

Poster. fm

Copyright © 1998, The University of Texas.
All rights reserved.

The University of Texas at Austin, Austin, TX 78712-1084

http://signal.ece.utexas.edu/

Gregory E. Allen

Applied Research Laboratories

gallen@arlut.utexas.edu

Brian L. Evans

Dept. Electrical and Computer

Engineering

bevans@ece.utexas.edu

Real-time Process Network Sonar Beamformer

Introduction

•

Problem:

Beamforming is computationally intensive

•

Example:

High-resolution sonar beamformers (GFLOPS)

• Generation 1: expensive custom digital hardware (large state machines)

• Generation 2: custom integration of programmable digital signal processors
on commercial-off-the-shelf hardware (e.g. 120 DSPs in a VME rack)

•

Objective:

 Unix workstation beamformers

• Analysis: evaluate performance of beamforming kernels and systems

• Modeling: capture parallelism, guarantee determinate bounded execution

• Implementation: use portable, scalable software to achieve real-time
performance on commodity hardware and lower development costs

•

Solution:

Real-time beamforming on workstations

• Analysis: optimize kernels and profile beamfomers to measure scalability

• Modeling: Process Networks

• Implementation: Real-time POSIX threads using C++ on symmetric
multiprocessor UltraSPARC-II workstation with native signal processing

Time-Domain Beamforming

• Delay and sum weighted sensor outputs

• Geometrically project the sensor elements onto a line to
compute the time delays

-20 -15 -10 -5 0 5 10 15 20

-5

0

5

10

15

20

Projection for a beam pointing 20° off axis

x position, inches

y
po

si
tio

n,
 in

ch
es

20°

sensor element
projected sensor element

b(t) = αi xi(t–τi)Σ

i = 1

M

b(t) beam outputi

xi(t) ith sensor output

τi ith sensor delay

αi ith sensor weight

Interpolation Beamforming

• Quantized time delays perturb beam pattern

• Sample at just above the Nyquist rate

•

Interpolate

 to obtain desired time-delay resolution

• Kernel implementation on UltraSPARC-II

• Highly optimized C++ (loop unrolling and SPARCompiler5.0EA)

• Currntly operating at 60% of peak, which is 2 FLOPs per cycle

A/D Interpolate z-N1

A/D Interpolate z-NM

Σ b[n]
•
•

•
•

•
•

•
•

Sensor Array Digital Interpolation Beamformer

Sample at
interval ∆

Interpolate up to
interval δ = ∆/L

Time delay
at interval δα1

αM

Vertical Beamforming

Multiple vertical transducers for every
horizontal position

• Each vertical sensor column is combined into a

 stave

• No time delay or interpolation is required

• Staves are calculated by a simple integer

dot product

• Integer-to-float conversion must be performed

• Output data must be interleaved

• Kernel implementation on UltraSPARC-II

• Native signal processing with Visual Instruction Set (VIS)

• Software data prefetching to hide memory latency and keep the pipeline full

stave

Formal Design Methodology

• The

Process Network

 model

[Kahn, 1974]

• Superset of dataflow models of computation

• Captures concurrency and parallelism

• Provides correctness

• Guarantees determinate execution of the program

• A program is represented as a directed graph

• Each node is an independent process

• Each edge is a one-way queue of data

• Blocking reads, non-blocking writes, infinite queues

• Scheduling for bounded queues is possible

[Parks, 1995]

• Blocking reads and writes

• Dynamically increase queue capacities to prevent

artificial deadlock

• Fits the thread model of concurrent programming

A
P

B

Process Network Implementation

• Each node corresponds to a thread

• Implemented in C++ using POSIX Pthreads

• Low-overhead, high-performance, scalable

• Granularity larger than a thread context switch (~10 us)

• Symmetric multiprocessing operating system dynamically schedules threads

• Efficient utilization of multiple processors

• Optimize queues for high-throughput signal processing

• Nodes operate directly on queue memory, avoiding copying

• Queues use mirroring to keep data contiguous

• Compensates for the lack of circular address buffers

• Queues trade-off memory usage for overhead

• Virtual memory manager maintains data circularity

Mirror regionQueue data region

Mirrored data

System Implementation

• Vertical beamformer forms 3 sets of 80 staves from 10
vertical elements per stave

• Each horizontal beamformer forms 61 beams from the 80
staves, using a two-point interpolation filter

• 4 GFLOPS total computation

sensor
data

sensor
data

sensor
data

sensor
data

Element data

Three-fan
Vertical

Beamformer

Stave data

Digital
Interpolation
Beamformer

Digital
Interpolation
Beamformer

Digital
Interpolation
Beamformer

40 MB/sec
each

500 MFLOPS

1200
MFLOPS

each

Fan 0
Beams

Fan 1
Beams

Fan 2
Beams

Performance Results

• 100 trial mean execution time for 2.6 seconds of data

• Sun Ultra Enterprise 4000 with eight 336-MHz
UltraSPARC-IIs, 2 Gb RAM, running Solaris 2.6

Implementation Time (s) MFLOPS Mbytes

thread pool 3.607 3024.8 832

process network 3.354 3252.8 654

• Process network is 7%
faster than thread pool,
overhead is small

• Process network uses 20%
less memory with lower
latency

• Process network scalability is
nearly linear

• Will continue to scale with
additional CPUs

• Real-time performance
achievable with 12 CPUs

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

se
co

nd
s

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

CPUs

Execution time and MFLOPS vs CPUs

M
F

LO
P

S

Conclusion

• Third generation beamformers:

Workstation

 hardware

• Commodity hardware saves development/manufacturing costs

• Multiprocessor servers, native signal processing

• Upgradable hardware, Moore’s Law

• Software model:

Process Networks

• Captures parallelism, guarantees determinate bounded execution

• Portable, reusable, scalable C++ code

• High-performance, low overhead POSIX threads

• Symmetric multiprocessing operating system

• The example 4-GFLOPS 1-Gb 3-D sonar beamforming
system does execute in real time using a Sun Ultra
Enterprise 4000 server with twelve 336 MHz UltraSPARC-
II CPUs with 14.5% to spare

http://www.ece.utexas.edu/~allen/Beamforming/

