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1.0 INTRODUCTION

Type systems are one of the great practical triumphs of
contemporary software. They do more than any other formal
method to ensure correctness of software. Object-oriented
languages, with their user-defined abstract data types, have
had a big impact in both reusability of software (witness the
Java class libraries) and the quality of software.

Type systems give us a vocabulary for talking about
larger structure in software than lines of code and subrou-
tines. However, type systems talk only about static structure.
It is about the syntax of procedural programs, and says noth-
ing about their concurrency or dynamics. Those properties
are relegated to more informal descriptions, such as design
patterns [10] and object modeling [9].

For example, it is not part of the type signature of an
object that the initialize() method must be called before the
go() method. Temporal properties of an object (method x()
must be invoked every 10ms) are also not part of the type
signature. Work with active objects and actors [1][2] move in
the right direction by being a bit more explicit about
dynamic properties of the interfaces of components. But they
do not say enough about interfaces to ensure safety, liveness,
consistency, or real-time behavior.

At its root, a type system constrains what a component
can say about its interface, and how compatibility is ensured
when components are composed. Mathematically, the more
sophisticated type system techniques depend on a partial
order of types, typically defined by a subtyping relation or
by lossless convertibility (which can be thought of as ad hoc
subtyping). They can be built from the robust mathematics
of partial orders, leveraging for example fixed-point theo-
rems to ensure convergence of type checking, type resolu-
tion, and type inference algorithms.

With this very broad interpretation of type systems, all
we need is that the properties of an interface be elements of a
partial order, preferably a complete partial order (CPO) or a
lattice [29]. We suggest first that dynamic properties of an
interface, such as the protocols used by a component to inter-
act with other components, can be described using nondeter-
ministic automata, and that the pertinent partial ordering
relation is the simulation relation between automata. We also
speculate that various timed automata extensions can per-
haps be used in similar ways to define much more com-
pletely the temporal properties of an interface than what is
common practice today.

1.1 Strongly typed languages

Type systems in modern languages serve to promote
safety through static (compile time) and dynamic (run time)
checking. In a computation environment, two kinds of run-
time errors can occur, trapped errors and untrapped errors.
Trapped errors cause the computation to stop immediately.
A run-time handler can attempt to recover gracefully.
Untrapped errors, which may go unnoticed (for a while) and
later cause arbitrary behavior, can be disastrous for an
embedded system. Moreover, they are less likely to be
detected in testing. Examples of untrapped errors in many
general purpose languages are jumping to the wrong address,
or accessing data past the end of an array.

Strongly typed languages help prevent both trapped and
untrapped errors. Many errors are detected at compile time,
and run-time support for the type system can help ensure that
the remaining errors are trapped. This helps prevent arbitrary
behavior, but it only deals with certain aspects of program
behavior. Moreover, run-time support for the type system,
which can be provided systematically through preconditions
and contracts, may incur substantial overhead.

Modern languages, such as Java and ML, emphasize
avoiding untrapped errors. There is significant run-time
overhead incurred in the required safety checks. Several
researchers have shown that in many cases, this overhead
can be eliminated through compile-time analysis (see for
example [33]). The approach is to augment the type system
to include such properties as array size, and then to annotate
the generated code with assertions of safety. A run-time
environment can thus bypass the safety checks.

Ousterhout [25] argues that strong typing compromises
modularity and discourages reuse. 

“Typing encourages programmers to create a vari-
ety of incompatible interfaces, each interface
requires objects of specific type and the compiler
prevents any other types of objects from being used
with the interface, even if that would be useful.”

The alternative he advocates is languages without strong 
ing, such as Lisp and Tcl, where safety can only be achie
by extensive run-time checking. However, since type che
ing is postponed to the last possible moment, the sys
does not have fail-stop behavior, so a system may exh
erroneous behavior only after running for an extended per
of time after the error has occurred. Identifying the source
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the problem can be difficult, and guaranteeing the code may
be impossible.

Ousterhout raises a valid point, but the solution is not to
discard strong typing. Particularly for embedded systems,
the extra degree of safety offered by strong typing over-
whelms even the desire for modularity and reuse. How can
we achieve modularity and reuse without discarding strong
typing? One solution is to use polymorphism, reflection, and
run-time type inference and type checking.

Strong typing and type resolution have other benefits in
addition to the ones mentioned above. Strong typing helps to
clarify the interfaces of components and makes libraries
more manageable. Just as typing may improve run-time effi-
ciency in a general-purpose language by allowing the com-
piler to generate specialized code, type information can be
used for efficient synthesis of embedded hardware and soft-
ware configurations. For example, if the type checker asserts
that a certain polymorphic component will only receive inte-
ger arguments, and that component is to be implemented in
configurable hardware, then only hardware dealing with
integers needs to be synthesized.

In general-purpose strongly-typed languages, such as
C++ and Java, static type checking done by the compiler can
find a large fraction of program errors in object-oriented pro-
grams. However, with networked embedded systems where
parallel execution, agents, migrating code, and software
upgrades are all possibilities, static type checking does not
do enough. Some of the type checking must be done at run
time. Java’s run-time type identification (RTTI) system
together with its reflection package specifically addresses
this problem by supporting run-time queries of type con-
straints and run-time verification of type compatibility.

Type systems in modern programming languages, how-
ever, do not go far enough. Many errors that in principle may
be detectable at compile time are not within the scope of the
type system. Several researchers have proposed extending
the type system to handle such errors as array bounds over-
runs, which are traditionally left to the run-time system [33].
But many are still not dealt with. For example, the communi-
cation protocols between concurrent processes are not type
checked. Yet failures in concurrency and synchronization
are common causes of critical system failures in embedded
systems.

1.2 Extended Types

Object-oriented programming promises software
modularization, but has not completely delivered. The type
system captures only static, structural aspects of software. It
says litt le about the state trajectory of a program (its
dynamics) and about its concurrency. Nonetheless, it has
proved extremely useful, and through the use of reflection, is
able to support distributed systems and mobile code.

Our proposal is to augment the type system to embrace
dynamic properties of components. There is considerable
precedent for such augmentations of the type system. For
example, Lucassen and Gifford introduce state into functions
using the type system to declare whether functions are free
of side effects [20]. Martin-Löf introduces dependent types,
in which types are indexed by terms [22]. Xi uses dependent
types to augment the type system to include array sizes, and

uses type resolution to annotate programs that do not n
dynamic array bounds checking [33]. The technique us
singleton types instead of general terms [13] to help av
undecidability. While much of the fundamental work ha
been developed using functional languages (especially 
[12]), there is no reason that we can see that it cannot
applied to more widely accepted languages when applied
higher levels of abstraction.

Another innovative use of type systems is that of Necu
who describes the use of proof-carrying code [24]. Here
program includes with it a proof of validity or compliance t
some requirement, such as safety. If the code type che
then it is valid. This is used primarily for security. The ma
drawback appears to be in the difficulty of constructing t
proofs. We may face a similar drawback in our use of dep
dent types for capturing real-time properties in that co
structing the real-time properties may prove difficult.

2.0 PROCESS-LEVEL TYPE SYSTEMS

Extended type systems could, in principle, capture t
following aspects of a system:

• protocols for communication between concurrent
components (e.g. rendezvous, asynchronous message
passing, streams, events);

• models of time (e.g. a continuum, discrete, clocked,
partially ordered); and

• flow of control (e.g. synchronous, scheduled firings,
process scheduling, real-time).

Components will have to declare their requirements in these
dimensions as part of their interface definition. However,
this must be done at minimal cost to modularity and reuse.
How can this be done?

2.1 Polymorphism

In hardware design, there has been movement in the
direction of interface synthesis. In [26], Passerone, et al.,
describe component interfaces by automata, and synthesize
protocol translators to connect components with distinct
interfaces. This is one possible approach. An alternative
approach, however, is to define components with tolerant
interfaces, and to specialize them at synthesis time. How can
this be done systematically?

Our approach is also to define component interfaces
using automata. However, these automata are as non-specific
as possible. With judicious use of nondeterminism, we can
declare interfaces abstractly so that they impose only mini-
mal constraints on the implementation. Then our approach to
synthesis is to use polymorphism.

Our polymorphic interfaces are nondeterministic autom-
ata that can be simulated by a variety of deterministic autom-
ata. A synthesized (hardware or software) realization will
implement one of these deterministic automata. But which
one is implemented depends on the context in which the
component is used. Generally, when connecting a pair of
components, we seek the lowest cost implementation that
simulates the interface automata of the two components.
This lowest cost solution is given by the least solution to a
2
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system of inequalities on the type hierarchy. We are assured
of the existence and uniqueness of this solution by theorems
that guarantee the existence of a unique least fixed point of a
monotonic function on a lattice. This approach will be made
more concrete below.

2.2 Language Support

Embedded systems must provide assurance of various
properties. The most important mechanism for assurance is
that the designer understand the system. But generally the
designer needs a great deal of help. Object-oriented pro-
gramming, for example, helps a designer understand the
static structure of a software architecture by providing syn-
tactic features of the language supporting object-oriented
design, and by providing a compiler that checks types. We
suggest that extended types that include dynamic properties
of an interface can help a designer to understand the dynamic
interaction of components.

Object-oriented programming, however, only works in
practice when the programming language provides syntactic
support for it. While it is possible to build object-oriented
programs in C, it is rare, and requires more discipline and a
deeper understanding of object-oriented concepts than most
programmers have.

There has recently been considerable progress in codify-
ing larger-scale program structure than that directly
expressed by standard object-oriented languages, for exam-
ple using UML. Nonetheless, the best parts of UML (espe-
cially the static structure diagrams) are those that are
supported by the language syntaxes used by designers (espe-
cially C++ and Java). The syntactic structure of a program
reflects the object model, and the compiler assures consis-
tency in the model. The weakest parts of UML (such as its
sequence diagrams, its variant of Statecharts for state dia-
grams, and its modeling of concurrency) are those with no
syntactic support in widely used languages. Few tools are
available for ensuring consistency between programs and
their models and for validating the models. Perhaps eventu-
ally code generation from these models will ameliorate this,
although this really amounts to defining new languages with
graphical syntaxes, a non-trivial challenge.

Our proposal, to augment type systems with dynamic
properties of interfaces, will also require syntactic language
support to succeed. However, introducing new languages is
extremely risky; many useful and valid concepts in program-
ming have failed to catch on because they were only
expressed in entirely new languages. The community is
reluctant (understandably) to sacrifice its fluency with exist-
ing languages, particularly if the benefits are unproven.

We suggest, however, that system-level types can be
introduced without modifying the underlying languages, but
rather by overlaying on them design patterns that make these
types explicit. Such overlays have sometimes been called
coordination languages [6].

3.0 FRAMEWORK

We assume a component-oriented software framework
such as Ptolemy II [7]. In Ptolemy II, components communi-
cate via method invocations on an object called a receiver.

Such an object is an instance of a class that implements an
interface called Receiver. A receiver is contained by an
instance of the class IOPort. An object model is shown in
figure 1.

3.1 Receivers

In Ptolemy II, a channel of communication between a
producer and consumer is implemented by a receiver. A
receiver implements the Receiver interface. The Receiver
interface has six methods. Two of these support the associa-
tion with the containing IOPort. The other four support com-
munication.

The Receiver interface assumes a producer/consumer
model for interaction between components. Communicated
data is encapsulated in a class called Token. The put()
method is used to deposit a token into a receiver. The get()
method is used to extract a token from the receiver. The pro-
ducer uses the put() method while the consumer uses the
get() method.

The hasToken() method, which returns a boolean, indi-
cates whether a call to get() will trigger a NoTokenExcep-
tion. The hasRoom() method indicates whether a call to put()
will trigger a NoRoomException. Thus, these two methods
can be used to query the receiver for its state. Does it contain
a token? Does it have room for another token?

Aside from assuming a producer/consumer model, the
Receiver interface makes no further assumptions. It does not,
for example, determine whether communication between
components is synchronous or asynchronous. Nor does it
determine whether tokens that are deposited in a receiver
replace ones that were previously deposited. Nor does it
determine the capacity of a receiver. These properties of a
receiver are determined instead by concrete classes that
implement the Receiver interface. Some of these are shown
in figure 1.

We concentrate in this paper on a few of these concrete
classes, Mailbox (which is then extended by CTReceiver),
DEReceiver, CSPReceiver, PNQueueReceiver, and SDFRe-
ceiver. These implement five different communication
mechanisms between components. In Ptolemy II, we have
built several others, but these suffice to illustrate the con-
cepts of this paper.

3.2 Domains

In Ptolemy II, a model of computation is implemented by
a collection of classes called a domain. The concrete receiv-
ers shown in figure 1 are parts of Ptolemy II domains; we
will focus on the CT, CSP, DE, PN, and SDF domains.

The CTReceiver is a slightly specialized version of the
Mailbox receiver. “CT” stands for “continuous time.” The
CT domain models continuous time systems. The receive
get() method always delivers the most recent data tok
deposited by the put() method (if no token has been dep
ited, then it throws an exception). The hasToken() meth
therefore, always returns true after the first token has b
deposited. The hasRoom() method also always returns t
since the current token in the receiver can always be ov
written.
3
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CSPReceiver, as the name suggests, implements a ren-
dezvous-style communication (sometimes called synchro-
nous message passing), as in Hoare’s communicating
sequential processes model [14]. In the Ptolemy II CSP
domain, the producer and consumer are separate threads.
Whichever thread calls put() or get() first blocks until the
other thread calls put() or get(). Data is exchanged as an
atomic action when both the producer and consumer are
ready. In Ptolemy II, the CSP receiver also supports both
conditional send and conditional receive, although we will
ignore that feature in this paper, so the support for it is omit-
ted in the UML diagram.

PNQueueReceiver supports the Kahn process networks
model of computation [16] using an implementation like that
by Kahn and MacQueen [17]. In that model, just like CSP,
the producer and consumer are separate threads. Unlike CSP,
however, the producer can send data and proceed without
waiting for the receiver to be ready to receive the data. This

is implemented by a non-blocking write to a FIFO que
with (conceptually) unbounded capacity. The put() meth
in PNQueueReceiver always succeeds and always retu
immediately. The get() method, however, blocks the calli
thread if no data is available. To maintain determinacy, it
important that processes not be able to test a receiver for
presence of data, so the hasToken() method always ret
true. Indeed, this return value is correct, since the hasT
ken() method will never throw a NoTokenException
Instead, it will block the calling thread until a token is ava
able.

SDFReceiver supports a synchronous dataflow mode
computation [19]. This is different from the thread-base
domains in that the producer and consumer are implemen
as finite computations (firings of a dataflow actor) that a
scheduled (typically statically, and typically in the sam
thread). In this model, a consumer assumes that dat
always available when it calls get() because it assumes th

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

+QueueReceiver()
+QueueReceiver(container : IOPort)
+elementList() : List
+get(offset : int) : Token
+getCapacity() : int
+getHistoryCapacity() : int
+historyElementList() : List
+historySize() : int
+reset()
+setCapacity(capacity : int)
+setContainer(container : IOPort)
+setHistoryCapacity(capacity : int)
+size() : int

+INFINITE_CAPACITY : int
-_container : IOPort
-_queue : FIFOQueue

NoRoomException

throws
NoTokenException

throws

PNQueueReceiver

+PNQueueReceiver()
+PNQueueReceiver(container : IOPort)
+getReadBlockedActor() : Actor
+getWriteBlockedActor() : Actor
+isConnectedToBoundary() : boolean
+isInsideBoundary() : boolean
+isReadPending() : boolean
+isWritePending() : boolean
+isOutsideBoundary() : boolean
+setReadPending(readpending : boolean)
+setWritePending(writepending : boolean)

«Interface»
ProcessReceiver

+requestFinish()
+requestPause(pause : boolean)
+reset()

CSPReceiver

+CSPReceiver()
+CSPReceiver(p : IOPort)

-_conditionalReceiveWaiting : boolean
-_conditionalSendWaiting : boolean
-_getWaiting : boolean
-_putWaiting : boolean
-_otherParent : CSPActor
-_rendezvousComplete : boolean
-_simulationPaused : boolean
-_simulationFinished : boolean
-_token : Token

SDFReceiver

+SDFReceiver()
+SDFReceiver(size : int)
+SDFReceiver(container : IOPort)
+SDFReceiver(container : IOPort, size : int)
+elements() : Enumeration
+get(offset : int) : Token
+getArray(tokens : Token[])
+getCapacity() : int
+getHistoryCapacity() : int
+historyElements() : Enumeration
+historySize() : int
+putArray(tokens : Token[])
+setCapacity(capacity : int)
+setHistoryCapacity(capacity : int)
+size() : int

ArrayFIFOQueue

1..1

1..1

DEReceiver

+DEReceiver()
+DEReceiver(container : IOPort)
+setDelay(delay : double)

-_container : IOPort
-_delay : double
-_depth : int
-_tokens : LinkedList

Mailbox

+Mailbox()
+Mailbox(container : IOPort)

-_container : IOPort
-_token : Token

CTReceiver

+CTReceiver()
+CTReceiver(container : IOPort)

Figure 1. UML static structure diagram showing the Ptolemy II 
Receiver interface and some of the classes that implement that interface.
4
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would not have been scheduled otherwise. The capacity of
the receiver can be made finite, statically determined, but the
scheduler ensures that when put() is called, there is room for
a token. Thus, if scheduling is done correctly, both get() and
put() succeed immediately and return.

The DE (discrete event) domain in Ptolemy II uses timed
events to communicate between components. Before depos-
iting a token in the receiver by calling put(), a producer
might call the setDelay() method to indicate that the event
should be made available to the consumer at some time in
the future. Thus, an invocation of put() does not necessarily
immediately result in a token being available. The scheduler
may intervene, storing the token in a priority queue until its
time arrives, and then reinvoke put() to deposit the token in
the receiver and make it available to the consumer.

3.3 Domain Polymorphic Actors

In Ptolemy II, the domain determines what kind of
receiver is used, not the actor. Thus, a natural question
arises. Can we design actors that can work with a variety of
receivers in different domains?

At the level of object modeling, the answer is clearly
“yes” since Receiver is a common interface that is imple-
mented by the receivers in all of the domains we are consid-
ering. However, the object model only captures some of the
information about the interaction between actors. In particu-
lar, it does not say anything about the dynamics of the inter-
action. Thus, for example, just because an actor is written to
use only methods defined by the Receiver interface does not
mean it will work correctly with a CSPReceiver.

Suppose for example that an actor calls put() on a
receiver followed by get() on the same receiver, with both
calls occurring within the same thread. This actor will work
fine in PN and SDF, but will fail in CSP. In particular, the
actor will immediately deadlock, since put() will block the
calling thread, which therefore will never reach the corre-
sponding get().

4.0 INTERACTION TYPES

Our approach is to augment the type system so that com-
ponents declare at their interface not just properties that are
classically captured by the type system (their object model),
but also dynamic properties, which we call interaction
types. We describe these interaction types first informally
(which is the way we originally developed them), and then
formally using automata.

4.1 Informal Policies

When we first began constructing domain-polymorphic
actors, we struggled to define a policy for their interaction
that would yield reasonable and comprehensible behavior in
all the domains we had built. With experience, we settled on
some verbal descriptions of policies like the following:

Upon firing, test each input channel to see whether
it has a token by calling the hasToken() method of
the receiver for that channel. If it returns true, then
read one token from the channel by calling the get()
method of the receiver.

This describes an actor behaving as a consumer of data. S
an actor, by the policy, consumes at most one token fr
each input channel. This policy represents a design cho
In certain circumstances, for example, we may wish for 
actor to consume exactly one input token from each inp
channel. That would represent a different policy, and o
that is not compatible with all the domains.

Consider for example a domain-polymorphic multi-cha
nel adder. If it follows the above policy, its behavior is tha
when fired, it will examine each input channel, and if it has
token, it will consume one token. It then adds together all 
tokens it consumes and produces the sum at the outpu
Ptolemy II, such an actor would also be data polymorph
and thus can operate on any token type that supports a
tion.

Some domains, such as SDF and PN, will ensure t
there is a token on every input channel. Others, such as 
make no such assurance. Either way, the actor behavio
well defined.

A corresponding policy for a producer needs to be mo
restrictive in order to get reasonable behavior in all existi
domains.1 In particular, we assume:

Upon firing, a domain-polymorphic actor will pro-
duce exactly one token on each output port.

This policy is necessarily very constraining. It makes it po
sible for domains such as SDF to construct schedules for
actor. The restrictiveness of this policy suggests that m
than one polymorphic policy might be useful. For examp
we might wish to define domain-polymorphic actors that a
not required to produce an output on every channel, rec
nizing full well that these actors will not be usable in SD
Somehow, the actors need to define their interfaces so 
we can distinguish actors that will work in SDF from thos
that will not.

The above verbal descriptions of the policies followed 
an actor are, in fact, part of its interface definition. But th
verbal description is too informal to be used as part of a f
mal interface definition. Our objective is to convert th
above informal description into a formal type signature. T
way we will do that is by defining an automaton for th
receiver such that given a receiver that behaves like t
automaton, the actor will always behave “correctly.” Wh
we mean by “correctly” depends in part on what question 
want to answer. We may wish to ensure, for example, t
the actor will not throw an exception. Alternatively, we ma
wish to demonstrate that a composition will not deadlock.

In outline, our approach is as follows. We define a no
deterministic automaton for the receiver that this consum
can use. We define automata for the receivers in each of
domains. If the actor receiver automaton simulates2 the
domain receiver automaton, then the actor is “type comp

1.  It is generally true of polymorphic components that to maximize
their utility they need to use the least specific types possible at their
inputs and the most specific types possible at their outputs. Thus,
the output policy is much more restrictive than the input policy.

2.  We mean “simulates” here in the strong technical sense
automata theory.
5



 the
s-

ion
ton

er
DF

he

lly
not
er.
gh
ay

ch

tely
the
me
ch

al
n.

pe

he
ta-

-
tter

 is
ing

te
ble” with the domain. Once these automata are constructed,
we can use them to assert certain properties of the receivers,
such as that if hasToken() returns true, then the next get()
will return a token without throwing an exception. More-
over, once these automata are constructed, we can compose
them with automata describing the actor and scheduler
behaviors to assert properties of the composition.

4.2 Domain-Specific Receiver Automata

Consider the automaton in figure 2, which models a
receiver in either the SDF or DE domain. Our automata are
reactive machines with a single input and output stream. We
depict them with bubble-and-arc diagrams where the bubbles
represent states and the arcs represent state transitions. The
initial state (or states, in case it is nondeterministic) are
depicted by bold arrows. In figure 2, there are two states:

hasToken: Indicating the presence of one or more
tokens available for consumption.

noToken: Indicating that there is no token available
for consumption.

Each arc represents a state transition and is labeled “guard /
output” where the guard is a member of the input alphabet
(or a set of members of the input alphabet) and the output is a
member of the output alphabet. The input alphabet for all our
receiver automata is:

g: get
p: put
h: hasToken

These correspond precisely to the corresponding methods in
the Receiver interface1. The output alphabet is

0: false
1: true
t: token
v: void

e: exception

These correspond to the return values of the methods of
Receiver interface. The v indicates that the method succes
fully returns, but returns no value (“v” is for “void”). The e
indicates that the method throws an exception. An except
is thrown when the get() method is called and the automa
is in the noToken state.

The automaton in figure 2 is nondeterministic. Eith
state can be the initial state, reflecting the property of S
that a receiver can be initialized with an initial token.

In addition, when the get() method is called and t
automaton is in the hasToken state, the receiver may or may
not become empty. Thus, the automaton does not fu
reflect the current state of the receiver, in that it does 
keep track of the number of tokens buffered by the receiv
This abstraction will serve for our purposes here, althou
for more detailed analysis, a more detailed automaton m
be more convenient.

The automaton in figure 3 models a DE receiver, whi
is only slightly different. In particular, in DE, calling put()
does not necessarily make the token available immedia
to the consumer. Thus, there is an extra self-loop on 
noToken state that permits the state to remain the sa
despite the call to put(). Notice that this automaton, whi
we name DE1, simulates the one in figure 2, which we name
SDF1. The converse is not true. SDF1 does not simulate
DE1. This is indicated in figure 4, which depicts a parti
order of automata determined by the simulation relatio
DE1 is above SDF1 because it simulates SDF1. This order-
ing is our version of the subtyping relation in classical ty
systems.

Consider the automaton in figure 5, which models t
receiver in the PN domain. Here, we use the shortcut no
tion of omitting the “/ output” from a transition if the transi
tion produces no output. This somewhat reduces the clu
in our diagrams. So, for example, on the transition from has-
Token to stallcsmr, an input g will produce no output.

The PN receiver always returns a token when get()
called (because it implements the Kahn-MacQueen block
read [17]). Thus, it always returns true when hasToken() is
called, since get() will always succeed. Thus, its initial sta
is called hasToken, suggesting that the receiver initially
behaves as if it has a token.

1.  We ignore that hasRoom() method because all the domain-spe-
cific receivers that we consider in this paper always return true
when that method is called, indicating that they always can accept a
token.

has
Token

no
Token

p/v g/t

g/e

h/1g/t

h/0

p/v

SDF1

Figure 2. Receiver automaton for the SDF receiver.

has
Token

no
Token

p/v g/t

h/1g/t

p/v

g/eh/0

p/v

DE1

Figure 3. Receiver automaton for the DE receiver.
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When the receiver is in the hasToken state and get() is
called, it may immediately return a token, or it may stall the
calling the thread. We model the latter as a state transition to
a stallcsmr state, where no output is produced by the transi-
tion. While in the stallcsmr state, any call to hasToken()
returns true, as usual, and any call to get() does nothing
(such calls would not normally occur, since the consumer
thread is blocked, but our automaton reflects exactly the way
the software is written, and it permits these calls to occur
from some other thread).

The automaton in figure 5, which we name PN1, does
not simulate SDF1 nor DE1, nor do those simulate PN1.
Thus, in the partial order of figure 4, it is shown to be incom-
parable.

Consider the automaton in figure 6, which is called
CSP1. This one models the behavior of the receiver in the
CSP (communicating sequential processes) domain. In CSP,
communication occurs via rendezvous. The receiver starts in
the state labeled noToken. If get() is called, the calling thread
is stalled, as indicated in the automaton by transitioning to

the stallcsmr state. In that state, if put() is called, then a
token is transferred and the receiver returns to the noToken
state. If the receiver is in the noToken state and put() is
called, then the calling thread is stalled, and the automaton
transitions to stallpdcr. It remains in that state until get() is
called.

In the Ptolemy II CSP domain, the hasToken() method
returns false unless there is a producer that is currently
blocked. Thus hasToken() returns false (0) in both noToken
and stallcsmr, and it returns true (1) in stallpdcr.

The CT (continuous-time) domain has automaton shown
in figure 7. The receiver starts in the noToken state, but after
the first put(), remains forever in the hasToken state. In that
state, hasToken() always returns true, and the get() method
returns the most recent token deposited with a put(). It is up
to the scheduler to ensure that a call to put() occurs before
the first call to get(). The CT1 automaton is simulated by the
SDF1 automaton, as shown in figure 4.

4.3 Domain-Polymorphic Receiver Automaton

A domain polymorphic actor that can operate in the CSP,
CT, DE, PN, and SDF domains must be able to operate with
all the automata of these domains. It is sufficient for it to be
able to operate with an automaton that simulates all these.
Such an automaton is shown in figure 8. This automaton is
fairly complex, but at least one useful property is evident. If
hasToken() return true (1), then the next call to get() will not
throw an exception. To assert more properties, it becomes
necessary to couple this automaton, or one of the domain-

Figure 4. Partial order of automata
determined by the simulation relation.

NaT

CT1

PN1

SDF1

DE1

CSP1

DP

has
Token

h/1g/t

p/v

stall
csmr

g

p/t

h/1

g

PN1

Figure 5. Receiver automaton for the PN receiver.

CSP1

stall
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no
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p/t

stall
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g/t
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h/1
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h/0
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Figure 6. Receiver automaton for the CSP receiver.
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p/v

CT1
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Figure 7. Receiver automaton for the SDF receiver.
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ing
specific ones, with automata that describe the actors and the
domain schedulers.

5.0 TYPE RESOLUTION

5.1 Binding

In a Ptolemy II topology, each port has a type. For an
input port (the port of a consumer), the type is the receiver
automaton for the receiver contained in that port; for an out-
put port (a producer), the type is the automaton for the
receiver in the connected input port. For example, in figure
9, t1 and t2 are both the automaton for the receiver of the
input port of A2. Since the type of a port may be assigned by
the type resolution mechanism, it is also called the resolved
type. Corresponding to this, each port also has a declared
type. The default value for the declared type is the domain-
polymorphic (DP) automaton. An actor writer can either
specify the declared type, or use the default value.

In Ptolemy II, there is only one receiver per connection,
so there can be only one type per connection. Thus, in figure
figure 9, t1 = t2 and t3 = t4.

A type constraint between the declared type and the
resolved type of a port is that the resolved type must be less
than or equal to the declared type:

tresolved ≤ tdeclared (1)

The ordering is that of figure 4, given by the simulation rela-
tion. The resolved type must be an automaton that the
declared type simulates. 

Another type constraint imposed in Ptolemy II is that all
the ports on an actor must have the same type. For example,
we require t2 = t3 in figure 9. This constraint is due to the
philosophy of Ptolemy II that heterogeneity is achieved only
through hierarchically mixing different models of computa-

tion, not through mixing different communication protocols
on a flat hierarchy. Models of computation are mixed by
encapsulating a subsystem in an opaque composite actor,
which is a composite actor that contains a director. The
director together with the receivers implements the model of
computation. It is responsible for scheduling, for example.

Under this formulation, type constraints can be set up
and solved. For example, if t1 = t4 = PN1, and t2 and t3 have
the default declared type, then t2 and t3 will be resolved to
PN1. Thus, their polymorphism is resolved statically by the
type resolution mechanism.

5.2 Type Coercion

The partial order of figure 4 is augmented with a bottom
element, labeled NaT (not a type) to become a lattice. Type
constraints are given as inequalities and equalities between
types in the lattice. The type system infrastructure of
Ptolemy II [34] finds the least type in the lattice that satisfies
all the constraints. If the solution is NaT for any port, then a
type conflict has been detected. Type conflicts can be cor-
rected by coercion.

Type conflicts indicates the need to mix different
domains. In the above example, if t2 = t3 = CSP1, then A2
should be wrapped in an opaque composite actor with a CSP
director inside. Opaque composite actors in Ptolemy II pro-
vide the hierarchical domain mixing that is a signature
Ptolemy trait. The ports at the boundary of the composite
actor act as type converters (protocol converters) between
PN and CSP.

It seems appealing to seek algorithms for automating the
type coercion. However, this may not be possible. For one
thing, the way the actors are wrapped may not be unique. For
example, in figure 10, multiple ways of resolving the type of
A2 and assigning the outer and inner domains are possible,
including:

• Resolve A2 to PN1, and wrap A4 in a composite actor;
• Resolve A2 to CSP1, and wrap A2 and A4 in a compos-

ite actor;
• Resolve A2 to PN1, and wrap A1, A2, and A3 in a com-

posite actor;
• etc.

It seems possible to make this decision automatically us

has
Token stall

csmr

g

no
Token

p/v
g/t

g/e

p/t

h/1

p/t
stall
pdcr

g/t

p

g/t

p/v

g/t

h/0

h/1h/1

gp

p/v

h/0

gp

DP

Figure 8. Receiver automaton for domain-polymorphic actors.

Figure 9. A topology with types

A1 A2 A3
t1 t2 t3 t4
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some criteria, such as minimum interconnection between the
inner and outer domains. However, it probably makes more
sense to require user intervention since the user has more
knowledge on the functional partition of the system and can
make more meaningful decisions. This is consistent with
type systems in modern strongly typed languages, where
automated coercion is largely avoided.

5.3 Type conversion

In Ptolemy II, a model in one domain may be wrapped in
an opaque composite actor that is then used as an atomic
actor in another domain. Our formulation gives a simple way
to construct such a wrapping. The opaque composite actor
simply needs to expose at its interface the behavior of a
domain-polymorphic actor. Thus, its external ports should
have type DP. Since DP simulates all receivers in domains
considered here, such a composite actor can be used with
predictable behavior in all such domains.

6.0 FURTHER WORK

The mechanisms we have described are applicable pri-
marily to compile-time analysis of embedded software and
to design-time analysis of hardware. These concepts, how-
ever, seem applicable in a run-time context, using concepts
similar to run-time type system support in existing lan-
guages.

6.1 On-Line Type System

Embedded software is traditionally highly static. No
mechanism exists in many embedded systems for modifying
in any way the executing software. However, this is chang-
ing. At a minimum, software upgrades are becoming essen-
tial as the complexity of the applications increases. Even
more challenging, however, are networked embedded sys-
tems, where migrating software components (agents,
applets, etc.) considerably complicate the run-time environ-
ment.

One approach to supporting such adaptive software is to
view the embedded software as having a dynamically chang-
ing software architecture. This view reconciles the wholistic
view of the system that is necessary to achieve the levels of
assurance required for embedded software with the desire to
modify the software on-the-fly.

Static support for type systems give the compiler
responsibility for the robustness of software [5]. This is not
adequate if the software architecture is dynamic. The
software needs to take responsibility for its own robustness

[18]. This means that algorithms that support the type system
need to be adapted to be practically executable at run time.

ML is an early and well known realization of a “moder
type system” [12][30][32]. It was the first language to us
type inference in an integrated way [15], where the types
variables are not declared, but are rather inferred from h
they are used. The compile-time algorithms here are eleg
but it is not clear to me whether run-time adaptations a
practical.

Many modern languages, including Java and C++, u
declared types rather than type inference, but their extens
use of polymorphism still implies a need for fairly sophist
cated type checking and type resolution. Type resolut
allows for automatic (lossless) type conversions and for op
mized run-time code, where the overhead of late binding c
be avoided.

Type inference and type checking can be reformulated
the problem of finding the fixed point of a monotonic func
tion on a lattice, an approach due to Dana Scott [28]. The 
tice describes a partial order of types, where the order
relationship is the subtype relation. For example, Double i
subtype of Number in Java. A typical implementation refo
mulates the fixed point problem as the solution of a syst
of inequalities [23]. Reasonably efficient algorithms hav
been identified for solving these systems of inequalities [2
although these algorithms are still primarily viewed as p
of a compiler, and not part of a run-time system.

Iteration to a fixed point, at first glance, seems too cos
for on-line real-time computation. However, there are se
eral languages based on such iteration that are used prim
in a real-time context. Esterel is a notable one of these 
Esterel compilers synthesize run-time algorithms that co
verge to a fixed point at each clock of a synchronous syst
[3]. Such synthesis requires detailed static information ab
the structure of the application, but methods have been d
onstrated that use less static information [8]. Although the
techniques have not been proposed primarily in the cont
of a type system, we believe they can be adapted.

6.2 Reflecting Program Dynamics

Reflection, as applied in software, can be viewed as h
ing an on-line model of the software within the softwa
itself. In Java for example, this is applied in a simple wa
The static structure of objects is visible through the Cla
class and the classes in the reflection package, wh
includes Method, Constructor, and various others. The
classes allow Java code to dynamically query objects 
their methods, determine on-the-fly the arguments of t
methods, and construct calls to those methods. Reflectio

Figure 10. A topology with non-unique type resolution

A1
A2 A3

PN t1 t3 PN

A4
CSP CSP

t2 t4
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an integral part of Java Beans, mobile code, and CORBA
support. It provides a run-time environment with the facili-
ties for stitching together components with relatively intoler-
ant interfaces.

However, static structure is not enough. The interfaces
between components involve more than method templates,
including such properties as communication protocols. To
get adaptive software in the context of real-time applica-
tions, it will also be important to reflect program state. Thus,
we need reflection on the program dynamics.

The first question becomes at what granularity to do this.
Reflection intrinsically refers to a particular abstracted repre-
sentation of a program. E.g., in the case of static structure,
Java’s reflection package does not include finer granularity
than methods, nor coarser granularity than objects.

Process-level reflection could include two critical facets,
communication protocols and process state. The former
would capture in a type system such properties as whether
the process uses rendezvous, streams, or events to communi-
cation with other processes. By contrast, Java Beans defines
this property universally to all applications using Java
Beans. That is, the event model is the only interaction mech-
anism available. If a component needs rendezvous, it must
implement that on top of events, and the type system pro-
vides no mechanism for the component to assert that it needs
rendezvous. For this reason, Java Beans seem unlikely to be
very useful in applications that need stronger synchroniza-
tion between processes, and thus it is unlikely to be used
much beyond user interface design.

Reflecting process state could be done with an automaton
that simulates the program. That is, a component or its run-
time environment can access the “state” of a process (much
as an object accesses its own static structure in Java), but that
state is not the detailed state of the process, but rather the
state of a carefully chosen automaton that simulates the
application. Designing that automaton is then similar
(conceptually) to designing the static structure of an object-
oriented program, but represents dynamics instead of static
structure. 

Just as we have object-oriented languages to help us
develop object oriented programs, we would need state-
oriented languages to help us develop the reflection
automaton. These could be based on Statecharts, but would
be closer in spirit to UML's state diagrams in that it would
not be intended to capture all aspects of behavior. This is
analogous to the object model of a program, which does not
capture all aspects of the program structure (associations
between objects are only weakly described in UML’s static
structure diagrams). Analogous to object-oriented languages,
which are primarily syntactic overlays on imperative
languages, a state-oriented language would be a syntactic
overlay on an object-oriented language. The syntax could be
graphical, as is now becoming popular with object models
(especially UML).

Well-chosen reflection automata would add value in a
number of ways. First, an application may be asked, via the
network, or based on sensor data, to make some change in its
functionality. How can it tell whether that change is safe?
The change may be safe when it is in certain states, and not
safe in other states. It would query its reflection automaton,
or the reflection automaton of some gatekeeper object, to

determine how to react. This could be particularly importa
in real-time applications. Second, reflection automata co
provide a basis for verification via such techniques as mo
checking.

This complements what object-oriented languages off
Their object model indicates safety of a change with resp
to data layout. But they prov ide no mechanism fo
determining safety based on the state of the program. 

When a ref lect ion automaton is combined wit
concurrency, we get something akin to Statechar
concurrent, hierarchical FSMs, but with a twist. I
Statecharts, the concurrency model is fixed. Here, a
concurrency model can be used. We call this generalizat
“*charts,” pronounced “starcharts”, where the star represe
a wildcard suggesting the flexibility in concurrency mode
[11]. Some variations of Statecharts support concurren
using models that are different from those in the origin
Statecharts [21][31]. As with Statecharts, concurren
composition of reflection automata provides the benefit 
compact representation of a product automaton th
potentially has a very large number of states. In this sen
aggregates of components remain components where
reflection automaton of the aggregate is the produ
automaton of the components. But the product automa
never needs to be explicitly represented.

Ideally, reflection automata would also inherit cleanl
For example, a component that derives from another inhe
its automaton and refines the states of the automaton (sim
to the hierarchy, or “or” states in Statecharts).

In addition to application components being reflective,
will probably be beneficial for components in the run-tim
environment to be reflective. The run-time environment 
whatever portion of the system outlives all application com
ponents. It provides such services as process schedu
storage management, and specialization of components
efficient execution. Because it outlives all application com
ponents, it provides a convenient place to reflect aspect
the application that transcend a single component or agg
gate of closely related components.
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