT), discrete event (DE), Giotto, and synchronous dataflow (SDF)

A Modal Model of the MoBIES Vehicle-Vehicle Automotive OEP Problem

Created by Professor Edward A. Lee, based on a formulation from the U-Penn MoBIES team

Vehicle-Vehicle Model, Continued

Vehicle-Vehicle Model, Continued

For the track mode, the model is similar but with different parameters.