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Real-time Process Network Sonar Beamformer

 

Introduction

•  

 

Problem: 

 

Beamforming is computationally intensive

•  

 

Example: 

 

High-resolution sonar beamformers (GFLOPS)

 

•  Generation 1: expensive custom digital hardware (large state machines)

•  Generation 2: custom integration of programmable digital signal processors 
on commercial-off-the-shelf hardware (e.g. 120 DSPs in a VME rack)

 

•  

 

Objective:

 

 Unix workstation beamformers

 

•  Analysis: evaluate performance of beamforming kernels and systems

•  Modeling: capture parallelism, guarantee determinate bounded execution

•  Implementation: use portable, scalable software to achieve real-time 
performance on commodity hardware and lower development costs

 

•  

 

Solution: 

 

Real-time beamforming on workstations

 

•  Analysis: optimize kernels and profile beamfomers to measure scalability

•  Modeling: Process Networks

•  Implementation: Real-time POSIX threads using C++ on symmetric 
multiprocessor UltraSPARC-II workstation with native signal processing



 

Time-Domain Beamforming

•  Delay and sum weighted sensor outputs

•  Geometrically project the sensor elements onto a line to 
compute the time delays
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b(t) = αi xi(t–τi)Σ

i = 1

M

b(t)  beam outputi

xi(t)  ith sensor output

τi  ith sensor delay

αi  ith sensor weight

 

Interpolation Beamforming

•  Quantized time delays perturb beam pattern

•  Sample at just above the Nyquist rate

•  

 

Interpolate

 

 to obtain desired time-delay resolution

•  Kernel implementation on UltraSPARC-II

 

•  Highly optimized C++ (loop unrolling and SPARCompiler5.0EA)

•  Currntly operating at 60% of peak, which is 2 FLOPs per cycle
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Vertical Beamforming

Multiple vertical transducers for every 
horizontal position

•  Each vertical sensor column is combined into a

 

 stave

 

•  No time delay or interpolation is required

•  Staves are calculated by a simple integer

 

 

 

dot product

•  Integer-to-float conversion must be performed

•  Output data must be interleaved

 

•  Kernel implementation on UltraSPARC-II

 

•  Native signal processing with Visual Instruction Set (VIS)

•  Software data prefetching to hide memory latency and keep the pipeline full

stave

 

Formal Design Methodology

•  The 

 

Process Network

 

 model 

 

[Kahn, 1974]

•  Superset of dataflow models of computation

•  Captures concurrency and parallelism

•  Provides correctness

•  Guarantees determinate execution of the program

 

•  A program is represented as a directed graph

 

•  Each node is an independent process

•  Each edge is a one-way queue of data

 

•  Blocking reads, non-blocking writes, infinite queues

•  Scheduling for bounded queues is possible 

 

[Parks, 1995]

•  Blocking reads and writes

•  Dynamically increase queue capacities to prevent 

 

artificial deadlock

 

•  Fits the thread model of concurrent programming
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Process Network Implementation

•  Each node corresponds to a thread

 

•  Implemented in C++ using POSIX Pthreads

•  Low-overhead, high-performance, scalable

•  Granularity larger than a thread context switch (~10 us)

•  Symmetric multiprocessing operating system dynamically schedules threads

•  Efficient utilization of multiple processors

 

•  Optimize queues for high-throughput signal processing

 

•  Nodes operate directly on queue memory, avoiding copying

•  Queues use mirroring to keep data contiguous

•  Compensates for the lack of circular address buffers

•  Queues trade-off memory usage for overhead

•  Virtual memory manager maintains data circularity

Mirror regionQueue data region

Mirrored data

 

System Implementation

•  Vertical beamformer forms 3 sets of 80 staves from 10 
vertical elements per stave

•  Each horizontal beamformer forms 61 beams from the 80 
staves, using a two-point interpolation filter

•  4 GFLOPS total computation
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Performance Results

•  100 trial mean execution time for 2.6 seconds of data

•  Sun Ultra Enterprise 4000 with eight 336-MHz 
UltraSPARC-IIs, 2 Gb RAM, running Solaris 2.6

 

Implementation Time (s) MFLOPS Mbytes

thread pool 3.607 3024.8 832

process network 3.354 3252.8 654

 

•  Process network is 7% 
faster than thread pool, 
overhead is small

•  Process network uses 20% 
less memory with lower 
latency

•  Process network scalability is 
nearly linear

•  Will continue to scale with 
additional CPUs

•  Real-time performance 
achievable with 12 CPUs
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Conclusion

•  Third generation beamformers: 

 

Workstation

 

 hardware

 

•  Commodity hardware saves development/manufacturing costs

•  Multiprocessor servers, native signal processing

•  Upgradable hardware, Moore’s Law

 

•  Software model: 

 

Process Networks

 

•  Captures parallelism, guarantees determinate bounded execution

•  Portable, reusable, scalable C++ code

•  High-performance, low overhead POSIX threads

•  Symmetric multiprocessing operating system

 

•  The example 4-GFLOPS 1-Gb 3-D sonar beamforming 
system does execute in real time using a Sun Ultra 
Enterprise 4000 server with twelve 336 MHz UltraSPARC-
II CPUs with 14.5% to spare

http://www.ece.utexas.edu/~allen/Beamforming/


