
Mobies Phase 1 UC Berkeley 1

Process-Based Software Components

Mobies Phase 1, UC Berkeley
Edward A. Lee and Tom Henzinger

PI Meeting, New York
July 24, 2002

PI: Edward A. Lee, 510-642-0455, eal@eecs.berkeley.edu
Co-PI: Tom Henzinger, 510-643-2430, tah@eecs.berkeley.edu
PM: John Bay
Agent: James Lyttle, AFRL/IFSC, James.Lyttle@wpafb.af.mil
Award end date: December, 2003
Contract number: F33615-00-C-1703
AO #: J655

Mobies Phase 1 UC Berkeley 2

Subcontractors and Collaborators

• Subcontractor
– Univ. of Maryland (C code generation)

• Collaborators
– UCB Phase II
– Kestrel
– Vanderbilt
– Penn

• Non-Mobies
– GSRC project (system-level IC design)
– SEC program (Boeing, etc.)

Mobies Phase 1 UC Berkeley 3

Program Objectives

Our focus is on component-based design using
principled models of computation and their runtime
environments for embedded systems. The emphasis of
this project is on the dynamics of the components,
including the communication protocols that they use to
interface with other components, the modeling of their
state, and their flow of control. The purpose of the
mechanisms we develop is to improve robustness and
safety while promoting component-based design.

Mobies Phase 1 UC Berkeley 4

Technical Approach Summary

• Models of computation
– supporting heterogeneity
– supporting real-time computation
– codifications of design patterns
– definition as behavioral types

• Co-compilation
– joint compilation of components and architecture
– vs. code generation
– supporting heterogeneity

• Ptolemy II
– our open-architecture software laboratory
– shed light on models of computation & co-compilation
– by prototyping modeling frameworks and techniques

our tool

Mobies Phase 1 UC Berkeley 5

View of Concurrent Components:
Actors with Ports and Attributes

PortPort

Actor Actor

Link
Relation

Actor
Port

connection

connection

co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

Model of Computation:

• Messaging schema
• Flow of control
• Concurrency

Key idea: The model of computation is part of the framework
within which components are embedded not part of the
components themselves. It enforces patterns.

our basic meta model

Mobies Phase 1 UC Berkeley 6

Actor-Oriented View of
Producer/Consumer Components

Models of Computation:

• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
• push/pull
•…

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

our meta model for producer/consumer models of computation

Mobies Phase 1 UC Berkeley 7

Examples of Actor-Oriented
Component Frameworks

• Simulink (The MathWorks)
• Labview (National Instruments)
• OCP, open control platform (Boeing)
• GME, actor-oriented meta-modeling (Vanderbilt)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling (Rational)
• Port-based objects (U of Maryland)
• I/O automata (MIT)
• VHDL, Verilog, SystemC (Various)
• Polis & Metropolis (UC Berkeley)
• Ptolemy & Ptolemy II (UC Berkeley)
• …

Mobies Phase 1 UC Berkeley 8

Mixing Models of Computation

• Tool integration is about semantics integration
– Tools essentially reflect the models of computation they

implement or assume.
• Simulink – continuous-time/mixed signal
• Stateflow – finite-state machines
• Charon – hybrid automata
• Teja – timed automata
• Giotto – time triggered architecture
• ns (network simulator) – discrete event
• Esterel – synchronous/reactive
• …

– Not all semantic models are interchangeable
– Not all semantic models are compositional
– Not all tools are developed to work with other tools

• Ptolemy II is a framework to study semantics
integration

Mobies Phase 1 UC Berkeley 9

Part I: Networks of Automata
- Heterogeneous Mixtures of Automata and Actors -

Swimming pool HSIF example imported
into Ptolemy II via XSLT translator to
MoML, the Ptolemy II XML Schema.

Mobies Phase 1 UC Berkeley 10

Semantics Questions

• What automata can be expressed?
– nondeterministic, guard expression language, actions, …

• How are transitions in distinct automata coordinated?
– synchronous, time-driven, event-driven, dataflow, …
– can outputs and updates be separated?

• What can automata communicate?
– messages, events, triggers

• How communications carried out?
– synchronous, rendezvous, buffered, lossy, …

• How are continuous variables shared?
– global name space, scoping, mutual exclusion, …

• What is the meaning of directed cycles?
– fixed point, error, infinite loop, …

• What is the meaning of simultaneous events?
– secondary orderings, such as data precedences, priorities, …

Mobies Phase 1 UC Berkeley 11

Possible Interaction Semantics
Between Automata

• Asynchronous
– Promela (specification language for Spin)
– SDL
– Ptolemy II (PN+FSM, DE+FSM)

• Synchronous w/ fixed point
– Esterel
– Simulink
– Ptolemy II (SR+FSM)

• Synchronous w/out fixed point
– Giotto
– Ptolemy II (SDF+FSM)
– HSIF

Mobies Phase 1 UC Berkeley 12

Tool Integration Efforts

• First attempt: Charon
– Created a Charon parser (in Java) to import

into Ptolemy II CT+FSM domains
– Created a Charon code generator to produce

Charon from Ptolemy II CT+FSM models
• Second attempt: HSIF

– Created an XSLT translator from HSIF to
MoML, creating Ptolemy II models in CT+FSM.

– This is ongoing, as we are resolving semantics
mismatches.

Mobies Phase 1 UC Berkeley 13

Difficulties

• CT+FSM does not model the two sources of
nondeterminism in HSIF:
– At each time step, we order execution of the automata

according to data precedences, as done by Simulink, for
example.
We believe this is a flaw in HSIF

– The FSM domain rejects nondeterminism where more
than one guard is enabled at a state.
We believe this is a flaw in the FSM domain of Ptolemy
II, but:

What should a simulator do with such nondetermism? It
is incorrect to just choose one of the enabled transitions
(because it will lead to untrustable simulations).

• Several other difficulties with global variables and
directed cycles in HSIF.

Mobies Phase 1 UC Berkeley 14

Order of Execution Question

Given an event from the event
source, which of these should
react first? HSIF declares
this to be nondeterministic.

Simulink and the Ptolemy II
CT domain declare this to be
deterministic, based on data
precedences. Actor1
executes before Actor2.

Mobies Phase 1 UC Berkeley 15

Using HSIF Semantics to Get
Determinism is Hard

turn one trigger into N,
where N is the number of actors

encode the
desired sequence
as an automaton
that produces a
schedule

embellish the
guards with
conditions on the
schedule

conditionally execute the simple
function, conditioned on the schedule

broadcast the
schedule

Mobies Phase 1 UC Berkeley 16

Using CT or Simulink Semantics to
Get Nondeterminism is Easy

At a time when
the event source
yields a positive
number, both
transitions are
enabled.

Ptolemy’s FSM domain throws
an exception upon encountering
such nondeterminism.
Stateflow uses the position of
transitions to disambiguate.
Neither of these correctly
reflects HSIF semantics.

Mobies Phase 1 UC Berkeley 17

HSIF Premise

• Time as a binding agent makes sense.
– Because of time-based differential equations.
– Hence, rule out asynchronous semantics.

• Global variables for sharing continuous signals
– How to enforce or analyze mutual exclusion?

• Nondeterminate
– Automata can have multiple enabled transitions
– Simultaneous triggers yield nondeterminate ordering of reactions

We quibble with the latter:
– It surprises the designer
– It is hard to get determinism when this is desired
– Getting the desired nondeterminism is easy using the former
– Writing simulators that are trustworthy is difficult

• It is incorrect to just pick one possible behavior!
– With this semantics, it makes no sense to export to HSIF from

Ptolemy II CT+FSM models or from Simulink+Stateflow models.

Mobies Phase 1 UC Berkeley 18

Part II: Real-Time Actor Semantics

• Simulink
– underlying continuous-time semantics
– good support for periodic real-time tasks
– code generation via real-time workshop

• Giotto
– underlying time-triggered semantics
– execution on embedded machine

• Timed Multitasking (TM)
– reactive, aperiodic semantics
– delayed output commit, as in Giotto

• Others:
– Real-time CORBA
– Port-based objects (PBO)
– Timed process networks
– Timed CSP

Mobies Phase 1 UC Berkeley 19

Simulink Semantics

• continuous time
• discrete actors are

logically instantaneous
• separation of

output/update methods
to support algebraic
loops, integration, and
zero-crossing detection

• output method invoked
many times

• multitasking mode for
periodic discrete-time
tasks.

• multitasking mode
requires Giotto-like
delayed output commit

image from Writing S-Functions,
version 4, The MathWorks

Mobies Phase 1 UC Berkeley 20

Giotto – Periodic Hard-Real-Time
Tasks with Precise Mode Changes

t+10mst+10mst t t+5ms t+5ms

Higher frequency Task

Lower frequency task:

n Giotto compiler targets the E Machine
n Giotto/Simulink integration
n Ptolemy II Giotto code generator

Major part of the
Mobies effort is
to interface this
domain to others:
CT above, FSM
below for modal
modeling, and SDF
for task definition.

Task 1.2: Demonstrate ability to
model domain specific model
semantics

Mobies Phase 1 UC Berkeley 21

Timed Multitasking (TM)
- Extending this Concept to Event-Driven Models -

• Actors are triggered by input events
• Snapshot of inputs upon triggering
• Concurrent execution according to priorities
• to = ti + T + P

– to = Time of outputs
– ti = Time of inputs
– T = declared execution time
– P = preemption time

trigger

snapshot inputs

firing w/
preemption

declared execution time
+ preemption time
= elapsed time

overrun, if it occurs, is delegated
to an overrun handler

produce
outputs

Task 1.1: Demonstrate ability of
modeling cross cutting physical
constraints

Mobies Phase 1 UC Berkeley 22

Overrun Handlers in TM

high
fidelity

low
fidelity

controller

high
fidelity

controller

low
fidelity

controller

TM

overrun

slack detected

exec time: 10ms

When overrun occurs, handler can:
• commit partial results (for anytime algorithms)
• roll back (transaction semantics)
• switch to degraded mode operation;
• suspend rogue tasks
• raise an alarm 2.7 Demonstrate ability to

guarantee properties of
generated systems

Mobies Phase 1 UC Berkeley 23

Comparisons

• Giotto, Simulink, and TM, all achieve data
determinism with snapshot of inputs and delayed
commit of outputs.

• Giotto introduces a unit delay in any
communication. Simulink introduces a unit delay
only on sample rate changes. TM does not
introduce a unit delay.

• Simulink requires output/update separation. The
others do not.

• TM builds in the notion of an overrun handler. The
others do not.

• Common principles:
– responsible frameworks
– precise reactions

Mobies Phase 1 UC Berkeley 24

Abstract Semantics

The “right” abstract semantics would allow these
models of computation to be composed with one
another and with other MoCs. This abstract
semantics will have:

• output/update separation
– required by Simulink

• finite actor computation
– required by all

• predictable execution times
– required by all

• declared execution times
– required by TM, and by Giotto and Simulink for

schedulability analysis.

1.5 Demonstrate ability to
integrate different models of
concurrency

1.6 Demonstrate ability to
integrate domain specific
modeling tools

1.7 Demonstrate ability to
compose multiple view models

Mobies Phase 1 UC Berkeley 25

A Theory of Responsible Frameworks
- Ensures Finite Actor Computation -

• A precise reaction is a finite piece of computation depends
solely on its trigger and leads to a well-defined state.

• A compositional precise reaction leads a composite actor to a
quiescent state.

• A responsible framework only sends responsible triggers,
thus guarantees compositional precise reaction.

trigger

finishquiescent
state

responsible
trigger

computation

1.5 Demonstrate ability to
integrate different models of
concurrency

Mobies Phase 1 UC Berkeley 26

Status update:
Code Generation

• It is not sufficient to build a mechanism
for generating code from one, fixed,
modeling environment.

• Modeling strategies must be nested
hierarchically.

• Code generators have to be
heterogeneously composable.

Task 2.3: Demonstrate ability to
compose generators from components

Mobies Phase 1 UC Berkeley 27

Code Generation Status

• Giotto code generator from Giotto domain
– still need code generation from FSM to get modal models

• Java code generator from SDF domain
– based on Soot compiler infrastructure (McGill)
– type specialization
– static scheduling, buffering
– code substitution using model of computation semantics

• C code generation from Java
– University of Maryland subcontract
– based on Soot compiler infrastructure (McGill)
– preliminary concept demonstration built

• Configurable hardware synthesis
– targeted Wildcard as a concept demonstration
– collaborative with BYU (funded by another program)

Mobies Phase 1 UC Berkeley 28

Actor Definition Status Update

A

C

D

B

public TypedIOPort input;
public TypedIOPort output;
public Parameter constant;
public void fire() {

Token t = input.get(0);
Token sum = t.add(constant.getToken());
output.send(0, t2);

}

Code generate
a domain-
polymorophic
component
definition.

Mobies Phase 1 UC Berkeley 29

Actor Definition: Cal

• Java is not the ideal actor definition language.
Key meta-data is hard to extract:
– token production/consumption patterns
– firing rules (preconditions)
– state management (e.g. recognize stateless actors)
– type constraints must be explicitly given
– modal behavior

• Defining an actor definition format (Cal):
– enforce coding patterns
– make meta-data available for code generation
– infer behavioral types automatically
– analyze domain compatibility
– support multiple back-ends (C, C++, Java, Matlab)

Mobies Phase 1 UC Berkeley 30

Summary of Accomplishments to Date

• Heterogeneous modeling
– Domain polymorphism concept & realization
– Behavioral type system
– Giotto semantics & integration with other MoCs
– Component definition principles (Cal)

• Tool integration
– Charon import/export from Ptolemy II
– (partial) HSIF import to Ptolemy II
– Matlab integration with Ptolemy II

• Code generation
– Co-compilation concept
– Giotto program generation
– Java code generation from SDF
– C code generation from Java

• Early phase, concept demonstration

Mobies Phase 1 UC Berkeley 31

Plans

• OEP
– ETC and V2V models and code generators

• HSIF
– Resolve semantics questions and create Ptolemy II interface

• Complete actor definition framework
– define the meta-semantics for domain-polymorphic actors

• Behavioral types
– support reflection
– real-time properties as dependent types

• Complete SDF code generation
– token unboxing
– elimination of memory management
– 100% of test suite must pass

Mobies Phase 1 UC Berkeley 32

More Plans

• Code generate Ptolemy II expressions
– use of expression actor simplifies models
– expressions for guards and actions in FSMs

• Implement FSM code generation
– support modal models

• Complete C code generation
– support key subset of Java libraries

• Integrate heterogeneous code generators
– systematize hierarchy support
– define Java subset that generates well to C

• Investigate Simulink/Ptolemy II interaction
– focus on the abstract semantics

