
UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 1 of 17

1999 Ptolemy Miniconference

Control Logic using

Finite State Machines

Bilung Lee

Edward A. Lee
Department of EECS, UC Berkeley

February 19, 1999

Major collaborator: Xiaojun Liu

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 2 of 17

Problem

• Modern systems tend to include nontrivial control logic

Control Kernel

Buttons

Time Keeper

Alarm

DisplayLight

Mode
Control

Light
Control

Control Logic Data Computation

Example: Digital watch

Interface

How to describe such a system?

Time

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 3 of 17

How to Describe the Control Logic?

• Example: Elevator controller

If the elevator is on the floor 1 and the
floor requested is the floor 1, then the
elevator remains on the floor 1.
If the elevator is on the floor 1 and the
floor requested is the floor 2, then the
elevator is raised up 1 floor.
If the elevator is on the floor 1 and the
floor requested is the floor 3, then the
elevator is raised up 2 floors.

If the elevator is on the floor 2 and the
floor requested is the floor 1, then the
elevator is lowered down 1 floor.
If the elevator is on the floor 2 and the
floor requested is the floor 2, then the
elevator remains on the floor 2.
If the elevator is on the floor 2 and the
floor requested is the floor 3, then the
elevator is raised up 1 floor.

If the elevator is on the floor 3 and the
floor requested is the floor 1, then the
elevator is lowered down 2 floors.
If the elevator is on the floor 3 and the
floor requested is the floor 2, then the
elevator is lowered down 1 floor.
If the elevator is on the floor 3 and the
floor requested is the floor 3, then the
elevator remains on the floor 3.

while (1) {
switch (cur) {

case 1:
if (req_1) {

u_1=0; d_1=0; u_2=0; d_2=0; cur=1;
} else if (req_2) {

u_1=1; d_1=0; u_2=0; d_2=0; cur=2;
} else if (req_3) {

u_1=0; d_1=0; u_2=1; d_2=0; cur=3;
}
break;

case 2:
if (req_1) {

u_1=0; d_1=1; u_2=0; d_2=0; cur=1;
} else if (req_2) {

u_1=0; d_1=0; u_2=0; d_2=0; cur=2;
} else if (req_3) {

u_1=1; d_1=0; u_2=0; d_2=0; cur=3;
}
break;

case 3:
if (req_1) {

u_1=0; d_1=0; u_2=0; d_2=1; cur=1;
} else if (req==2) {

u_1=0; d_1=1; u_2=0; d_2=0; cur=2;
} else if (req==3) {

u_1=0; d_1=0; u_2=0; d_2=0; cur=3;
}
break;

}
}

Plain English
Imperative programs

(e.g. C codes)

• Visual syntax

1

2 3

req_1 / d_2req_3 / u_1

req_2 / d_1

re
q_

2
/ u

_1

req_2 req_3

req_1

req_3 / u_2re
q_

1
/ d

_1

Finite state machines

• Better analysis

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 4 of 17

Upgrade to Hierarchical Concurrent FSMs

Not Counting C0, B0, A0

C0, B0, A1 C0, B1, A0 C0, B1, A1

C1, B0, A0

C1, B1, A1 C1, B1, A0 C1, B0, A1

stop

a ∧ ¬stop / end

a ∧ ¬stop a∧ ¬stop

a ∧ ¬stopa ∧ ¬stop

a ∧ ¬stop

a ∧ ¬stop a ∧ ¬stop
start

stop

stop

stop

stop

stop

stop

stop

Not Counting Counting

start

stop

a

a / b

A1A0

b

b / c

B1B0

c / end

C1C0

A

B

C

• Hierarchy: A state may be
 refined into a set of substates

Hierarchical Concurrent FSMs

• Concurrency: Multiple

c

Finite State Machines
(FSMs)

(HCFSMs)

• Non-trivial systems generally
require a lot of states/transitions

simultaneously active and
communicating FSMs

• Examples: Statecharts and
its (at least 20) variants

• Good for describing sequential
control behaviors

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 5 of 17

Need to
actually
draw the
other 8
FSMs

1024

Upgrade to Heterogeneous HCFSMs

a

u

x

B

A v

v

b

u

y

a / v

u / x

A1A0

v / y

b / u

B1B0

A

B

a / v

u / x

A1A0

v / y

b / u

B1B0

HCFSMs

• Most models tightly integrate
only one concurrency semantics,

• Good for describing complex
control behaviors

Heterogeneous HCFSMs

• Computation-oriented models,

• Combine FSMs with various
concurrency models

such as dataflow, can be included

for example, Argos = SR + FSM
and CFSM = DE + FSM

• Not suitable for specifying
computation-oriented tasks

Delay

+ ≥
a end

a

a / b

A1A0

j

j / end

J1J0

A

J(hence, hard to specify a
complete design)

(hence, enable selection of
different concurrency semantics)

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 6 of 17

Design Methodology

Objective: A system specification scheme capable to

• Describe both control logic and computation tasks

• Specify composite behaviors (concurrency and hierarchy)

• Enable the selection of different concurrency semantics

(No existing schemes support all of the above three)

Heterogeneous approach:

• Allow hierarchy and heterogeneity in the FSM

• Let the FSM be hierarchically combined with other
existing concurrency models

• Choose the most appropriate model for the problem at
hand

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 7 of 17

Hierarchy in FSMs

• A state of an FSM may be refined into another FSM

• Inputs/outputs of the slave are a subset of those of its
master

• The slave reacts first, and then its master reacts

• Strength
• Reduce the number of transitions

a u⁄a b¬∧ u⁄ v,

a b∧¬

a¬ b v⁄∨

α β Master

Slave

a v⁄

b v⁄

γ δ

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 8 of 17

Heterogeneity in FSMs

• The slave inside a state of the FSM need not be an FSM

• Key Principle
• The slave must have a well-defined determinate and finite operation, called

a stepof the slave

• The slave is invoked first, and then its master reacts

• Strength
• Appropriate models can be included for different situations (e.g. dataflow

for computation-intensive tasks)

end

start

Idle Active

count / end

count

count

count
1

4 3

2

Delay

+ ≥4

FSM

Dataflow
count

end

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 9 of 17

Heterogeneity in FSMs (continued)

• FSMs may be used inside modules of other model

• Key Principle
• The model must provide a way to determine the inputs for each module

and when the module should react

• These FSMs are concurrent FSMs when the model
contains concurrency semantics

• Strengths
• Concurrency is naturally included

• Reduce the number of states

A

a

u

x

B
B

α β

a v⁄

u x⁄
A v

v

b

u

y

γ δ

v y⁄

b u⁄

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 10 of 17

Mixing FSMs with Concurrency Models

• Strength
• Heterogeneity, hierarchy, concurrency and FSMs are all included

• Current focus: Interaction of FSMs with
• Synchronous Dataflow (SDF)

• Discrete Events (DE)

• Synchronous/Reactive Model (SR)

FSM

FSM

Block diagrams - choices of

Depth and order of nesting
concurrency models

is arbitrary

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 11 of 17

Synchronous Dataflow (SDF)

To interact with the FSM
• Event encoding

• Absent/Present event in FSM↔ 0/1 valued token in SDF

• FSM inside SDF

• One block firing in SDF→ One reaction of FSM

• SDF inside FSM

• One slave step in FSM→ One iteration of SDF

(2)
(1)

Computational
function

Stream of datatokens

(3)

(1)

(2)

Tokens consumed

Tokens produced

(3) (3)

(FIFO queue)
(1)

(1) (1)

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 12 of 17

Discrete Events (DE)

To interact with the FSM
• Events passed through FSM have the same time stamps

• FSM inside DE

• One block firing in DE → One reaction of FSM

• DE inside FSM

• One slave step in FSM→ Simulation of DE up to time stamp of input

t1

t2 t2

Event queue sorts events

Event

Time stamp

t1
by time stamps

Current time
of the system

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 13 of 17

Synchronous/Reactive Model (SR)

• To interact with the FSM
• Support ⊥ in the FSM

• FSM inside SR

• One block firing in SR→ One reaction of FSM

• SR inside FSM

• One slave step in FSM→ One instant of SR

Zero-time

Unbuffered

reaction

directed arcs
Instantaneous

dialog

• Execution occurs at discreteinstants

Time

• Initiated by the environment
• system behavior = least fixed point

⊥

absent present 0
0 0
∧

0
0

1 1

1 ⊥
0 0

⊥ ⊥
⊥
⊥

0
0 0
∨

1
⊥

1 1

1 ⊥
1 ⊥

⊥ ⊥
⊥
⊥

0 1

¬

0
⊥

1
⊥

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 14 of 17

Characteristics of Different Models

 Model
(one step) Strengths Weaknesses

Finite State
Machines
(one reaction)

• Good for sequential control
• Can be made deterministic (often is
not, however)
• Map well to hardware and software

• Computation-intensive
systems are hard to specify

Synchronous
Dataflow
(one iteration)

• Good for signal processing
• Loosely synchronized
• Deterministic
• Map well to hardware and software

• Control-intensive systems
are hard to specify

Discrete Events
(simulation up to
the time stamp of
the input)

• Good for asynchronous digital hard-
ware
• Globally synchronized
• Can be made deterministic (often is
not, however)

• Expensive to implement
in software
• May over-specify systems

Synchronous/
Reactive Model
(one instant)

• Good for control-intensive systems
• Tightly synchronized
• Deterministic
• Map well to hardware and software

• Computation-intensive
system are over-specified

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 15 of 17

Capability for a Complete Design

Light Control

Mode Control
Time Keeper Display

Buttons
Tcl/Tk

DE

SDF

SDF

FSM

FSM

FSM

Alarm

Time

SDF

FSM

FSMFSM

SDFExample: Digital watch (implemented in Ptolemy)

Second
Minute

Hour

Day

Minute
Hour

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 16 of 17

Comparison with Related Work

Specification
Schemes

State
Transitions

Imperative
Constructs

Hierarchy
for

State
Transitions

Concurrency
for

State
Transitions

Concurrency
for

Imperative
Constructs

Choices
of

Concurrency

SDL

Statecharts

Argos

CFSM

Mini-
Statecharts

Argos +
Lustre

SpecCharts

Stateflow +
Simulink

This work

 : Fully supported. : Partially supported. : Not supported.

UNIVERSITY OF CALIFORNIA AT BERKELEY

p. 17 of 17

Conclusions

• Heterogeneous combination
• FSMs can be hierarchically combined with multiple concurrency models

• Different models have strengths and weaknesses, and thus are best suitable
in certain situations

• Although only three concurrency models are discussed, the combination
can be extended for other models, e.g. CSP, CT, etc., as long as we provide
their interaction mechanisms

• Design framework
• Subsystems can be separately specified and designed

• The simple and determinate mechanisms we provide can be used to
combine the subsystems as a whole for validation using simulation

• Example: Digital cellular phone

Team 1: SDF + FSM for modem, speech coder

Team 2: SR + FSM for user interface controller

Team 3: DE + FSM for communication protocol

Team 4:
Combine results for validation

