
Time domain simulation of

Sigma Delta A/D converters

using Ptolemy

Frank Schilder

TU Ilmenau

September 16, 1998

Contents

1 Installing and using the package 1

2 Mathematical description of the implementation 7

3 New ideas for analytical treatment 12

1 Installing and using the package

Installing

Note: Throughout this documentation I will use 'A/D : : : ' as a synonym for '��-A/D : : : ' because

no other A/D modulators or converters are considered here.
For installing the A/D converter simulation package do the following steps:

1. Ptolemy must be installed on your System except you are interested in the source code only.
If Ptolemy is not installed you can get it and its documentation from

http://ptolemy.eecs.berkeley.edu/.

2. If not already done, download the �le adc.tgz via

ftp://ftp.mathematik.tu-ilmenau.de/pub/numerik/adc.tgz.

3. Move the �le adc.tgz to the location where you want to install this package.

4. Untar the �le with the command gtar -xzf adc.tgz. (Note: gtar may be renamed as tar.)

If gnu's tar is not installed on your system try the following:
mv adc.tgz adc.tar.gz

gunzip adc.tar.gz

tar -xf adc.tar

(If this still does not work consider consulting your system administrator.) This step will

create two directories adc and ivps as well as the �les INSTALL and adc.ps. adc contains the
simulation package described in this and the next section, ivps some ivps scripts refered to

in the last section of this documentation, INSTALL is a copy of these installation instructions
and adc.ps this documentation itself.

5. Change to the directory adc: cd adc.

6. Run the script setup. This will invoke the Ptolemy utility program masters to set the paths

to correct values. (Note: If you move the package, you must invoke setup again.) If your
Ptolemy is in standard installation, no further adjustments are necessary. You may check

this with masters: Type masters facets/ad1 and enter the command "?", if the path
starting with $PTOLEMY is labeled as invalid then you need to set this too. Ask your system
administrator which paths are changed to what values. Look at the command in setup how

to set these paths for all facets at once.

7. Now you are ready to use the package, the central facet is in adc/adc.pal, open it with the
open-facet-command (F) within Ptolemy.

Using the simulation package within Ptolemy

In the rest of this documentation I assume you are familar with using Ptolemy. If not please read

'The Micro Almagest' [5] for an introduction. This package runs completely in SDF domain, so you
may read the chapters related to this domain only.

1

In the description below there are also given the model equations. This simulation deals with
mixed analog-digital circuits. We use the clock rate of the digital part also for the numerical
simulation of the analogous part (because of e�ciency and simpleness). The interval between two

time tacts is denoted as �t. All the terms in the given model equations below are related to grid
points of the time grid tk = t0 + k ��t; k = 0; 1; : : :. The lower left index indicates the grid point

on which the considered value is de�ned (e.g. U in
k means the value of the input signal U in(t) at the

time tk, i.e. U
in
k = U in(tk)).

Now start the Ptolemy vem console ptiny (or pigi whatever you prefer) and open the facet

adc/adc.pal with the open facet (F) command. You will see a window like �g. 1. It is seperated
in four parts: 'basic components', 'A/D modulators and converters', 'signal sinks and sources' and

'complete simulations'. The �rst part contains the stars (blue outline) that are the heart of this
package:

F 2 M, M 2 F: These stars are datatype conversion stars (
oat to matrix, matrix to
oat) that
convert a single
oating point number into a matrix resp. extract a single
oation point number

out of a matrix. These stars are needed for connecting to and from 'A/D Integrator'-stars.
The source of these stars is located in adc/stars/SDFf2m.pl resp. adc/stars/SDFm2f.pl.

A/D Integrator: This is the central star of this package { the integrator. It inputs a matrix
generated either by a previous 'A/D Integrator' or a 'F 2 M' conversion star (see also the

examples described below) and an intervallwise constant input on the feedback gain. 'Inter-
vallwise constant' means that this input must not change within two time tacts. It may only
be set to a new value at every time tact. The output is a matrix with a complicated datastruc-

ture (see the next section on this) especially designed for cascading of 'A/D Integrator's. If
you are intrested in the ('real world') output signal only you may extract this with a 'M 2 F'

conversion star from the output. Its function is to integrate the di�erence between the input
signal U in and the feedback signal Ufb over a time interval �t. This star has several states

that can be set. Summary:

states description

U0 initial output voltage at time t0
T the (inverse) integration constant of the integration circuit
dt the (inverse) clock rate

particles consumed 1

particles �red 1

source adc/stars/SDFadint.pl

model eqn. Uout
k = 1

T

R tk
t0
(U in(�)� Ufb(�))d� + U0

Uout ist the output signal, T the integration constant, U in the input signal, Ufb the feedback,

U0 the initial value for U
out at t0 and tk+1 � tk is a time-interval between two time-tacts.

b quant: The binary quantizer. It inputs a matrix generated by an 'A/D Integrator' and outputs
a
oating point value. It converts the matrix input implicitely to a
oating point number. Its
function is to compare the input signal U in with the threshold value s and output 1 resp. 0 if

the signal is greater than or equal to s resp. less than s. Summary:

states description

s the threshold value s

particles consumed 1

particles �red 1

source adc/stars/SDFbinquant.pl

model eqn. Xk = �(U in
k � s)

2

Figure 1: The facet adc/adc.pal containing all components of this simulation package.

3

� is the Heaviside function �(x) =

�
1 for x � 0
0 for x < 0

. Xk is for k = 0; 1; : : : the bit-sequence

generated by an A/D-modulator (see below for the de�nition of the terms 'A/D modulator'
and 'A/D converter' used in this documentation).

1 bit DAC: A one bit digital analog converter. It inputs a
oating point number Xk usually

generated by a binary quantizer and outputs a
oating point number. Its primary function
is to convert a bit sequence into a rectangular signal scaled with �Uref , where Uref is the
reference voltage, and is usually used in the feedback loop to our 'A/D Integrator'. If e.g. the

input sequence is a bit sequence (for instance from our binary quantizer) then the output is
a rectangular signal with the values ��Uref and �Uref only. Summary:

states description

U ref the reference voltage Uref

alpha the scaling factor �

particles consumed 1
particles �red 1

source adc/stars/SDFdau.pl

model eqn. Uout
k = �UrefXk

Xk is a bit sequence but in general it may contain arbitrary values between (including) 0 and
1. So you are able to simulate A/D modulators/converters containing multivalue quantizers.

Remember: The only condition for the feedback input of our 'A/D Integrator' is that its value
be constant between two time tacts tk�1 and tk.

A/D Filter 1: A simple �lter for bit sequences. It inputs a sequence of
oating point numbers Xk

usually generated by a binary quantizer and outputs a
oating point value Yk. Its function is
to calculate the sliding average over 2b � 1 values to restore a signal from a bit sequence. b

is the bit width of the �lter (it generates values from 0 to 2b � 1). This star is called 'A/D
Filter 1' because it uses the simplest method for performing the restauration of a signal. In

this implementation the star 'A/D Filter 1' implicitely rescales its output between �Uref and
+Uref . If you rely on the integer values you may remove the scaling part from the source (or

better outcomment it). Summary:

states description

bits the bit width b

U ref the reference voltage Uref

particles consumed 1

particles �red 1

source adc/stars/SDFfilter.pl

model eqn. Yk = Uref (2

2n�1
(
Pk

i=k�2n+2Xi)� 1)

Yk is the generated (restored) signal value at tk. For the initial calculation it is assumed that
all bits Xi are zero (i.e. where i would have negative values in the sum above).

You get a short description for every star with the Ptolemy pro�le command (,). This description
includes the default values for the states and the names of the input and output ports.

The second part 'A/D modulators and converters' contains galaxies (green outline) assambled
with the stars described above that simulate several A/D modulators resp. converters. In this
documentation the term A/D modulator is used for an electronic component that inputs an

analog signal U and outputs a bit sequence Xk. In distinction to thatA/D converter is used
if the output signal is a reconstruction of the input signal. In our case that means an A/D

modulator with an additional �ltering stage gives an A/D converter. The software-design of these
components re
ects that fact (do a look inside (i)). There are two di�erent types of galaxies there:

4

Figure 2: The facet of the A/D modulator of second order, containing two cascaded integrators, a
binary quantizer and two 1 bit DACs (and some Ptolemy system stars as well).

A/D modulators: (�rst row) These are A/D modulators of order one, two and three (from left

to right). If you look inside (i) you will see a window like �g. 2. This star gets a continuous
signal as input and outputs a bit sequence that (hopefully) correlates in some way with the

input signal. The mathematical model of these stars is subject of the last section. Summary:

states description

T1, T2, T3 integration constants of 1st, 2nd and 3rd integrator�

alpha, beta, gamma scaling factors of the feedback DACs�

X0 initial output state of the binary quantizer

U ref the reference voltage Uref

s the threshold value of the bin. quantizer
dt the (inverse) clock rate
U1 0, U2 0, U3 0 the initial output states of the integrators�

particles consumed 1

particles �red 1
� The actual number of these parameters equals the number of integrators of the modulator considered.

In the �rst order A/D modulator the numbering is omitted.

A/D converters: (second row) These are A/D converters of order one, two and three (from left to

right). If you look inside (i) you will see a window like �g. 3. This star gets a continuous signal
as input and outputs the restored signal. Remember, the output is already rescaled between

�Uref and +Uref . This is automatically changed if you change the implementation of the
'A/D Filter 1' (see above). The mathematical description of A/D modulators applies to this
stars as well (see last section). The di�erence is the additional stage of �ltering. Summary:

5

Figure 3: The facet of the A/D converter of �rst order, containing an A/D modulator of �rst order

and a b-bit �lter.

states description

T1, T2, T3 integration constants of 1st, 2nd and 3rd integrator�

alpha, beta, gamma scaling factors of the feedback DACs�

bits the bit width b of the 'A/D Filter 1'
X0 initial output state of the bin. quantizer

U ref the reference voltage Uref

s the threshold value of the bin. quantizer

dt the (inverse) clock rate
U1 0, U2 0, U3 0 the initial output states of the integrators�

particles consumed 1

particles �red 1
� The actual number of these parameters equals the number of integrators of the converter considered.

In the �rst order A/D converter the numbering is omitted.

The third part 'signal sinks and sources' contains two elements only, the plotting device 'XY-

Mgraph' and the 'sine wave' signal generator. The 'XY-Mgraph' is derived from 'XMgraph' of
the Ptolemy package. See 'The Micro Almagest' [5] for a description. The 'XY-Mgraph' is not
yet tuned for plotting rectangular funktions as are generated by our components. Therefore the

graphics appears somewhat right-shifted (by '�t'). You are welcome to change this (you will need
two seperate input ports, one for 'ordinary' input and the other for 'rectangular' input).

The signal generator 'sine wave' has two settable states, 'dt' and 'amplitude'. 'dt' is the (inverse)
clock rate at which particles are �red (see also 'dt' in the components above) and 'amplitude' sets

the amplitude of the generated sine wave.
The last part 'complete simulations' contains six example simulations, one for each modulator

resp. converter. To start a particular simulation open the facet (look inside (i)) and invoke the run

command (R). You are asked then 'when to stop'. Accept this time the default of 400 iterations
and press the 'go' button. You will get a graphical output like one of �g. 5.

All of these simulations have in common that all components agree about 'dt'. This is a basic

condition for correct working of the simulations. For becoming familar with the package change
some parameters (with the edit parameter command (e)) and maneuver through the components

(look inside (i)). Try to create a simulation for a fourth order A/D modulator (correct linking of
the parameters costs some nerves). Look at the examples how to correctly forward the parameters

to the stars. You may also consult 'The Micro Almagest' [5], part 'Using Galaxies'.
Now create your own A/D modulators resp. converters and have Ptolemy simulate them!

6

Figure 4: The facet of the 'A/D modulator 1 simulation' containing the signal source 'sine wave',
the 'A/D modulator 1' and the signal sink 'XY-Mgraph'.

2 Mathematical description of the implementation

If you are going to change or extend the algorithms described in the following you should be familar

with the Ptolemy programming interface. See therefore 'The Almagest Vol. 2' [6].
All basic elements except the 'A/D Integrator' have fairly simple model equations and so their

implementation is straightforeward. The algorithm of the 'A/D Integrator' requires a closer look.
Because of the intended use of our package for long term simulations we need the following conditions

(goals) satis�ed:

1. It should work with high precision, i.e. we wish results with high order error terms (like usual

high order integration methods).

2. It must be cascadable, i.e. the output must carry enough information so that the next stage
is able to satisfy condition 1 again.

If we look closer at our model equation of an integrator at stage n, omitting the initial values:

Uout
k =

1

Tn

tkZ
t0

�
1

Tn�1

�nZ
t0

�
� � �

1

T1

�2Z
t0

(U in(�1)� Ufb1(�1))d�1 � � � �

�Ufbn�1(�n�1)

�
d�n�1 � Ufbn (�n)

�
d�n (1)

we see where the problem arises. We cannot simply use a high order numerical method because the
Ufbi(t) are discontinuous functions of time. However, any numerical integration method of order p
requires that the integrated function be p times continuous di�erentiable otherwise the method is

likely to fail to give useful results.
The idea now is to split up the integral in (1) into two main parts, one containing U in and the

other containing the feedbacks Ufbi :,

Uout
k =

1

Tn

tkZ
t0

1

Tn�1

�nZ
t0

� � �
1

T1

�2Z
t0

U in(�1)d�1 � � � d�n�1d�n

7

Ptolemy Xgraph

Set 0

Set 1

Y

X
-1.00

-0.50

0.00

0.50

1.00

0.00 5.00 10.00 15.00 20.00

Ptolemy Xgraph

Set 0

Set 1

Y

X
-1.00

-0.50

0.00

0.50

1.00

0.00 5.00 10.00 15.00 20.00

Figure 5: The output of 'A/D modulator 2 simulation' (top) and `A/D 2 simulation' (bottom) with

U in(t) = sin(t), Ur = � = � = T1 = T2 = 1, �t = 0:05 and 4 bit �ltering.

8

�
1

Tn

tkZ
t0

1

Tn�1

�nZ
t0

� � �
1

T1

�2Z
t0

Ufb1(�1)d�1 � � � d�n�1d�n

� : : :

�
1

Tn

tkZ
t0

1

Tn�1

�2Z
t0

Ufbn�1(�1)d�1d�2

�
1

Tn

tkZ
t0

Ufbn(�)d� (2)

which are then treated seperately. In the �rst integral the function U in(t) full�ls our global as-
sumtion of being su�ciently smooth so we can use a standard integration method. For the other

integrals we try to derive a recursion formula that gives exact results. It is clear that by combining
these results we obtain a method of overall error order of the used numerical integration methods.

To calculate the multiple integral over U in we rewrite it as a di�erential equation of order n

(integrating a di�erential equation is much more e�cient than calculating a multiple integral):

(Uout
k (t))(n) =

1

T
U in(t): (3)

For applying numerical methods we would rewrite (3) as a system of order 1. Because of e�ciency
we then choose implicit Adams-Moulton multistep methods for integration and a simple calculation
shows that the cascaded application of this methods is here equivalent to simultaneous solving

the system (because the right hand side of (3) depends on time only). This is not shown here
explicitely but fairly simple. Because of that the integrator simply applies the Adams-Moulton

method to the n � 1 times integral value produced by the previous integrator. For completeness,
the Adams-Moulton methods used are given here, the implementation is straightforward:

order formula

1 Uout
k = Uout

k�1 +
�t
T
U in
k

2 Uout
k = Uout

k�1 +
�t
2T

(U in
k + U in

k�1)

3 Uout
k = Uout

k�1 +
�t
12T

(5U in
k + 8U in

k�1 � U in
k�2)

4 Uout
k = Uout

k�1 +
�t
24T

(9U in
k + 19U in

k�1 � 5U in
k�2 + U in

k�3)

5 Uout
k = Uout

k�1 +
�t
720T

(251U in
k + 646U in

k�1 � 264U in
k�2 + 106U in

k�3 � 19U in
k�4)

6 Uout
k = Uout

k�1 +
�t

1440T
(475U in

k + 1427U in
k�1 � 798U in

k�2 + 482U in
k�3 � 173U in

k�4 + 27U in
k�5)

Now we derive an exact recursion formula for the multiple integrals over the feedbacks Ufbi .

For simplicity we denote the intervallwise constant function Ufb1 as x and go to calculate

Ink =
1

Tn

tkZ
t0

1

Tn�1

�nZ
t0

� � �
1

T1

�2Z
t0

x(�1)d�1 � � � d�n�1d�n (4)

where Ink denotes the nth integral at tk. What we try now is to get a formula that depends on the
previous integral values and the last recent function value only. Therefore we divide the integral

(4) into two parts:

Ink =
1

Tn

tk�1Z
t0

1

Tn�1

�nZ
t0

� � �
1

T1

�2Z
t0

x(�1)d�1 � � � d�n�1d�n

9

+
1

Tn

tkZ
tk�1

1

Tn�1

�nZ
t0

� � �
1

T1

�2Z
t0

x(�1)d�1 � � � d�n�1d�n (5)

what we can rewrite as:

Ink = Ink�1 +
1

Tn

tkZ
tk�1

1

Tn�1

�nZ
t0

� � �
1

T1

�2Z
t0

x(�1)d�1 � � � d�n�1d�n: (6)

The remaining integral can also being rewritten:

1

Tn

tkZ
tk�1

1

Tn�1

�nZ
t0

� � �
1

T1

�2Z
t0

x(�1)d�1 � � � d�n�1d�n

=
1

Tn

tkZ
tk�1

0
B@ 1

Tn�1

tk�1Z
t0

� � �
1

T1

�2Z
t0

x(�1)d�1 � � � d�n�1 +
1

Tn�1

�nZ
tk�1

� � �
1

T1

�2Z
t0

x(�1)d�1 � � � d�n�1

1
CA d�n

=
1

Tn

tkZ
tk�1

In�1k�1 d�n +
1

Tn

tkZ
tk�1

1

Tn�1

�nZ
tk�1

� � �
1

T1

�2Z
t0

x(�1)d�1 � � � d�n�1d�n

=
1

Tn
In�1k�1�t+

1

Tn

tkZ
tk�1

1

Tn�1

�nZ
tk�1

� � �
1

T1

�2Z
t0

x(�1)d�1 � � � d�n�1d�n: (7)

If we insert (7) into (6) we get:

Ink = Ink�1 +
1

Tn
In�1k�1�t +

1

Tn

tkZ
tk�1

1

Tn�1

�nZ
tk�1

� � �
1

T1

�2Z
t0

x(�1)d�1 � � � d�n�1d�n: (8)

This process can be continued until we arrive at the following equation:

Ink = Ink�1 +
1

Tn
In�1k�1�t+

1

TnTn�1
In�2k�1

�t2

2
+ � � �

+
1

Tn

tkZ
tk�1

1

Tn�1

�nZ
tk�1

� � �
1

T1

�2Z
tk�1

x(�1)d�1 � � � d�n�1d�n:

=

n�1X
i=0

1Qi

j=1 Tn�j+1
In�ik�1

�ti

i!
+

1

Tn

tkZ
tk�1

1

Tn�1

�nZ
tk�1

� � �
1

T1

�2Z
tk�1

x(�1)d�1 � � � d�n�1d�n: (9)

Because x(t) is constant in the interval [tk�1; tk) we can solve the last remaining integral and end

up with:

Ink =

n�1X
g=0

1Qg

j=1 Tn�j+1
I
n�g

k�1

�tg

g!
+

1

TnTn�1 � � � T1
U
fb1
k�1

�tn

n!
(10)

where x has already been replaced with Ufb1 .

10

This derivation process can be repeated for the multiple integrals over the other feedbacks Ufbi

(i indicates the stage of the integrator that received the feedback Ufbi) we �nally obtain:

iIn�i+1k =

n�1X
g=i�1

1Qg�i+1

j=1 Tn�j+1

iI
n�g

k�1

�tg�i+1

(g � i + 1)!
+

1

TnTn�1 � � � Ti
U
fbi
k�1

�tn�i+1

(n� i+ 1)!
(11)

With (11) at hand we can go to formulate the (somewhat messy) algorithm to use. As it

suggests we need for calculating the multiple integral intermediate results from earlier stages of
'A/D Integrator's. The easiest way to give the required data trough is using the following matrices:

Input =

0
BBBBBB@

n�1Uout
k Ûn�1

k

Û
fbn�1
k

n�1Î1k
Û
fbn�2
k

n�2Î1k
n�2Î2k

...
...

...
. . .

Û
fb1
k

1Î1k
1Î2k � � � 1În�1k

1
CCCCCCA

(12)

Output =

0
BBBBBBBB@

nUout
k

�Un
k

�U
fbn
k

nI1k
�U
fbn�1
k

n�1 �I1k
n�1I2k

�U
fbn�2
k

n�2 �I1k
n�2 �I2k

n�2I3k
...

...
...

...
. . .

�U
fb1
k

1 �I1k
1 �I2k

1 �I3k � � � 1Ink

1
CCCCCCCCA

(13)

where the individual terms have the following meaning (�elds not �lled are ignored):

n�1Uout
k , nUout

k : the output signal of the n-1st resp. nth integrator

Ûn�1
k , �Un

k : the n-1st resp. nth integral over U in

Û
fbi
k : Û

fbi
k = 1

Tn�1���Ti
U
fbi
k

�tn�i

(n�i)!

�U
fbi
k : �U

fbi
k = 1

Tn
Û
fbi
k

�t
n�i+1

iÎ
j

k : iÎ
j

k =
1Q

n�1

l=j+i
Tl

iI
j

k
�tn�i�j

(n�i�j)!

i �Ij
k

: i �Ijk =
1

Tn

iÎ
j

k
�t

n�i�j+1

iIn�i+1k : see below step 4 of algorithm

With this notation we can verbally formulate our algorithm:

1. read the input (signalmatrix and feedback), assamble an intermediate matrix from the feed-

back and the inputmatrix

2. transform the intermediate matrix: convert the 'hated' values into the 'bared' values using
the formulaes given just before

3. calculate the nth integral over the input signal U in using implicit Adams-Moulton methods

4. calculate the multiple integrals over the feedbacks for each stage using the now very simple

looking formula:

iIn�i+1k = �U
fbi
k�1 +

n�iX
j=1

i �I
j

k�1 +
iIn�i+1k�1 (14)

11

Figure 6: The facet of the A/Dmodulator of �rst order, containing one integrator, a binary quantizer
and one 1 bit DACs (and some Ptolemy system stars as well).

5. calculate the output signal:

nUout
k = �Un

k �

nX
i=1

i �In�i+1k ; (15)

now the intermediate matrix is in state (13)

6. save one copy of the outputmatrix for the next iteration

7. output the outputmatrix

Some hints for further improvements:

� allowing the integration step size be smaller than the clock rate of the circuit, if h is the

integration step size then should be �t = m � h with an integer m, this would allow the
simulation with highly (fast) varying signals as input

� monitoring of the local integration error, this could give hints about the quality of the gene-
rated data as well as how (where) to improve the algorithms, see a book about numerics on

ordinary di�erential equations how to do this

� with the monitoring of the local error one can go to add some adaptiveness, you can choose

the order of the method depending on this error and a user-de�ned maximum tolerance

3 New ideas for analytical treatment

In this last section I would like to describe the basic concepts of an idea for merely analytical studies

of A/D modulators and converters. The goal is to derive an ordinary di�erential equation that is
related to our model and re
ects the qualitative resp. approximates the quantitative behaviour of
the A/D modulators and converters considered here.

First of all let us derive the model equation for a �rst order A/D modulator (A/DM1, see �g.
6). For brevity we call the real input signal U0, the output signal U1 and the reference voltage Ur.

12

We than can write:

U1(t) =
1

T

tZ
t0

�
U0(�)� �Ur

�
2�k(U

1(�)� s)� 1
��

d� + U1(t0) (16)

where �k denotes a special Heaviside function de�ned as:

�k(x(t)) =

�
1 for x(tk) � 0; t 2 [tk; tk+1)

0 for x(tk) < 0; t 2 [tk; tk+1)
tk = t0 + k ��t; k = 0; 1; : : :

i.e. a � function that tests its argument at the grid points tk only and keeps its value for the
remaining interval. Again, we see where the di�culties come from, the nonlinearity is contained in

the �k function which makes the use of classical methods nearly impossible. Also it is clear that
this equation describes completely the A/DM1, the generated bit sequence is simply �k(U

1(�)� s)

but introducing this into (16) would raise the complexity without adding any information.
If we denote the output of the second integrator in our cascaded A/DM2 (see �g. 2 page 5) with

U2 we get the following system of equations:

U1(t) =
1

T1

tZ
t0

�
U0(�)� �Ur

�
2�k(U

2(�)� s)� 1
��
d� + U1(t0) (17)

U2(t) =
1

T2

tZ
t0

�
U1(�)� �Ur

�
2�k(U

2(�)� s)� 1
��

d� + U2(t0) (18)

It is easily seen that the system of equations for a cascaded A/DM of order n are:

U i(t) =
1

Ti

tZ
t0

�
U i�1(�)� �iU

r (2�k(U
n(�)� s)� 1)

�
d� + U i(t0); i = 1; 2; : : : ; n (19)

where U i denotes the output signal of the ith integrator (the integrator at the ith stage).
Now we rewrite (19) as follows (omitting the i = 1; 2; : : : ; n):

U i(t) =
1

Ti

tZ
t0

U i�1(�)d� �
1

Ti

tZ
t0

2�iU
r�k(U

n(�)� s)d� +
1

Ti

tZ
t0

�iU
rd� + U i(t0) (20)

=
1

Ti

tZ
t0

U i�1(�)d� �
2�iU

r

Ti

tZ
t0

�k(U
n(�)� s)d� +

1

Ti

tZ
t0

�iU
rd� + U i(t0): (21)

In the next step we are going to show, that:

tZ
t0

�k(U
n(�)� s)d� �

tZ
t0

'(�)d� (22)

is plausible with a so called 'density function' '. We assume without loss of generality that t be in
the interval t 2 [t0; t0 + (m+ 1) ��t) (this m can always be found). Then we can write:

tZ
t0

�k(U
n(�)� s)d� =

m�1X
k=0

�k(U
n(�)� s) ��t + �m(U

n(�)� s) � (t� tm) (23)

=

m�1X
k=0

�k(U
n(�)� s)

m
� (tm � t0) + �m(U

n(�)� s) � (t� tm): (24)

13

Now we divide the intervall [t0; tm) into l disjunced intervals Ij = [tmj�1
; tmj

); j =
1; 2; : : : ; l; m0 = 0 with [lj=1Ij = [t0; tm) and the sublengths �jt = tmj

� tmj�1
. If we now

set

�'j =

mjX
k=mj�1

�k(U
n(�)� s)

mj

(25)

average density =
bits set in subinterval

number of all bits

we arrive at:

tZ
t0

�k(U
n(�)� s)d� =

lX
j=1

�'j ��jt+ �m(U
n(�)� s) � (t� tm): (26)

We do now let �t �! 0 (this is the point where the model changes, we can interpret it as
an A/DM with in�nite clock rate, �k becomes � the 'real' Heaviside function and �'i becomes a

measure) and get:

tZ
t0

�(Un(�)� s)d� =

lX
j=1

�'j ��j t (27)

(the second term on the right hand side vanishes but the sum expression is still valid). If we let
now on the right hand side �jt �! 0 we �nally �nd:

tZ
t0

�(Un(�)� s)d� =

tZ
t0

'(�)d�; (28)

the avarage density becomes the 'real' density and we have the equation that at least suggests
that (22) holds. Remark: That is not clean mathematics but it points out the idea and I'm not

considering cleaning up this mess anyhow. We simply hope that the approximation (22) is not too
bad and replace this into (19) to obtain:

U i(t) =
1

Ti

tZ
t0

�
U i�1(�)� �iU

r (2'(�)� 1)
�
d� + U i(t0); i = 1; 2; : : : ; n (29)

Now we are going to do the interesting step: We derive a di�erential equation for ' and look

what this gives us. At �rst we try to �gure out how our �rst order A/DM works and then what an
in�nitely fast A/DM does. This will turn out as a key point in our thoughts.

Let us try to �nd out the behaviour of U1(t) in (16). For simplicity we set s = 0 and U1(t0) = 0

and let the upper bound of the integral be an arbitrary grid point t = tk. As you will see this does
not in
uence our considerations. Because U1 appears in the argument of the �k function we should

make the following case distinction:

U1

k =
1

T

tkZ
t0

�
U0(�)� �Ur

�
2�k(U

1(�))� 1
��
d�

= U1

k�1 +
1

T

tkZ
tk�1

�
U0(�)� �Ur

�
2�k(U

1

k�1)� 1
��

d�

= U1

k�1 +
1

T

tkZ
tk�1

U0(�)d� +

�
�

�Ur
�t

T
for U1

k�1 � 0
�Ur

�t
T

for U1

k�1 < 0
(30)

14

If our modulator shall work at all, a �rst condition is suggested by the following requirement: If
U1

k�1 is negative, than U1

k must be greater than U1

k�1 and vice versa. This leads to the following
(case U1

k�1 < 0):

0 < U1

k � U1

k�1 =
1

T

tkZ
tk�1

U0(�)d� +
�Ur�t

T

�

tkZ
tk�1

U0(�)d� < �Ur�t (31)

If we state that jU0(t)j � Umax for all t than we get the stronger inequality (Umin = �Umax):

Umax < �Ur: (32)

The case U1

k�1 � 0 gives the same result. With (32) we can calculate the maximum jump height h,
i.e. the maximum di�erence between two iterations of U1. We chose the case U1

k�1 < 0, the other

one will again give the same result because of symmetry:

jU1

k � U1

k�1j = max
t2[tk�1;tk)

�������
1

T

tkZ
tk�1

U0(�)d� +
�Ur�t

T

�������
�

Umax�t

T
+

�Ur�t

T

� h =
2�Ur�t

T
: (33)

With (32) and (33) we can describe the qualitative behaviour of U1 as follows (see also �g. 7):
The modulator starts in an 'initial phase' where U1

0
6= 0 (if we have U1

0
= 0 then this phase is

�nished immediately). Because of (32) U1 is driven to zero and eventually crosses the zero axis. At

this moment the 'working phase' starts. In this phase U1 jumps around zero but remains within
U1

k 2 (�h;+h). This is because if U1 > 0 then it will decrase and if U1 < 0 it will increase (again

(32) applies). The only chance to grow absolutely is the jump from one side of zero to the other,
but that height is bounded by h. That means that the maximum value of jU1j is bounded by the

maximum jump height h.
For our in�nitely fast A/DM (�t �! 0) that means that U1 will increase resp. decrase until

it touches the zero-axis. From then on it will remain constant because it is bounded by jU1
j �

lim�t�!0
2�U

r
�t

T
= 0.

If we write down the equation for the nth integrator of system (19):

Un(t) =
1

Tn

tZ
t0

�
Un�1(�)� �nU

r (2�k(U
n(�)� s)� 1)

�
d� + Un(t0) (34)

we see, that our result holds also for the last integrator in a cascaded system if only jUn�1(t)j < �nU
r

is satis�ed (the equations are the same). This is in general a �rst working condition for such a

cascaded system.

With these results at hand we can derive a di�erential equation for '. Therefore we rewrite (29)
as a system of di�erential equations:

_U i(t) =
1

Ti

�
U i�1(t)� �iU

r (2'(t)� 1)
�
; i = 1; 2; : : : ; n: (35)

15

t0 t1 t2

U1

initial
phase

working
phase

t...

h

-h

Figure 7: A sketch of the qualitative behaviour of U1 of the A/DM1. The initial phase is �nished

after U1 crosses the zero axis the �rst time. From then on the function remains bounded by
h = 2�Ur

�t
T

. Note that this function may not be (classically) di�erentiable at tk; k = k0; k1; : : :

where k0 marks the end of the initial phase.

We replace Un with the limit function Un(t) � constant what gives _Un(t) � 0. This is another

crucial point in this derivation process because the �rst derivative of U1 becomes during the limit
process described just before not even bounded to zero where it is classically di�erentiable. On the

other hand the limit function itself is di�erentiable and gives _U1(t) � 0. I just didn't think about
how to resolve this, so you may earn the fame. Lastly we write down our system (for the working

phase, in the initial phase ' is either 1 or 0):

_U i(t) =
1

Ti

�
U i�1(t)� �iU

r (2'(t)� 1)
�
; i = 1; 2; : : : ; n � 1 (36)

0 =
1

Tn

�
Un�1(t)� �nU

r (2'(t)� 1)
�
: (37)

You get the equations for ' by inserting one equation of (36) after another into (37). For the
A/D modulators of order 1,2 resp. 3 you will �nd the following equations:

A/DM1:

' =
1

2�

�
U0

Ur
+ �

�
(38)

A/DM2:

_'+
�

�T1
' =

1

2�T1

�
U0

Ur
+ �

�
(39)

A/DM3:

�' +
�

T2
_' +

�

T1T2
' =

1

2
T1T2

�
U0

Ur
+ �

�
(40)

with � = �2 and
 = �3.

16

Ptolemy Xgraph

Set 0

Set 1

Y

X
-1.00

-0.50

0.00

0.50

1.00

0.00 5.00 10.00 15.00 20.00

Figure 8: The output of the simulation of the A/D converter of �rst order with � = T = Ur = 1,

�t = 0:01, 5 bit �ltering and U in(t) = sin(t). You can easily verify that (38) results in 2'�1 = U in.
The graph shows the well matching of sin(t) and the simulation output.

The �rst test to look if that makes any sense is to compare numerical results of (38) - (40) with
results of our simulation (which was fortunately part of this paper). Note that the �ltering luckily

gives a value Yk = �'k, an average value of '. So we can directly compare the output of our A/D
converters with the result of the numerical integration of (38) - (40). Unfortunately, we use here

a left average so the plot of �' appears right shifted by 2b�1�t compared to '. To circumvent this
one should make sure that 2b � �t, where b is the bit dephth, is small enough. On the other hand

you may also adjust the output as a central avarage what gives usually better plots.
For the numerical integration I choose the package ivps which you can download from

http://www.mathematik.tu-ilmenau.de/~fschild/projects.html. There is only a german description

[7] available yet. The ivps scripts and some gnuplot scripts for (39) and (40) ((38) is no di�. eqn.
at all) are contained in the directory ivps of this package, they are mostly self-describing. You can

start the numerical integration by typing ivps filename.
The �gures 8 to 10 show a graphical comparison of the results with �t = 0:01 and 5 bit �ltering.

It is surprising how well the results �t for this mathematically 'large' �t. That suggests that in

fact the models are closely related to each other and further investigations do make sense.
Some suggested �elds of further interest:

� For the mathematicians:

{ First of all, clean up the mathematical derivation process using suitable Sobolev spaces.

{ Try to apply disturbation theory, interpreting �t > 0 (the real system) as a disturbation

of system (36)-(37).

{ Find out how the equations work on Fourier series as signal input functions.

{ Do some stability investigations.

� For the technicians: Simply assume equations (36)-(37) re
ect the qualitative and approximate

the quantitative behaviour of the A/D modulators su�ciently (Note: In practical applications
�t is very small.). Then you can:

{ Solve the equations (36)-(37). This is simple because they are linear. The process of
varying the constants may be voluminous. Try Fourier series as input for simpli�cation.

17

Ptolemy Xgraph

Set 0

Set 1

Y

X
-1.00

-0.50

0.00

0.50

1.00

0.00 5.00 10.00 15.00 20.00

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
2*phi+1

Figure 9: The output of the simulation of the A/D converter of second order with � = � = T1 =

T2 = Ur = 1, �t = 0:01, 5 bit �ltering and U in(t) = sin(t) (top) and the numerical integration of
(39) (see ivps/ad2.ivp). The graphic shows the matching of the two solutions.

18

Ptolemy Xgraph

Set 0

Set 1

Y

X
-1.00

-0.50

0.00

0.50

1.00

0.00 5.00 10.00 15.00 20.00

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
2*phi+1

Figure 10: The output of the simulation of the A/D converter of third order with � = � =
 =
T1 = T2 = T3 = Ur = 1, �t = 0:01, 5 bit �ltering and U in(t) = sin(t) (top) and the numerical

integration of (40) (see ivps/ad3.ivp). The graphic shows again the matching of the two solutions.

19

{ Look for solutions where (32) is full�lled and where the homogenuous solution vanishes
with maximum speed.

{ Figure out the resonance frequencies and try to avoid them.

{ Make sure you can reconstruct the signal form ', i.e. you should only need to rescale
and shift '.

{ Now you should have a stable system that is not self exciting. In addition you will still
have plenty of free parameters for further adjustments (there are arbitrary many good

A/D modulators of a given order).

References

[1] A. Ho�mann, B. Marx: Error estimations of a sigma{delta converter. IEEE Transaction on

circuits and Systems-II: Analog and Digital Signal Processing (submitted 12/1997)

[2] A. Ho�mann, B. Marx: Mathematical model of a sigma{delta modulator. Journal of Di�erence

Equations 17 (1998)

[3] B. Metzger, Th. Neubert: Mathematical modelling of a second order sigma{delta modulator by

di�erence equations, Workshop des Informatik{Graduiertenkollegs im Rahmen der Jahrestagung
der Gesellschaft f"ur Informatik an der RWTH Aachen vom 22. - 23. Sep. 1997, 169 - 181

(englisch)

[4] R. E. Mickens: Di�erence Equations, Theory and Applications, Van Nostred Reinhold, New

York (1990)

[5] Micro Almagest, Ptolemy 0.6 Instructional DSP Manual, University of California at Berkeley

(JAN/20/97), (http://ptolemy.eecs.berkeley.edu/)

[6] The Almagest, Vol. 2 { Ptolemy 0.7 Programmer's Manual, University of California at Berkeley
(AUG/27/97), (http://ptolemy.eecs.berkeley.edu/)

[7] F. Schilder: Ivps Dokumentation, TU-Ilmenau (1997),
(http://www.mathematik.tu-ilmenau.de/ fschild)

20

