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Subcontractors and Collaborators

• Subcontractor
– Univ. of Maryland (C code generation)

• Collaborators
– UCB Phase II
– Kestrel
– Vanderbilt
– Penn

• Non-Mobies
– GSRC project (system-level IC design)
– SEC program (Boeing, etc.)
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Program Objectives

Our focus is on component-based design using 
principled models of computation and their runtime 
environments for embedded systems. The emphasis of 
this project is on the dynamics of the components, 
including the communication protocols that they use to 
interface with other components, the modeling of their 
state, and their flow of control. The purpose of the 
mechanisms we develop is to improve robustness and 
safety while promoting component-based design.
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Technical Approach Summary

• Models of computation
– supporting heterogeneity
– supporting real-time computation
– codifications of design patterns
– definition as behavioral types

• Co-compilation
– joint compilation of components and architecture
– vs. code generation
– supporting heterogeneity

• Ptolemy II
– our open-architecture software laboratory
– shed light on models of computation & co-compilation
– by prototyping modeling frameworks and techniques

our tool
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View of Concurrent Components:
Actors with Ports and Attributes
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Model of Computation:

• Messaging schema
• Flow of control
• Concurrency

Key idea: The model of computation is part of the framework 
within which components are embedded not part of the 
components themselves. It enforces patterns.

our basic meta model
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Actor-Oriented View of
Producer/Consumer Components

Models of Computation:

• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
• push/pull
•…

  Actor

  IOPort
  IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

  Receiver
(inside port)

our meta model for producer/consumer models of computation



Mobies Phase 1 UC Berkeley  7

Examples of Actor-Oriented
Component Frameworks

• Simulink (The MathWorks)
• Labview (National Instruments)
• OCP, open control platform (Boeing)
• GME, actor-oriented meta-modeling (Vanderbilt)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling (Rational)
• Port-based objects (U of Maryland)
• I/O automata (MIT)
• VHDL, Verilog, SystemC (Various)
• Polis & Metropolis (UC Berkeley)
• Ptolemy & Ptolemy II (UC Berkeley)
• …
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Mixing Models of Computation

• Tool integration is about semantics integration
– Tools essentially reflect the models of computation they 

implement or assume.
• Simulink – continuous-time/mixed signal
• Stateflow – finite-state machines
• Charon – hybrid automata
• Teja – timed automata
• Giotto – time triggered architecture
• ns (network simulator) – discrete event
• Esterel – synchronous/reactive
• …

– Not all semantic models are interchangeable
– Not all semantic models are compositional
– Not all tools are developed to work with other tools

• Ptolemy II is a framework to study semantics 
integration
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Part I: Networks of Automata
- Heterogeneous Mixtures of Automata and Actors -

Swimming pool HSIF example imported 
into Ptolemy II via XSLT translator to 
MoML, the Ptolemy II XML Schema.
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Semantics Questions

• What automata can be expressed?
– nondeterministic, guard expression language, actions, …

• How are transitions in distinct automata coordinated?
– synchronous, time-driven, event-driven, dataflow, …
– can outputs and updates be separated?

• What can automata communicate?
– messages, events, triggers

• How communications carried out?
– synchronous, rendezvous, buffered, lossy, …

• How are continuous variables shared?
– global name space, scoping, mutual exclusion, …

• What is the meaning of directed cycles?
– fixed point, error, infinite loop, …

• What is the meaning of simultaneous events?
– secondary orderings, such as data precedences, priorities, …
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Possible Interaction Semantics 
Between Automata

• Asynchronous
– Promela (specification language for Spin)
– SDL
– Ptolemy II (PN+FSM, DE+FSM)

• Synchronous w/ fixed point
– Esterel
– Simulink
– Ptolemy II (SR+FSM)

• Synchronous w/out fixed point
– Giotto
– Ptolemy II (SDF+FSM)
– HSIF
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Tool Integration Efforts

• First attempt: Charon
– Created a Charon parser (in Java) to import 

into Ptolemy II CT+FSM domains
– Created a Charon code generator to produce 

Charon from Ptolemy II CT+FSM models
• Second attempt: HSIF

– Created an XSLT translator from HSIF to 
MoML, creating Ptolemy II models in CT+FSM.

– This is ongoing, as we are resolving semantics 
mismatches. 
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Difficulties

• CT+FSM does not model the two sources of
nondeterminism in HSIF:
– At each time step, we order execution of the automata 

according to data precedences, as done by Simulink, for 
example.
We believe this is a flaw in HSIF

– The FSM domain rejects nondeterminism where more 
than one guard is enabled at a state.
We believe this is a flaw in the FSM domain of Ptolemy 
II, but:

What should a simulator do with such nondetermism? It 
is incorrect to just choose one of the enabled transitions 
(because it will lead to untrustable simulations).

• Several other difficulties with global variables and 
directed cycles in HSIF.
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Order of Execution Question

Given an event from the event 
source, which of these should 
react first?  HSIF declares 
this to be nondeterministic.

Simulink and the Ptolemy II 
CT domain declare this to be 
deterministic, based on data 
precedences.  Actor1 
executes before Actor2.



Mobies Phase 1 UC Berkeley  15

Using HSIF Semantics to Get 
Determinism is Hard

turn one trigger into N,
where N is the number of actors

encode the 
desired sequence 
as an automaton 
that produces a 
schedule

embellish the 
guards with 
conditions on the 
schedule

conditionally execute the simple 
function, conditioned on the schedule

broadcast the
schedule



Mobies Phase 1 UC Berkeley  16

Using CT or Simulink Semantics to 
Get Nondeterminism is Easy

At a time when 
the event source 
yields a positive 
number, both 
transitions are 
enabled.

Ptolemy’s FSM domain throws 
an exception upon encountering 
such nondeterminism. 
Stateflow uses the position of 
transitions to disambiguate.
Neither of these correctly 
reflects HSIF semantics.
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HSIF Premise

• Time as a binding agent makes sense.
– Because of time-based differential equations.
– Hence, rule out asynchronous semantics.

• Global variables for sharing continuous signals
– How to enforce or analyze mutual exclusion?

• Nondeterminate
– Automata can have multiple enabled transitions
– Simultaneous triggers yield nondeterminate ordering of reactions

We quibble with the latter:
– It surprises the designer
– It is hard to get determinism when this is desired
– Getting the desired nondeterminism is easy using the former
– Writing simulators that are trustworthy is difficult

• It is incorrect to just pick one possible behavior!
– With this semantics, it makes no sense to export to HSIF from 

Ptolemy II CT+FSM models or from Simulink+Stateflow models.
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Part II: Real-Time Actor Semantics

• Simulink
– underlying continuous-time semantics
– good support for periodic real-time tasks
– code generation via real-time workshop

• Giotto
– underlying time-triggered semantics
– execution on embedded machine

• Timed Multitasking (TM)
– reactive, aperiodic semantics
– delayed output commit, as in Giotto

• Others:
– Real-time CORBA
– Port-based objects (PBO)
– Timed process networks
– Timed CSP
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Simulink Semantics

• continuous time
• discrete actors are 

logically instantaneous
• separation of 

output/update methods 
to support algebraic 
loops, integration, and 
zero-crossing detection

• output method invoked 
many times

• multitasking mode for 
periodic discrete-time 
tasks.

• multitasking mode 
requires Giotto-like 
delayed output commit

image from Writing S-Functions, 
version 4, The MathWorks



Mobies Phase 1 UC Berkeley  20

Giotto – Periodic Hard-Real-Time 
Tasks with Precise Mode Changes

t+10mst+10mst t t+5ms t+5ms

Higher frequency Task

Lower frequency task:

n Giotto compiler targets the E Machine
n Giotto/Simulink integration
n Ptolemy II Giotto code generator

Major part of the 
Mobies effort is 
to interface this 
domain to others: 
CT above, FSM 
below for modal 
modeling, and SDF 
for task definition.

Task 1.2: Demonstrate ability to 
model domain specific model 
semantics
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Timed Multitasking (TM)
- Extending this Concept to Event-Driven Models -

• Actors are triggered by input events
• Snapshot of inputs upon triggering
• Concurrent execution according to priorities
• to = ti + T + P

– to = Time of outputs
– ti = Time of inputs
– T = declared execution time
– P = preemption time

trigger

snapshot inputs

firing w/
preemption

declared execution time
+ preemption time
= elapsed time

overrun, if it occurs, is delegated
to an overrun handler 

produce
outputs

Task 1.1: Demonstrate ability of 
modeling cross cutting physical 
constraints
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Overrun Handlers in TM

high
fidelity

low
fidelity

controller

high
fidelity

controller

low
fidelity

controller

TM

overrun

slack detected

exec time: 10ms

When overrun occurs, handler can:
• commit partial results (for anytime algorithms)
• roll back (transaction semantics)
• switch to degraded mode operation;
• suspend rogue tasks
• raise an alarm 2.7 Demonstrate ability to 

guarantee properties of 
generated systems



Mobies Phase 1 UC Berkeley  23

Comparisons

• Giotto, Simulink, and TM, all achieve data 
determinism with snapshot of inputs and delayed 
commit of outputs.

• Giotto introduces a unit delay in any 
communication. Simulink introduces a unit delay 
only on sample rate changes. TM does not 
introduce a unit delay.

• Simulink requires output/update separation. The 
others do not.

• TM builds in the notion of an overrun handler. The 
others do not.

• Common principles:
– responsible frameworks
– precise reactions
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Abstract Semantics

The “right” abstract semantics would allow these 
models of computation to be composed with one 
another and with other MoCs.  This abstract 
semantics will have:

• output/update separation
– required by Simulink

• finite actor computation
– required by all

• predictable execution times
– required by all

• declared execution times
– required by TM, and by Giotto and Simulink for 

schedulability analysis.

1.5 Demonstrate ability to 
integrate different models of 
concurrency

1.6 Demonstrate ability to 
integrate domain specific 
modeling tools

1.7 Demonstrate ability to 
compose multiple view models
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A Theory of Responsible Frameworks
- Ensures Finite Actor Computation -

• A precise reaction is a finite piece of computation depends 
solely on its trigger and leads to a well-defined state. 

• A compositional precise reaction leads a composite actor to a 
quiescent state.

• A responsible framework only sends responsible triggers, 
thus guarantees compositional precise reaction.

trigger

finishquiescent
state

responsible
trigger

computation

1.5 Demonstrate ability to 
integrate different models of 
concurrency
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Status update:
Code Generation

• It is not sufficient to build a mechanism 
for generating code from one, fixed, 
modeling environment.

• Modeling strategies must be nested 
hierarchically.

• Code generators have to be 
heterogeneously composable.

Task 2.3: Demonstrate ability to 
compose generators from components
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Code Generation Status

• Giotto code generator from Giotto domain
– still need code generation from FSM to get modal models

• Java code generator from SDF domain
– based on Soot compiler infrastructure (McGill)
– type specialization
– static scheduling, buffering
– code substitution using model of computation semantics

• C code generation from Java
– University of Maryland subcontract
– based on Soot compiler infrastructure (McGill)
– preliminary concept demonstration built

• Configurable hardware synthesis
– targeted Wildcard as a concept demonstration
– collaborative with BYU (funded by another program)
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Actor Definition Status Update

A

C

D

B

public TypedIOPort input;
public TypedIOPort output;
public Parameter constant;
public void fire() {

Token t = input.get(0);
Token sum = t.add(constant.getToken());
output.send(0, t2);

}

Code generate 
a domain-
polymorophic 
component 
definition.
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Actor Definition: Cal

• Java is not the ideal actor definition language.
Key meta-data is hard to extract:
– token production/consumption patterns
– firing rules (preconditions)
– state management (e.g. recognize stateless actors)
– type constraints must be explicitly given
– modal behavior

• Defining an actor definition format (Cal):
– enforce coding patterns
– make meta-data available for code generation
– infer behavioral types automatically
– analyze domain compatibility
– support multiple back-ends (C, C++, Java, Matlab)
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Summary of Accomplishments to Date

• Heterogeneous modeling
– Domain polymorphism concept & realization
– Behavioral type system
– Giotto semantics & integration with other MoCs
– Component definition principles (Cal)

• Tool integration
– Charon import/export from Ptolemy II
– (partial) HSIF import to Ptolemy II
– Matlab integration with Ptolemy II

• Code generation
– Co-compilation concept
– Giotto program generation
– Java code generation from SDF
– C code generation from Java

• Early phase, concept demonstration
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Plans

• OEP
– ETC and V2V models and code generators

• HSIF
– Resolve semantics questions and create Ptolemy II interface

• Complete actor definition framework
– define the meta-semantics for domain-polymorphic actors

• Behavioral types
– support reflection
– real-time properties as dependent types

• Complete SDF code generation
– token unboxing
– elimination of memory management
– 100% of test suite must pass
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More Plans

• Code generate Ptolemy II expressions
– use of expression actor simplifies models
– expressions for guards and actions in FSMs

• Implement FSM code generation
– support modal models

• Complete C code generation
– support key subset of Java libraries

• Integrate heterogeneous code generators
– systematize hierarchy support
– define Java subset that generates well to C

• Investigate Simulink/Ptolemy II interaction
– focus on the abstract semantics


