
The JGoodies Forms Framework

Karsten Lentzsch, March 1, 2004

1 Introduction

The JGoodies Forms framework helps you lay out and implement elegant
Swing panels consistently and quickly. It aims to make simple things easy
and the hard stuff possible, the good design easy and the bad difficult.

This document introduces the Forms framework, analyzes weaknesses
of existing layout systems, presents design goals, explains how these have
been addressed, aquaints you with the Forms layout model and API, and
compares Forms with other layout systems.

Forms focuses on form-oriented panels much like the ‘Segment’ panel
in the example below. Nevertheless, it is a general purpose layout system
that can be used for the vast majority of rectangular layouts.

 Screenshot 1: A Form-Oriented User Interface

Contents

1. Introduction
2. Form Layout
3. Form Builder
4. Form Factories
5. Comparison with other Layout Managers
6. Misc

Weaknesses of Existing Layout Systems

I have found that many developers face the following problems with the
existing layout systems: they are difficult to understand; hard to work with;
they do not represent the human mental layout model; the implementation
does not separate concerns, e.g. a layout manager is used to specify layout
and to fill in components.

Sources of hand-coded panels are often hard to read, they take many
lines of code and you can hardly infer a mental layout from the code.

Some layout managers make the hard stuff impossible; mostly due to a
weak layout specification. For example, most layout managers use pixel
sizes and so don’t retain proportions if you change the font or resolution.
Some layout systems are extensible but don’t handle common layouts and
common problems out-of-the-box. Since only a few developers dig into
details much potential remains unused.

Most layout systems make the simple things difficult. They don’t assist
developers in building frequently used layouts. And so you end up writing
the same code again and again. Let’s say you want to build a panel with 2
columns: one for labels, another for the components; all rows have the
same height except titles that group rows. How long does it take you to lay
out and implement such a design? Should it take more than 10 minutes?
How long does it take you to implement the design of screenshot 1?

Some layout systems make it hard to implement a visual builder on top,
or the builders generate poor layouts or decrease your productivity.

Last but not least, some layout manager implementations are hard to
read, so that even an experienced developer cannot verify the correctness.

Design Goals

We want to build form-oriented panels quickly. The framework shall cover
90% of all panels used in a data-oriented desktop application. Results shall
be consistent over multiple panels, applications and teams. It shall help
novice users achieve good results and expert users save time.

The resulting source code shall be easy to read and easy to understand.
The layout system shall work well with visual builders that either increase
the productivity or increase the result quality or both. The UI construction
process shall be easy to understand

The framework shall ship with well designed examples and all required
parts out-of-the-box so that users are immediately productive and have no
need to learn the implementation or extend the code.

How Forms Addresses the Design Goals

The Forms framework follows five principles:
1. Use a grid for a single layout, use grid systems for many layouts.
2. Separate concerns.
3. Provide a powerful layout specification language.
4. Allow string representations to shorten layout code.
5. Provide developer guidance on top of the layout manager.

1) Grid systems are a powerful, flexible and simple means to lay out ele-
ments. Professional designers use grids to find, balance, construct and
reuse good design in artwork and everyday media, see [1], [7], [8], [11].
And I’ve found that many user interface developers use grids implicitly to
lay out or align components. This works well with paper and pencil and to
a lesser extent with today's visual builders. The latter often stifle creativity
more than they assist in finding and constructing good design.

2) Layout managers often combine many features in a single class:
specify a layout, fill a panel with components and set component bounds.
On the other hand most layout systems lack support for frequently used
layouts and provide no means to reuse common design. These problems
can be fixed if we separate concerns, use classes that specialize in different
tasks and allow to combine them freely. The Forms framework uses a
class to describe a form’s grid, non-visual builders to fill a form, and uses
the layout manager only for one job: compute and set component bounds.

3) With the FormLayout you describe a layout before you fill a panel and
before the layout manager sets the component bounds. You can specify
the form’s grid in an expressive language so that readers can infer a panel’s
layout from your code quickly and modify it easily. A single specification
can be applied to many components; for example, you can specify that all
labels in a column are right-aligned.

4) To further improve the code readability we allow to specify the grid
in a human readable and concise language using string representations.
This way even complex layouts can be expressed in a few lines of code.

5) Forms provides abstractions on top of the layout manager that lead
to consistent UIs and assist you in style guide compliance. Non-visual
builder classes ‘drive’ the FormLayout. They help you traverse the grid and
seed it with components. For example, the ButtonBarBuilder specializes in
building button bars and knows about default gaps and minimum sizes.
The DefaultFormBuilder builds form-oriented panels with label columns
and component columns that are grouped as paragraphs and split into
equally sized subsections.

Factories utilize these builders and return prebuilt panels. For example,
the ButtonBarFactory can create a default bar for OK, Cancel that honors
the platform’s button ordering: Mac vs. Windows.

We end up with three code layers:
1. layout classes: layout manager, sizes, alignments, constraints
2. non-visual builder classes to fill panels
3. factory classes that vend prepared layouts and prebuilt panels

In addition to the code we provide:
4. a demo application
5. a tutorial
6. well designed example applications

2 Form Layout

FormLayout is a powerful, flexible and precise layout manager that aligns
components vertically and horizontally in a dynamic rectangular grid of
cells, with each component occupying one or more cells. To define a form
layout you specify the form’s columns, rows and optionally column groups and
row groups. Everything that applies to columns applies to rows too – just
with a different orientation. FormLayout uses the same API, algorithms and
implementation for columns and rows.

An Example

Let’s jump into an example that demonstrates basic FormLayout features.
We’re going to learn the details step by step in the following sections and
will learn how to write more complex layouts with less code.

Screenshot 2: A simple panel

 1: FormLayout layout = new FormLayout(
 2: “pref, 4dlu, 50dlu, 4dlu, min”, // columns
 3: “pref, 2dlu, pref, 2dlu, pref”); // rows
 4:
 5: layout.setRowGroups(new int[][]{{1, 3, 5}});
 6:
 7: JPanel panel = new JPanel(layout);
 8:
 9: CellConstraints cc = new CellConstraints();
10: panel.add(new JLabel(“Label1”), cc.xy (1, 1));
11: panel.add(textField1, cc.xyw(3, 1, 3));
12: panel.add(new JLabel(“Label2”), cc.xy (1, 3));
13: panel.add(textField2, cc.xy (3, 3));
14: panel.add(new JLabel(“Label3”), cc.xy (1, 5));
15: panel.add(textField3, cc.xy (3, 5));
16: panel.add(detailsButton, cc.xy (5, 5));

Code Example 1: a ‘raw’ implementation of screenshot 2

Before we started to implement the example, we identified the panel’s grid
– including the columns and rows for the gaps between the components.

In lines 1 to 3 we construct a FormLayout and specify the columns and
rows using a string representation, where pref is for ‘preferred size’, min is
for ‘minimum size’, and dlu is a size unit that scales with the font. In line 5
we just say that all component rows (1, 3 and 5) shall get the same height.
In line 7 we create the layout container, a JPanel. In line 9 we obtain a
CellConstraints object used to specify the component locations in the
grid. And finally, in lines 10 to 16 we fill the panel with the components,
where labels are created on-the-fly.

2.1 Column and Row Specifications

The columns and rows are specified by three parts: a mandatory size, an
optional default alignment and an optional resizing behavior. You can use
instances of ColumnSpec and RowSpec or string representations that will
be parsed to create the associated instances of ColumnSpec and RowSpec.

 new FormLayout(“right:pref, 10px, left:pref:grow”, // 3 columns
 “pref, 4px, pref, pref:grow”); // 4 rows

Code Example 2: A FormLayout Specification

In example2 we layout a form with 3 columns and 4 rows. All components
in the first column will be aligned to the right hand side by default and the
column size is the maximum of the preferred widths of the contained
components. The second column is a gap of 10 pixels. The third column
is left aligned and its size starts with the maximum component width and
grows to fill all available horizontal space.

ColumnSpec supports the following alignments: left, center, right, fill;
RowSpec supports top, center, bottom, fill. These are default alignments that
can be overriden for individual components.

A column’s or row’s size is defined by a constant size, component size,
or bounded size. Constant sizes are specified by a value plus unit that is
one of: Pixel, Points, Inches, Millimeter, Centimeter and Dialog Units abbreviated
as px, pt, in, mm, cm and dlu. Component sizes are one of: min, pref, default.

The resize behavior is defined by a non-negative resize weight. The
syntax for the string representation for columns and rows is as follows:

 columnSpec ::= [columnAlignment:] size [:resizeBehavior]
 rowSpec ::= [rowAlignment :] size [:resizeBehavior]

 columnAlignment ::= LEFT | CENTER | RIGHT | FILL | L | C | R | F
 rowAlignment ::= TOP | CENTER | BOTTOM | FILL | T | C | B | F

 size ::= constantSize | componentSize | boundedSize
 componentSize ::= MIN | PREF | DEFAULT | M | P | D
 constantSize ::= <integer>integerUnit | <double>doubleUnit
 integerUnit ::= PX | PT | DLU
 doubleUnit ::= IN | MM | CM
 boundedSize ::= MIN(constantSize;componentSize)
 | MAX(constantSize;componentSize)

 resizeBehavior ::= NONE | GROW | GROW(<double>) | G(<double>)

Spec 1: Column and Row String Encoding Syntax

“10px”, “4dlu”, “min”, “pref”, “default”, “left:6px”, “right:6dlu”,
“left:pref:grow”, “pref:grow(0.5)”, “l:m:g(0.8)”, “left:max
(50dlu;pref)”

Code Example 3: Column String Representations

Component Sizes

Component sizes give a column or row the maximum size of its contained
components, where components can be measured by their minimum or
preferred size. You can specifiy the first by the min size, the latter by pref.
The default size is like the preferred size but shrinks to the minimum size
if space is scarce. See table 1 for the sizing and resizing behavior.

Dialog Units

A layout shall retain proportions when the font size or resolution changes.
For example, a button gap of 4 pixels is fine when used with an 8pt font
on 96dpi; if used with a 12pt font on 120dpi the same gap is too small.
Consequently you should specify sizes of gaps, borders, etc. in a unit that
honors the font, font size and resolution; that’s what Dialog Units are for.
Dialog Units are based on the pixel size of the dialog font and so, they
grow and shrink with the font and resolution.

Only in rare cases you want to use pixel sizes; for example, if you align
components with a non-scaled image.

Bounded Sizes

Bounded sizes allow to specify lower and upper bounds for a column’s or
row’s start size (before resizing). It can be used to ensure a minimum or
maximum column width. For example, the MS user interface style guide [6]
recommends a minimum width of 50 dialog units for command buttons.
In FormLayout you can specifiy such a column with:

new ColumnSpec(“max(50dlu;pref)”);

Bounded sizes are also useful to avoid that tabbed panels seem to ‘jump’
to the left and right, or up and down; the same applies to the cards in a
CardLayout. To make the design stable just reuse the same bounded sizes
in all panels that are switched.

Resizing Behavior

Columns and rows can grow if the layout container becomes larger than
the preferred size. By default, columns and rows won’t resize. The extra
space is distributed over the columns and rows that have a resize weight
larger than 0.0, where each column gets a space proportional to its weight.

Layout Task constant min pref default

Get minimum size constant minimum preferred minimum

Get preferred size constant minimum preferred preferred
Layout (size <= min) constant minimum preferred minimum
Layout (min < size < pref) constant minimum preferred minimum+

available space
Layout (pref <= size) constant

+ resize
portion

minimum
+ resize
portion

preferred
+ resize
portion

preferred
+ resize
portion

Table 1: Sizing Behavior of Constant and Component Sizes

2.2 Column and Row Groups

Column and row groups specifiy that a set of columns or rows will get the
same width or height. This is an essential feature to implement symmetric,
or more generally, balanced design. In the following example it is ensured
that columns 2 and 4 get the same width, rows 1 and 4 get the same height
as well as rows 2 and 3:

 FormLayout layout = new FormLayout(“p, d, p, d”, “p, p, p, p”);
 layout.setColumnGroups(new int[][]{ {2, 4} });
 layout.setRowGroups (new int[][]{ {1, 4}, {2, 3} });

2.3 Cell Constraints

Each component managed by a FormLayout is associated with an instance
of CellConstraints that specifies a component’s display area and align-
ment. The column and row origins are mandatory, but as we will see later,
often a non-visual builder will automatically create the CellConstraints for
you.

By default the column and row span is just 1, and the alignments are
inherited from the related column and row. If possible you should specify
the alignment for the column and row, not for the component; this way
you can reduce the amount of alignment specifications significantly.

CellConstraints objects can be constructed in different ways using a
mixture of ints, objects and strings. I recommend to specify the origin
and span using ints and the alignment with strings – just to increase the
code readability. You can reuse CellConstraints objects because they are
cloned internally by the FormLayout.

 // 1) Creation methods intended for use by humans
 CellConstraints cc = new CellConstraints();
 cc.xy(2, 1); // second col, first row
 cc.xy(2, 1, “right, bottom”); // aligned to right and bottom
 cc.xy(2, 1, “r, b”); // abbreviated alignment
 cc.xywh(2, 1, 4, 3); // spans 4 cols, 3 rows
 cc.xywh(2, 1, 4, 3, “right, bottom”);
 cc.xywh(2, 1, 4, 3, “r, b”);

 // 2) Constructors intended for builders
 new CellConstraints(); // first col, first row
 new CellConstraints(2, 1);
 new CellConstraints(2, 1, 4, 3);
 new CellConstraints(2, 1, CellConstraints.RIGHT,
 CellConstraints.BOTTOM);

 // 3) Constructors intended for building UIs from XML
 CellConstraints cc = new CellConstraints();
 new CellConstraints(“2, 1”);
 new CellConstraints(“2, 1, r, b”);
 new CellConstraints(“2, 1, 4, 3”);
 new CellConstraints(“2, 1, 4, 3, r, b”);

Code Example 4: CellConstraints Construction

Example 4 demonstrates different ways to obtain a CellConstraints object.
The methods in section 1) are the typical and recommended style to create
CellConstraints: specify the column, row, column span and row span with
ints and the optional alignment as an encoded String. As seen before, this
code style often takes a single line of code to add a component to a panel.

The style in section 2) uses objects instead of Strings and gains compi-
le time safety but requires more written code which may clutter your panel
building code. It is recommend for use by non-visual builders, where you
favor safety and efficiency over code readability.

The constructors in section 3) convert a String representation into a
CellConstraints object. They minimize the effort required to build a UI

from a String representation, as decribed by the following syntax:

 constraints ::= column, row [, colSpan, rowSpan][, hAlign, vAlign]
 column ::= <integer>
 row ::= <integer>
 colSpan ::= <integer>
 rowSpan ::= <integer>
 hAlign ::= LEFT | CENTER | RIGHT | DEFAULT | FILL
 | L | C | R | D | F
 vAlign ::= TOP | CENTER | BOTTOM | DEFAULT | FILL
 | T | C | B | D | F

Spec 2: Cell Constraints String Encoding Syntax

3 Form Builder

Layout managers have been designed to talk to a container, not a human.
The Forms framework separates concerns: the layout task from the layout
specification and the panel building process. Therefore, Forms provides a
set of non-visual builder classes that assist you in building panels and that
can shield you from details of the layout manager.

When constructing a panel you talk to a builder which in turn talks to
the layout manager. This leads to a smaller layout manager API and to more
flexibility. Builders can provide a cursor to keep track of the location
where the next component will be added, can create frequently used com-
ponents, can assist in style guide compliance, etc.

Screenshot 3: A common form-oriented layout

FormLayout layout = new FormLayout(
 “right:max(50dlu;p), 4dlu, 75dlu, 7dlu, right:p, 4dlu, 75dlu”,
 “p, 2dlu, p, 3dlu, p, 3dlu, p, 7dlu, ” +
 “p, 2dlu, p, 3dlu, p, 3dlu, p”);

PanelBuilder builder = new PanelBuilder(layout);
builder.setDefaultDialogBorder();
CellConstraints cc = new CellConstraints();

builder.addSeparator(“Segment”, cc.xyw(1, 1, 7));
builder.addLabel(“Identifier”, cc.xy (1, 3));
builder.add(idField, cc.xy (3, 3));

builder.addLabel(“PTI [kW]”, cc.xy (1, 5));
builder.add(ptiField, cc.xy (3, 5));
builder.addLabel(“Power [kW]”, cc.xy (5, 5));
builder.add(powerField, cc.xy (7, 5));

builder.addLabel(“len [mm]”, cc.xy (1, 7));
builder.add(lenField, cc.xy (3, 7));

builder.addSeparator(“Diameters”, cc.xyw(1, 9, 7));
builder.addLabel(“da [mm]”, cc.xy (1, 11));
builder.add(daField, cc.xy (3, 11));
builder.addLabel(“di [mm]”, cc.xy (5, 11));
builder.add(diField, cc.xy (7, 11));

builder.addLabel(“da2 [mm]”, cc.xy (1, 13));
builder.add(da2Field, cc.xy (3, 13));
builder.addLabel(“di2 [mm]”, cc.xy (5, 13));
builder.add(di2Field, cc.xy (7, 13));

builder.addLabel(“R [mm]”, cc.xy (1, 15));
builder.add(rField(), cc.xy (3, 15));
builder.addLabel(“D [mm]”, cc.xy (5, 15));
builder.add(dField, cc.xy (7, 15));

Code Example 5: Implementation of Screenshot 3

Example 5 uses the PanelBuilder to set a default border and to add labels
and separators. Columns and rows are defined before the components are
added to the panel. The next step is to append rows to the layout dynami-
cally. Example 6 uses a sophisticated builder to add rows dynamically to
the layout. It also uses a convenience method to add a label and associated
component in one step. It leads to concise building code:

FormLayout layout = new FormLayout(
 “right:max(40dlu;p), 4dlu, 80dlu, 7dlu, ” // 1st major column
 + “right:max(40dlu;p), 4dlu, 80dlu”, // 2nd major column
 “”); // add rows dynamically

DefaultFormBuilder builder = new DefaultFormBuilder(layout);
builder.setDefaultDialogBorder();

builder.appendSeparator(“Segment”);
builder.append(“Identifier”, idField);
builder.nextLine();

builder.append(“PTI [kW]”, ptiField);
builder.append(“Power [kW]”, powerField);

builder.append(“len [mm]”, lenField);
builder.nextLine();

builder.appendSeparator(“Diameters”);
builder.append(“da [mm]”, daField);
builder.append(“di [mm]”, diField);

builder.append(“da2 [mm]”, da2Field);
builder.append(“di2 [mm]”, di2Field);

builder.append(“R [mm]”, rField);
builder.append(“D [mm]”, dField);

Code Example 6: Rewrite of Example 5

The DefaultFormBuilder adds lines and line gap rows as needed. And it
creates label, titles, separators and accepts pairs of label and component,
which shrinks the panel building code significantly. Other non-visual
builders specialize in building button bars and stacks, map resource keys to
internationalized strings, etc.

4 Form Factories

The Forms framework provides a set of factory classes that can create fre-
quently used layouts, panels, and button bars quickly and consistent.
Whenever possible you should use these factories to create subpanels. The
factories utilize the form builders or the underlying form layout.

Form Factory Example

private JComponent buildInterface() {
 JButton helpButton = getHelpButton();
 JButton backButton = getBackButton();
 JButton nextButton = getNextButton();
 JButton finishButton = getFinishButton();
 JButton cancelButton = getCancelButton();
 ...
 return WizardBarFactory.createHelpBackNextFinishCancelBar(
 helpButton, backButton, nextButton, finishButton,
 cancelButton);
}

5 Comparisons with Other Layout Managers

In this section we compare FormLayout with TableLayout, ExplicitLayout,
GridBagLayout and SpringLayout – all of which are flexible and powerful.

The Forms framework has been designed to supercede TableLayout
and it can often replace GridBagLayout and SpringLayout when building
form-oriented panels. ExplicitLayout offers more flexibility in the location
and size of components than FormLayout.

None of the layout managers mentioned above supports dialog units
or a similar sizing system out-of-the-box. However, SpringLayout can be
extended to provide dialog unit springs, and almost every layout manager
can be wrapped with a mapper from dialog units to pixels.

ExplicitLayout

ExplicitLayout [9] is a very powerful general purpose layout manager. It
provides many features to specify the location and size of a component,
almost all things a designer may need – even for non-rectangular layouts.
Constraints are defined by quite simple but highly flexible expressions.

Beyond the flexibility, the ExplicitLayout offers other useful features:
styles, external UI specification and layout reuse. Styles are similar to the
Forms builder classes; they assist developers in making simple layouts easy.
The current style set provides a level of layout abstraction that is higher
than the abstractions provided by the Forms builders and layout factories.
Very simple forms can be constructed with a single line of code, with the
downside of less flexibility.

ExplicitLayout is licensed under the LGPL and ships with a user guide
and well choosen examples that demonstrate its flexibiliy. The 3.0 release
lacks support for non-pixel sizes (like dlu) and logical sizes as provided by
the Forms layout styles. Anyway, these features could be added as well as a
richer set of styles (or builders).

I'd say the ExplicitLayout is the first choice for non-rectangular layouts
and other complex non-form-oriented designs. Due to its flexibility it is a
powerful weapon – at least in the hands of experienced UI designers. In
contrast FormLayout focuses on form-oriented design and reduces the
flexibility to guide developers in using good design – and avoiding the bad.

TableLayout

TableLayout [3] differs from FormLayout in that it 1) uses a weaker layout
specification, 2) encodes form specifications with number types and 3)
provides no means to give columns or rows the same size.

1) TableLayout lacks the FormLayout’s default component size that
shrinks components from preferred size down to minimum size if the
container space is scarce. Columns and rows have constant or component
size or grow; you cannot combine these options in TableLayout and can-
not specify resize weights. Also, TableLayout cannot specify a column or
row default alignment and doesn’t support cell insets.

2) Column and row specifications are encoded with numbers that are
categorized by their type to express different specification types whereas
FormLayout uses implementations of Size or a string encoding.

Both, TableLayout and FormLayout care about rounding errors when
distributing extra space.

I’ve found that novice and experienced developers can work well with
the TableLayout. The grid-based layout model seems to be easy to learn
and easy to work with. And it seems to me that TableLayout works well
with grid-oriented visual form editors, for example, the free Radical editor.

GridBagLayout

GridBagLayout [11] arranges components in a rectangular grid that is
specified implicitly by component constraints. GridBagLayout has no
means to give columns or rows equal sizes.

The GridBagLayout supports logical panel building directions for left-
to-right and right-to-left. In Forms, builders traverse a form, not the lay-
out manager. Currently Forms provides only builders that are optimized
for left-to-right and top-to-bottom directions.

Changing a grid dynamically is a one-step process in GridBagLayout,
because the GridBagConstraints implicitly specify the layout. FormLayout
requires two steps: change the grid and modify the form’s contents.

The NetBeans and Sun Forte IDEs come with a popular visual editor
that works well with GridBagLayout. The editor doesn’t support dialog
units and has almost no support for consistent design or compliance with
style guides. And from my perspective, this editor requires many steps to
construct even simple design.

In GridBagLayout you need to check all constraints to determine the
grid and how components will be arranged. Even if you reuse constraints,
readers cannot easily infer the layout from the building code. Sources for
panel building are often cluttered by the GridBagConstraints configuration
– even if you use convenience methods to create or reuse constraints.

SpringLayout

SpringLayout [12] ships with the J2SE 1.4. It defines relationships between
component edges using a spring concept. This way it sets the position and
size of components and ties together components, their position and re-
sizing behavior. SpringLayout has been designed to be extendable and can
delegate the layout task to constraints that in turn can implement a layout
strategy. It comes with convenience spring implementations.

With little effort, SpringLayout can give components equal size and it
can be extended with custom springs to support dialog units. Unlike most
other layout managers, SpringLayout may be able to specify inter-panel
layout constraints; I haven’t verified if this works.

SpringLayout needs more code than the FormLayout to express simple
but frequently used form design. From my perspective, the main problem
with SpringLayout is that the layout specification language (Java code)
doesn’t represent the human mental layout model well. You can hardly see
the layout by just looking at the panel building code. FormLayout’s layout
specification language has been designed to express how many people
think and talk about layout. How many lines of code do you need to build
the form in Example 3 with the SpringLayout?

FormLayout favors an expressive layout specification over extensibility.
It has been designed to be powerful and flexible enough to lay out almost
every panel that I’ve designed during the last decade. It covers all panels in
the JGoodies tools and seems to be able to lay out all panels in large apps
like the Eclipse JDT and the NetBeans IDE. And so, I doubt that there’s a
need to extend the FormLayout – at least it isn’t urgent.

6 Misc

7 Future Directions

The JGoodies Forms is a good starting point for producing high-fidelity
Java UIs. I plan to further simplify the UI construction process and provide
guidance to good and consistent design: write new builders, enhance the
factories, add logical sizes, etc.
 I would like to extend the FormLayout to allow inter-panel constraints to
provide a stable layout if you switch panels with a tabbed pane or cards,
for example, to give a label column the maximum width of all labels in the
tabbed panel set. Currently we handle this with bounded sizes.
Precise layout that complies with style guides should distinguish layout
bounds and perceived bounds. If components are rendered with a pseudo
3D effect they often need asymmetric gaps on top and bottom, left and
right to be perceived as symmetric; the same applies to drop shadows.
And I plan to assist vendors in writing a productive visual form editor for
the FormLayout.

UI Template Method

I recommend to use abstract dialog and frame classes that complement
the Forms framework to comprise what you do again and again when
building dialogs and frames: build the content pane, pack it, resize to gain
aesthetic aspect ratios, locate on screen, provide actions for OK, Cancel,
Apply, Help, etc. If you refactor a larger GUI application and form template
methods (see refactoring #345, [4]), such an abstraction is a natural result.

Project State

The FormLayout manager is stable since December 2002, and the API is
stable since March 2003. Tutorial sources demonstrate the FormLayout,
builder classes, different builder styles and layout problems that you can
hardly solve with the JDK layout managers. The Forms Demo is a web
startable application that uses the tutorial sources and visualizes the layout
problems. English and German presentations around the JGoodies Forms
and general Java layout issues are available; a tutorial will be available soon.
Some classes that are work in progress ship in the extras source package:
the DefaultFormBuilder used in Example 6 and the I15dPanelBuilder class
that assists in building internationalized (i15d) panels.

Debugging

Forms ships with the FormDebugUtils that can print debug information to
the console: column and row specs, cell constraints, and grid bounds. And
a special FormDebugPanel paints the form’s grid.

Feedback

Your comments and suggestions regarding the FormLayout, the builders,
factories and this article are welcome and will help me improve this library.

Acknowledgements

The form-oriented building has been inspired by the grid layout system as
described by Kevin Mullet and Darrel Sano in [7]. The FormLayout’s API

has roots in the APIs of TableLayout by Daniel Barbalace, HIGLayout[5]
by Daniel Michalik and GridBagLayout by Doug Stein. Dialog units stem
from Microsoft user interfaces. Many thanks to Johannes Riege and Sun
Microsystems for supporting me in writing and opening the Forms.

Copyright Notes

All rights reserved. No part of this article may be reproduced in any form
by any means without prior written authorization of Karsten Lentzsch.

References

[1] Alexander, Christopher (1964)
 Notes on the Synthesis of Form, Cambridge: Harvard University Press

[2] Apple Computer, Inc. (2002)
 Aqua Human Interface Guidelines, www.apple.com/developer/

[3] Barbalace, Daniel (2001)
 TableLayout, java.sun.com/products/jfc/tsc/articles/tablelayout/

[4] Fowler, Martin et al (1999)
Refactoring: Improving the Design of Existing Code, Reading: Addison Wesley

[5] Michalik, Daniel (2001)
 HIGLayout, www.autel.cz/dmi/tutorial.html

[6] Microsoft Corporation (2002)
 Design Specifications and Guidelines – Visual Design, msdn.microsoft.com

[7] Mullet, Kevin and Sano, Darrel (1995)
Designing Visual Interfaces, Prentice Hall

[8] Müller-Brockmann, Josef (1988)
 Grid Systems in Graphic Design, Stuttgart: Verlag Gerd Hatje

[9] Prayle, Alex (2001)
 ExplicitLayout, www.zookitec.com/explicitlayout.html

[10] Stein, Doug and Sun Microsystems (1995)
 GridBagLayout, J2SE 1.4, java.sun.com/j2se/1.4.1/docs/

[11] Willberg, Hans Peter and Forssmann, Friedrich (1997)
 Lesetypographie, Mainz: Verlag Herrmann Schmidt

[12] Winchester, Joe and Milne, Philip (2001)
 SpringLayout, java.sun.com/j2se/1.4.1/docs/

