
Mobies Phase 1 UC Berkeley 1

Process-Based Software Components

Mobies Phase 1, UC Berkeley
Edward A. Lee and Tom Henzinger

PI Meeting, Boca Raton
January 30, 2002

Mobies Phase 1 UC Berkeley 2

Program Objectives

Our focus is on component-based design using
principled models of computation and their runtime
environments for embedded systems. The emphasis of
this project is on the dynamics of the components,
including the communication protocols that they use to
interface with other components, the modeling of their
state, and their flow of control. The purpose of the
mechanisms we develop is to improve robustness and
safety while promoting component-based design.

Mobies Phase 1 UC Berkeley 3

Technical Approach Summary

• Models of computation
– supporting heterogeneity
– supporting real-time computation
– codifications of design patterns
– definition as behavioral types

• Co-compilation
– joint compilation of components and architecture
– vs. code generation
– supporting heterogeneity

Mobies Phase 1 UC Berkeley 4

Subcontractors and Collaborators

• Subcontractor
– Univ. of Maryland (C code generation)

• Collaborators
– UCB Phase II
– Kestrel
– Vanderbilt
– Penn

• Non-Mobies
– The MathWorks
– GSRC project (system-level IC design)
– SEC program (Boeing, etc.)

Mobies Phase 1 UC Berkeley 5

View of Concurrent Components:
Actors with Ports and Attributes

PortPort

Actor Actor
Link

Relation

Actor
Port

connection

connection co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

Model of Computation:

• Messaging schema
• Flow of control
• Concurrency

Key idea: The model of computation is part of the framework
within which components are embedded not part of the
components themselves. It enforces patterns.

Mobies Phase 1 UC Berkeley 6

Actor View of
Producer/Consumer Components

Models of Computation:

• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

Mobies Phase 1 UC Berkeley 7

Contrast with Object Orientation

• Call/return imperative semantics
• Concurrency is realized by ad-hoc calling

conventions
• Patterns are supported by futures, proxies,

monitors

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Object orientation
emphasizes inheritance
and procedural interfaces.

Actor orientation
emphasizes concurrency
and communication
abstractions.

Mobies Phase 1 UC Berkeley 8

Examples of Actor-Oriented
Component Frameworks

• Simulink (The MathWorks)
• Labview (National Instruments)
• OCP, open control platform (Boeing)
• GME, actor-oriented meta-modeling (Vanderbilt)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling (Rational)
• Port-based objects (U of Maryland)
• I/O automata (MIT)
• VHDL, Verilog, SystemC (Various)
• Polis & Metropolis (UC Berkeley)
• Ptolemy & Ptolemy II (UC Berkeley)
• …

Mobies Phase 1 UC Berkeley 9

Ptolemy II Domains

• Define the flow(s) of control
– “execution model”
– Realized by a Director class

• Define communication between components
– “interaction model”
– Realized by a Receiver class

producer
actor

consumer
actor

IOPort

Receiver

Director
Emphasis of Ptolemy II
is on methods and
infrastructure for
designing and building
domains, understanding
their semantics, and
interfacing them
heterogeneously.

Mobies Phase 1 UC Berkeley 10

Example Domains

• Time Driven (Giotto):
– synchronous, time-driven multitasking – built for Mobies.

• Synchronous Data Flow (SDF):
– stream-based communication, statically scheduled

• Discrete Event (DE):
– event-based communication

• Continuous Time (CT):
– continuous semantics, ODE solver simulation engine

• Synchronous/Reactive (SR):
– synchronous, fixed point semantics

• Timed Multitasking (TM):
– priority-driven multitasking, deterministic communication – built for SEC.

• Communicating Sequential Processes (CSP):
– rendezvous-style communication

• Process Networks (PN):
– asynchronous communication, determinism

Mobies Phase 1 UC Berkeley 11

Design Pattern: Periodic/Time-Driven
Inside Continuous Time

Giotto director
indicates a new model of
computation.

Domain-polymorphic component.

Domains can be
nested and mixed.

Mobies Phase 1 UC Berkeley 12

Controller Heterogeneity

Periodic, time-driven tasks

Modes (normal & faulty)

Controller task

Mobies Phase 1 UC Berkeley 13

Key to Domain Polymorphism:
Receiver Object Model

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

Mobies Phase 1 UC Berkeley 14

Receiver Interface

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

producer
actor

consumer
actor

IOPort

Receiver

Director

Mobies Phase 1 UC Berkeley 15

Behavioral Types –
Codification of Domain Semantics

• Capture the dynamic interaction of components in types
• Obtain benefits analogous to data typing.
• Call the result behavioral types.

producer
actor

consumer
actor

IOPort

Receiver

Director

• Communication has
– data types
– behavioral types

• Components have
– data type signatures
– domain type signatures

• Components are
– data polymorphic
– domain polymorphic

Mobies Phase 1 UC Berkeley 16

Second Version of a
Behavioral Type System

• Based on interface automata
– Proposed by de Alfaro and Henzinger
– Concise composition (vs. standard automata)
– Alternating simulation provides contravariance

• Compatibility checking
– Done by automata composition
– Captures the notion “components can work together”

• Alternating simulation (from Q to P)
– All input steps of P can be simulated by Q, and
– All output steps of Q can be simulated by P.
– Provides the ordering we need for subtyping & polymorphism

• Key theorem about compatibility and alternating simulation

Mobies Phase 1 UC Berkeley 17

Example: Synchronous Dataflow (SDF)
Consumer Actor Type Definition

hasTokenhT
getg
Return from firefR

Return False from hasTokenhTF

Return True from hasTokenhTT
Tokent
firef

Inputs:
Outputs:

Such actors are
passive, and
assume that input
is available when
they fire.

execution
interface

communication
interface

Mobies Phase 1 UC Berkeley 18

Type Definition –
Synchronous Dataflow (SDF) Domain

producer
actor

consumer
actor

IOPort

Receiver

Directorreceiver
interface

director
interface

Mobies Phase 1 UC Berkeley 19

Type Checking – Compose
SDF Consumer Actor with SDF Domain

Compose
SDF Domain

SDF Consumer Actor

Interface automaton
(IA) domain (by Yuhong
Xiong) is used for
experimentation.

Mobies Phase 1 UC Berkeley 20

Type Definition for Composition –
SDF Consumer Actor in SDF Domain

1. receives
token from
producer

interface to
producer actor

2. accept
token

3. internal
action: fire
consumer

4. internal
action: call
get()

5. internal
action: get
token

6. internal
action: return
from fire

Mobies Phase 1 UC Berkeley 21

Subtyping Relation
Alternating Simulation: SDF ≤ DE

SDF Domain DE Domain

≤

Partial order relation
between behavioral
types makes this a type
system.

Mobies Phase 1 UC Berkeley 22

Summary of Behavioral Types Results

• We capture patterns of component interaction in a
type system framework: behavioral types

• We describe interaction types and component
behavior using interface automata.

• We do type checking through automata
composition (detect component incompatibilities)

• Subtyping order is given by the alternating
simulation relation, supporting polymorphism.

Mobies Phase 1 UC Berkeley 23

More Speculative

• We can reflect component dynamics in a
run-time environment, providing behavioral
reflection.
– admission control
– run-time type checking
– fault detection, isolation, and recovery (FDIR)

• Timed interface automata may be able to
model real-time requirements and
constraints.
– checking consistency becomes a type check
– generalized schedulability analysis

Mobies Phase 1 UC Berkeley 24

Code Generation

• MoC semantics defines
– flow of control across actors
– communication protocols between actors

• Actors define:
– functionality of components

• Actors are compiled by a MoC-aware compiler
– generate specialized code for actors in context

• Hierarchy & heterogeneity:
– Code generation at a level of the hierarchy produces a

new actor definition

We call this co-compilation.
Multiple domains may be used in the same model

Mobies Phase 1 UC Berkeley 25

Integrated Code Generation

Giotto code E code

Giotto compiler

Java code C code

Java code Component

Run time system

Mobies Phase 1 UC Berkeley 26

Giotto – Periodic Hard-Real-Time
Tasks with Precise Mode Changes

t+10mst+10mst t t+5ms t+5ms

Higher frequency Task

Lower frequency task:

Giotto compiler targets the E Machine
First version Ptolemy II Giotto code generator is implemented

Domain was built
for Mobies.
Major part of
the experiment
was to interface
this domain to
others: CT above,
FSM below for
modal modeling,
and SDF for
task definition.

Mobies Phase 1 UC Berkeley 27

Modal Models – The FSM Domain

• Refines components in any domain
– with CT, get hybrid systems
– with Giotto, get on-line schedule customization
– with SR, get statecharts semantics
– with PN, get SDL-style semantics
– …Design of Giotto

domain was greatly
simplified by
leveraging the FSM
domain. We improved
the Giotto semantics
by introducing modes
with limited scope. We
learned how to
integrate Giotto with
other MoCs.

Mobies Phase 1 UC Berkeley 28

Synchronous Dataflow (SDF)
Preferred Domain for Task Definition

 Balance equations (one for each channel):
FAN = FBM

 Scheduled statically
 Decidable resource requirements

Available optimizations:
eliminate checks for input data
statically allocate communication buffers
statically sequence actor invocations (and inline)

send(0,t) get(0)

token t
N MA

B

Domains like Giotto,
TM, orchestrate
large-grain
components. The
components
themselves need not
be designed at the low
level in C. They can be
designed using other
Ptolemy II domains.

Mobies Phase 1 UC Berkeley 29

Code Generation Objective

• It is not sufficient to build a mechanism
for generating code from one, fixed,
modeling environment.

• Modeling strategies must be nested
hierarchically.

• Code generators have to be
heterogeneously composable.

We aren’t there yet,
but we have a plan…

Mobies Phase 1 UC Berkeley 30

Code Generation Status

• Giotto code generator from Giotto domain
– still need code generation from FSM to get modal models

• Java code generator from SDF domain
– based on Soot compiler infrastructure (McGill)
– 80% of SDF test suite passes
– type specialization
– static scheduling, buffering
– code substitution using model of computation semantics

• C code generation from Java
– University of Maryland subcontract
– based on Soot compiler infrastructure (McGill)
– preliminary concept demonstration built

• Configurable hardware synthesis
– targeted Wildcard as a concept demonstration
– collaborative with BYU (funded by another program)

Mobies Phase 1 UC Berkeley 31

Actor Code is the Component Spec

A

C

D

B

public TypedIOPort input;
public TypedIOPort output;
public Parameter constant;
public void fire() {

Token t = input.get(0);
Token sum = t.add(constant.getToken());
output.send(0, t2);

}

Code generate
a domain-
polymorophic
component
definition.

Mobies Phase 1 UC Berkeley 32

Actor Definition: Caltrop

• Java is not the ideal actor definition language.
Key meta-data is hard to extract:
– token production/consumption patterns
– firing rules (preconditions)
– state management (e.g. recognize stateless actors)
– type constraints must be explicitly given
– modal behavior

• Defining an actor definition format (Caltrop):
– enforce coding patterns
– make meta-data available for code generation
– infer behavioral types automatically
– analyze domain compatibility
– support multiple back-ends (C, C++, Java, Matlab)

Mobies Phase 1 UC Berkeley 33

Summary of Accomplishments to Date

• Heterogeneous modeling
– Domain polymorphism concept & realization
– Behavioral type system
– Giotto semantics & integration with other MoCs
– Component definition principles (Caltrop)

• Code generation
– Co-compilation concept
– Giotto program generation
– Java code generation from SDF

• 80% of SDF test suite passes
– C code generation from Java

• Early phase, concept demonstration

Mobies Phase 1 UC Berkeley 34

Plans

• Midterm experiment
– ETC and V2V models and code generators

• Complete actor definition framework
– define the meta-semantics for domain-polymorphic actors

• Behavioral types
– reflection
– real-time properties as dependent types

• Complete SDF code generation
– token unboxing
– elimination of memory management
– 100% of test suite must pass

• Code generate Ptolemy II expressions
– use of expression actor simplifies models

• Implement FSM code generation
– support modal models

• Complete C code generation
– support key subset of Java libraries

• Integrate heterogeneous code generators
– systematize hierarchy support
– define Java subset that generates well to C

