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Abstract

The Discrete Time (DT) domain in Ptolemy II is a timed extension of the
Synchronous Dataflow (SDF) domain. Although not completely backward
compatible with SDF, DT keeps most of the desirable properties of SDF like static
scheduling, regular/periodic execution, bounded memory usage, and a guarantee that
deadlock will never occur. In addition, DT has some desirable temporal properties
such as uniformly-timed token flow and causality. This paper will present the
semantics and implementation of the DT domain in Ptolemy II. This paper will also
present the DT domain working with other domains in Ptolemy II. In particular, it
will present applications of DT working with the Graphics (GR) domain for 3D
animated simulations.
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1. Introduction

1.1 Dataflow Computing
We are all familiar with the Von-Neumann/stored-program execution model for
computing. However, there are several viable alternatives to the Von-Neumann execution
model. For example, there are computers with execution models based on neural
networks, analog electronics, and DNA molecules. Dataflow is another example of an
alternative model for computing. Dataflow consists of computing blocks that are
connected in a directed graph. The computing blocks process data from their inputs and
produce data on their outputs. Aside from processing I/O and performing computation,
the blocks also communicate with each other through their connections in the underlying
dataflow graph. Dataflow is commonly used in block diagram programming
environments such as our software system – Ptolemy II.

1.2 Ptolemy II
Ptolemy II [4] is a software infrastructure currently under active development in the
EECS department of the University of California, Berkeley. Ptolemy II can be thought as
a visual programming language that supports hierarchy. Its primarily focus is on the
design and simulation of complex heterogeneous systems. These systems are complex
and heterogeneous in the sense that they mix widely different operations, such as signal
processing, feedback control, 3D visualization, and user interfaces. Users of the Ptolemy
II software design their systems through components that encapsulate computing
capability. Ptolemy II interprets the execution and interaction semantics of its
components through what we call domains. Depending on the domain, the components
can represent subroutines, threads, processes, hardware IP, or even mechanical parts.
Each domain has a well-defined model of computation that specifies the formal semantics
of component behavior in the given domain. Figure 1 shows a screenshot of Ptolemy II.
In particular, it shows Vergil, the front-end graphical user-interface of Ptolemy II. We
will be using a lot of Vergil screenshots in the figures used in this paper. This will help
illustrate our concepts more clearly.

Figure 1: Screenshot of Vergil
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The components in Ptolemy II are called actors. The actors are connected in a directed
graph topology by links called relations. Each actor has input and output ports for which
they communicate with other actors. The actors communicate with each other by passing
messages called tokens. The actors produce and consume tokens during execution (also
known as firing) of the actor. In order to facilitate the firing of the actors, each domain in
Ptolemy II has its own director and receiver class. The director coordinates the
scheduling and execution of actors within the domain. The receivers contain the
necessary buffers for token flow. In some domains, the director also keeps track of time
and concurrency of the actors.

Figure 2. A Ptolemy II component-based graph. The boxes labeled A, B, C, and
D are the actors. The edges that link the actors are called implicit relations. The

edges with diamond-shaped splitters are called explicit relations. The arrows
where the relations/links come in and out of the actors are called ports

1.3 Models of Computation
Models of computation [8] form the mathematical underpinning of each domain in
Ptolemy II. More specifically, a model of computation provides an abstract set of rules in
which the actors in the given domain behave. These rules include: the order (also known
as schedule) in which the actors are fired; the progression of time; and the amount of
buffer memory in each of the actors’ ports. Instead of explaining these concepts using
elaborate examples, we will provide some important questions that motivate the use of
models of computation. These questions will be answered in the latter sections of this
paper.

• There are several different ways to order the sequence in which the actors are
fired. How do I know which one is valid? Is the schedule computed at compile-
time or at run-time?

• How many tokens can an actor consume and produce at each firing? Should an
actor stall when there are no tokens available when it fires?

• How much buffer memory should be allocated for each receiving port of the
actors? What happens when more tokens arrive and the receiving buffer is full?

• What is the meaning of time? What is the minimum time-slice in the progression
of time? Does computation explicitly take time?



_____________________________________________________________________

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II 3

An important principle of Ptolemy II is that the choice of models of computation strongly
affects the quality of a system design. A model of computation is analogous to the “laws
of physics” in the sense that it governs the interaction of actors in the model. The
Ptolemy II software provides a rich variety of models of computation that deal with
concurrency and time in different ways. Here is a rundown of the models of computations
currently provided in Ptolemy II:

CSP - communicating sequential processes
CT - continuous time
DDE - distributed discrete event
DE - discrete event
DT - discrete time (the main subject of this report)
FSM - finite state machines
PN - process networks
SDF - synchronous dataflow

As an aside, we would like to mention that some actors in Ptolemy II are domain-specific;
i.e. they can only work with under certain models of computations. The ‘integrator’ actor
in the CT domain is an example of this. In contrast, there are domain-polymorphic actors
in Ptolemy II. These actors work under all models of computations. The ‘Ramp’ and
‘Scale’ actor are examples of domain-polymorphic actors. Please refer to the Ptolemy II
documentation [4] for more details on these actors.

1.4 Heterogeneous Hierarchies
One of the most important features of Ptolemy II is that different models of

computation can be hierarchical composed to create complex and elaborate systems. In
order to support hierarchy, Ptolemy II has two types of actors – composite actors and
atomic actors. Composite actors are actors that contain other actors inside them, much
like a directory contains files. On the other hand, atomic actors cannot contain any actors
inside. For example, figure 3 shows a graph of simple hierarchical model in Ptolemy II.
The model has three actors: A, B, and C on the top level. Actor B is a composite actor
that contains two actors inside, D and E. On the other hand; actors A, C, D, and E in the
model are atomic actors. The nesting of actors inside actors is the basis for hierarchy in
Ptolemy II.

Composite actors can also contain directors. When a composite actor contains a
director, it is said to be an opaque composite actor. When a composite actor does not
contain a director, it is said to be a transparent composite actor. Opaque composite
actors are much more common in Ptolemy II models because they form the basis for
mixing different models of computations. The director that directs an opaque composite
actor is called the outside or executive director. The director contained inside an opaque
composite actor is called the inside director.
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Figure 3. Outside and Inside Directors for opaque hierarchies
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2. Discrete Time (DT) Domain

2.1 Overview
DT was first-and-foremost designed to be a timed-extension of SDF. SDF is a

standard and well-understood model of computation in Ptolemy Classic and Ptolemy II.
However, SDF lacks semantics for time; and hence doesn’t have some desirable temporal
interaction semantics when hierarchically linked with other timed models of computation
like Discrete Event (DE) and Continuous Time (CT). The prospect of SDF working with
other models of computations is the main motivation for extending it into a timed
domain. As an example, consider the simple Ptolemy II diagrams shown below. We have
a simple model of two actors: a ramp and a timed plotter. The diagram on the left is under
an SDF director; and the diagram on the right is under a DT director. The results of the
execution are shown as plots below the diagrams. The SDF diagram produces a plot that
is fixed at time = 0.0 seconds. All results of the SDF execution conceptually occur at time
= 0.0 seconds. This is largely due to the fact that SDF is an untimed domain; and that
connecting a ramp with a timed plotter under SDF does not have much meaning. On the
other hand, the DT plot shows a more reasonable result where the ramp output values
increase over time.

Figure 4. A comparison of SDF and DT
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There is another view for which we can present DT. Ptolemy II has a rich software
infrastructure for analyzing and modeling systems and signals. Natural and man-made
systems are usually described using continuous-time and discrete-time models.
Continuous-time systems are governed by differential equations. Discrete-time systems
are usually sampled versions of continuous-time systems; and are governed by difference
equations. Mathematical tools like the Laplace and Fourier transform are used to analyze
continuous-time systems. In contrast, Z-transforms and discrete-time Fourier transforms
are used to analyze discrete-time systems. Ptolemy II has a fairly mature infrastructure
for continuous-time modeling, which is implemented in the CT domain. It turns out that
Ptolemy II also has the necessary infrastructure for discrete-time modeling, too. SDF is
excellent in handling sampled systems and difference equations. However, there are bits
and pieces missing in SDF for discrete-time modeling. To be more specific, there is no
concept of the progression of time in the SDF domain; hence we extend it to the DT
domain. Figure 5 shows the basic difference between continuous-time and discrete-time
models in Ptolemy II.

Figure 5. A comparison of CT and DT
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Although the core of this paper is about the theory and implementation of the DT domain
in Ptolemy II, we will provide simple applications at the end of this paper. In particular,
we will focus our applications on simulation and computer graphics animation. Of
course, computer graphics is not the only application of DT; we just happen to have a
preference for it.

We have built a new experimental domain called GR (short for graphics) to handle
computer graphics rendering and geometry management in Ptolemy II. The GR domain is
an untimed domain, so it is useful to couple it with DT to produce animated simulations.
We must now admit that continuous-time models might be more appropriate in computer
graphics applications, especially those that simulate physical phenomena such as a
swinging pendulum. However, the computer that displays the simulation still has to do
the animation in discrete-time. We normally view computer-generated animations at
about 15-30 frames per second in discrete time.

2.2 Synchronous Dataflow (SDF)

The Synchronous Dataflow (SDF) domain [9][10] was originally devised for
component-based design of multi-rate signal processing algorithms. Figure 6 shows an
example of component-based design under SDF. In particular, it shows an SDF model for
simulating the ‘eye diagram’ in communication systems. SDF provides an abstract and
rigorous dataflow specification for executing actors. Moreover, SDF models have several
desirable properties that are proven to hold. These properties include: relatively simple
code-generation, and a guaranteed upper bound on the buffer memory required for each
of the ports. Later work has generalized SDF into more powerful abstract models of
computation such as Boolean Dataflow (BDF), Dynamic Dataflow (DDF), and Process
Networks (PN) [2][11].

Figure 6. An SDF model (left) for simulating the eye-diagram (right) in
communication systems.
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Under the SDF domain, the execution order of the actors is statically determined prior
to execution. In other words, the firing sequence (also known as schedule) of the actors
can be pre-calculated and cached during compile-time or load-time. This schedule is then
periodically repeated during simulation. Every periodic execution of a schedule is called
an iteration. There is very little overhead on the simulation kernel during execution. This
means that most of the time associated with simulation can be devoted to the actors
performing their computations. This also means that the kernel devotes very little time to
figuring out which component should execute next. This is a very desirable property of
SDF that DT inherits.

Before we proceed, it is convenient to change gears and jump to a more abstract
setting. Instead of dealing with real SDF models that are applied to real-world circuits
and systems, we will deal with abstract SDF graphs. It is more convenient to study the
properties of SDF and DT using abstract mathematical concepts. An SDF graph is a
connected directed graph with positive integer labels (implicitly or explicitly) on each
end of every edge. Figure 7 shows an example of an SDF graph. The vertices labeled
with capital letters are the actors.

Figure 7. An abstract SDF graph

2.3 Port Rates and Actor Repetitions and Schedules
By definition, every SDF actor has fixed consumption and production rates on its

ports. That is, for every firing of an actor, a fixed number of tokens are consumed and
produced. This property makes it possible to statically schedule SDF graphs for
execution. We will talk more about scheduling in the latter part of this section, but first,
let us cover some basic definitions and concepts in SDF.

Figure 8. A simple SDF graph with possible schedule (3A)(2B).
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Consider the simple SDF graph shown in figure 8. Actor A produces 2 tokens at
every firing. Actor B consumes 3 tokens at every firing. In SDF jargon, we say that the
output port of actor A has a token production rate of 2. Similarly, we say that the input
port of actor B has a token consumption rate of 3. It is important that all tokens produced
by actor A are consumed by actor B. We can think of this as the principle of conservation
of tokens. All SDF graphs conserve tokens. We want to repeatedly fire actors A and B a
certain number of times so that no tokens are left over afterwards. Let us denote the
number of firings per iteration of actor A as rA and the number of firings of actor B as rB.
If we apply the principle of conservation of tokens, we get the Diophantine equation:
(also called an SDF balance equation)

2 rA = 3 rB

The smallest positive integer solution to this equation is rA=3 and rB=2. These values are
called the actor repetitions of actors A and B, respectively. More complicated SDF
graphs have multiple balance equations. In general, there is a balance equation for every
edge of an SDF graph. Getting back to the diagram, we see that firing actor A thrice and
firing actor B twice causes six tokens to flow from actor A to actor B with no leftover
tokens on the edge. We shall denote the number of tokens flowing per iteration on an
edge as its token flow rate. In the SDF graph shown below, the token flow rates of edges
AB, BC, and CD are 36, 12, and 24 respectively. The token flow rate of an edge is an
important property that we will refer to again later when we discuss DT concepts.
Incidentally, the keen-eyed reader might observe that the output port of actor B and the
input port of actor C do not have labeled rates. The convention for this paper is that ports
without labeled rates have an implicit rate of value one. Such ports are also known as
homogeneous ports. Actors that only have homogeneous ports are called homogeneous
actors.

Figure 9 Another SDF graph (Note the convention used throughout this paper –
ports without labeled rates have an implicit port rate of value one)

Once the balance equations of an SDF graph are solved, the token flow rates of an
edge can be calculated using the following equation:

token flow rate = actor repetitions * port rate
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There are actually two ways to view the previous equation. Since every edge connects a
source and destination actor in an SDF graph, we can interpret the previous equation
either from the source actor’s viewpoint or from the destination actor’s viewpoint. From
the source actor’s viewpoint, the port rate is its production rate. From the destination
actors’ viewpoint, the port rate is its consumption rate.

The balance equations of an SDF graph play a key role in the scheduling of the SDF
graph. Those SDF graphs that do not have solutions to their balance equations are said to
be not schedulable. Recall that an SDF schedule is a sequential ordering of the actors for
execution. Also recall that the director periodically fires the actors in an SDF graph
according to the schedule sequence. For example, the SDF graph shown in figure 8 can
have a possible schedule of (3A)(2B). This notation is shorthand for a schedule that fires
actor A thrice consecutively and then fires actor B twice consecutively. We must now
note that SDF schedules are not necessarily unique. The given SDF graph can have a
different schedule: A(2AB). In ordinary words, this schedule means fire actor A once
and then fire actor A and B in sequence twice. Another important concept worth noting is
determinism. Determinism in an SDF graph means that the end result of an iteration over
the graph should be the same no matter what schedule is used.

There is a fair amount of literature on SDF scheduling. For our purposes, we just need
to know what SDF schedules are and how to read SDF scheduling notation. We will not
go into the details of SDF scheduling algorithms and SDF graph theorems. The
enthusiastic reader is motivated to read the original SDF paper [10]. The paper gives
more details on the formal semantics and scheduling of SDF graphs.

2.4 Delays, Loops, and Deadlocks
In general, looped directed-graph topologies are not allowed in SDF because they can

cause data-dependency problems. However, if delay actors are inserted into loops, these
problems can be fixed. Delay actors are special SDF actors that act as buffers for data-
delay. They also act as actors for holding initial tokens during the start of the model
execution.

It is convenient at this point to digress and talk about notation first. We use the
notation Z-1 to denote delay actors in this paper. For those who are familiar with the
conventions used in signal processing block diagrams, this will look familiar as the
inverse of the Z transform variable. The value of exponent over the Z variable signifies
the number of data delays in the actor. For example, Z-2 means an actor with two data
delays and Z-3 means an actor with three data delays.

Let us examine an example of an SDF graph with delay actors. Consider the SDF
graph shown in figure 10. Let us say that in the first iteration of execution, actor A
produces tokens t1 & t2 on its first firing, t3 & t4 on its second firing, and t5 & t6 on its
third firing. Now, since there is a delay actor in between actors A and B, it holds an initial
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token, which we will call t0. From actor B’s point of view, the tokens arriving during the
iteration will be t0, t1, t2 on the first firing and t3, t4, t5 on the second firing. The token t6
will not arrive until the next iteration. This illustrates a delay in the consumption of
tokens by actor B from those tokens produced by actor A. The delay was caused by the
insertion of an initial token, t0, by the delay actor.

Figure 10. An SDF graph with a delay actor

Figure 11. A looped SDF graph

Aside from having solutions to their balance equations, all schedulable SDF graphs
should also be deadlock-free. Deadlock occurs when there are not enough tokens for any
actor to execute at a certain point of time during the execution. For example, consider the
SDF graph shown below, the delay actor produces two initial tokens during the start of
the execution. Actor A then fires to produce three tokens for actor B. However, at this
point actor B does not have enough tokens to fire. In fact, none of the actors in the SDF
graph is ready to fire. This is deadlock. Usually, it is possible to fix deadlock problems by
increasing the initial tokens in delay actors in the loop. For example, in figure 12,
changing the delay actor from Z-2 to Z-4 is enough to prevent deadlock.

Figure 12. A deadlocked SDF graph
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2.5 Design Features and DT Semantics
We came up with three important criteria in the design of DT. These criteria, in our
opinion, form the core desirable properties of our proposed model of computation. These
criteria also helped as our semantic guidelines in extending SDF.

a) Uniform Token Flow: The time interval between tokens should be regular and
unchanging. This conforms to the idea of having sampled systems with fixed rates.
The tokens flowing in DT do not keep internal time stamps. Each actor has to query
the director in order to get the current simulation time.

b) Causality: Tokens produced by an actor should only depend on tokens produced or
consumed in the past. This makes sense because we don’t expect an actor to produce
a token before it can calculate the token’s value. For example, if an actor needs three
tokens t1, t2, and t3 to compute token t4, then the time when tokens t1, t2, and t3 are
consumed should be earlier than or equal to the time when token t4 is produced. Note
that in DT semantics, time does not get incremented due to computation.

c) SDF-style semantics: We want DT to be a timed-superset of SDF with compatible
token flow and scheduling. However, we will show in section 2.8 that we can only
approximate this behavior. We will show that it is not possible to have uniform token
flow, causality, and SDF-style semantics at the same time. Causality breaks for non-
homogeneous actors in a feedback system. We have to introduce forced-latencies that
preclude DT from being completely backward compatible with SDF. More on this
later.

Side note: From here onwards, we will use the term ‘DT dataflow graph’ to
interchangeably mean ‘SDF graph’. Most of the topics we will discuss after this section
have to do with temporal semantics, which are only interesting in DT dataflow graphs.

2.6 Global and Local Time

The firings of the actors in a DT dataflow graph form a partially ordered set. This
execution ordering of the actors means that certain actors have to be fired before certain
actors. However, since this ordering is only partial, some actors do not have execution
ordering dependency with respect to other actors. This means that some of the actors in a
DT dataflow graph can be executed concurrently. For example, if you consider the DT
dataflow graph shown on figure 13, you will see that actor C does not have any data
dependency relationships with actors A and B; hence actor C can be executed
concurrently with actors A and B.
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Figure 13. A DT dataflow graph illustrating concurrency and partial ordering

This inherent concurrency in DT dataflow graphs introduces two notions of time in
DT – global time and local time. Global time increases steadily as execution progresses.
Moreover, global time increments by fixed discrete chunks of time based on the value of
the period parameter. On the other hand, local time applies to each of the ports in the
model. All of the ports have distinct local times as an iteration proceeds. The local time
of a port gets monotonically incremented every time a token is consumed. Local time
obeys the following constraint with respect to global time:

global time < local time < (global time + period)

The period parameter specifies how much simulated time one iteration takes to
execute. For example, let us say that the DT dataflow graph shown in figure 13 has a
period value of 3.5. At the start of the execution, the model has global time 0.0. At the
end of the first iteration, the global time is 3.5. At the end of the second iteration, the
global time is 7.0. This repeats ad infinitum.

2.7 Token Timeline Charts

In order to analyze discrete-time models, we need to introduce token timeline charts.
For those who have seen or used Gantt charts for task scheduling, token timeline charts
might look similar. Token timeline charts are useful for visualizing the time when tokens
occur. This, in turn, helps in determining causality in DT dataflow graphs. These charts
consist of token timelines for each edge of the DT dataflow graph. All token timeline
charts are schedule-independent; i.e. the token timeline chart of a DT dataflow graph is
independent of its schedule.
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Figure 14. A simple DT dataflow graph (top) and its token timeline (bottom)

Consider the simple DT dataflow graph shown above. At each iteration, six tokens
flow from actor A to actor B. These tokens are labeled 1 to 6 in the AB token timeline.
There are two important things to note here. First, the time between tokens in the timeline
is equally spaced. This is expected from design feature#1 in section 2.5. Second, the sum
of these token intervals is equal to one period interval. This follows from DT semantics
described in section 2.5. Using these observations, we can generalize and give the
equation for the time interval between tokens in an edge:

time interval between tokens = period / token flow rate

Let us look at the slightly more complicated DT dataflow graph shown below. At
each iteration, six tokens flow from actor A to actor B; and two tokens flow from actor B
to actor C. If we view edges AB and BC as independent, we have the token timeline
chart shown in figure 16. However, there is a data dependency between edge AB and
edge BC. The token timeline chart shown in figure 16 is invalid because it doesn’t take
into account causality (design feature#2). Tokens cannot flow from actor B to actor C
until after three tokens are made available to actor B by actor A.

Figure 15. Another DT dataflow graph
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Figure 16. An invalid (non-causal) token timeline chart for the previous graph

Our first approach to keeping causality is through the introduction of initial time lags
in the token timelines. We will show later in the next section that this approach has some
flaws and will have to be abandoned. We are only showing it here to reveal the pitfalls
we encountered while experimenting with DT; and to motivate the reader to the rationale
behind our approach in next section. So in figure 17 we insert an initial time lag in the
firing of actor B. This results in a corresponding initial time lag in the BC token timeline.
This approach works for arbitrarily long chains of loop-less DT dataflow graphs. It also
works for loop-less DT dataflow graphs with delay actors.

Figure 17. Token timeline chart corrected by inserting an initial time lag on edge BC

Figure 18 shows another DT dataflow graph and its token timeline chart. There are
several interesting things to note regarding this DT dataflow graph. The graph has a delay
actor. The result of the delay actor on the flow of tokens is apparent in the token timeline
chart. We can see that there is an initial token inserted in the ZB timeline as a result of the
delay actor. We can also see that the tokens in the ZB timeline are exactly those tokens in
the AB timeline delayed by one token time interval. This observation results from one
important DT fact: In DT, delay actors not only act as data-delay actors, but also as time-
delay actors.
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Figure 18. A DT dataflow graph with a delay actor

2.8 Causality and Latency

Inserting initial time lags is enough to fix all causality issues for loop-less DT
dataflow graphs. However, problems invariably show up for looped DT dataflow graphs.
In fact, these problems are serious enough that we have to abandon the idea of initial time
lags and introduce the concept of latency.

Before we start talking about latency, let us first consider our original intuition
regarding causality in looped DT dataflow graphs. We thought that being deadlock-free
was enough for causality.

Conjecture: Every deadlock-free DT dataflow graph is causal

It turns out that our intuition is wrong. It is possible to have a deadlock-free DT
dataflow graph that will have causality problems. Our counterexample to the conjecture
is shown on figure 19. The graph is deadlock-free and has a unique schedule: ABZ.
When we analyze the token flow across the actors through time, we will see that causality
breaks. Let us begin our analysis. At first, the delay actor produces an initial token to
cause actor A to fire. After which, actor A produces two tokens for actor B. We insert an
initial time lag for actor B while it waits for the two tokens from actor A. When actor B
fires, the output is fed to the delay token which causes a time delay before the token is
fed back to actor A. This delay is actually longer than the time interval between tokens in
actor A. Hence, actor A cannot fire in the second iteration without breaking causality
(design feature#2) or breaking uniform token time intervals (design feature #1). This
presents a serious problem in DT semantics. We’ve tried different approaches to solving
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this problem. One interesting approach involved abandoning uniform time intervals
between tokens and introducing iteration start and end times. That ultimately didn’t work
because we kept on coming up with more complicated dataflow graphs like the one
shown figure 20 that cause other problems.

Figure 19. A counter-example to the conjecture. This non-causal DT dataflow
graph cannot be made causal by inserting initial time lags

Figure 20. A more complicated DT dataflow graph
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The ultimate solution we came up with is the introduction of latency. Latency comes
in the form of initial tokens. Since we already observed that every actor with a non-
homogeneous input port requires an implicit initial time lag, it might make sense to make
the time lag explicit. Forcing initial tokens does this. We call these initial tokens as
latency tokens.

Consider the example in figure 21. Instead of moving the BZ timeline to after the
second token from actor A is available, we put an initial token in the output port of actor
A, much like we have initial tokens on delay actors. The token timeline chart shows that
this does not violate causality. Actor A can fire during the second iteration because of the
latency token provided by actor B at the start of the first iteration. In general, the insertion
of initial tokens on the output ports of actors with non-homogeneous inputs will get rid of
all causality problems, even for looped topologies.

Figure 21. A fix for our counterexample using latency tokens

The introduction of mandatory latency precludes our backward-compatibility with
SDF (design feature#3). This is not necessarily all that bad. In SDF, initial tokens are
optional for non-delay actors. In DT, initial tokens are required for actors with non-
homogeneous input ports. A properly designed SDF model will behave similarly under
DT. The only difference would be at the start of the execution. For example, in audio
signal processing applications, the difference between the execution of an SDF and a DT
model might be a few milliseconds of silence.
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Figure 22. An SDF actor

How many initial tokens should be inserted on the output ports of non-homogeneous
actors? Consider the actor shown in figure 22. Actor A has input port consumption rate m
and output port production rate n. We have calculated that the number of initial tokens
required for the output port should at least be:

For SDF actors with multiple input ports, the same formula holds, but we replace the
variable m with the maximum (argmax) of the input ports consumption rates. Please see
the appendix for details on how we derived this expression.

Before we conclude this section, let us go back to the some of our previous DT
diagrams and correct them by putting latency tokens on ports where these tokens are
necessary. It turns out that we don’t need to modify the token timeline charts for figures
14 and 18. However, we need to correct the token timeline chart of figure 15.

Figure 23. A corrected timeline for the graph in figure 15.
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2.9 Hierarchical Discrete Time

Hierarchical DT has similar semantics as hierarchical SDF. The main difference has
to do with temporal semantics. Before getting into this, it is first appropriate to discuss
the details of hierarchical SDF. There are two ways to hierarchically compose SDF
graphs. The composition can either be transparent or opaque.

Transparent composition of SDF graphs is trivial. The director unravels all
transparent composite actors before execution and schedules the whole system as if it
were not hierarchical. For example, consider the hierarchical SDF graph shown below.
This graph is equivalent to non-hierarchical SDF graph shown below it. The same
concept applies to the way DT handles transparent hierarchies.

Figure 24. Two semantically equivalent SDF graphs. The top graph shows a
hierarchical SDF graph with a transparent composite actor. The bottom graph

shows a semantically equivalent non-hierarchical SDF graph.

Opaque composition of SDF graphs is more involved. The trick is coming up with
schedules for both the inside and outside graphs that are consistent with one another. We
first consider the scheduling of the graph inside the composite actor. The input and output
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ports of the composite actor are treated as actors with repetitions value of one and with
unknown token production and consumption rates. The scheduler then uses balance
equations to get the rates of these ports. Once the rates are determined, a schedule for the
inside graph can be calculated. After which, a schedule for the outside graph can be
calculated by treating the opaque composite actor as an ordinary atomic SDF actor with
the recently computed rates on its input and output ports.

Figure 25. An example of an opaque hierarchical SDF graph

Consider the opaque hierarchical SDF graph shown above. After scheduling the
inside graph, the port rates for the opaque composite actor containing actor B can be
determined. In this example, the calculated token consumption rate is 2 and the calculated
token production rate is 3. This information is then propagated to the outside graph. After
which, it is possible to schedule the outside graph. The end result would be the schedule
for the inside graph: B (a trivial schedule); and the schedule for the outside graph:
(2A)X(3C). X stands for the composite actor containing actor B. It is important to note
that the port rates are not just copied from the port rates of actor B. The scheduler
actually had to solve balance equations to come up with token consumption rate and
production rate values for the composite actor. The opaque hierarchical SDF graph in



_____________________________________________________________________

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II 22

figure 26 shows another example of the procedure. The end result would be a schedule
for the inside graph: (3B)(2C), and a schedule for the outside graph: (3A)(2X)(3D).

Figure 26. Another example of an opaque hierarchical SDF graph

Now that we have discussed the semantics of hierarchical SDF, it is time to discuss
the temporal semantics of hierarchical DT. Actually, it is quite simple. The outer director
acts a master and the inner director acts as a slave. Users cannot set the period parameter
of the inner director’s period parameter. The inner director uses the period of the outside
director to determine its own period. This is why it is a slave to the outside director.
There is an explicit formula for calculating the period of an inside director. Let us denote
RI as the actor repetitions of the composite actor that contains the inner director. The
period of the inner director is given by the formula:

inner period = outer period / RI

This formula was derived from a simple analysis of how to keep the token time intervals
between the outside director and the inside director consistent.
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3. DT and Other Ptolemy II Domains

3.1 Heterogeneous Hierarchies in Ptolemy II
In this section, we explain the semantics of composing DT with other Ptolemy II

domains. In particular, we will discuss composing DT with SDF, DE, CT, and GR. We
will provide simple examples of heterogeneous models involving DT. More elaborate
examples and applications will be given in Section 4 of this paper. Note that, hierarchical
compositions of DT with the CSP, PN, and DDE domains are not covered in this paper;
and are the subject of future research.

3.2 Synchronous Dataflow (SDF) Domain
Hierarchically compositions of DT with SDF are very similar to plain hierarchical DT

and plain hierarchical SDF. We already discussed these in section 2.9. There isn’t much
to mention except for the fact that the mixed model has temporal semantics that follows
the DT model.

3.3 Discrete Event (DE) Domain
The Discrete Event (DE) domain [14] in Ptolemy II provides a general environment

for time-oriented simulations of systems such as queuing systems, communication
networks, and hardware systems. Discrete event systems are well understood by the
simulation research community. There are several good books written on the subject, so
we will not give a detailed account on the semantics of discrete event systems. Our main
interest here is to explain the semantics of composing DT with DE.

Case#1: DT inside DE
The DT composite actor behaves like a clock actor. It requests the DE director to fire

it periodically. The period parameter of the DT director is used to determine the time
between firings. If the DT composite actor has input ports and there are not enough
tokens on its input ports when it is fired, then it simply does not fire. If the DT composite
actor has output ports, the times when tokens are produced are exactly those times when
they show up on the token timeline chart of the DT dataflow graph. This means that the
time between output tokens of each output port of the DT composite actor should be
constant during a specific firing. This is the exact same behavior that we prescribed in
design feature#1 of section 2.5. Figure 27 shows an example of a DT subsystem inside a
DE model.

Case#2: DE inside DT
The DT director executes the DE composite actor as if it were a homogeneous atomic

actor. The static DT schedule determines when the DE composite actor will be fired, so
the DE composite actor cannot explicitly request to be fired at a certain time. To be more
precise, the DT director ignores firing requests of a DE composite actor. The DT director
acts as a master that controls the progression of time. The DE composite actor adjusts its
time with respect to outside DT director.
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Figure 27. DT inside DE. The DT subsystem takes in values in its
input port and produces four copies in its output port. The clock actor

has period 2.0; and the DT subsystem has period 0.5 .

Figure 28. CT inside DT
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3.4 Continuous Time (CT) Domain

The Continuous-Time (CT) domain [11] in Ptolemy II provides a general
environment for representing and simulating systems governed by continuous-time
behavior. It is frequently used in control system and mixed signal applications. Again, we
refer the enthusiastic reader to the bibliography for more details.

Case#1: DT inside CT
The DT composite actor behaves like a clock actor. It requests the CT director to fire

it periodically. The period parameter of the DT director is used to determine the time
between firings. If the DT composite actor has input ports and there are not enough
tokens on its input ports when it is fired, then it simply does not fire. If the DT composite
actor has output ports, the times when tokens are produced are exactly those times when
they show up on the token timeline chart of the DT dataflow graph. Note that, unlike the
DE director, the CT director needs to fire its actors at times even when the actor didn’t
explicitly request for that firing. In view of this, if the DT composite actor is fired at a
time that is not in its period intervals, it simply doesn’t fire.

Case#2: CT inside DT
The semantics of running a CT composite actor inside a DT model is not well

understood at this time. We are still doing research on this area. We do have a limited
implementation, which we would describe here. The main problem we encountered has to
do with static scheduling in DT. The CT composite actor needs to dynamically request its
outside director to fire it at certain times. The DT director cannot handle dynamic firing
requests. We need the dynamic dataflow (DDF) or process networks (PN) domains to
handle such unpredictability.

The DT director executes the CT composite actor as if it were a homogeneous atomic
actor. The static DT schedule determines when the CT composite actor will be fired, so
the CT composite actor cannot explicitly request to be fired at a certain time. The DT
director acts as a master that controls the progression of time. The CT composite actor
adjusts its time with respect to outside DT director. These restrictions dictate a limitation
on the CT subsystem. The general CT subsystem will not work in DT. In particular, we
need to impose the restriction that the CTPeriodicSampler actor inside the CT subsystem
has to have a sample period that matches the period of the DT director. This is shown in
figure 28.

3.5 Finite-State-Machine (FSM) Domain

The Finite-State-Machine (FSM) domain in Ptolemy II provides a general
environment for representing control-flow graphs. It is frequently used in control-
oriented applications. Finite-state-machines are well studied and understood by the
general computer science community. In fact, it is the most basic model of computation
covered in an undergrad complexity theory class.
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Case#1: FSM inside DT
Since FSM is an untimed domain, putting an FSM composite actor inside DT is

simple. The static DT schedule determines when the FSM composite actor will be fired.
Under DT, a FSM composite actor would behave like a homogeneous atomic actor. We
can think of the FSM composite actor as an actor capable of control-flow as well as
dataflow.

Case#2: DT inside FSM
This case is currently not implemented in Ptolemy II. This case is actually a special

case of *CHARTS which will be covered in case#3. It is the subject of future work.

Case#3: *Charts
*Charts [5] (pronounced as “star-charts”) form one of the most important hierarchical

compositions in Ptolemy II. In general, *charts are arbitrarily deep hierarchical
compositions of mixed concurrency models (such as dataflow, CSP, SR, DE) with FSM’s
placed anywhere within it. This general case is currently not implemented in Ptolemy II.
There has been some work on heterochronous dataflow (HDF), which is SDF inside FSM
inside SDF. There are plans to extend this to DT-HDF (DT inside FSM inside DT) in the
future.

3.5 Graphics (GR) Domain
GR is a new experimental domain under development in Ptolemy II. Its primary

purpose is to provide an infrastructure for displaying three-dimensional graphics in
Ptolemy II. GR. is an untimed domain that follows loop-less synchronous/reactive (SR)
semantics. It is useful to hierarchically combine DT with GR to produce animated
simulations. Both domains work hand in hand to produce well-defined Ptolemy models
for a visual simulation. GR handles the visual display of information; and DT handles the
passage of time.

Case#1: DT inside GR
The DT composite actor behaves like a domain-polymorphic actor. It fires when the

GR scheduler determines that it needs to be fired. The period parameter of the DT
director is used to keep track of time. If the DT composite actor has input ports and there
are not enough tokens on its input ports when it is fired, then it simply does not fire. If the
DT composite actor has output ports, the times when tokens are produced are exactly
those times when they show up on the token timeline chart of the DT dataflow graph.

Case#2: GR inside DT
Since GR is an untimed domain, hierarchical compositions with DT are simple.

Under DT, a GR composite actor would behave like a homogeneous atomic actor. We
can think of the GR composite actor as a glorified plotter that takes in data and produces
graphical output.
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4. Applications in 3D Simulation

4.1 GR Revisited

As mentioned previously, GR is a new experimental domain under development in
Ptolemy II. We will give more background information on GR in this section because it
plays a key role in the applications that we will discuss. The basic idea behind the GR
domain is to arrange geometry and transform actors in a directed-acyclic-graph to
represent the location and orientation of objects in a natural world scene. This topology
of connected GR actors form what is commonly called in computer graphics literature as
a scene graph. The GR director converts the GR scene graph into a Java3D [1]
representation for rendering on the computer screen. It is convenient to talk about two
types of scene graphs at this point. The first type is the abstract scene graph. The second
type is the GR scene graph used in implementation. Abstract scene graphs provide simple
and intuitive view of the overall structure of a scene, but do not provide complete
information. GR scene graphs are verbose and hard to read, but contain all the
information needed by the computer to render a scene. We will talk about these later.
Meanwhile, let us discuss abstract scene graphs further. Figure 29 shows the abstract
scene graph of a robotic arm and a tower of Hanoi set on top of a table. The abstract
scene graph captures the parent-child relationship between different objects in the scene.
For example, when the upper limb of the robotic arm moves, the end-effector of the
robotic arm moves with it. In other words, the upper limb is a parent of the end-effector.

Figure 29. An example scene graph
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One key point about scene graphs is that the graph’s topology may change over
time. For example, the abstract scene graph in figure 29 may change into the one in figure
30 when the robotic arm grabs the red ring. In this case, the red ring is no longer a child
of the tower of Hanoi set. In general, in a complex scene graph, there can be arbitrary
pruning and grafting of subgraphs during a simulation.

Figure 30. Scene graphs may change over time

4.2 Robotic arm model

Most of the 3D simulation applications that will be discussed in this paper will be
related to a particular robotic arm. We decided to work with a Lynxmotion 5-axis robotic
arm in the course of the development of the GR domain. In our opinion, robotic arms
offer a nice mixture of electromechanical complexity that makes it an ideal application of
our current research. Figure 31 shows a picture of the robotic arm on the left and its
simulated counterpart on the right. The robotic arm has four degrees of freedom and an
end-effector in the form of a gripper. We used Ptolemy II to control the movement of the
robotic arm through serial communication with an embedded PIC16c620 microcontroller.
The microcontroller handles the low level PWM control of the arm’s servomotors.
Ptolemy II handles high-level functions like motion planning and inverse kinematics. In
addition, Ptolemy II uses the GR domain to simulate the visual appearance and
movement of the robotic arm.
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Figure 31. Real (left) and simulated (right) robotic arm

Figure 32. The GR scene graph for the robotic arm
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It is now convenient to return to our discussion about GR scene graphs. Scene graphs
are represented internally in the GR domain through geometry and transformation actors.
The geometry actors contain polygon vertices that represent the mechanical shape of the
object to be simulated. The transformation actors contain 4x4 matrices that are used to
transform the polygon vertices of the geometry actors. There are currently three
transformation actors in Ptolemy II – rotate, translate, and scale. The GR scene graph of
our robotic arm model is shown in figure 32. There are six geometry actors in the model
– robotic arm stand, shoulder base, lower limb, upper limb, wrist, and end-effector. These
actors actually refine to simpler geometry actors, but that is not important in this
discussion. Instead, it is important to note that there are transform actors that are used for
the pose and placement of the geometry actors. This is what differentiates the GR scene
graph from the abstract scene graph.

4.3 DT & CT: Pendulum Model

Up to now, DT has been largely missing in our applications discussions. It is time to
show applications that use DT. The GR domain by itself is not enough for producing
interesting simulations in Ptolemy II. It is necessary to bring other Ptolemy II domains to
the forefront to drive the 3D simulations in GR. Figure 33 shows a top-level
representation of a simple pendulum model. The discrete-time model refines to a CT
subsystem and a GR subsystem. The CT subsystem models the physical characteristics of
the pendulum. The GR subsystem models the visual appearance of the pendulum. The
top-level DT system acts as the overall coordinator and timekeeper.

Figure 33. Top-level representation of the pendulum model
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Figure 34. Vergil screenshot of the pendulum animation

Figure 35. Continuous-time model for the pendulum
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The CT subsystem drives the angular displacement of the pendulum as time proceeds.
Figure 35 shows the CT subsystem that characterizes damped pendulum dynamics. For
those of you familiar with Simulink, this diagram will look like with Simulink .mdl
model. This diagram is actually equivalent to the second order differential equation:

where θ is the angular displacement of the pendulum; t is the time; q is the damping
factor; g is earth’s gravitational acceleration; and l is the length of the pendulum string.

Figure 36. The GR scene graph for pendulum model
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The GR scene graph for this pendulum model is very simple. It is shown in figure 36.
Box-shaped geometry actors represent the four walls of the crate. The cylinder geometry
actor represents the pendulum string. The sphere geometry actor represents the pendulum
bob. It is important to note that the pendulum bob is a child of the pendulum string. The
rotate transform actor gets angular displacement values from the input port and
determines how the pendulum should be rendered. The Viewscreen actor is used as the
root of the GR scene graph.

4.4 DT & DE: Inverse Kinematics

One of the most important aspects of controlling a robotic arm has to do with the
positioning of the end-effector of the robotic arm. In general, given a desired position for
the end-effector, the programmer of a robotic system does not want to explicitly specify
the joint torques for each motor of a robotic arm. Instead, the programmer wants an
algorithm that would automatically calculate the joint torques. This problem is called the
inverse kinematics problem. Inverse kinematics is a well-studied and well-understood
area of robotics. There are numerous standard inverse kinematics algorithms in the
robotics and computer graphics literature [6][7][17]. For our purposes, we just want to
pick an off-the-shelf inverse kinematics algorithm and use it in our robotic arm
simulations. Inverse kinematics is a vital prerequisite to building more complicated
simulation models of robotic arms. For example, if we want to have an unscripted
animation of the autonomous movement of a robotic arm, we need to specify a space
curve and apply inverse kinematics at key points in that space curve.

We chose to implement the cyclic-coordinate descent inverse kinematics algorithm. It
is a relatively simple iterative algorithm that can be implemented using dataflow models.
However, it requires some control flow parts that cannot be modeled using DT. We opted
to use the discrete event (DE) domain and hierarchically compose it with DT in our final
implementation. DT handles the parts of the algorithm that can be modeled using static
dataflow. These include calculation of dot products & cross products, saturated
arithmetic, and vector rotations.

We will not discuss the algorithmic details of the cyclic-coordinate descent algorithm
here. Instead, we would like to give screenshots of the implementation and results. Figure
37 shows a DE subsystem that further refines to several DT subsystems. Figure 38 shows
a screenshot of a demo that uses our implementation of the cyclic-coordinate descent
algorithm. One minor side note here – although the block diagram of the cyclic-
coordinate descent algorithm implementation looks very complicated, it is actually very
simple. We did not vectorize the connections in our model. We can easily make the
model less cluttered by using the RecordAssembler and RecordDisassembler actors in
Ptolemy II.
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Figure 37. Ptolemy II screenshot of cyclic-coordinate-descent
algorithm implementation using a hierarchical composition of DT and DE

Figure 38. A screenshot of the inverse kinematics demo
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4.5 DT & FSM: Picking Objects

We used the *charts formalism [5] to represent the way a robotic arm would pick and
drop objects. Recall from figures 29 and 30 that the scene graph of a simulation may
change over time. For a simple system like a tower of Hanoi set with two rings, there are
three possible scene graphs. These scene graphs correspond to three states in the robotic
arm simulation. The states are shown in figure 39. The *chart representation enabled us
to animate the robotic arm picking and moving rings around in the tower of Hanoi set.

Figure 39. Three states for the robotic arm animation

Figure 40 shows the diagram for our robotic arm animation. In particular, it shows the
hierarchical composition of DT with FSM and with GR. The FSM subsystem stores the
internal state of the robotic arm. As mentioned previously, there are three states in this
subsystem. The GR subsystem stores the scene graph for the robotic arm model and
renders the animation on the computer screen. The top-level DT system controls the
overall progression of time.

To sum up this section, we would like to reiterate that DT is useful in acting as a
timekeeper in our 3D simulations. DT does not have the run-time overhead of DE and
CT, so it is beneficial to use it in producing real-time animations.
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Figure 40. Nested hierarchies: DT refining to FSM and GR
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5. Conclusion & Future Work

DT is a timed-extension of SDF with mandatory latencies for actors with non-
homogeneous input ports. DT provides temporal semantics to SDF, which makes DT
better suited for hierarchical composition with DE and CT. The main application of DT is
the area of systems and signals. However, we have competently used it for 3D simulation
applications. DT, when hierarchically combined with GR, is useful for providing
temporal semantics to interactive computer animations.

There is certainly a lot of room for future work in this research area. We have barely
scratched the surface in our study of discrete-time models and its applications. Here is a
sampling of research directions that are worth pursuing in the future:

• The current implementation of the discrete-time domain in Ptolemy II is not
optimized for speed. A lot of the code was written without thorough
understanding of the powerful features and quirks of the Ptolemy kernel. It is
quite possible that a rewrite of the major portions of DT is necessary to gain
improvements in simulation speeds.

• There is a code-generation framework for the SDF domain in Ptolemy II. This
framework compiles SDF models into Java programs. Extending this framework
to work with DT shouldn’t be very difficult.

• There are several domains in Ptolemy II that are left unexplored in the context of
hierarchical compositions with DT. These domains include CSP, DDE, and PN.
Also, there is still a lot of work to be done in the general case of hierarchically
linking FSM with DT.

• On the applications side, we can implement inverse kinematics algorithms using
Jacobian matrix methods. This method of doing inverse kinematics may be the
better suited for the discrete-time domain.
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Appendix: Non-homogeneous DT actors

In Section 2.8, we discussed a necessary criterion for all non-homogeneous actors.
Specifically, we imposed that initial tokens should be inserted on the output ports of non-
homogeneous actors. Consider the non-homogeneous actor shown in figure 41. It has an
input port consumption rate of value m and an output port production rate of value n.

Figure 41. An SDF actor

The number of initial tokens needed for this actor should at least be

where the half-brackets stand for the integer ceiling function. We will now discuss how
we arrived at this value.

As a matter of convenience, we enlarge the topology in figure 41 into the one shown
in figure 42. Figure 42 shows the same actor A with the same port rates. However, we’ve
added some dummy actors C and B to act as the actors that feed and get fed by actor A.
With this we can talk about arcs CA and AB. Note that it doesn’t matter what the port
rates of actors C and B are. It also doesn’t matter whether actors C and B are connected
to other actors as part of a larger graph (shown as wavy orange curves). We are really
only interested in actor A and the tokens that flow across arcs CA and AB. Essentially,
we want tokens flowing across arc AB to have a causal relationship with the tokens
flowing across arc CA.

Figure 42: an SDF actor as part of an SDF graph

Before we continue, let us define some important variables that we need to use in our
discussion. Let P denote the period parameter of the DT system. Let R denote the
repetitions of actor A in the schedule. Now we can calculate the time interval between
tokens in arc CA, which we shall call TCA. Likewise, we can calculate the time interval
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between tokens in arc AB, which we shall call TAB. These equations follow straight from
sections 2.4 and 2.7

In order to ensure causality, we have to put initial tokens (also called latency) on actor
A. These initial tokens enable actor A to produce tokens at the start of an iteration,
thereby eliminating the need for explicit initial time lags (discussed in section 2.7).
However, we need to determine how many initial tokens are enough to ensure causality.
Let us denote this number of initial tokens as k. Each initial token on the output port of
actor A essentially causes an implicit initial time lag on when computed tokens will be
produced. The time lag introduced by placing k initial tokens on the output port of actor
A is k*TAB. On the other hand, the amount of time needed by actor A to consume m
tokens on its input port is (m-1)*TCA. Hence, to ensure causality, we want to have:

This means that the minimum k to ensure causality is:

It is interesting to note that this equation simplifies to k = 0 for homogeneous actors,
which means initial tokens are not needed for homogeneous actors. In the Ptolemy II
implementation of DT, we actually use the value k = n for non-homogeneous actors, as a
design simplification.

We conclude this appendix with an example. Consider the SDF graph shown in figure
43. We have m = 3, n =2, P = 1, R = 1, TCA = 1/3, and , TAB = 1/2. We calculate k = 2.
Hence we need at least two initial tokens on actor A.

Figure 43: an example


