
Expressions

Edward A. Lee, Thomas Huining Feng, Xiaojun Liu,
Steve Neuendorffer, Neil Smyth, Yuhong Xiong

June 3, 2010

1 Introduction

In Ptolemy II, models specify computations by composing actors. Many computations, however, are
awkward to specify this way. A common situation is where we wish to evaluate a simple algebraic
expression, such as “sin(2π (x-1)).” It is possible to express this computation by composing actors
in a block diagram, but it is far more convenient to give it textually. actions in state machines, and
for the calculation performed by the Expression actor. In fact, the expression language is part of the
generic infrastructure in Ptolemy II, and it can be used by programmers extending the Ptolemy II
system. In this chapter, we describe how to use expressions from the perspective of a user rather
than a programmer.

1.1 Expression Evaluator

Vergil provides an interactive expression evaluator, which is accessed through the File:New menu.
This operates like an interactive command shell, and is shown in figure 1. It supports a command
history. To access the previously entered expression, type the up arrow or Control-P. To go back,
type the down arrow or Control-N. The expression evaluator is useful for experimenting with ex-
pressions.

2 Simple Arithmetic Expressions

2.1 Constants and Literals

The simplest expression is a constant, which can be given either by the symbolic name of the
constant, or by a literal. By default, the symbolic names of constants supported are PI, pi, E, e,

1

2.1 Constants and Literals 2. SIMPLE ARITHMETIC EXPRESSIONS

98 Ptolemy II

Expressions

3.2 Simple Arithmetic Expressions
3.2.1 Constants and Literals

The simplest expression is a constant, which can be given either by the symbolic name of the con-
stant, or by a literal. By default, the symbolic names of constants supported are PI, pi, E, e, true, false,
i, j, NaN, Infinity, PositiveInfinity, NegativeInfinity, MaxUnsignedByte, MinUnsignedByte, Max-
Short, MinShort, MaxInt, MinInt, MaxLong, MinLong, MaxFloat, MinFloat, MaxDouble, MinDou-
ble. For example,

PI/2.0

is a valid expression that refers to the symbolic name “PI” and the literal “2.0.” The constants i and j
are the imaginary number with value equal to the square root of *1. The constant NaN is “not a num-
ber,” which for example is the result of dividing 0.0/0.0. The constant Infinity is the result of dividing
1.0/0.0. The constants that start with “Max” and “Min” are the maximum and minimum values for
their corresponding types.

Numerical values without decimal points, such as “10” or “*3” are integers (type int). Numerical
values with decimal points, such as “10.0” or “3.14159” are of type double. Numerical values that fol-
lowed by “f” or “F” are of type float. Numerical values without decimal points followed by the charac-
ter “l” (el) or “L” are of type long. Numerical values without decimal points followed by the character
“s” or “S” are of type short. Unsigned integers followed by “ub” or “UB” are of type unsignedByte, as
in “5ub”. An unsignedByte has a value between 0 and 255; note that it not quite the same as the Java
byte, which has a value between -128 and 127.

Numbers of type int, long, short or unsignedByte can be specified in decimal, octal, or hexadeci-
mal. Numbers beginning with a leading “0” are octal numbers. Numbers beginning with a leading “0x”
are hexadecimal numbers. For example, “012” and “0xA” are both equal to the integer 10.

FIGURE 3.1. Expression evaluator, which is accessed through the File:New menu.
Figure 1: The Expression Evaluator

true, false, i, j, NaN, Infinity, PositiveInfinity, NegativeInfinity, MaxUnsignedByte, MinUnsigned-
Byte, MaxShort, MinShort, MaxInt, MinInt, MaxLong, MinLong, MaxFloat, MinFloat, MaxDou-
ble, MinDouble. For example,

PI/2.0

is a valid expression that refers to the symbolic name “PI” and the literal “2.0.” The constants i and
j are the imaginary number with value equal to the square root of –1. The constant NaN is “not a
number,” which for example is the result of dividing 0.0/0.0. The constant Infinity is the result of
dividing 1.0/0.0. The constants that start with “Max” and “Min” are the maximum and minimum
values for their corresponding types.

Numerical values without decimal points, such as “10” or “-3” are integers (type int). Numerical
values with decimal points, such as “10.0” or “3.14159” are of type double. Numerical values
followed by “f” or “F” are of type float. Numerical values without decimal points followed by the
character “l” (el) or “L” are of type long. long. Numerical values without decimal points followed
by the character “s” or “S” are of type short. Unsigned integers followed by “ub” or “UB” are of
type , unsignedByte, as in “5ub”. An unsignedByte has a value between 0 and 255; note that it not
quite the same as the Java byte, which has a value between -128 and 127. Numbers of type int, long,
short or unsignedByte can be specified in decimal, octal, or hexadecimal. Numbers beginning with
a leading “0” are octal numbers. Numbers beginning with a leading “0x” are hexadecimal numbers.
For example, “012” and “0xA” are both equal to the integer 10.

A complex is defined by appending an “i” or a “j” to a double for the imaginary part. This gives a
purely imaginary complex number which can then leverage the polymorphic operations in the Token
classes to create a general complex number. Thus 2 + 3i will result in the expected complex
number. You can optionally write this 2 + 3*i.

2 Expressions

2. SIMPLE ARITHMETIC EXPRESSIONS 2.1 Constants and Literals

Literal string constants are also supported. Anything between double quotes, “...”, is interpreted as
a string constant. The following built-in string-valued constants are defined:

Table 1: String-valued constants defined in the expression language
Variable
name

Meaning Property name Example under Windows

PTII The directory in
which Ptolemy II
is installed

ptolemy.ptII.dir c:\tmp

HOME The user home di-
rectory

user.home c:\Documents and Settings\\you

CWD The current work-
ing directory

user.dir c:\ptII

TMPDIR The temporary di-
rectory

java.io.tmpdir c:\Documents and Settings\\you\Local Settings\Temp\

The value of these variables is the value of the Java virtual machine property, such as user.home. The
properties user.dir and user.home are standard in Java. Their values are platform dependent;
see the documentation for the java.lang.System.getProperties() method for details. Note that user.dir
and user.home are usually not readable in unsigned applets, in which case, attempts to use these
variables in an expression will result in an exception. Vergil will display all the Java properties if
you invoke JVM Properties in the View menu of a Graph Editor.

The ptolemy.ptII.dir property is set automatically when Vergil or any other Ptolemy II exe-
cutable is started up. You can also set it when you start a Ptolemy II process using the java command
by a syntax like the following:

java -Dptolemy.ptII.dir=${PTII} classname

where classname is the full class name of a Java application. The constants() utility function returns
a record with all the globally defined constants. If you open the expression evaluator and invoke
this function, you will see that its value is something like:

CLASSPATH = "xxxxxxCLASSPATHxxxxxx", CWD = "/Users/Ptolemy/ptII",
E = 2.718281828459, HOME = "/Users/cxh", Infinity = Infinity,
MaxDouble = 1.7976931348623E308, MaxFloat = 3.4028234663853E38,
MaxInt = 2147483647, MaxLong = 9223372036854775807L,
MaxShort = 32767s, MaxUnsignedByte = 255ub, MinDouble = 4.9E-324,
MinFloat = 1.4012984643248E-45, MinInt = -2147483648,
MinLong = -9223372036854775808L, MinShort = -32768s,
MinUnsignedByte = 0ub, NaN = NaN, NegativeInfinity = -Infinity,
PI = 3.1415926535898, PTII = "/Users/Ptolemy/ptII",

Expressions 3

2.2 Variables 2. SIMPLE ARITHMETIC EXPRESSIONS

PositiveInfinity = Infinity,
TMPDIR = "/var/folders/7f/7f-o2nyjFgewH67h0keKu++++TI/-Tmp-/",
boolean = false, complex = 0.0 + 0.0i, double = 0.0,
e = 2.718281828459, false = false, fixedpoint = fix(0,2,2),
float = 0.0f, general = present, i = 0.0 + 1.0i, int = 0,
j = 0.0 + 1.0i, long = 0L, matrix = [], nil = nil,
null = object(null), object = object(null), pi = 3.1415926535898,
scalar = present, short = 0s, string = "", true = true,
unknown = present, unsignedByte = 0ub, xmltoken = null

2.2 Variables

Expressions can contain identifiers that are references to variables within the scope of the expres-
sion. For example,

PI*x/2.0

is valid if “x” a variable in scope. In the expression evaluator, the variables that are in scope include
the built-in constants plus any assignments that have been previously made. For example,

>> x = pi/2
1.5707963267949
>> sin(x)
1.0

In the context of Ptolemy II models, the variables in scope include all parameters defined at the
same level of the hierarchy or higher. So for example, if an actor has a parameter named “x” with
value 1.0, then another parameter of the same actor can have an expression with value “PI*x/2.0”,
which will evaluate to π/2.

Consider a parameter P in actor X which is in turn contained by composite actor Y. The scope of an
expression for P includes all the parameters contained by X and Y, plus those of the container of Y,
its container, etc. That is, the scope includes any parameters defined above in the hierarchy.

You can add parameters to actors (composite or not) by right clicking on the actor, selecting “Con-
figure” and then clicking on “Add”, or by dragging in a parameter from the utilities library. Thus,
you can add variables to any scope, a capability that serves the same role as the “let” construct in
many functional programming languages.

Occasionally, it is desirable to access parameters that are not in scope. The expression language
supports a limited syntax that permits access to certain variables out of scope. In particular, if in
place of a variable name x in an expression you write A::x, then instead of looking for x in scope,
the interpreter looks for a container named A in the scope and a parameter named x in A. This allows
reaching down one level in the hierarchy from either the current container or any of its containers.

4 Expressions

2. SIMPLE ARITHMETIC EXPRESSIONS 2.3 Operators

2.3 Operators

The arithmetic operators are +, –, *, /, ,̂ and %. Most of these operators operate on most data types,
including arrays, records, and matrices. The ôperator computes “to the power of” or exponentiation
where the exponent can only be an int, short, or an unsignedByte.

The unsignedByte, short, int and long types can only represent integer numbers. Operations on
these types are integer operations, which can sometimes lead to unexpected results. For instance,
1/2 yields 0 if 1 and 2 are integers, whereas 1.0/2.0 yields 0.5. The exponentiation operator “’̂’ when
used with negative exponents can similarly yield unexpected results. For example, 2-̂-1 is 0 because
the result is computed as 1/(21̂).

The % operation is a modulo or remainder operation. The result is the remainder after division. The
sign of the result is the same as that of the dividend (the left argument). For example,

>> 3.0 % 2.0
1.0
>> -3.0 % 2.0
-1.0
>> -3.0 % -2.0
-1.0
>> 3.0 % -2.0
1.0

The magnitude of the result is always less than the magnitude of the divisor (the right argument).
Note that when this operator is used on doubles, the result is not the same as that produced by the
remainder() function (see Table 10). For instance,

>> remainder(-3.0, 2.0)
1.0

The remainder() function calculates the IEEE 754 standard remainder operation. It uses a rounding
division rather than a truncating division, and hence the sign can be positive or negative, depending
on complicated rules (see 8.0.4). For example, counter intuitively,

>> remainder(3.0, 2.0)
-1.0

When an operator involves two distinct types, the expression language has to make a decision about
which type to use to implement the operation. If one of the two types can be converted without
loss into the other, then it will be. For instance, int can be converted losslessly to double, so 1.0/2
will result in 2 being first converted to 2.0, so the result will be 0.5. Among the scalar types,
unsignedByte can be converted to anything else, short can be converted to int, int can be converted

Expressions 5

2.3 Operators 2. SIMPLE ARITHMETIC EXPRESSIONS

to double, float can be converted to double and double can be converted to complex. Note that long
cannot be converted to double without loss, nor vice versa, so an expression like 2.0/2L yields the
following error message:

Error evaluating expression "2.0/2L"
in .Expression.evaluator
Because:
divide method not supported between ptolemy.data.DoubleToken ’2.0’
and ptolemy.data.LongToken ’2L’ because the types are incomparable.

Just as long cannot be cast to double, int cannot be cast to float and vice versa.

All scalar types have limited precision and magnitude. As a result of this, arithmetic operations are
subject to underflow and overflow.

• For double numbers, overflow results in the corresponding positive or negative infinity. Un-
derflow (i.e. the precision does not suffice to represent the result) will yield zero.

• For integer types and fixedpoint, overflow results in wraparound. For instance, while the value
of MaxInt is 2147483647, the expression MaxInt + 1 yields –2147483648. Similarly,
while MaxUnsignedByte has value 255ub, MaxUnsignedByte + 1ub has value 0ub.
Note, however, that MaxUnsignedByte + 1 yields 256, which is an int, not an unsigned-
Byte. This is because MaxUnsignedByte can be losslessly converted to an int, so the
addition is int addition, not unsignedByte addition.

The bitwise operators are &, |, # and ˜. They operate on boolean, unsignedByte, short, int and long
(but not fixedpoint, float, double orcomplex). The operator & is bitwise AND, ˜ is bitwise NOT, and
| is bitwise OR, and # is bitwise XXOR (exclusive or, after MATLAB).

The relational operators are <, <=, >, >=, == and !=. They return type boolean. Note that these
relational operators check the values when possible, irrespective of type. So, for example,

1 == 1.0

returns true. If you wish to check for equality of both type and value, use the equals() method, as in

>> 1.equals(1.0)
false

Boolean-valued expressions can be used to give conditional values. The syntax for this is

boolean ? value1 : value2

6 Expressions

3. USES OF EXPRESSIONS 2.4 Comments

If the boolean is true, the value of the expression is value1; otherwise, it is value2. The logical
boolean operators are &&, ||, !, & and |. They operate on type boolean and return type boolean.
The difference between logical && and and logical & is that & evaluates all the operands regardless
of whether their value is now irrelevant. Similarly for logical || and |. This approach is borrowed
from Java. Thus, for example, the expression false && x will evaluate to false irrespective of
whether x is defined. On the other hand, false & x will throw an exception.

The << and >> operators performs arithmetic left and right shifts respectively. The >>> operator
performs a logical right shift, which does not preserve the sign. They operate on unsignedByte,
short, int, and long.

2.4 Comments

In expressions, anything inside /*...*/ is ignored, so you can insert comments.

3 Uses of Expressions

3.1 Parameters

The values of most parameters of actors can be given as expressions . The variables in the expres-
sion refer to other parameters that are in scope, which are those contained by the same container
or some container above in the hierarchy. They can also reference variables in a scope-extending
attribute, which includes variables defining units, as explained below in section 12. Adding param-
eters to actors is straightforward, as explained in the previous chapter.

3.2 Port Parameters

It is possible to define a parameter that is also a port. Such a PortParameter provides a default value,
which is specified like the value of any other parameter. When the corresponding port receives
data, however, the default value is overridden with the value provided at the port. Thus, this object
functions like a parameter and a port. The current value of the PortParameter is accessed like that of
any other parameter. Its current value will be either the default or the value most recently received
on the port.

A PortParameter might be contained by an atomic actor or a composite actor. To put one in a
composite actor, drag it into a model from the utilities library, as shown in figure 2. The resulting
icon is actually a combination of two icons, one representing the port, and the other representing the

0 The exceptions are parameters that are strictly string parameters, in which case the value of the parameter is the
literal string, not the string interpreted as an expression, as for example the function parameter of the TrigFunction actor,
which can take on only “sin,” “cos,” “tan”, “asin”, “acos”, and “atan” as values.

Expressions 7

3.3 String Parameters 3. USES OF EXPRESSIONS

Heterogeneous Concurrent Modeling and Design 103

Expressions

sion refer to other parameters that are in scope, which are those contained by the same container or
some container above in the hierarchy. They can also reference variables in a scope-extending
attribute, which includes variables defining units, as explained below in section 3.10. Adding parame-
ters to actors is straightforward, as explained in the previous chapter.

3.3.2 Port Parameters
It is possible to define a parameter that is also a port. Such a PortParameter provides a default

value, which is specified like the value of any other parameter. When the corresponding port receives
data, however, the default value is overridden with the value provided at the port. Thus, this object
functions like a parameter and a port. The current value of the PortParameter is accessed like that of
any other parameter. Its current value will be either the default or the value most recently received on
the port.

A PortParameter might be contained by an atomic actor or a composite actor. To put one in a com-
posite actor, drag it into a model from the utilities library, as shown in figure 3.2. The resulting icon is
actually a combination of two icons, one representing the port, and the other representing the parame-
ter. These can be moved separately, but doing so might create confusion, so we recommend selecting
both by clicking and dragging over the pair and moving both together.

To be useful, a PortParameter has to be given a name (the default name, “portParameter,” is not
very compelling). To change the name, right click on the icon and select “Customize Name,” as shown
in figure 3.2. In the figure, the name is set to “noiseLevel.” Then set the default value by either double
clicking or selecting “Configure.” In the figure, the default value is set to 10.0.

An example of a library actor that uses a PortParameter is the Sinewave actor, which is found in
the sources library in Vergil. It is shown in figure 3.3. If you double click on this actor, you can set the
default values for frequency and phase. But both of these values can also be set by the corresponding
ports, which are shown with grey fill.

FIGURE 3.2. A portParameter is both a port and a parameter. To use it in a composite actor, drag it into the
actor, change its name to something meaningful, and set its default value.

customize the name:

Figure 2: A portParameter is both a port and a parameter. To use it in a composite actor, drag it into
the actor, change its name to something meaningful and set its default value.

parameter. These can be moved separately, but doing so might create confusion, so we recommend
selecting both by clicking and dragging over the pair and moving both together.

To be useful, a PortParameter has to be given a name (the default name, “portParameter,” is not very
compelling). To change the name, right click on the icon and select “Customize Name,” as shown
in figure 2. In the figure, the name is set to “noiseLevel.” Then set the default value by either double
clicking or selecting “Configure.” In the figure, the default value is set to 10.0.

An example of a library actor that uses a PortParameter is the Sinewave actor, which is found in the
sources library in Vergil. It is shown in figure 3. If you double click on this actor, you can set the
default values for frequency and phase. But both of these values can also be set by the corresponding
ports, which are shown with grey fill.

3.3 String Parameters

Some parameters have values that are always strings of characters. Such parameters support a
simple string substitution mechanism where the value of the string can reference other parameters
in scope by name using the syntax $name, where name is the name of the parameter in scope. For
example, the StringCompare actor in figure 4 has as the value of firstString“The answer is $PI”. This
references the built-in constant PI. The value of secondString is “The answer is 3.1415926535898”.
As shown in the figure, these two strings are deemed to be equal because $PI is replaced with the
value of PI.

8 Expressions

3. USES OF EXPRESSIONS 3.3 String Parameters

Figure 3: Sinewave actor, showing its port parameters, and their use at the lower level of hierarchy

Expressions 9

3.4 Expression Actor 4. COMPOSITE DATA TYPES

Heterogeneous Concurrent Modeling and Design 105

Expressions

3.3.5 State Machines
Expressions give the guards for state transitions, as well as the values used in actions that produce

outputs and actions that set values of parameters in the refinements of destination states. This mecha-
nism was explained in the previous chapter.

FIGURE 3.4. String parameters are indicated in the parameter editor boxes by a light blue background. A
string parameter can include references to variables in scope with $name, where name is the name of the
variable. In this example, the built-in constant $PI is referenced by name in the first

FIGURE 3.5. Illustration of the Expression actor.

(a)

(b)

(c)

(d)

(e) (f)

Figure 4: String parameters are indicated in the parameter editor boxes by a light blue background.
A string parameter can include references to variables in scope with $name, where name is the
name of the variable. In this example, the built-in constant $PI is referenced by name in the first
parameter.

3.4 Expression Actor

Expression actor is a particularly useful actor found in the math library. By default, it has one output
and no inputs, as shown in Figure 53.5(a). The first step in using it is to add ports, as shown in (b)
and (c), resulting in a new icon as shown in (d). Note: In (c) when you click on Add, you will be
prompted for a Name (pick one) and a Class. Leave the Class entry blank and click OK. You then
specify an expression using the port names, as shown in (e), resulting in the icon shown in (f).

3.5 State Machines

Expressions give the guards for state transitions, as well as the values used in actions that produce
outputs and actions that set values of parameters in the refinements of destination states. This
mechanism was explained in the previous chapter.

4 Composite Data Types

4.1 Arrays

Arrays are specified with curly brackets, e.g., “{1, 2, 3}” is an array of int, while
“{"x", "y", "z"}” is an array of string. The types are denoted “{int}” and “{string}”
respectively. An array is an ordered list of tokens of any type, with the only constraint being that

10 Expressions

4. COMPOSITE DATA TYPES 4.1 Arrays

Heterogeneous Concurrent Modeling and Design 105

Expressions

3.3.5 State Machines
Expressions give the guards for state transitions, as well as the values used in actions that produce

outputs and actions that set values of parameters in the refinements of destination states. This mecha-
nism was explained in the previous chapter.

FIGURE 3.4. String parameters are indicated in the parameter editor boxes by a light blue background. A
string parameter can include references to variables in scope with $name, where name is the name of the
variable. In this example, the built-in constant $PI is referenced by name in the first

FIGURE 3.5. Illustration of the Expression actor.

(a)

(b)

(c)

(d)

(e) (f)

Figure 5: Illustration of the Expression actor.

Expressions 11

4.1 Arrays 4. COMPOSITE DATA TYPES

the elements all have the same type. If an array is given with mixed types, the expression evaluator
will attempt to losslessly convert the elements to a common type. Thus, for example,

{1, 2.3}

has value

{1.0, 2.3}

Its type is {double}. The common type might be scalar, which is a union type (a type that can
contain multiple distinct types). For example,

{1, 2.3, true}

has value

{1, 2.3, true}

The value is unchanged, although the type of the array is now scalar.

The elements of the array can be given by expressions, as in the example “{2*pi, 3*pi}.”
Arrays can be nested; for example, “{{1, 2}, {3, 4, 5}}” is an array of arrays of integers.
The elements of an array can be accessed as follows:

>> {1.0, 2.3}(1)
2.3

which yields 2.3. Note that indexing begins at 0. Of course, if name is the name of a variable
in scope whose value is an array, then its elements may be accessed similarly, as shown in this
example:

>> x = {1.0, 2.3}
{1.0, 2.3}
>> x(0)
1.0

Arithmetic operations on arrays are carried out element-by-element, as shown by the following
examples:

>> {1, 2}*{2, 2}
{2, 4}

12 Expressions

4. COMPOSITE DATA TYPES 4.1 Arrays

>> {1, 2}+{2, 2}
{3, 4}
>> {1, 2}-{2, 2}
{-1, 0}
>> {1, 2}\ˆ2
{1, 4}
>> {1, 2}\%{2, 2}
{1, 0}

Addition, subtraction, multiplication, division, and modulo of arrays by scalars is also supported, as
in the following examples:

>> {1.0, 2.0} / 2.0
{0.5, 1.0}
>> 1.0 / {2.0, 4.0}
{0.5, 0.25}
>> 3 *{2, 3}
{6, 9}
>> 12 / {3, 4}
{4, 3}

Arrays of length 1 are equivalent to scalars, as illustrated below:

>> {1.0, 2.0} / {2.0}
{0.5, 1.0}
>> {1.0} / {2.0, 4.0}
{0.5, 0.25}
>> {3} * {2, 3}
{6, 9}
>> {12} / {3, 4}
{4, 3}

A significant subtlety arises when using nested arrays. Note the following example

>> {{1.0, 2.0}, {3.0, 1.0}} / {0.5, 2.0}
{{2.0, 4.0}, {1.5, 0.5}}

In this example, the left argument of the divide is an array with two elements, and the right argument
is also an array with two elements. The divide is thus elementwise. However, each division is the
division of an array by a scalar. An array can be checked for equality with another array as follows:

>> {1, 2}=={2, 2}

Expressions 13

4.1 Arrays 4. COMPOSITE DATA TYPES

false
>> {1, 2}!={2, 2}
true

For other comparisons of arrays, use the compare() function (see Table 10). As with scalars, testing
for equality using the == or != operators tests the values, independent of type. For example,

>> {1, 2}=={1.0, 2.0}
true

You can extract a subarray by invoking the subarray() method as follows:

>> {1, 2, 3, 4}.subarray(2, 2)
{3, 4}

The first argument is the starting index of the subarray, and the second argument is the length.

You can also extract non-contiguous elements from an array using the extract() method. This method
has two forms. The first form takes a boolean array of the same length as the original array which
indicates which elements to extract, as in the following example:

>> {‘‘red’’,‘‘green’’,‘‘blue’’}.extract({true,false,true})
{‘‘red’’, ‘‘blue’’}

The second form takes an array of integers giving the indices to extract, as in the following example:

>> {‘‘red’’,‘‘green’’,‘‘blue’’}.extract({2,0,1,1})
{‘‘blue’’, ‘‘red’’, ‘‘green’’, ‘‘green’’}

You can create an empty array with a specific element type using the emptyArray() function. For
example, to create an empty array of integers, use:

>> emptyArray(int)
{}

You can combine arrays into a single array using the concatenate() function. For example,

>> concatenate({1, 2}, {3})
{1, 2, 3}

14 Expressions

4. COMPOSITE DATA TYPES 4.2 Matrices

4.2 Matrices

In Ptolemy II, arrays are ordered sets of tokens. Ptolemy II also supports matrices, which are more
specialized than arrays. They contain only certain primitive types, currently boolean, complex,
double, fixedpoint, int, and long. Currently float, short and unsignedByte matrices are not supported.
Matrices cannot contain arbitrary tokens, so they cannot, for example, contain matrices. They
are intended for data intensive computations. Matrices are specified with square brackets, using
commas to separate row elements and semicolons to separate rows. E.g., “[1, 2, 3; 4, 5, 5+1]” gives
a two by three integer matrix (2 rows and 3 columns). Note that an array or matrix element can be
given by an expression. A row vector can be given as “[1, 2, 3]” and a column vector as “[1; 2;
3]”. Some MATLAB-style array constructors are supported. For example, “[1:2:9]” gives an array
of odd numbers from 1 to 9, and is equivalent to “[1, 3, 5, 7, 9].” Similarly, “[1:2:9; 2:2:10]” is
equivalent to “[1, 3, 5, 7, 9; 2, 4, 6, 8, 10].” In the syntax “[p:q:r]”, p is the first element, q is the
step between elements, and r is an upper bound on the last element. That is, the matrix will not
contain an element larger than r. If a matrix with mixed types is specified, then the elements will be
converted to a common type, if possible. Thus, for example, “[1.0, 1]” is equivalent to “[1.0, 1.0],”
but “[1.0, 1L]” is illegal (because there is no common type to which both elements can be converted
losslessly).

Reference to elements of matrices have the form “matrix(n, m)” or “name(n, m)” where name is the
name of a matrix variable in scope, n is the row index, and m is the column index. Index numbers
start with zero, as in Java, not 1, as in MATLAB. For example,

>> [1, 2; 3, 4](0,0)
1
>> a = [1, 2; 3, 4]
[1, 2; 3, 4]
>> a(1,1)
4

Matrix multiplication works as expected. For example, as seen in the expression evaluator (see
figure 1),

>> [1, 2; 3, 4]*[2, 2; 2, 2]
[6, 6; 14, 14]

Of course, if the dimensions of the matrix don’t match, then you will get an error message. To do
element wise multiplication, use the multipyElements() function (see Table 10). Matrix addition and
subtraction are element wise, as expected, but the division operator is not supported. Element wise
division can be accomplished with the divideElements() function, and multiplication by a matrix
inverse can be accomplished using the inverse() function (see Table 10). A matrix can be raised to
an int, short or unsignedByte power, which is equivalent to multiplying it by itself some number of
times. For instance,

Expressions 15

4.3 Records 4. COMPOSITE DATA TYPES

>> [3, 0; 0, 3]\ˆ3
[27, 0; 0, 27]

A matrix can also be multiplied or divided by a scalar, as follows:

>> [3, 0; 0, 3]*3
[9, 0; 0, 9]

A matrix can be added to a scalar. It can also be subtracted from a scalar, or have a scalar subtracted
from it. For instance,

>> 1-[3, 0; 0, 3]
[-2, 1; 1, -2]

A matrix can be checked for equality with another matrix as follows:

>> [3, 0; 0, 3]!=[3, 0; 0, 6]
true
>> [3, 0; 0, 3]==[3, 0; 0, 3]
true

For other comparisons of matrices, use the compare() function (see Table 10). As with scalars,
testing for equality using the == or != operators tests the values, independent of type. For example,

>> [1, 2]==[1.0, 2.0]
true

To get type-specific equality tests, use the equals() method, as in the following examples:

>> [1, 2].equals([1.0, 2.0])
false
>> [1.0, 2.0].equals([1.0, 2.0])
true

4.3 Records

A record token is a composite type containing named fields, where each field has a value. The value
of each field can have a distinct type. Records are delimited by curly braces, with each field given
a name. For example, “{a=1, b=’’foo’’}” is a record with two fields, named “a” and “b”,
with values 1 (an integer) and “foo” (a string), respectively. The value of a field can be an arbitrary
expression, and records can be nested (a field of a record token may be a record token).

16 Expressions

4. COMPOSITE DATA TYPES 4.3 Records

Ordered records behave similarly to normal records except that they preserve the original ordering
of the labels rather than alphabetizing them. Ordered records are delimited using square brackets
rather than curly braces. For example, [b="foo", a=1] is an ordered record token in which ’b’
will remain the first label.

Fields may be accessed using the period operator. For example,

{a=1,b=2}.a

yields 1. You can optionally write this as if it were a method call:

{a=1,b=2}.a()

The arithmetic operators +, –, *, /, and % can be applied to records. If the records do not have
identical fields, then the operator is applied only to the fields that match, and the result contains
only the fields that match. Thus, for example,

{foodCost=40, hotelCost=100} + {foodCost=20, taxiCost=20}

yields the result

{foodCost=60}

You can think of an operation as a set intersection, where the operation specifies how to merge the
values of the intersecting fields. You can also form an intersection without applying an operation.
In this case, using the intersect() function, you form a record that has only the common fields of two
specified records, with the values taken from the first record. For example,

>> intersect({a=1, c=2}, {a=3, b=4})
{a=1}

Records can be joined (think of a set union) without any operation being applied by using the
merge() function. This function takes two arguments, both of which are record tokens. If the two
record tokens have common fields, then the field value from the first record is used. For example,

merge({a=1, b=2}, {a=3, c=3})

yields the result {a=1, b=2, c=3}.

Records can be compared, as in the following examples:

Expressions 17

4.3 Records 4. COMPOSITE DATA TYPES

>> {a=1, b=2}!={a=1, b=2}
false
>> {a=1, b=2}!={a=1, c=2}
true

Note that two records are equal only if they have the same field labels and the values match. As
with scalars, the values match irrespective of type. For example:

>> {a=1, b=2}=={a=1.0, b=2.0+0.0i}
true

The order of the fields is irrelevant for normal (unordered) records. Hence

>> {a=1, b=2}=={b=2, a=1}
true

Moreover, normal record fields are reported in alphabetical order, irrespective of the order in which
they are defined. For example,

>> {b=2, a=1}
{a=1, b=2}

Equality comparisons for ordered records respect the original order of the fields. For example,

>> [a=1, b=2]==[b=2, a=1]
false

Additionally, ordered record fields are always reported in the order in which they are defined. For
example,

>> [b=2, a=1]
[b=2, a=1]

To get type-specific equality tests, use the equals() method, as in the following examples:

>> {a=1, b=2}.equals({a=1.0, b=2.0+0.0i})
false
>> {a=1, b=2}.equals({b=2, a=1})
true

Finally, You can create an empty record using the emptyRecord() function:

>> emptyRecord()
{}

18 Expressions

6. CASTING

5 Invoking Methods

Every element and subexpression in an expression represents an instance of the Token class in
Ptolemy II (or more likely, a class derived from Token). The expression language supports invoca-
tion of any method of a given token, as long as the arguments of the method are of type Token and
the return type is Token (or a class derived from Token, or something that the expression parser can
easily convert to a token, such as a string, double, int, etc.). The syntax for this is (token).method-
Name(args), where methodName is the name of the method and args is a comma-separated set of
arguments. Each argument can itself be an expression. Note that the parentheses around the token
are not required, but might be useful for clarity. As an example, the ArrayToken and RecordToken
classes have a length() method, illustrated by the following examples:

{1, 2, 3}.\index{length()}
{a=1, b=2, c=3}.length()

each of which returns the integer 3.

The MatrixToken classes have three particularly useful methods, illustrated in the following exam-
ples:

[1, 2; 3, 4; 5, 6].\index{getRowCount()}

which returns 3, and

[1, 2; 3, 4; 5, 6].getColumnCount()

which returns 2, and

[1, 2; 3, 4; 5, 6].toArray()

which returns 1, 2, 3, 4, 5, 6. The latter function can be particularly useful for creating arrays using
MATLAB-style syntax. For example, to obtain an array with the integers from 1 to 100, you can
enter:

[1:1:100].toArray()

6 Casting

The cast function can be used to explicitly cast a value into a type.

Expressions 19

6.1 Object Types 6. CASTING

When the cast function is invoked with cast(type, value), where type is the target type
and value is the value to be cast, a new value is returned (if a predefined casting is applicable) that
is in the specified type. For example, cast(long, 1) yields 1L, which is equal to 1 but is in the
long data type, and cast(string, 1) yields ”1”, which is in the string data type.

6.1 Object Types

An object token encapsulates a Java object. Methods defined in the Java class of that object can
be invoked in an expression. For example, in a model that contains an actor named C, C in an
expression may refer to that actor in an object token.

An object token has a type, which is an object type that is specific for the class of the encapsulated
Java object or any class that is a superclass of that class. For example, with C being a Const actor,
expression C is of an object type that is specific to the Java class ptolemy.actor.lib.Const.

An object type specific to Java class A can be specified with object("A"), and its value is
null. Comparison between object tokens is by reference with the Java objects that they encapsulate.
Therefore, object("A") == object("B") is always true, because the values in both tokens
are null.

6.2 Relationship between Object Types

An object type A is more specific than object type B if the Java class represented by A is a subclass
of that represented by B.

For example, object("ptolemy.actor.TypedIOPort") is more specific than object("ptolemy.actor.IOPort")
and object("ptolemy.kernel.Port").

The most general object type is object (without any argument). Conceptually it encapsulates a
null class (which, of course, does not exist in Java). The most specific object type is object("ptolemy.data.type.ObjectType$BottomClass")
(which is not very useful in practice). The family of object types forms a lattice.

6.3 Object Tokens

Object tokens are tokens of object types. A predefined object token is null, which has null as the
value and the null class as the Java class. Its type is object. It is special in that it can be cast into
any object type. For example, you can cast it into a port with cast(object("ptolemy.kernel.Port"),
null). If you enter this in the expression evaluator, you shall see the stringification of the token as
"object(null: ptolemy.kernel.Port)".

(Notice that the string here is not a valid Ptolemy expression. In fact, most object tokens do not have
string representations that are valid expressions, and therefore, they cannot be stored permanently

20 Expressions

6. CASTING 6.4 Casting between Object Types

in a Ptolemy model.)

Except for null, for a Ptolemy expression that evaluates to an object token, the Java class repre-
sented by that token’s type is always the most specific class. For example, if C is a Const actor, then
C in an expression refers to an object token that has actor C as its value, and object("ptolemy.actor.lib.Const")
as its type. You can cast this type into a more general actor type by doing cast(object("ptolemy.actor.Actor"),
C).

6.4 Casting between Object Types

An object token can be cast into a different object type, as long as the target object type represents a
Java class that the encapsulated object is in. That class need not always be a superclass of the class
that the object type represents.

For example, again let C be a Const actor. As discussed, the following expression casts it into a
more general actor type:

cast(object("ptolemy.actor.Actor"), C)

The result of the cast is another object token with C as its value and object("ptolemy.actor.Actor")
as its type. That token can be casted back into one of a more specific object type:

cast(object("ptolemy.actor.TypedAtomicActor"),
cast(object("ptolemy.actor.Actor"), C))

This is valid because the value C is in any of the mentioned classes.

As mentioned, null is a special object token that can be cast into any object type. Any object token
can also be cast into the most general object type, which is object. The only object that can be cast
into the most specific object type, object("ptolemy.data.type.ObjectType$BottomClass"),
is null.

6.5 Method Invocation

Native Java methods may be invoked on the objects encapsulated in object tokens.

For example, if C is a Const actor, C.portList() returns a list of its ports. The returned list
itself is a Java object in the class java.util.List, so it is encapsulated in an object token. You may
further invoke C.portList().isEmpty() to test whether the list is empty. In that case, the
isEmpty method is invoked on the returned list. The isEmpty method returns a Java boolean
value, and the boolean type corresponds to the Ptolemy boolean data type, so the value is converted
into the latter type.

Expressions 21

7. DEFINING FUNCTIONS

7 Defining Functions

The expression language supports definition of functions. The syntax is:

function(arg1:Type, arg2:Type...)
function body

where function’ is the keyword for defining a function. The type of an argument can be left
unspecified, in which case the expression language will attempt to infer it. The function body gives
an expression that defines the return value of the function. The return type is always inferred based
on the argument type and the expression. For example:

function(x:double) x*5.0

defines a function that takes a double argument, multiplies it by 5.0, and returns a double. The return
value of the above expression is the function itself. Thus, for example, the expression evaluator
yields:

>> function(x:double) x*5.0
(function(x:double) (x*5.0))

To apply the function to an argument, simply do

>> (function(x:double) x*5.0) (10.0)
50.0

Alternatively, in the expression evaluator, you can assign the function to a variable, and then use the
variable name to apply the function. For example,

>> f = function(x:double) x*5.0
(function(x:double) (x*5.0))
>> f(10)
50.0

Functions can be passed as arguments to certain higher-order functions” that have been defined (see
Table 19) . For example, the iterate() function takes three arguments, a function, an integer, and an
initial value to which to apply the function. It applies the function first to the initial value, then to
the result of the application, then to that result, collecting the results into an array whose length is
given by the second argument. For example, to get an array whose values are multiples of 3, try

>> iterate(function(x:int) x+3, 5, 0)
{0, 3, 6, 9, 12}

22 Expressions

7. DEFINING FUNCTIONS

Heterogeneous Concurrent Modeling and Design 115

Expressions

length is given by the second argument. For example, to get an array whose values are multiples of 3,
try

>> iterate(function(x:int) x+3, 5, 0)
{0, 3, 6, 9, 12}

The function given as an argument simply adds three to its argument. The result is the specified initial
value (0) followed by the result of applying the function once to that initial value, then twice, then
three times, etc.

Another useful higher-order function is the map() function. This one takes a function and an array
as arguments, and simply applies the function to each element of the array to construct a result array.
For example,

>> map(function(x:int) x+3, {0, 2, 3})
{3, 5, 6}

A typical use of functions in a Ptolemy II model is to define a parameter in a model whose value is
a function. Suppose that the parameter named “f” has value “function(x:double) x*5.0”. Then
within the scope of that parameter, the expression “f(10.0)” will yield result 50.0.

Functions can also be passed along connections in a Ptolemy II model. Consider the model shown
in figure 3.6. In that example, the Const actor defines a function that simply squares the argument. Its
output, therefore, is a token with type function. That token is fed to the “f” input of the Expression
actor. The expression uses this function by applying it to the token provided on the “y” input. That
token, in turn, is supplied by the Ramp actor, so the result is the curve shown in the plot on the right.

A more elaborate use is shown in figure 3.7. In that example, the Const actor produces a function,
which is then used by the Expression actor to create new function, which is then used by Expression2
to perform a calculation. The calculation performed here adds the output of the Ramp to the square of
the output of the Ramp.

FIGURE 3.6. Example of a function being passed from one actor to another.
Figure 6: Example of a function being passed from one actor to another

The function given as an argument simply adds three to its argument. The result is the specified
initial value (0) followed by the result of applying the function once to that initial value, then twice,
then three times, etc.

Another useful higher-order function is the map() function. This one takes a function and an array
as arguments, and simply applies the function to each element of the array to construct a result array.
For example,

>> map(function(x:int) x+3, {0, 2, 3})
{3, 5, 6}

A typical use of functions in a Ptolemy II model is to define a parameter in a model whose value is
a function. Suppose that the parameter named f has value function(x:double)x*5.0. Then
within the scope of that parameter, the expression f(10.0) will yield result 50.0.

Functions can also be passed along connections in a Ptolemy II model. Consider the model shown
in figure 6. In that example, the Const actor defines a function that simply squares the argument. Its
output, therefore, is a token with type function. That token is fed to the “f” input of the Expression
actor. The expression uses this function by applying it to the token provided on the “y” input. That
token, in turn, is supplied by the Ramp actor, so the result is the curve shown in the plot on the right.

A more elaborate use is shown in figure 7 In that example, the Const actor produces a function,
which is then used by the Expression actor to create new function, which is then used by Expression2
to perform a calculation. The calculation performed here adds the output of the Ramp to the square
of the output of the Ramp.

Functions can be recursive, as illustrated by the following (rather arcane) example:

>> fact = function(x:int,f:(function(x,f) int)) (x<1?1:x*f(x-1,f))
(function(x:int, f:function(a0:general, a1:general) int) (x<1)?1:(x*f((x-1), f)))
>> factorial = function(x:int) fact(x,fact)
(function(x:int) (function(x:int, f:function(a0:general, a1:general) int)
(x<1)?1:(x*f((x-1), f)))(x, (function(x:int,

Expressions 23

8. BUILT-IN FUNCTIONS

116 Ptolemy II

Expressions

Functions can be recursive, as illustrated by the following (rather arcane) example:

>> fact = function(x:int,f:(function(x,f) int)) (x<1?1:x*f(x-1,f))
(function(x:int, f:function(a0:general, a1:general) int)
(x<1)?1:(x*f((x-1), f)))
>> factorial = function(x:int) fact(x,fact)
(function(x:int) (function(x:int, f:function(a0:general, a1:general)
int) (x<1)?1:(x*f((x-1), f)))(x, (function(x:int, f:function(a0:gen-
eral, a1:general) int) (x<1)?1:(x*f((x-1), f)))))
>> map(factorial, [1:1:5].toArray())
{1, 2, 6, 24, 120}
>>

The first expression defines a function named “fact” that takes a function as an argument, and if the
argument is greater than or equal to 1, uses that function recursively. The second expression defines a
new function “factorial” using “fact.” The final command applies the factorial function to an array to
compute factorials.

3.7 Built-In Functions
The expression language includes a set of functions, such as sin(), cos(), etc. The functions that are

built in include all static methods of the classes shown in Table 2 on page 117, which together provide
a rich set1. The functions currently available are shown in the tables in the appendix, which also show
the argument types and return types.

In most cases, a function that operates on scalar arguments can also operate on arrays and matrices.

1. Moreover, the set of available can easily be extended if you are writing Java code by registering another class
that includes static methods (see the PtParser class in the ptolemy.data.expr package).

FIGURE 3.7. More elaborate example with functions passed between actors.
Figure 7: More elaborate example with functions passed between actors

f:function(a0:general, a1:general) int) (x<1)?1:(x*f((x-1), f)))))
>> map(factorial, [1:1:5].toArray())
{1, 2, 6, 24, 120}

The first expression defines a function named “fact” that takes a function as an argument, and if the
argument is greater than or equal to 1, uses that function recursively. The second expression defines
a new function “factorial” using “fact.” The final command applies the factorial function to an array
to compute factorials.

8 Built-In Functions

The expression language includes a set of functions, such as sin(), cos(), etc. The functions that are
built in include all static methods of the classes shown in Table 2, which together provide a rich set
. The functions currently available are shown in the tables in the appendix, which also show the

argument types and return types.

In most cases, a function that operates on scalar arguments can also operate on arrays and matrices.
Thus, for example, you can fill a row vector with a sine wave using an expression like

sin([0.0:PI/100:1.0])

Or you can construct an array as follows,

0 Moreover, the set of available can easily be extended if you are writing Java code by registering another class that
includes static methods (see the PtParser class in the ptolemy.data.expr package).

24 Expressions

8. BUILT-IN FUNCTIONS

sin({0.0, 0.1, 0.2, 0.3})

Functions that operate on type double will also generally operate on int, short, or unsignedByte,
because these can be losslessly converted to double, but not generally on long or complex. Tables of
available functions are shown in the appendix. For example, Table 4 shows trigonometric functions.
Note that these operate on double or complex, and hence on int, short and unsignedByte, which can
be losslessly converted to double. The result will always be double. For example,

>> cos(0)
1.0

These functions will also operate on matrices and arrays, in addition to the scalar types shown in
the table, as illustrated above. The result will be a matrix or array of the same size as the argument,
but always containing elements of type double

Table 10 shows other arithmetic functions beyond the trigonometric functions. As with the trigono-
metric functions, those that indicate that they operate on double will also work on int, short and
unsignedByte, and unless they indicate otherwise, they will return whatever they return when the
argument is double. Those functions in the table that take scalar arguments will also operate on
matrices and arrays. For example, since the table indicates that the max() function can take int, int
as arguments, then by implication, it can also take int, int. For example,

>> max({1, 2}, {2, 1})
{2, 2}

Notice that the table also indicates that max() can take int as an argument. E.g.

>> max({1, 2, 3})
3

Table 2: The classes whose static methods are available as functions in the expression langauge
java.lang.Math ptolemy.math.IntegerMatrixMath
java.lang.Double ptolemy.math.DoubleMatrixMath
java.lang.Integer ptolemy.math.ComplexMatrixMath
java.lang.Long ptolemy.math.LongMatrixMath
java.lang.String ptolemy.math.IntegerArrayMath
ptolemy.data.MatrixToken. ptolemy.math.DoubleArrayStat
ptolemy.data.RecordToken. ptolemy.math.ComplexArrayMath
ptolemy.data.expr.UtilityFunctions ptolemy.math.LongArrayMath
ptolemy.data.expr.FixPointFunctions ptolemy.math.SignalProcessing
ptolemy.math.Complex ptolemy.math.FixPoint
ptolemy.math.ExtendedMath ptolemy.data.ObjectToken

Expressions 25

8. BUILT-IN FUNCTIONS

In the former case, the function is applied pointwise to the two arguments. In the latter case, the
returned value is the maximum over all the contents of the single argument.

Table 10 shows functions that only work with matrices, arrays, or records (that is, there is no corre-
sponding scalar operation). Recall that most functions that operate on scalars will also operate on
arrays and matrices. Table 11 shows utility functions for evaluating expressions given as strings or
representing numbers as strings. Of these, the eval() function is the most flexible.

A few of the functions have sufficiently subtle properties that they require further explanation. That
explanation is here.

8.0.1 eval() and traceEvaluation()

The built-in function eval() will evaluate a string as an expression in the expression language. For
example,

eval("[1.0, 2.0; 3.0, 4.0]")

will return a matrix of doubles. The following combination can be used to read parameters from a
file:

eval(readFile("filename"))

where the filename can be relative to the current working directory (where Ptolemy II was started, as
reported by the property user.dir), the user’s home directory (as reported by the property user.home),
or the classpath, which includes the directory tree in which Ptolemy II is installed. Note that if
eval() is used in an Expression actor, then it will be impossible for the type system to infer any more
specific output type than general. If you need the output type to be more specific, then you will need
to cast the result of eval(). For example, to force it to type double:

>> cast(double, eval("pi/2"))
1.5707963267949

The traceEvaluation() function evaluates an expression given as a string, much like eval(), but in-
stead of reporting the result, reports exactly how the expression was evaluated. This can be used to
debug expressions, particularly when the expression language is extended by users.

8.0.2 random(), gaussian()

random() and gaussian() shown in Table 10 return one or more random numbers. With the minimum
number of arguments (zero or two, respectively), they return a single number. With one additional

26 Expressions

8. BUILT-IN FUNCTIONS

argument, they return an array of the specified length. With a second additional argument, they
return a matrix with the specified number of rows and columns.

There is a key subtlety when using these functions in Ptolemy II. In particular, they are evaluated
only when the expression within which they appear is evaluated. The result of the expression may be
used repeatedly without re-evaluating the expression. Thus, for example, if the value parameter of
the Const actor is set to random(), then its output will be a random constant, i.e., it will not change
on each firing. The output will change, however, on successive runs of the model. In contrast, if
this is used in an Expression actor, then each firing triggers an evaluation of the expression, and
consequently will result in a new random number.

8.0.3 property()

The property() function accesses system properties by name. Some possibly useful system proper-
ties are:

• ptolemy.ptII.dir: The directory in which Ptolemy II is installed.

• ptolemy.ptII.dirAsURL: The directory in which Ptolemy II is installed, but represented as a
URL.

• user.dir: The current working directory, which is usually the directory in which the current
executable was started.

8.0.4 remainder()

This function computes the remainder operation on two arguments as prescribed by the IEEE 754
standard, which is not the same as the modulo operation computed by the % operator. The result
of remainder(x, y) is x− yn, where n is the integer closest to the exact value of x/y. If two
integers are equally close, then n is the integer that is even. This yields results that may be surprising,
as indicated by the following examples:

>> remainder(1,2)
1.0
>> remainder(3,2)
-1.0

Compare this to

>> 3%2
1

Expressions 27

8. BUILT-IN FUNCTIONS

which is different in two ways. The result numerically different and is of type int, whereasremainder()
always yields a result of type double. The remainder() function is implemented by the java.lang.Math
class, which calls it IEEEremainder(). The documentation for that class gives the following special
cases:

• If either argument is NaN, or the first argument is infinite, or the second argument is positive
zero or negative zero, then the result is NaN.

• If the first argument is finite and the second argument is infinite, then the result is the same as
the first argument.

8.0.5 DCT() and IDCT()

The DCT function can take one, two, or three arguments. In all three cases, the first argument is an
array of length N > 0 and the DCT returns an

Xk = sk

N−1

∑
n=0

xn cos((2n+1)k
π

2D
) (1)

for k from 0 to D− 1, where N is the size of the specified array and D is the size of the DCT. If
only one argument is given, then D is set to equal the next power of two larger than N. If a second
argument is given, then its value is the order of the DCT, and the size of the DCT is 2order. If a third
argument is given, then it specifies the scaling factors sk according to the following table:

Table 3: Normalization options for the DCT function
Name Third argument Normalization

Normalized 0 sk =

{
1√
2
; k = 0

1, otherwise
Unnormalized 1 sk = 1

Orthonormal 2 sk =

1
/

√
D; k = 0√

2
D ; otherwise

The default, if a third argument is not given, is “Normalized.” The IDCT function is similar, and
can also take one, two, or three arguments. The formula in this case is

xn =
N−1

∑
k=0

skXk cos((2n+1)k
π

2D
) (2)

.

28 Expressions

9. FOLDING

9 Folding

Ptolemy II supports a fold function, which can be used to program a loop in an expression.

The fold function is invoked in the form of fold(f, x, l), where f is a function itself, x is the
starting value, and l is a collection of values.

• f must take two arguments. x must be valid as the first argument, and any element in collec-
tion l must be valid as the second argument. Moreover, the return value of f must also be
valid as the first argument.

• x is the starting value used to invoke f the first time by the fold function. It can be in any
type supported by Ptolemy II.

• l must be either an array in the form of “{1, 2, 3, ...},” or a Java collection obtained from a
Java method call such as “C.output.connectedPortList()” (assuming C is a Const actor here).

The pseudocode for computing the result of the fold function fold(f, x, l) is as follows:

1. let y = x

2. for each element e in l

3. let y = f(y, e)

4. return y

Examples:

• fold(
function(x : int, e : int) x + 1,
0, {1, 2, 3}

)

This computes the length of array {1, 2, 3}. The result is 3, which is equal to {1, 2,
3}.length(). Function f here is defined with anonymous function function(x : int,
e : int) x + 1. Given x and arbitrary element e, it returns x + 1. It is invoked the
number of times equal to the number of elements in array {1, 2, 3}. Therefore, x is increased
3 times from the starting value 0.

• fold(
function(x : int, e : int) x + e,
0, {1, 2, 3}

)

This computes the sum of all elements in array {1, 2, 3}.

Expressions 29

10. NIL TOKENS

• fold(
function(x : arrayType(int), e : int)

e % 2 == 0 ? x : x.append({e}),
{}, {1, 2, 3, 4, 5}

)

This computes a subarray of array {1, 2, 3, 4, 5} that contains only odd numbers. The result
is {1, 3, 5}.

• Let C be an actor.

fold(
function(list : arrayType(string),

port : object("ptolemy.kernel.Port"))
port.connectedPortList().isEmpty() ?

list.append({port}) : list,
{}, C.portList()

)

This returns a list of C’s ports that are not connected to any other port (with connectedPortList()
being empty). Each port in the returned list is encapsulated in an ObjectToken.

10 Nil Tokens

Null or missing tokens are common in analytical systems like R and SAS where they are used to
handle sparsely populated data sources. In database parlance, missing tokens are sometimes called
null tokens. Since null is a Java keyword, we use the term “nil”. Nil tokens are useful for analyzing
real world data such as temperature where the value was not measured during every interval. In
principle, an as yet unimplemented function such as average() method could properly handle nil
tokens - when the average() method sees a nil token, it should be ignored. Note that this can lead
to uncertainty. For example, if average() is expecting 30 values and 29 of them are nil, then the
average will not be very accurate.

If an operation such as add(), divide(), modulo(), multiply(), one(), subtract(), zero() or their corre-
sponding “reverse” operations includes a nil token, then the output is nil. If one of the arguments
for isCloseTo() or isEqualTo() is nil, then the method returns false. Methods that return a nil token
return a nil token with a specific type so that type safety is preserved. The following tokens have
NIL values defined: ArrayToken, BooleanToken, ComplexToken, DoubleToken, FloatToken IntTo-
ken, LongToken, ShortToken, StringToken, Token, UnsignedByteToken. There is no nil token for
the various matrix tokens because the underlying matrices are java native type matrices that do not
support nil.

The expression language defines a constant named nil that refers to the Token.NIL field. The
cast() expression language function can be used to generate references to the NIL fields of the other

30 Expressions

11. FIXED POINT NUMBERS

classes. For example, “cast(int, nil)” will return a reference to the IntToken.NIL field.

11 Fixed Point Numbers

Ptolemy II includes a preliminary fixed point data type. We represent a fixed point value in the
expression language using the following format:

fix(value, totalBits, integerBits)

Thus, a fixed point value of 5.375 that uses 8 bit precision of which 4 bits are used to represent the
(signed) integer part can be represented as:

fix(5.375, 8, 4)

The value can also be a matrix of doubles. The values are rounded, yielding the nearest value rep-
resentable with the specified precision. If the value to represent is out of range, then it is saturated,
meaning that the maximum or minimum fixed point value is returned, depending on the sign of the
specified value. For example,

fix(5.375, 8, 3)

will yield 3.968758, the maximum value possible with the (8/3) precision.

In addition to the fix() function, the expression language offers a quantize() function. The arguments
are the same as those of the fix() function, but the return type is a DoubleToken or DoubleMatrix-
Token instead of a FixToken or FixMatrixToken. This function can therefore be used to quantize
double-precision values without ever explicitly working with the fixed-point representation.

To make the FixToken accessible within the expression language, the following functions are avail-
able:

• To create a single FixPoint Token using the expression language:

fix(5.34, 10, 4)

This will create a FixToken. In this case, we try to fit the number 5.34 into a 10 bit represen-
tation with 4 bits used in the integer part. This may lead to quantization errors. By default the
round quantizer is used.

• To create a Matrix with FixPoint values using the expression language:

fix([-.040609, -.001628, .17853], 10, 2)

Expressions 31

12. UNITS

This will create a FixMatrixToken with 1 row and 3 columns, in which each element is a
FixPoint value with precision(10/2). The resulting FixMatrixToken will try to fit each element
of the given double matrix into a 10 bit representation with 2 bits used for the integer part. By
default the round quantizer is used.

• To create a single DoubleToken, which is the quantized version of the double value given,
using the expression language:

quantize(5.34, 10, 4)

This will create a DoubleToken. The resulting DoubleToken contains the double value ob-
tained by fitting the number 5.34 into a 10 bit representation with 4 bits used in the integer
part. This may lead to quantization errors. By default the round quantizer is used.

• To create a Matrix with doubles quantized to a particular precision using the expression lan-
guage:

quantize([-.040609, -.001628, .17853], 10, 2)

This will create a DoubleMatrixToken with 1 row and 3 columns. The elements of the token
are obtained by fitting the given matrix elements into a 10 bit representation with 2 bits used
for the integer part. Instead of being a fixed point value, the values are converted back to their
double representation and by default the round quantizer is used.

12 Units

Ptolemy II supports units systems, which are built on top of the expression language. Units systems
allow parameter values to be expressed with units, such as “1.0 * cm”, which is equal to “0.01 *
meters”. These are expressed this way (with the * for multiplication) because “cm” and “meters”
are actually variables that become in scope when a units system icon is dragged in to a model. A
few simple units systems are provided (mainly as examples) in the utilities library.

A model using one of the simple provided units systems is shown in figure 8 This unit system is
called BasicUnits; the units it defines can be examined by double clicking on its icon, or by invoking
Configure, as shown in figure 9. In that figure, we see that “meters”, “meter”, and “m” are defined,
and are all synonymous. Moreover, “cm” is defined, and given value “0.01*meters”, and “in”,
“inch” and “inches” are defined, all with value “2.54*cm”.

In the example in figure 8, a constant with value “1.0 * meter” is fed into a Scale actor with scale
factor equal to “2.0/ms”. This produces a result with dimensions of length over time. If we feed
this result directly into a Display actor, then it is displayed as “2000.0 meters/seconds”, as shown in
figure 10, top display. The canonical units for length are meters, and for time are seconds.

32 Expressions

12. UNITS

122 Ptolemy II

Expressions

• To create a single DoubleToken, which is the quantized version of the double value given, using
the expression language:
quantize(5.34, 10, 4)

This will create a DoubleToken. The resulting DoubleToken contains the double value obtained by
fitting the number 5.34 into a 10 bit representation with 4 bits used in the integer part. This may
lead to quantization errors. By default the round quantizer is used.

• To create a Matrix with doubles quantized to a particular precision using the expression language:
quantize([-.040609, -.001628, .17853], 10, 2)

This will create a DoubleMatrixToken with 1 row and 3 columns. The elements of the token are
obtained by fitting the given matrix elements into a 10 bit representation with 2 bits used for the
integer part. Instead of being a fixed point value, the values are converted back to their double rep-
resentation and by default the round quantizer is used.

3.10 Units
Ptolemy II supports units systems, which are built on top of the expression language. Units sys-

tems allow parameter values to be expressed with units, such as “1.0 * cm”, which is equal to “0.01 *
meters”. These are expressed this way (with the * for multiplication) because “cm” and “meters” are
actually variables that become in scope when a units system icon is dragged in to a model. A few sim-
ple units systems are provided (mainly as examples) in the utilities library.

A model using one of the simple provided units systems is shown in figure 3.8. This unit system is
called BasicUnits; the units it defines can be examined by double clicking on its icon, or by invoking
Configure, as shown in figure 3.9. In that figure, we see that “meters”, “meter”, and “m” are defined,
and are all synonymous. Moreover, “cm” is defined, and given value “0.01*meters”, and “in”, “inch”
and “inches” are defined, all with value “2.54*cm”.

FIGURE 3.8. Example of a model that includes a unit system.
Figure 8: Example of a model that includes a unit system.

Heterogeneous Concurrent Modeling and Design 123

Expressions

In the example in figure 3.8, a constant with value “1.0 * meter” is fed into a Scale actor with scale
factor equal to “2.0/ms”. This produces a result with dimensions of length over time. If we feed this
result directly into a Display actor, then it is displayed as “2000.0 meters/seconds”, as shown in figure
3.10, top display. The canonical units for length are meters, and for time are seconds.

In figure 3.8, we also take the result and feed it to the InUnitsOf actor, which performs divides its
input by its argument, and checks to make sure that the result is unitless. This tells us that 2 meters/ms
is equal to about 78,740 inches/second.

FIGURE 3.9. Units defined in a units system can be examined by invoking Configure on its icon.

FIGURE 3.10. Result of running the model in figure 3.8.

Figure 9: Units defined in a units system can be examined by invoking Configure on its icon.

Expressions 33

12. UNITS

Heterogeneous Concurrent Modeling and Design 123

Expressions

In the example in figure 3.8, a constant with value “1.0 * meter” is fed into a Scale actor with scale
factor equal to “2.0/ms”. This produces a result with dimensions of length over time. If we feed this
result directly into a Display actor, then it is displayed as “2000.0 meters/seconds”, as shown in figure
3.10, top display. The canonical units for length are meters, and for time are seconds.

In figure 3.8, we also take the result and feed it to the InUnitsOf actor, which performs divides its
input by its argument, and checks to make sure that the result is unitless. This tells us that 2 meters/ms
is equal to about 78,740 inches/second.

FIGURE 3.9. Units defined in a units system can be examined by invoking Configure on its icon.

FIGURE 3.10. Result of running the model in figure 3.8.
Figure 10: Result of running the model in figure 8

124 Ptolemy II

Expressions

The InUnitsOf actor can be used to ensure that numbers are interpreted correctly in a model, which
can be effective in catching certain kinds of critical errors. For example, if in figure 3.8 we had entered
“seconds/inch” instead of “inches/second” in the InUnitsOf actor, we would have gotten the exception
in figure 3.11 instead of the execution in figure 3.10.

Units systems are built entirely on the expression language infrastructure in Ptolemy II. The units
system icons actually represent instances of scope-extending attributes, which are attributes whose
parameters are in scope as if those parameters were directly contained by the container of the scope-
extending attribute. That is, scope-extending attributes can define a collection of variables and con-
stants that can be manipulated as a unit. In version 2.0 of Ptolemy II, two fairly extensive units systems
are provided, CGSUnitBase and ElectronicUnitBase. Nonetheless, these are intended as examples
only, and can no doubt be significantly improved and extended.

FIGURE 3.11. Example of an exception resulting from a units mismatch.
Figure 11: Example of an exception resulting from a units mismatch.

In figure 8, we also take the result and feed it to the InUnitsOf actor, which divides its input by its
argument, and checks to make sure that the result is unitless. This tells us that 2 meters/ms is equal
to about 78,740 inches/second.

The InUnitsOf actor can be used to ensure that numbers are interpreted correctly in a model, which
can be effective in catching certain kinds of critical errors. For example, if in figure 8, we had
entered “seconds/inch” instead of “inches/second” in the InUnitsOf actor, we would have gotten the
exception in figure 11 instead of the execution in figure 10.

Units systems are built entirely on the expression language infrastructure in Ptolemy II. The units
system icons actually represent instances of scope-extending attributes, which are attributes whose
parameters are in scope as if those parameters were directly contained by the container of the scope-
extending attribute. That is, scope-extending attributes can define a collection of variables and con-
stants that can be manipulated as a unit. In version 2.0 of Ptolemy II, two fairly extensive units
systems are provided, CGSUnitBase and ElectronicUnitBase. Nonetheless, these are intended as
examples only, and can no doubt be significantly improved and extended.

34 Expressions

13. FUNCTIONS

13 Functions

In this appendix, we tabulate the functions available in the expression language. Further explanation
of many of these functions is given in section section 8 above.

The argument and return types are the widest type that can be used. For example, acos() will take
any argument that can be losslessly cast to a double, such as unsigned byte, short, integer, float.
Long cannot be cast losslessly cast to double, so acos(1L) will fail.

Expressions 35

13.A Trigonometric Functions 13. FUNCTIONS

13.A Trigonometric Functions

Table 4: Trigonometric functions.
function argument type(s) return type description
acos double in the range

[-1.0, 1.0] or com-
plex

double in the range
[0.0, pi] or NaN
if out of range or
complex

arc cosine
complex case: acos(z) = −i log(z +
i
√

i− z2)

asin double in the range
[-1.0, 1.0] or com-
plex

double in the range
[-pi/2, pi/2] or NaN
if out of range or
complex

arc sine
complex case: asin(z) = −i log(iz +√

i− z2)

atan double or complex double in the range
[-pi/2, pi/2] or com-
plex

arc tangent
complex case: atan(z) =− i

2 log i−z
i+z

atan2 double, double double in the range
[-pi, pi]

angle of a vector (note: the arguments
are (y, x), not (x, y) as one might ex-
pect).

acosh double greater than
1 or complex

double or complex hyperbolic arc cosine, defined for
both double and complex case by:
acosh(z) = logz+

√
z2−1

asinh double or complex double or complex hyperbolic arc sine complex case:
asinh(z) = logz+

√
z2 +1

cos double or complex double in the range
, or complex

cosine
complex case: cos(z) = exp(iz)+exp(−iz)

2
cosh double or complex double or complex hyperbolic cosine, defined for double

or complex by: cosh(z) = exp(z)+exp(−z)
2

sin double or complex double or complex sine function complex case: sin(z) =
exp(iz)−exp(−iz)

2i
sinh double or complex double or complex hyperbolic sine, defined for double or

complex by: sinh(z) = exp(z)−exp(−z)
2

tan double or complex double or complex tangent function, defined for double or
complex by: tan(z) = sin(z)

cos(z)
tanh double or complex double or complex hyperbolic tangent, defined for double

or complex by: tanh(z) = sinh(z)
cosh(z)

36 Expressions

13. FUNCTIONS 13.B Basic Mathematical Functions

13.B Basic Mathematical Functions

Table 5: Basic mathematical functions, part 1.
function argument type(s) return type description
abs double or complex double or int or

long (complex re-
turns double)

absolute value
complex case: abs(a + ib) =
|z|=

√
a2 +b2

angle complex double in the range
[-pi, pi]

angle or argument of the com-
plex number: ∠z

ceil double or float double ceiling function, which returns
the smallest (closest to negative
infinity) double value that is not
less than the argument and is an
integer.

compare double, double int compare two numbers, returning
-1, 0, or 1 if the first argument
is less than, equal to, or greater
than the second.

conjugate complex complex complex conjugate
exp double or complex double in the range

[0.0, infinity] or
complex

exponential function
(eârgument) complex case:
ea+ib = ea(cosb+ isinb)

floor double double floor function, which is the
largest (closest to positive infin-
ity) value not greater than the ar-
gument that is an integer.

gaussian double, double or
double, double, int,
or double, double,
int, int

double or double or
[double]

one or more Gaussian ran-
dom variables with the speci-
fied mean and standard deviation
(see 8.0.2).

imag complex double imaginary part
isInfinite double boolean return true if the argument is in-

finite
isNaN double boolean return true if the argument is

“not a number”
log double or complex double or complex natural logarithm complex case:

log(z) = log(abs(z)+ i∠z)
log10 double double log base 10
log2 double double log base 2

Expressions 37

13.B Basic Mathematical Functions 13. FUNCTIONS

Table 6: Basic mathematical functions, part 2.
function argument type(s) return type description
max double, double or

double
a scalar of the same
type as the argu-
ments

maximum

min double, double or
double

a scalar of the same
type as the argu-
ments

minimum

pow double, double or
complex, complex

double or complex first argument to the power of the
second

random no arguments or int
or int, int

double or double or
[double]

one or more random numbers
between 0.0 and 1.0 (see 8.0.2)

real complex double real part
remainder double, double double remainder after division, accord-

ing to the IEEE 754 floating-
point standard (see 8.0.4.

round double long round to the nearest long, choos-
ing the next greater integer when
exactly in between, and throw-
ing an exception if out of range.
If the argument is NaN, the re-
sult is 0L. If the argument is
out of range, the result is either
MaxLong or MinLong, depend-
ing on the sign.

roundToInt double int round to the nearest int, choos-
ing the next greater integer when
exactly in between, and throw-
ing an exception if out of range.
If the argument is NaN, the re-
sult is 0. If the argument is out of
range, the result is either Max-
Int or MinInt, depending on the
sign.

sgn double int -1 if the argument is negative, 1
otherwise

sqrt double or complex double or complex square root. If the argument is
double with value less than zero,
then the result is NaN. complex
case: sqrt(z) =

√
|z|(cos ∠z

2 +
isin ∠z

2)

38 Expressions

13. FUNCTIONS 13.C Matrix, Array, and Record Function.

Table 7: Basic mathematical functions, part 3.
function argument type(s) return type description
toDegrees double double convert radians to degrees
toRadians double double convert degrees to radians
within type, type, double boolean return true if the first argument

is in the neighborhood of the
second, meaning that the dis-
tance is less than or equal to
the third argument. The first
two arguments can be any type
for which such a distance is de-
fined. For composite types, ar-
rays, records, and matrices, then
return true if the first two argu-
ments have the same structure,
and each corresponding element
is in the neighborhood.

13.C Matrix, Array, and Record Function.

Expressions 39

13.D Functions for Evaluating Expressions 13. FUNCTIONS

Table 8: Functions that take or return matrices, arrays, or records, part 1.
function argument

type(s)
return type description

arrayToMatrix type, int, int [type] Create a matrix from the specified array
with the specified number of rows and
columns

concatenate type, type type Concatenate two arrays.
concatenate type type Concatenate arrays in an array of ar-

rays.
conjugateTranspose [complex] [complex] Return the conjugate transpose of the

specified matrix.
createSequence type, type, int type Create an array with values starting

with the first argument, incremented by
the second argument, of length given
by the third argument.

crop [int], int, int,
int, int or [dou-
ble], int, int,
int, int or [com-
plex], int, int,
int, int or [long],
int, int, int, int
or

[int] or
[double] or
[complex] or
[long] or

Given a matrix of any type, return a
submatrix starting at the specified row
and column with the specified number
of rows and columns.

determinant [double] or
[complex]

double or
complex

Return the determinant of the specified
matrix.

diag type [type] Return a diagonal matrix with the val-
ues along the diagonal given by the
specified array.

divideElements [type], [type] [type] Return the element-by-element divi-
sion of two matrices

emptyArray type type Return an empty array whose element
type matches the specified token.

emptyRecord record Return an empty record.
find type, type int Return an array of the indices where el-

ements of the specified array match the
specified token.

13.D Functions for Evaluating Expressions

40 Expressions

13. FUNCTIONS 13.D Functions for Evaluating Expressions

Table 9: Functions that take or return matrices, arrays, or records, part 2.
function argument type(s) return type description
find boolean int Return an array of the indices

where elements of the specified
array have value true.

hilbert int [double] Return a square Hilbert matrix,
where Ai j = 1

i+ j+1 . A Hilbert
matrix is nearly, but not quite
singular.

identityMatrixComplex int [complex] Return an identity matrix with
the specified dimension.

identityMatrixDouble int [double] Return an identity matrix with
the specified dimension.

identityMatrixInt int [int] Return an identity matrix with
the specified dimension.

identityMatrixLong int [long] Return an identity matrix with
the specified dimension.

intersect record, record record Return a record that contains
only fields that are present in
both arguments, where the value
of the field is taken from the first
record.

inverse [double] or [com-
plex]

[double] or
[complex]

Return the inverse of the speci-
fied matrix, or throw an excep-
tion if it is singular.

matrixToArray [type] type Create an array containing the
values in the matrix

merge record, record record Merge two records, giving pri-
ority to the first one when they
have matching record labels.

multiplyElements [type], [type] [type] Multiply element wise the two
specified matrices.

orthogonalizeColumns [double] or [com-
plex]

[double] or
[complex]

Return a similar matrix with or-
thogonal columns.

orthogonalizeRows [double] or [com-
plex]

[double] or
[complex]

Return a similar matrix with or-
thogonal rows.

orthonormalizeColumns [double] or [com-
plex]

[double] or
[complex]

Return a similar matrix with or-
thonormal columns.

orthonormalizeRows [double] or [com-
plex]

[double] or
[complex]

Return a similar matrix with or-
thonormal rows.

repeat int, type type Create an array by repeating
the specified token the specified
number of times.

Expressions 41

13.D Functions for Evaluating Expressions 13. FUNCTIONS

Table 10: Functions that take or return matrices, arrays, or records, part 3.
function argument

type(s)
return type description

sort stringor
realScalar

string or re-
alScalar

Return the specified array, but sorted
in ascending order. realScalar is any
scalar token except complex.

sortAscending stringor
realScalar

string or re-
alScalar

Return the specified array, but sorted
in ascending order. realScalar is any
scalar token except complex.

sortDescending stringor
realScalar

string or re-
alScalar

Return the specified array, but sorted
in descending order. realScalar is any
scalar token except complex.

subarray type, int, int type Extract a subarray starting at the speci-
fied index with the specified length.

sum type or
[type]

type Sum the elements of the specified array
or matrix. This throws an exception if
the elements do not support addition or
if the array is empty (an empty matrix
will return zero).

trace [type] type Return the trace of the specified matrix.
transpose [type] [type] Return the transpose of the specified

matrix.
zeroMatrixComplex int, int [complex] Return a zero matrix with the specified

number of rows and columns.
zeroMatrixDouble int, int [double] Return a zero matrix with the specified

number of rows and columns.
zeroMatrixInt int, int [int] Return a zero matrix with the specified

number of rows and columns.
zeroMatrixLong int, int [long] Return a zero matrix with the specified

number of rows and columns.

42 Expressions

13. FUNCTIONS 13.D Functions for Evaluating Expressions

Table 11: Utility functions for evaluating expressions
function argument

type(s)
return type description

eval string any type evaluate the specified expression (see
8.0.1).

parseInt string or string,
int

int return an int read from a string, using
the given radix if a second argument is
provided.

parseLong string or string,
int

int return a long read from a string, using
the given radix if a second argument is
provided.

toBinaryString int or long string return a binary representation of the ar-
gument

toOctalString int or long string return an octal representation of the ar-
gument

toString double or int or
int, int or long
or long, int

string return a string representation of the ar-
gument, using the given radix if a sec-
ond argument is provided.

traceEvaluation string string evaluate the specified expression and
report details on how it was evaluated
(see 8.0.1).

Expressions 43

13.E Signal Processing Functions 13. FUNCTIONS

13.E Signal Processing Functions

Table 12: Functions performing signal processing operations, part 1.
function argument type(s) return type description
close double, double boolean ? Return true if the first argument

is close to the second (within
EPSILON, where EPSILON is
a static public variable of this
class).

convolve double, double or
complex, complex

double or
complex

Convolve two arrays and return
an array whose length is sum of
the lengths of the two arguments
minus one. Convolution of two
arrays is the same as polynomial
multiplication.

DCT double or double,
int or double, int,
int

double Return the discrete cosine trans-
form of the specified array, using
the specified (optional) length
and normalization strategy (see
8.0.5).

downsample double, int or dou-
ble, int, int

double Return a new array with every n-
th element of the argument array,
where n is the second argument.
If a third argument is given, then
it must be between 0 and n− 1,
and it specifies an offset into the
array (by giving the index of the
first output).

FFT double or complex
or double, int com-
plex, int

complex Return the fast Fourier transform
of the specified array. If the sec-
ond argument is given with value
n, then the length of the trans-
form is 2n. Otherwise, the length
is the next power of two greater
than or equal to the length of the
input array. If the input length
does not match this length, then
input is padded with zeros.

44 Expressions

13. FUNCTIONS 13.E Signal Processing Functions

Table 13: Functions performing signal processing operations, part 2.
function argument

type(s)
return type description

generateBartlettWindow int double Bartlett (rectangular) window
with the specified length. The
end points have value 0.0, and
if the length is odd, the center
point has value 1.0. For length
M + 1, the formula is: w(n) ={

2 n
M ; i f 0≤ n≤ M

2

2−2 n
M ; i f M

2 ≤ n≤M
generateBlackmanWindow int double Return a Blackman window with

the specified length. For length
M + 1, the formula is: w(n) =
0.42+0.5cos 2πn

M +0.08cos 4πn
M

generateBlackmanHarrisWindow int double Return a Blackman-Harris
window with the specified
length. For length M + 1, the
formula is: w(n) = 0.35875 +
0.48829cos f rac2πnM +
0.14128cos 4πn

M +
0.01168cos 6πn

M
generateGaussianCurve double, dou-

ble, int
double Return a Gaussian curve with

the specified standard deviation,
extent, and length. The ex-
tent is a multiple of the stan-
dard deviation. For instance,
to get 100 samples of a Gaus-
sian curve with standard devia-
tion 1.0 out to four standard de-
viations, use generateGaussian-
Curve(1.0, 4.0, 100).

Expressions 45

13.E Signal Processing Functions 13. FUNCTIONS

Table 14: Functions performing signal processing operations, part 3.
function argument

type(s)
return
type

description

generateHammingWindow int double Return a Hamming window with
the specified length. For length
M + 1, the formula is: w(n) =
0.54−0.46cos 2πn

M
generateHanningWindow int double Return a Hanning window with

the specified length. For length
M + 1, the formula is: w(n) =
0.5−0.5cos 2πn

/ M
generatePolynomialCurve double, dou-

ble, double,
int

double Return samples of a curve spec-
ified by a polynomial. The first
argument is an array with the
polynomial coefficients, begin-
ning with the constant term, the
linear term, the squared term,
etc. The second argument is
the value of the polynomial vari-
able at which to begin, and the
third argument is the increment
on this variable for each succes-
sive sample. The final argument
is the length of the returned ar-
ray.

46 Expressions

13. FUNCTIONS 13.E Signal Processing Functions

Table 15: Functions performing signal processing operations, part 4.
function argument

type(s)
return type description

generateRaisedCosinePulse double, dou-
ble, int

double Return an array containing a
symmetric raised-cosine pulse.
This pulse is widely used in
communication systems, and is
called a “raised cosine pulse”
because the magnitude its
Fourier transform has a shape
that ranges from rectangular (if
the excess bandwidth is zero) to
a cosine curved that has been
raised to be non-negative (for
excess bandwidth of 1.0). The
elements of the returned array
are samples of the function:
h(t) = sin πt

T
πt
T

×
cos f racxπtT

1−(2xt
T)2 , where

x is the excess bandwidth
(the first argument) and T is
the number of samples from
the center of the pulse to the
first zero crossing (the second
argument). The samples are
taken with a sampling interval
of 1.0, and the returned array
is symmetric and has a length
equal to the third argument.
With an excessBandwidth of
0.0, this pulse is a sinc pulse.

generateRectangularWindow int double Return an array filled with 1.0 of
the specified length. This is a
rectangular window.

Expressions 47

13.E Signal Processing Functions 13. FUNCTIONS

Table 16: Functions performing signal processing operations, part 5.
function argument

type(s)
return type description

IDCT double or
double, int
or double,
int, int

double Return the inverse discrete co-
sine transform of the specified
array, using the specified (op-
tional) length and normalization
strategy (see 8.0.5).

IFFT double or
complex or
double, int
complex, int

complex inverse fast Fourier transform of
the specified array. If the sec-
ond argument is given with value
n, then the length of the trans-
form is 2n. Otherwise, the length
is the next power of two greater
than or equal to the length of the
input array. If the input length
does not match this length, then
input is padded with zeros.

nextPowerOfTwo double int Return the next power of two
larger than or equal to the argu-
ment.

poleZeroToFrequency complex,
complex,
complex, int

complex Given an array of pole locations,
an array of zero locations, a gain
term, and a size, return an array
of the specified size represent-
ing the frequency response spec-
ified by these poles, zeros, and
gain. This is calculated by walk-
ing around the unit circle and
forming the product of the dis-
tances to the zeros, dividing by
the product of the distances to
the poles, and multiplying by the
gain.

48 Expressions

13. FUNCTIONS 13.E Signal Processing Functions

Table 17: Functions performing signal processing operations, part 4.
function argument

type(s)
return
type

description

sinc double double Return the sinc function,
sin(x)/x, where special care
is taken to ensure that 1.0 is
returned if the argument is 0.0.

toDecibels double double Return 20× log10 z, where z is
the argument.

unwrap double double Modify the specified array to
unwrap the angles. That is,
if the difference between suc-
cessive values is greater than π

in magnitude, then the second
value is modified by multiples
of 2π until the difference is less
than or equal to π. In addition,
the first element is modified so
that its difference from zero is
less than or equal to π in mag-
nitude.

upsample double, int double Return a new array that is the re-
sult of inserting n−1 zeroes be-
tween each successive sample in
the input array, where n is the
second argument. The returned
array has length nL, where L is
the length of the argument array.
It is required that n > 0.

Expressions 49

13.F I/O Functions and Other Miscellaneous Functions 13. FUNCTIONS

13.F I/O Functions and Other Miscellaneous Functions

Table 18: Miscellaneous functions, part 1.
function argument type(s) return type description
asURL string string Return a URL representation of

the argument.
cast type1, type2 type1 Return the second argument

converted to the type of the first,
or throw an exception if the con-
version is invalid.

constants none record Return a record identifying all
the globally defined constants in
the expression language.

findFile string string Given a file name relative to the
user directory, current directory,
or classpath, return the absolute
file name of the first match, or
return the name unchanged if no
match is found.

filter function, type type Extract a sub-array consisting of
all of the elements of an array for
which the given predicate func-
tion returns true.

filter function, type, int type Extract a sub-array with a lim-
ited size consisting of all of the
elements of an array for which
the given predicate function re-
turns true.

freeMemory none long Return the approximate num-
ber of bytes available for future
memory allocation.

iterate function, int, type type Return an array that results from
first applying the specified func-
tion to the third argument, then
applying it to the result of that
application, and repeating to get
an array whose length is given
by the second argument.

50 Expressions

13. FUNCTIONS 13.F I/O Functions and Other Miscellaneous Functions

Table 19: Miscellaneous functions, part 2.
function argument type(s) return type description
map function, type type Return an array that results from

applying the specified function
to the elements of the specified
array.

property string string Return a system property
with the specified name
from the environment, or
an empty string if there is none.
Some useful properties are
java.version, ptolemy.ptII.dir,
ptolemy.ptII.dirAsURL, and
user.dir.

readFile string string Get the string text in the speci-
fied file, or throw an exception
if the file cannot be found. The
file can be absolute, or relative
to the current working directory
(user.dir), the user’s home direc-
tory (user.home), or the class-
path.

readResource string string Get the string text in the spec-
ified resource (which is a file
found relative to the classpath),
or throw an exception if the file
cannot be found.

totalMemory none long Return the approximate number
of bytes used by current objects
plus those available for future
object allocation.

Expressions 51

	Introduction
	Expression Evaluator

	Simple Arithmetic Expressions
	Constants and Literals
	Variables
	Operators
	Comments

	Uses of Expressions
	Parameters
	Port Parameters
	String Parameters
	Expression Actor
	State Machines

	Composite Data Types
	Arrays
	Matrices
	Records

	Invoking Methods
	Casting
	Object Types
	Relationship between Object Types
	Object Tokens
	Casting between Object Types
	Method Invocation

	Defining Functions
	Built-In Functions
	eval() and traceEvaluation()
	random(), gaussian()
	property()
	remainder()
	DCT() and IDCT()

	Folding
	Nil Tokens
	Fixed Point Numbers
	Units
	Functions
	Trigonometric Functions
	Basic Mathematical Functions
	Matrix, Array, and Record Function.
	Functions for Evaluating Expressions
	Signal Processing Functions
	I/O Functions and Other Miscellaneous Functions

