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Abstract 

The science of computation has systematically abstracted away the physical world. Embedded software 
systems, however, engage the physical world. Time, concurrency, liveness, robustness, continuums, 
reactivity, and resource management must be remarried to computation. Prevailing abstractions of 
computational systems leave out these “non-functional” aspects. This chapter explains why embedded 
software is not just software on small computers, and why it therefore needs fundamentally new views of 
computation. It suggests component architectures based on a principle called “actor-oriented design,” where 
actors interact according to a model of computation, and describes some models of computation that are 
suitable for embedded software. It then suggests that actors can define interfaces that declare dynamic 
aspects that are essential to embedded software, such as temporal properties. These interfaces can be 
structured in a “system-level type system” that supports the sort of design-time and run-time type checking 
that conventional software benefits from. 

1. What is Embedded Software? 

Deep in the intellectual roots of computation is the notion that software is the realization of 
mathematical functions as procedures. These functions map a body of input data into a body of 
output data. The mechanism that is used to carry out the procedure is not nearly as important as 
the abstract properties of the function. In fact, we can reduce the mechanism to seven operations 
on a machine (the famous Turing machine) with an infinite tape capable of storing zeros and ones 
[83]. This mechanism is, in theory, as good as any other mechanism. And therefore, the 
significance of the software is not affected by the mechanism. 

Embedded software is not like that.  Its principal role is not the transformation of data, but rather 
the interaction with the physical world. It executes on machines that are not, first and foremost, 
computers. They are cars, airplanes, telephones, audio equipment, robots, appliances, toys, 
security systems, pacemakers, heart monitors, weapons, television sets, printers, scanners, climate 
control systems, manufacturing systems, and so on. 

Software with a principal role of interacting with the physical world must, of necessity, acquire 
some properties of the physical world.  It takes time. It consumes power. It does not terminate 
(unless it fails). It is not the idealized procedures of Alan Turing. 



Computer science has tended to view this physicality of embedded software as messy. 
Consequently, design of embedded software has not benefited from the richly developed 
abstractions of the twentieth century. Instead of using object modeling, polymorphic type 
systems, and automated memory management, engineers write assembly code for idiosyncratic 
digital signal processors (DSPs) that can do finite impulse response filtering in one 
(deterministic) instruction cycle per tap. 

The engineers that write embedded software are rarely computer scientists. They are experts in 
the application domain with a good understanding of the target architectures they work with. This 
is probably appropriate. The principal role of embedded software is interaction with the physical 
world. Consequently, the designer of that software should be the person who best understands 
that physical world. The challenge to computer scientists, should they choose to accept it, is to 
invent better abstractions for that domain expert to do her job. 

Today’s domain experts may resist such help. In fact, their skepticism is well warranted. They see 
Java programs stalling for one third of a second to perform garbage collection and update the user 
interface, and they envision airplanes falling out of the sky. The fact is that the best-of-class 
methods offered by computer scientists today are, for the most part, a poor match to the 
requirements of embedded systems. 

At the same time, however, these domain experts face a serious challenge. The complexity of 
their applications (and consequent size of their programs) is growing rapidly. Their devices now 
often sit on a network, wireless or wired. Even some programmable DSPs now run a TCP/IP 
protocol stack.  And the applications are getting much more dynamic, with downloadable 
customization and migrating code. Meanwhile, reliability standards for embedded software 
remain very high, unlike general-purpose software. At a minimum, the methods used for general-
purpose software require considerable adaptation for embedded software. At a maximum, entirely 
new abstractions are needed that embrace physicality and deliver robustness. 

2. Just Software on Small Computers? 

An arrogant view of embedded software is that it is just software on small computers. This view 
is naïve. Timeliness, concurrency, liveness, reactivity, and heterogeneity need to be an integral 
part of the programming abstractions.  They are essential to the correctness of a program. It is not 
sufficient to realize the right mapping from input data to output data. 

Timeliness 

Time has been systematically removed from theories of computation. “Pure” computation does 
not take time, and has nothing to do with time. It is hard to overemphasize how deeply rooted this 
is in our culture. So-called “real-time” operating systems often reduce the characterization of a 
component (a process) to a single number, its priority. Even most “temporal” logics talk about 
“eventually” and “always,” where time is not a quantifier, but rather a qualifier [70]. Attempts to 
imbue object-oriented design with real-time are far from satisfactory [23]. 

Much of the problem is that computation does take time. Computer architecture has been tending 
towards making things harder for the designers of embedded systems. A large part of the 
(architectural) performance gain in modern processors comes from statistical speedups such as 
elaborate caching schemes, speculative instruction execution, dynamic dispatch, and branch 



prediction. These techniques compromise the reliability of embedded systems. In fact, most 
embedded processors such as programmable DSPs and microcontrollers do not use these 
techniques. I believe that these techniques have such a big impact on average case performance 
that they are indispensable. But software practitioners will have to find abstractions that regain 
control of time, or the embedded system designers will continue to refuse to use these processors. 

The issue is not just that execution takes time. Even with infinitely fast computers, embedded 
software would still have to deal with time because the physical processes, with which it 
interacts, evolve over time. 

Concurrency 

Embedded systems rarely interact with only a single physical process. They must simultaneously 
react to stimulus from a network and from a variety of sensors, and at the same time, retain timely 
control over actuators. This implies that embedded software is concurrent. 

In general-purpose software practice, management of concurrency is primitive. Threads or 
processes, semaphores, and monitors are the classic tools for managing concurrency, but I view 
them as comparable to assembly language in abstraction. They are very difficult to use reliably, 
except by operating system experts. Only trivial designs are completely comprehensible (to most 
engineers). Excessively conservative rules of thumb dominate (such as: always grab locks in the 
same order [55]). Concurrency theory has much to offer that has not made its way into 
widespread practice, but it probably needs adaptation for the embedded system context. For 
instance, many theories reduce concurrency to “interleavings,” which trivialize time by asserting 
that all computations are equivalent to sequences of discrete time-less operations. 

Embedded systems engage the physical world, where multiple things happen at once. Reconciling 
the sequentiality of software and the concurrency of the real world is a key challenge in the 
design of embedded systems. Classical approaches to concurrency in software (threads, 
processes, semaphore synchronization, monitors for mutual exclusion, rendezvous, and remote 
procedure calls) provide a good foundation, but are insufficient by themselves. Complex 
compositions are simply too hard to understand. 

An alternative view of concurrency that seems much better suited to embedded systems is 
implemented in synchronous/reactive languages [9] such as Esterel [12], which are used in safety-
critical real-time applications. In Esterel, concurrency is compiled away. Although this approach 
leads to highly reliable programs, it is too static for some networked embedded systems. It 
requires that mutations be handled more as incremental compilation than as process scheduling, 
and incremental compilation for these languages proves to be challenging. We need an approach 
somewhere in between that of Esterel and that of today’s real-time operating systems, with the 
safety and predictability of Esterel and the adaptability of a real-time operating system. 

Liveness 

In embedded systems, liveness is a critical issue. Programs must not terminate or block waiting 
for events that will never occur. In the Turing view of computation, all non-terminating programs 
fall into an equivalence class that is implicitly deemed to be a class of defective programs. In 
embedded computing, however, terminating programs are defective. The term “deadlock” 
pejoratively describes premature termination of such systems. It is to be avoided at all costs. 



In the Turing paradigm, given a sufficiently rich abstraction for expressing procedures, it is 
undecidable whether those procedures halt. This undecidability has been inconvenient because we 
cannot identify programs that fail to halt. Now it should be viewed as inconvenient because we 
cannot identify programs that fail to keep running.  

Moreover, correctness cannot be viewed as getting the right final answer. It has to take into 
account the timeliness of a continuing stream of partial answers, as well as other “non-functional” 
properties. A key part of the prevailing computation paradigm is that software is defined by the 
function it computes. The premise is that the function models everything interesting about the 
software. Even for the portions of embedded software that terminate (and hence have an 
associated “computable function”), this model is a poor match. A key feature of embedded 
software is its interaction with physical processes, via sensors and actuators.  Non-functional 
properties include timing, power consumption, fault recovery, security, and robustness. 

Interfaces 

Software engineering has experienced major improvements over the last decade or so through the 
widespread use of object-oriented design. Object-oriented design is a component technology, in 
the sense that a large complicated design is composed of pieces that expose interfaces that 
abstract their own complexity. 

The use of interfaces in software is not new. It is arguable that the most widely applied 
component technology based on interfaces is procedures. Procedures are finite computations that 
take pre-defined arguments and produce final results. Procedure libraries are marketable 
component repositories, and have provided an effective abstraction for complex functionality. 
Object-oriented design aggregates procedures with the data that they operate on (and renames the 
procedures “methods”). 

Procedures, however, are a poor match for many embedded system problems. Consider for 
example a speech coder for a cellular telephone. It is artificial to define the speech coder in terms 
of finite computations. It can be done of course. However, a speech coder is more like a process 
than a procedure. It is a nonterminating computation that transforms an unbounded stream of 
input data into an unbounded stream of output data. Indeed, a commercial speech coder 
component for cellular telephony is likely to be defined as a process that expects to execute on a 
dedicated signal processor. There is no widely accepted mechanism for packaging the speech 
coder in any way that it can safely share computing resources with other computations. 

Processes, and their cousin, threads, are widely used for concurrent software design. Processes 
can be viewed as a component technology, where a multitasking operating system or 
multithreaded execution engine provides the framework that coordinates the components. Process 
interaction mechanisms, such as monitors, semaphores, and remote procedure calls, are supported 
by the framework. In this context, a process can be viewed as a component that exposes at its 
interface an ordered sequence of external interactions. 

However, as a component technology, processes and threads are extremely weak. A composition 
of two processes is not a process (it no longer exposes at its interface an ordered sequence of 
external interactions). Worse, a composition of two processes is not a component of any sort that 
we can easily characterize. It is for this reason that concurrent programs built from processes or 
threads are so hard to get right. It is very difficult to talk about the properties of the aggregate 



because we have no ontology for the aggregate. We don’t know what it is. There is no 
(understandable) interface definition. 

Object-oriented interface definitions work well because of the type systems that support them. 
Type systems are one of the great practical triumphs of contemporary software. They do more 
than any other formal method to ensure correctness of (practical) software. Object-oriented 
languages, with their user-defined abstract data types, and their relationships between these types 
(inheritance, polymorphism) have had a big impact in both reusability of software (witness the 
Java class libraries) and the quality of software. Combined with design patterns [29] and object 
modeling [25], type systems give us a vocabulary for talking about larger structure in software 
than lines of code and procedures. 

However, object-oriented programming talks only about static structure. It is about the syntax of 
procedural programs, and says nothing about their concurrency or dynamics. For example, it is 
not part of the type signature of an object that the initialize() method must be called before the 
fire() method. Temporal properties of an object (method x() must be invoked every 10ms) are 
also not part of the type signature. For embedded software to benefit from a component 
technology, that component technology will have to include dynamic properties in interface 
definitions. 

Heterogeneity 

Heterogeneity is an intrinsic part of computation in embedded systems. They mix computational 
styles and implementation technologies. First, such systems are often a mixture of hardware and 
software designs, so that the embedded software interacts with hardware that is specifically 
designed to interact with it. Some of this hardware has continuous-time dynamics, which is a 
particularly poor match to prevailing computational abstractions. 

Embedded systems also mix heterogeneous event handling styles. They interact with events 
occurring irregularly in time (alarms, user commands, sensor triggers, etc.) and regularly in time 
(sampled sensor data and actuator control signals). These events have widely different tolerances 
for timeliness of reaction. Today, they are intermingled in real-time software in ad hoc ways; for 
example, they might be all abstracted as periodic events, and rate-monotonic principles [65] 
might be used to assign priorities. 

Perhaps because of the scientific training of most engineers and computer scientists, the tendency 
is to seek a grand-unified theory, the common model that subsumes everything as a special case, 
and that can, in principle, explain it all.  We find it anathema to combine multiple programming 
languages, despite the fact that this occurs in practice all the time. Proponents of any one 
language are sure, absolutely sure, that their language is fully general. There is no need for any 
other, and if only the rest of the world would understand its charms, they would switch to using it.  
This view will never work for embedded systems, since languages are bound to fit better or worse 
for any given problem. 

Reactivity 

Reactive systems are those that react continuously to their environment at the speed of the 
environment. Harel and Pnueli [36] and Berry [11] contrast them with interactive systems, which 
react with the environment at their own speed, and transformational systems, which simply take a 



body of input data and transform it into a body of output data. Reactive systems have real-time 
constraints, and are frequently safety-critical, to the point that failures could result in loss of 
human life. Unlike transformational systems, reactive systems typically do not terminate (unless 
they fail). 

Robust distributed networked reactive systems must be capable of adapting to changing 
conditions. Service demands, computing resources, and sensors may appear and disappear. 
Quality of service demands may change as conditions change. The system is therefore 
continuously being redesigned while it operates, and all the while it must not fail. 

A number of techniques have emerged to provide more robust support for reactive system design 
than what is provided by real-time operating systems. The synchronous languages, such as Esterel 
[12], Lustre [33], Signal [10], and Argos [71], are reactive, have been used for applications where 
validation is important, such as safety-critical control systems in aircraft and nuclear power 
plants. Lustre, for example, is used by Schneider Electric and Aerospatiale in France. Use of 
these languages is rapidly spreading in the automotive industry, and support for them is beginning 
to appear on commercial EDA (electronic design automation) software. 

Reactive systems must typically react simultaneously to multiple sources of stimulus. Thus, they 
are concurrent. The synchronous languages manage concurrency in a very different way than that 
found in real-time operating systems. Their mechanism makes much heavier use of static 
(compile-time) analysis of concurrency to guarantee behavior. However, compile-time analysis of 
concurrency has a serious drawback: it compromises modularity and precludes adaptive software 
architectures. 

3. Limitations of Prevailing Software Engineering Methods 

Construction of complex embedded software would benefit from component technology. Ideally, 
these components are reusable, and embody valuable expertise in one or more aspects of the 
problem domain. The composition must be meaningful, and ideally, a composition of components 
yields a new component that can be used to form other compositions. To work, these components 
need to be abstractions of the complex, domain-specific software that they encapsulate.  They 
must hide the details, and expose only the essential external interfaces, with well-defined 
semantics. 

Procedures and Object Orientation 

A primary abstraction mechanism of this sort in software is the procedure (or in object-oriented 
culture, a method). Procedures are terminating computations. They take arguments, perform a 
finite computation, and return results. The real world, however, does not start, execute, complete, 
and return. 

Object orientation couples procedural abstraction with data to get data abstraction. Objects, 
however, are passive, requiring external invocation of their methods. So called “active objects” 
are more like an afterthought, requiring still a model of computation to have any useful 
semantics. The real world is active, more like processes than objects, but with a clear and clean 
semantics that is firmly rooted in the physical world. 



So while object-oriented design has proven extremely effective in building large software 
systems, it has little to offer to address the specific problems of the embedded system designer. 

A sophisticated component technology for embedded software will talk more about processes 
than procedures. But we must find a way to make these processes compositional, and to control 
their real-time behavior in predictable and understandable ways. It will talk about concurrency 
and the models of computation used to regulate interaction between components. And it will talk 
about time. 

Hardware Design 

Hardware design, of course, is more constrained than software by the physical world. It is 
instructive to examine the abstractions that have worked for hardware, such as synchronous 
design. The synchronous abstraction is widely used in hardware to build large, complex, and 
modular designs, and has recently been applied to software [9], particularly for designing 
embedded software. 

Hardware models are conventionally constructed using hardware description languages such as 
Verilog and VHDL; these language realize a discrete-event model of computation that makes 
time a first-class concept, information shared by all components. Synchronous design is done 
through a stylized use of these languages. Discrete-event models are often used for modeling 
complex systems, particularly in the context of networking, but have not yet (to my knowledge) 
been deployed into embedded system design. 

Conceptually, the distinction between hardware and software, from the perspective of 
computation, has only to do with the degree of concurrency and the role of time. An application 
with a large amount of concurrency and a heavy temporal content might as well be thought of 
using hardware abstractions, regardless of how it is implemented. An application that is 
sequential and has no temporal behavior might as well be thought of using software abstractions, 
regardless of how it is implemented. The key problem becomes one of identifying the appropriate 
abstractions for representing the design. 

Real-Time Operating Systems 

Most embedded systems, as well as many emerging applications of desktop computers, involve 
real-time computations. Some of these have hard deadlines, typically involving streaming data 
and signal processing. Examples include communication subsystems, sensor and actuator 
interfaces, audio and speech processing subsystems, and video subsystems. Many of these require 
not just real-time throughput, but also low latency. 

In general-purpose computers, these tasks have been historically delegated to specialized 
hardware, such as SoundBlaster cards, video cards, and modems. In embedded systems, these 
tasks typically compete for resources. As embedded systems become networked, the situation 
gets much more complicated, because the combination of tasks competing for resources is not 
known at design time. 

Many such embedded systems incorporate a real-time operating system, which offers specialized 
scheduling services tuned to real-time needs, in addition to standard operating system services 
such as I/O. The schedules might be based on priorities, using for example the principles of rate-



monotonic scheduling [65][49], or on deadlines. There remains much work to be done to improve 
the match between the assumptions of the scheduling principle (such as periodicity, in the case of 
rate-monotonic scheduling) and the realities of embedded systems. Because the match is not 
always good today, many real-time embedded systems contain hand-built, specialized 
microkernels for task scheduling. Such microkernels, however, are rarely sufficiently flexible to 
accommodate networked applications, and as the complexity of embedded applications grows, 
they will be increasingly difficult to design. The issues are not simple. Unfortunately, current 
practice often involves fine tuning priorities until a particular implementation seems to work.  
The result is fragile systems that fail when anything changes. 

A key problem in scheduling is that most techniques are not compositional. That is, even if 
assurances can be provided for an individual component, there are no systematic mechanisms for 
providing assurances to the aggregate of  two components, except in trivial cases. A chronic 
problem with priority-based scheduling, known as priority inversion, is one manifestation of this 
problem. 

Priority inversion occurs when processes interact, for example by using a monitor to obtain 
exclusive access to a shared resource. Suppose that a low priority process has access to the 
resource, and is preempted by a medium priority process. Then a high priority process preempts 
the medium priority process and attempts to gain access to the resource. It is blocked by the low 
priority process, but the low priority process is blocked by the presence of an executable process 
with higher priority, the medium priority process. By this mechanism, the high priority process 
cannot execute until the medium priority process completes and allows the low priority process to 
relinquish the resource. 

Although there are ways to prevent priority inversion (priority inheritance and priority ceiling 
protocols, for example), the problem is symptomatic of a deeper failure. In a priority-based 
scheduling scheme, processes interact both through the scheduler and through the mutual 
exclusion mechanism (monitors) supported by the framework. These two interaction mechanisms 
together, however, have no coherent compositional semantics. It seems like a fruitful research 
goal to seek a better mechanism. 

Real-Time Object-Oriented Models 

Real-time practice has recently been extended to distributed component software in the form of 
real-time CORBA and related models [8] and Real-time Object-Oriented Modeling (ROOM) 
[80]. CORBA is fundamentally a distributed object-oriented approach based on remote procedure 
calls. Built upon this foundation of remote procedure calls are various services, including an 
event service that provides a publish-and-subscribe semantics. Real-time CORBA extends this 
further by associating priorities with event handling, and leveraging real-time scheduling for 
processing events in a timely manner. Real-time CORBA, however, is still based on prevailing 
software abstractions. Thus, for effective real-time performance, a programmer has to specify 
various numbers, such as worst-case and typical execution times for procedures, cached and not. 
These numbers are hard to know precisely. Real-time scheduling is then driven by additional 
parameters such as periodicity, and then tweaked with semantically weak parameters called 
“importance” and “criticality.” These parameters, taken together, amount to guesses, as their 
actual effect on system behavior is hard to predict except by experimentation. 



4. Actor-Oriented Design 

Object-oriented design emphasizes inheritance and procedural interfaces. We need an approach 
that, like object-oriented design, constructs complex applications by assembling components, but 
emphasizes concurrency and communication abstractions, and admits time as a first-class 
concept. I suggest the term actor-oriented design for a refactored software architecture, where 
instead of objects, the components are parameterized actors with ports. Ports and parameters 
define the interface of an actor. A port represents an interaction with other actors, but unlike a 
method, does not have call-return semantics. Its precise semantics depends on the model of 
computation, but conceptually it represents signaling between components. 

There are many examples of actor-oriented frameworks, including Simulink (from The 
MathWorks), LabVIEW (from National Instruments), Easy 5x (from Boeing), SPW (the Signal 
Processing Worksystem, from Cadence), and Cocentric System studio (from Synopsys). The 
approach has not been entirely ignored by the software engineering community, as evidenced by 
ROOM (Real-time Object-Oriented Modeling [80]) and some architecture description languages 
(ADLs, such as Wright [7]). Hardware design languages, such as VHDL, Verilog, and SystemC, 
are all actor oriented. In the academic community, active objects and actors [2][3], timed I/O 
automata  [69], Polis and Metropolis [19], Giotto [39], and Ptolemy and Ptolemy II [20] all 
emphasize actor orientation. 

Agha uses the term “actors,” which he defines to extend the concept of objects to concurrent 
computation [4]. Agha’s actors encapsulate a thread of control and have interfaces for interacting 
with other actors. The protocols used for this interface are called interaction patterns, and are part 
of the model of computation. My use of the term “actors” is broader, in that I do not require the 
actors to encapsulate a thread of control. But I share with Agha the notion of interaction patterns, 
which I call the “model of computation.” 

Agha argues that no model of concurrency can or should allow all communication abstractions to 
be directly expressed. He describes message passing as akin to “gotos” in their lack of structure. 
Instead, actors should be composed using an interaction policy. These more specialized 
interaction policies will form models of computation. 

Abstract Syntax 

It is useful to separate syntactic issues from semantic issues.  An abstract syntax defines how a 
design can be decomposed into interconnected components, without being concerned with how a 
design is represented on paper or in a computer file (that is the concern of the concrete syntax). 
An abstract syntax is also not concerned with the meaning of the interconnections of components, 
nor even what a component is. A design is a set of components and relationships among them, 
where the relationships conform to this abstract syntax. Here, we describe the abstract syntax 
using informal diagrams that illustrate these sets and relations by giving use cases, although 
formalizing the abstract syntax is necessary for precision. 
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Figure 1. Abstract syntax of actor-oriented designs. 

Consider the diagram in figure 1. This shows three components (actors), each with one port, and 
an interconnection between these ports mediated by a relation. This illustrates a basic abstract 
syntax.  The abstract syntax says nothing about the meaning of the interconnection, but rather just 
merely that it exists. To be useful, the abstract syntax is typically augmented with hierarchy, 
where an actor is itself an aggregate of actors.  It can be further elaborated with such features as 
ports supporting multiple links and relations representing multiple connections. An elaborate 
abstract syntax of this type is described in [20]. 

Concrete Syntaxes 

The abstract syntax may be associated with any number of concrete syntaxes. For instance, an 
XML schema might be used to provide a textual representation of a structure [57]. A visual editor 
may provide a diagrammatic syntax, like that shown in figure 2. 

 



Figure 2. An example of a visual concrete syntax. This is the visual editor for Ptolemy II [20] 
called Vergil, designed by Steve Neuendorffer. 

Actor-oriented design does not require visual syntaxes. However, visual depictions of systems 
have always held a strong human appeal, making them extremely effective in conveying 
information about a design. Many of the methods described in this chapter can use such 
depictions to completely and formally specify models. Visual syntaxes can be every bit as precise 
and complete as textual syntaxes, particularly when they are judiciously combined with textual 
syntaxes. 

Visual representations of models have a mixed history. In circuit design, schematic diagrams used 
to be routinely used to capture all of the essential information needed to implement some systems. 
Today, schematics are usually replaced by text in hardware description languages such as VHDL 
or Verilog. In other contexts, visual representations have largely failed, for example flowcharts 
for capturing the behavior of software. Recently, a number of innovative visual formalisms have 
been garnering support, including visual dataflow, hierarchical concurrent finite state machines, 
and object models. The UML visual language for object modeling, for example, has been 
receiving a great deal of practical use [25]. 

Semantics 

A semantics gives meaning to components and their interconnection. It states, for example, that a 
component is a process, and a connection represents communication between processes. 
Alternatively, a component may be a state and a connection may represent a transition between 
states. In the former case, the semantics may restrict how the communication may occur. These 
semantic models can be viewed as architectural patterns [68], although for the purposes of this 
chapter, I will call them models of computation. One of my objectives here is to codify a few of 
the known models of computation that are useful for embedded software design. 

Consider a family of models of computation where components are producers or consumers of 
data (or both). In this case, the ports acquire the property of being inputs, outputs, or both. 
Consider for example the diagram in figure 3. 
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Figure 3. Producer-consumer communication mechanism.  

This diagram has two actors, one producer and one consumer. The diagram suggests a port that is 
an output by showing an outgoing arrow, and an input by showing an ingoing arrow. It also 
shows a simplified version of the Ptolemy II data transport mechanism [20]. The producer sends a 
token t (which encapsulates user data) via its port by calling a send() method on that port. This 
results in a call to the put() method of the receiver in the destination port.  The destination actor 
retrieves the token by calling get() on the port.  This mechanism, however, is polymorphic, in the 
sense that it does not specify what it means to call put() or get().  This depends on the model of 
computation. 



A model of computation may be very broad or very specific. The more constraints there are, the 
more specific it is. Ideally, this specificity comes with benefits. For example, Unix pipes do not 
support feedback structures, and therefore cannot deadlock. Common practice in concurrent 
programming is that the components are threads that share memory and exchange objects using 
semaphores and monitors. This is a very broad model of computation with few benefits. In 
particular, it is hard to talk about the properties of an aggregate of components because an 
aggregate of components is not a component in the framework. Moreover, it is difficult to analyze 
a design in such a model of computation for deadlock or temporal behavior. 

A model of computation is often deeply ingrained in the human culture of the designers that use 
it. It fades out of the domain of discourse. It can be argued that the Turing sequentiality of 
computation is so deeply ingrained in contemporary computer science culture that we no longer 
realize just how thoroughly we have banished time from computation. In a more domain-specific 
context, users of modeling languages such as Simulink rarely question the suitability of the 
semantics to their problem at hand. To such users, it does not “have semantics,” it just “is.” 

The key challenge in embedded software research is to invent or identify models of computation 
with properties that match the application domain well. One of the requirements is that time be 
central to the model. 

Models of Computation 

A model of computation can be thought of as the “laws of physics” that govern component 
interactions.  It is the programmer’s model, or the conceptual framework within which larger 
designs are constructed by composing components. 

Design of embedded software will require models of computation that support concurrency. In 
practice, concurrency seriously complicates system design. No universal model of computation 
has yet emerged for concurrent computation (although some proponents of one approach or 
another will dispute this). By contrast, for sequential computation, Von Neumann provided a 
wildly successful universal abstraction. In this abstraction, a program consists of a sequence of 
transformations of the system state. In distributed systems, it is difficult to maintain a global 
notion of “system state,” an essential part of the Von Neumann model, since many small state 
transformations are occurring simultaneously, in arbitrary order. 

In networked embedded systems, communication bandwidth and latencies will vary over several 
orders of magnitude, even within the same system design. A model of computation that is well-
suited to small latencies (e.g. the synchronous hypothesis used in digital circuit design, where 
computation and communication take “zero” time) is usually poorly suited to large latencies, and 
vice versa. Thus, practical designs will almost certainly have to combine techniques. 

It is well understood that effective design of concurrent systems requires one or more levels of 
abstraction above the hardware support. A hardware system with a shared memory model and 
transparent cache consistency, for example, still requires at least one more level of abstraction in 
order to achieve determinate distributed computation. A hardware system based on high-speed 
packet-switched networks could introduce a shared-memory abstraction above this hardware 
support, or it could be used directly as the basis for a higher level of abstraction. Abstractions that 
can be used include the event-based model of Java Beans, semaphores based on Dijkstra’s P/V 
systems [21], guarded communication [41], rendezvous, synchronous message passing, active 
messages [87], asynchronous message passing, streams (as in Kahn process networks [46] ), 



dataflow (commonly used in signal and image processing), synchronous/reactive systems [9], 
Linda [17], and many others.  

These abstractions partially or completely define a model of computation. Applications are built 
on a model of computation, whether the designer is aware of this or not. Each possibility has 
strengths and weaknesses. Some guarantee determinacy, some can execute in bounded memory, 
and some are provably free from deadlock. Different styles of concurrency are often dictated by 
the application, and the choice of model of computation can subtly affect the choice of 
algorithms. While dataflow is a good match for signal processing, for example, it is a poor match 
for transaction-based systems, control-intensive sequential decision making, and resource 
management. 

It is fairly common to support models of computation with language extensions or entirely new 
languages. Occam, for example, supports synchronous message passing based on guarded 
communication [41]. Esterel [12], Lustre [33], Signal [10], and Argos [71] support the 
synchronous/reactive model. These languages, however, have serious drawbacks. Acceptance is 
slow, platforms are limited, support software is limited, and legacy code must be translated or 
entirely rewritten. 

An alternative approach is to explicitly use models of computation for coordination of modular 
programs written in standard, more widely used languages. The system-level specification 
language SystemC for hardware systems, for example, uses this approach (see 
http://systemc.org). In other words, one can decouple the choice of programming language from 
the choice of model of computation. This also enables mixing such standard languages in order to 
maximally leverage their strengths. Thus, for example, an embedded application could be 
described as an interconnection of modules, where modules are written in some combination of 
C, Java, and VHDL. Use of these languages permits exploiting their strengths. For example, 
VHDL provides FPGA targeting for reconfigurable hardware implementations. Java, in theory, 
provides portability, migratability, and a certain measure of security. C provides efficient 
execution. 

The interaction between modules could follow any of several principles, e.g., those of Kahn 
process networks [46]. This abstraction provides a robust interaction layer with loosely 
synchronized communication and support for mutable systems (in which subsystems come and 
go). It is not directly built into any of the underlying languages, but rather interacts with them as 
an application interface. The programmer uses them as a design pattern [29] rather than as a 
language feature. Larger applications may mix more than one model of computation. For 
example, the interaction of modules in a real-time, safety-critical subsystem might follow the 
synchronous/reactive model of computation, while the interaction of this subsystem with other 
subsystems follows a process networks model. Thus, domain-specific approaches can be 
combined. 

5. Examples of Models of Computation 

There are many models of computation, each dealing with concurrency and time in different 
ways. In this section, I outline some of the most useful models for embedded software. All of 
these will lend a semantics to the same abstract syntax shown in figure 1. 



Dataflow 

In dataflow models, actors are atomic (indivisible) computations that are triggered by the 
availability of input data. Connections between actors represent the flow of data from a producer 
actor to a consumer actor. Examples of commercial frameworks that use dataflow models are 
SPW (signal processing worksystem, from Cadence) and LabVIEW (from National Instruments). 

Synchronous dataflow (SDF) is a particularly restricted special case with the extremely useful 
property that deadlock and boundedness are decidable [48][54][58][59]. Boolean dataflow (BDF) 
is a generalization that sometimes yields to deadlock and boundedness analysis, although 
fundamentally these questions remain undecidable [15]. Dynamic dataflow (DDF) uses only run-
time analysis, and thus makes no attempt to statically answer questions about deadlock and 
boundedness [43][47][75]. 

A small but typical example of an embedded software application modeled using SDF is shown 
in figure 4. That example shows a sound synthesis algorithm that consists of four actors in a 
feedback loop. The algorithm synthesizes the sound of plucked string instrument, such as a guitar, 
using the well-known Karplus-Strong algorithm. 
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Figure 4. A synchronous dataflow model implemented in the SDF domain (created by Stephen 
Neuendorffer) of Ptolemy II [20]. This model uses the audio library created by Brian Vogel. 

Time Triggered 

Some systems with timed events are driven by clocks, which are signals with events that are 
repeated indefinitely with a fixed period. A number of software frameworks and hardware 
architectures have evolved to support this highly regular style of computation. 

The time-triggered architecture [51] is a hardware architecture supporting such models. The TTA 
takes advantage of this regularity by statically scheduling computations and communications 
among distributed components. 



In hardware design, cycle-driven simulators stimulate computations regularly according to the 
clock ticks. This strategy matches synchronous hardware design well, and yields highly efficient 
simulations for certain kinds of designs. In the Scenic system [63], for example, components are 
processes that run indefinitely, stall to wait for clock ticks, or stall to wait for some condition on 
the inputs (which are synchronous with clock ticks). Scenic also includes a clever mechanism for 
modeling preemption, an important feature of many embedded systems. Scenic has evolved into 
the SystemC specification language for system-level hardware design (see http://systemc.org). 

The Giotto programming language [39] provides a time-triggered software abstraction which, 
unlike the TTA or cycle-driven simulation, is hardware independent. It is intended for embedded 
software systems where periodic events dominate.  It combines with finite-state machines (see 
below) to yield modal models that can be quite expressive. An example of a helicopter controller 
in Giotto is described in [50]. 

Discrete-time models of computation are closely related. These are commonly used for digital 
signal processing, where there is an elaborate theory that handles the composition of subsystems. 
This model of computation can be generalized to support multiple sample rates. In either case, a 
global clock defines the discrete points at which signals have values (at the ticks). 

Synchronous/Reactive 

In the synchronous/reactive (SR) model of computation [9], connections between components 
represent data values that are aligned with global clock ticks, as with time-triggered approaches.  
However, unlike time-triggered and discrete-time approaches, there is no assumption that all (or 
even most) signals have a value at each time tick. This model efficiently deals with concurrent 
models with irregular events. The components represent relations between input and output 
values at each tick, allowing for absences of value, and are usually partial functions with certain 
technical restrictions to ensure determinacy. Sophisticated compiler techniques yield extremely 
efficient execution that can reduce all concurrency to a sequential execution. Examples of 
languages that use the SR model of computation include Esterel [12], Signal [10], and Lustre 
[18]. 

An example of an application for which the synchronous reactive model is ideally suited is the 
management of a token-ring protocol for media access control, described in [25]. In this 
application, a token circulates in a round-robin fashion among users of a communication medium. 
When a user makes a request for access, if the user has the token, access is granted immediately. 
If not, then access may still be granted if the current holder of the token does not require access. 
The SR realization of this protocol yields predictable, deterministic management of access. This 
application benefits from the SR semantics because it includes instantaneous dialog and 
convergence to a fixed point (which determines who gets access when there is contention). 

SR models are excellent for applications with concurrent and complex control logic. Because of 
the tight synchronization, safety-critical real-time applications are a good match. However, also 
because of the tight synchronization, some applications are overspecified in the SR model, which 
thus limits the implementation alternatives and makes distributed systems difficult to model. 
Moreover, in most realizations, modularity is compromised by the need to seek a global fixed 
point at each clock tick. 



Discrete Events 

In discrete-event (DE) models of computation, the connections represent sets of events placed on 
a time line. An event consists of a value and time stamp. This model of computation is popular 
for specifying hardware and for simulating telecommunications systems, and has been realized in 
a large number of simulation environments, simulation languages, and hardware description 
languages, including VHDL and Verilog. Like SR, there is a globally consistent notion of time, 
but unlike SR time has a metric, in that the time between events has significance. 

DE models are often used in the design of communication networks. Figure 2 above gives a very 
simple DE model that is typical of this usage. That example constructs packets and routes them 
through a channel model. In this case, the channel model has the feature that it may reorder the 
packets. A sequencer is used to reconstruct the original packet order. 

DE models are also excellent descriptions of concurrent hardware, although increasingly the 
globally consistent notion of time is problematic. In particular, it over-specifies (or over-models) 
systems where maintaining such a globally consistent notion is difficult, including large VLSI 
chips with high clock rates, and networked distributed systems. A key weakness is that it is 
relatively expensive to implement in software, as evidenced by the relatively slow simulators. 

Process Networks 

A common way of handling concurrent software is where components are processes or threads 
that communicate by asynchronous, buffered message passing. The sender of the message need 
not wait for the receiver to be ready to receive the message. There are several variants of this 
technique, but I focus on one that ensures determinate computation, namely Kahn process 
networks [46]. 

In a Kahn process network (PN) model of computation, the connections represent sequences of 
data values (tokens), and the components represent functions that map input sequences into 
output sequences. Certain technical restrictions on these functions are necessary to ensure 
determinacy, meaning that the sequences are fully specified. Dataflow models are a special case 
of process networks that construct processes as sequences of atomic actor firings [60]. 

PN models are excellent for signal processing [64]. They are loosely coupled, and hence 
relatively easy to parallelize or distribute. They can be implemented efficiently in both software 
and hardware, and hence leave implementation options open. A key weakness of PN models is 
that they are awkward for specifying complicated control logic. Control logic is specified by 
routing data values. 

Rendezvous  

In synchronous message passing, the components are processes, and processes communicate in 
atomic, instantaneous actions called rendezvous. If two processes are to communicate, and one 
reaches the point first at which it is ready to communicate, then it stalls until the other process is 
ready to communicate. “Atomic” means that the two processes are simultaneously involved in the 
exchange, and that the exchange is initiated and completed in a single uninterruptable step. 
Examples of rendezvous models include Hoare’s communicating sequential processes (CSP) [41] 



and Milner’s calculus of communicating systems (CCS) [74]. This model of computation has 
been realized in a number of concurrent programming languages, including Lotos and Occam. 

Rendezvous models are particularly well matched to applications where resource sharing is a key 
element, such as client-server database models and multitasking or multiplexing of hardware 
resources. A key weakness of rendezvous-based models is that maintaining determinacy can be 
difficult. Proponents of the approach, of course, cite the ability to model nondeterminacy as a key 
strength. 

Rendezvous models and PN both involve threads that communicate via message passing, 
synchronously in the former case and asynchronously in the latter. Neither model intrinsically 
includes a notion of time, which can make it difficult to interoperate with models that do include 
a notion of time. In fact, message events are partially ordered, rather than totally ordered as they 
would be were they placed on a time line. 

Both models of computation can be augmented with a notion of time to promote interoperability 
and to directly model temporal properties (see for example [76]). In the Pamela system [85], 
threads assume that time does not advance while they are active, but can advance when they stall 
on inputs, outputs, or explicitly indicate that time can advance. By this vehicle, additional 
constraints are imposed on the order of events, and determinate interoperability with timed 
models of computation becomes possible. This mechanism has the potential of supporting low-
latency feedback and configurable hardware. 

Publish and Subscribe 

In publish-and-subscribe models, connections between components are via named event streams. 
A component that is a consumer of such streams registers an interest in the stream. When a 
producer produces an event to such a stream, the consumer is notified that a new event is 
available. It then queries a server for the value of the event. Linda is a classic example of a fully 
elaborated publish-and-subscribe mechanism [5]. It has recently been reimplemented in 
JavaSpaces, from Sun Microsystems. An example of a distributed embedded software application 
using JavaSpaces is shown in figure 5. 



 

  

 

 
 
Figure 5. A distributed embedded application using JavaSpaces to combined with SDF to realize 
a publish-and-subscribe model of computation. The upper left model reads sensor data from a tilt 
sensor and publishes the data on the network. The lower model subscribes to the sensor data and 
uses it to drive the Lego robot at the upper right. This example was built by Jie Liu and Xiaojun 
Liu. 

Continuous Time 

Physical systems can often be modeled using coupled differential equations. These have a natural 
representation in the abstract syntax of figure 1, where the connections represent continuous-time 
signals (functions of the time continuum). The components represent relations between these 
signals. The job of an execution environment is to find a fixed-point, i.e., a set of functions of 
time that satisfy all the relations. 

Differential equations are excellent for modeling the physical systems with which embedded 
software interacts.   Joint modeling of these physical systems and the software that interacts with 
them is essential to developing confidence in a design of embedded software. Such joint 
modeling is supported by such actor-oriented modeling frameworks as Simulink, Saber, VHDL-
AMS, and Ptolemy II. A Ptolemy II continuous-time model is shown in figure 6. 
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Figure 6. A nonlinear feedback system modeled in the continuous-time (CT) domain in Ptolemy 
II. This model exhibits the chaotic behavior plotted at the right. This model and the CT domain 
were created by Jie Liu. 

Finite State Machines 

All of the models of computation considered so far are concurrent. It is often useful to combine 
these concurrent models hierarchically with finite-state machines (FSMs) to get modal models. 
FSMs are different from any of the models we have considered so far in that they are strictly 
sequential.  A component in this model is called a state or mode, and exactly one state is active at 
a time. The connections between states represent transitions, or transfer of control between states. 
Execution is a strictly ordered sequence of state transitions. Transition systems are a more general 
version, in that a given component may represent more than one system state (and there may be 
an infinite number of components). 

FSM models are excellent for describing control logic in embedded systems, particularly safety-
critical systems. FSM models are amenable to in-depth formal analysis, using for example model 
checking, and thus can be used to avoid surprising behavior. Moreover, FSMs are easily mapped 
to either hardware or software implementations. 



FSM models have a number of key weaknesses. First, at a very fundamental level, they are not as 
expressive as the other models of computation described here. They are not sufficiently rich to 
describe all partial recursive functions. However, this weakness is acceptable in light of the 
formal analysis that becomes possible. Many questions about designs are decidable for FSMs and 
undecidable for other models of computation. Another key weakness is that the number of states 
can get very large even in the face of only modest complexity. This makes the models unwieldy. 

The latter problem can often be solved by using FSMs in combination with concurrent models of 
computation. This was first noted by Harel, who introduced the Statecharts formalism. Statecharts 
combine synchronous/reactive modeling with FSMs [34]. Statecharts have been adopted by UML 
for modeling the dynamics of software [25]. FSMs have also been combined with differential 
equations, yielding the so-called hybrid systems model of computation [40]. 

FSMs can be hierarchically combined with a huge variety of concurrent models of computation. 
We call the resulting formalism “*charts” (pronounced “starcharts”) where the star represents a 
wildcard [30]. 

Consider the model shown in figure 7. In that figure, component B is hierarchically refined by 
another model consisting of three components, c, d, and e.  These latter three components are 
states of a state machine, and the connections between them are state transitions.  States c and e 
are shown refined to concurrent models themselves.  The interpretation is that while the FSM is 
in state c, then component B is in fact defined by component H.  While it is in state e, component 
B is defined by a composition of F and G. 
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Figure 7. Hierarchical composition of an FSM with concurrent models of computation. 

In the figure, square boxes depict components in a concurrent model of computation, while 
circles depict states in a state machine. Despite the different concrete syntax, the abstract syntax 
is the same: components with interconnections. If the concurrent model of computation is SR, 
then the combination has Statechart semantics. If it is continuous time, then the combination has 
hybrid systems semantics. If it is PN, then the combination is similar to the SDL language [78]. If 



it is DE, then the combination is similar to Polis [19]. A hybrid system example implemented in 
Ptolemy II is shown in figure 8. 
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Figure 8. Hybrid system model in Ptolemy II, showing a hierarchical composition of a finite state 
machine (FSM) model and two continuous-time (CT) models. This example models a physical 
spring-mass system with two modes of operation. In the Separate mode, it has two masses on 
springs oscillating independently. In the Together mode, it the two masses are stuck together, and 
oscillate together with two springs. The model was created by Jie Liu and Xiaojun Liu. 

6. Choosing a Model of Computation 

The rich variety of models of computation outlined above can be daunting to a designer faced 
with having to select them. Most designers today do not face this choice because they get exposed 
to only one or two. This is changing, however, as the level of abstraction and domain-specificity 
of design practice both rise. We expect that sophisticated and highly visual user interfaces will be 
needed to enable designers to cope with this heterogeneity. 

An essential difference between concurrent models of computation is their modeling of time. 
Some are very explicit by taking time to be a real number that advances uniformly, and placing 
events on a time line or evolving continuous signals along the time line. Others are more abstract 
and take time to be discrete. Others are still more abstract and take time to be merely a constraint 
imposed by causality. This latter interpretation results in time that is partially ordered, and 
explains much of the expressiveness in process networks and rendezvous-based models of 



computation. Partially ordered time provides a mathematical framework for formally analyzing 
and comparing models of computation [61]. 

Many researchers have thought deeply about the role of time in computation. Benveniste et al. 
observe that in certain classes of systems, “the nature of time is by no means universal, but rather 
local to each subsystem, and consequently multiform” [10]. Lamport observes that a coordinated 
notion of time cannot be exactly maintained in distributed systems, and shows that a partial 
ordering is sufficient [53]. He gives a mechanism in which messages in an asynchronous system 
carry time stamps and processes manipulate these time stamps. We can then talk about processes 
having information or knowledge at a consistent cut, rather than “simultaneously”. Fidge gives a 
related mechanism in which processes that can fork and join increment a counter on each event 
[27]. A partial ordering relationship between these lists of times is determined by process 
creation, destruction, and communication. If the number of processes is fixed ahead of time, then 
Mattern gives a more efficient implementation by using “vector time” [73]. All of this work 
offers ideas for modeling time. 

How can we reconcile this multiplicity of views? A grand unified approach to modeling would 
seek a concurrent model of computation that serves all purposes. This could be accomplished by 
creating a melange, a mixture of all of the above. For example, one might permit each connection 
between components to use a distinct protocol, where some are timed and some not, and some a 
synchronous and some not, as done for example in ROOM [80] and SystemC 2.0 
(http://systemc.org). This offers rich expressiveness, but such a mixture may prove extremely 
complex and difficult to understand, and synthesis and validation tools would be difficult to 
design. In my opinion, such richly expressive formalisms are best used as foundations for more 
specialized models of computation. This, in fact, is the intent in SystemC 2.0 [81]. 

Another alternative would be to choose one concurrent model of computation, say the rendezvous 
model, and show that all the others are subsumed as special cases. This is relatively easy to do, in 
theory. Most of these models of computation are sufficiently expressive to be able to subsume 
most of the others. However, this fails to acknowledge the strengths and weaknesses of each 
model of computation. Process networks, for instance, are very good at describing the data 
dependencies in a signal processing system, but not as good at describing the associated control 
logic and resource management. Finite-state machines are good at modeling at least simple 
control logic, but inadequate for modeling data dependencies and numeric computation. 
Rendezvous-based models are good for resource management, but they overspecify data 
dependencies. Thus, to design interesting systems, designers need to use heterogeneous models. 

Certain architecture description languages (ADLs), such as Wright [7] and Rapide [68], define a 
model of computation. The models are intended for describing the rich sorts of component 
interactions that commonly arise in software architecture. Indeed, such descriptions often yield 
good insights about design. But sometimes, the match is poor. Wright, for example, which is 
based on CSP, does not cleanly describe asynchronous message passing (it requires giving 
detailed descriptions of the mechanisms of message passing). I believe that what we really want 
are architecture design languages rather than architecture description languages. That is, their 
focus should not be on describing current practice, but rather on improving future practice. 
Wright, therefore, with its strong commitment to CSP, should not be concerned with whether it 
cleanly models asynchronous message passing. It should instead take the stand that asynchronous 
message passing is a bad idea for the designs it addresses. 



7. Heterogeneous Models 

Figure 4 shows a hierarchical heterogeneous combination of models of computation.  A 
concurrent model at the top level has a component that is refined into a finite-state machine. The 
states in the state machine are further refined into a concurrent model of computation. Ideally, 
each concurrent model of computation can be designed in such a way that it composes 
transparently with FSMs, and, in fact, with other concurrent models of computation. In particular, 
when building a realization of a model of computation, it would be best if it did not need to be 
jointly designed with the realizations that it can compose with hierarchically. 

This is a challenging problem. It is not always obvious what the meaning should be of some 
particular hierarchical combination. The semantics of various combinations of FSMs with various 
concurrency models are described in [30]. In Ptolemy II [20], the composition is accomplished 
via a notion called domain polymorphism. 

The term “domain polymorphism” requires some explanation.  First, the term “domain” is used in 
the Ptolemy project to refer to an implementation of a model of computation.  This 
implementation can be thought of as a “language,” except that it does not (necessarily) have the 
traditional textual syntax of conventional programming languages. Instead, it abides by a 
common abstract syntax that underlies all Ptolemy models.  The term “domain” is a fanciful one, 
coming from the speculative notion in astrophysics that there are regions of the universe where 
the laws of physics differ.  Such regions are called “domains.” The model of computation is 
analogous to the laws of physics. 

In Ptolemy II, components (called actors) in a concurrent model of computation implement an 
interface consisting of a suite of action methods. These methods define the execution of the 
component. A component that can be executed under the direction of any of a number of models 
of computation is called a domain polymorphic component. The component is not defined to 
operate with a particular model of computation, but instead has a well-defined behavior in 
several, and can be usefully used in several. It is domain polymorphic, meaning specifically that it 
has a well-defined behavior in more than one domain, and that the behavior is not necessarily the 
same in different domains. For example, the AddSubtract actor (shown as a square with a + and 
−) appears in figure 8, where it adds or subtracts continuous-time signals, and in figure 5, where it 
adds or subtracts streams. 

In Ptolemy II, an application (which is called a “model”) is constructed by composing actors 
(most of which are domain polymorphic), connecting them, and assigning a domain. The domain 
governs the interaction between components and the flow of control. It provides the execution 
semantics to the assembly of components.  The key to hierarchically composing multiple models 
of computation is that an aggregation of components under the control of a domain should itself 
define a domain polymorphic component.  Thus, the aggregate can be used as a component 
within a different model of computation. In Ptolemy II, this is how finite-state machine models 
are hierarchically composed with other models to get hybrid systems, Statechart-like models, and 
SDL-like models. 

Domain-polymorphic components in Ptolemy II simply need to implement a Java interface called 
Executable. This interface defines three phases of execution, an initialization phase, which is 
executed once, an iteration phase, which can be executed multiple times, and a termination 
phase, which is executed once.  The iteration itself is divided into three phases also. The first 
phase, called prefire, can examine the status of the inputs and can abort the iteration or continue 



it. The prefire phase can also initiate some computation, if appropriate. The second phase, called 
fire, can also perform some computation, if appropriate, and can produce outputs. The third 
phase, called postfire, can commit any state changes for the component that might be appropriate. 

To get hierarchical mixtures of domains, a domain must itself implement the Executable interface 
to execute an aggregate of components.  Thus, it must define an initialization, iteration, and 
termination phase, and within the iteration phase, it must define the same three phases of 
execution.  

The three-phase iteration has proven suitable for a huge variety of models of computation, 
including synchronous dataflow (SDF) [58], discrete events (DE) [56], discrete time (DT) [28], 
finite-state machines (FSM) [30], continuous-time (CT) [66], synchronous/reactive (SR), and 
Giotto (a time-triggered domain) [39].  All of these domains can be combined hierarchically. 

Some domains in Ptolemy II have fixed-point semantics, meaning that in each iteration, the 
domain may repeatedly fire the components until a fixed point is found. Two such domains are 
continuous time (CT) [66] and synchronous/reactive (SR) [24][88].  The fact that a state update is 
committed only in the postfire phase of an iteration makes it easy to use domain-polymorphic 
components in such a domain. 

Ptolemy II also has domains for which this pattern does not work quite as well. In particular, in 
the process networks (PN) domain [31] and communicating sequential processes (CSP) domain, 
each component executes in its own thread. These domains have no difficulty executing domain 
polymorphic components. They simply wrap in a thread a (potentially) infinite sequence of 
iterations. However, aggregates in such domains are harder to encapsulate as domain 
polymorphic components, because it is hard to define an iteration for the aggregate. Since each 
component in the aggregate has its own thread of execution, it can be tricky to define the 
boundary points between iterations.  This is an open issue that the Ptolemy project continues to 
address, and to which there are several candidate solutions that are applicable for particular 
problems. 

8. Component Interfaces 

The approach described in the previous section is fairly ad hoc. The Ptolemy project has 
constructed domains to implement various models of computation, most of which have entire 
research communities centered on them.  It has then experimented with combinations of models 
of computation, and through trial and error, has identified a reasonable design for a domain-
polymorphic component interface definition. Can this ad hoc approach be made more systematic? 

I believe that type system concepts can be extended to make this ad hoc approach more 
systematic.  Type systems in modern programming languages, however, do not go far enough. 
Several researchers have proposed extending the type system to handle such issues as array 
bounds overruns, which are traditionally left to the run-time system [90]. But many issues are still 
not dealt with. For example, the fact that prefire is executed before fire in a domain-polymorphic 
component is not expressed in the type system. 

At its root, a type system constrains what a component can say about its interface, and how 
compatibility is ensured when components are composed. Mathematically, type system methods 
depend on a partial order of types, typically defined by a subtyping relation (for user-defined 
types such as classes) or in more ad-hoc ways (for primitive types such as double or int). They 



can be built from the robust mathematics of partial orders, leveraging for example fixed-point 
theorems to ensure convergence of type checking, type resolution, and type inference algorithms. 

With this very broad interpretation of type systems, all we need is that the properties of an 
interface be given as elements of a partial order, preferably a complete partial order (CPO) or a 
lattice [80]. I suggest first that dynamic properties of an interface, such as the conventions in 
domain-polymorphic component design, can be described using nondeterministic automata, and 
that the pertinent partial ordering relation is the simulation relation between automata. 
Preliminary work in this direction is reported in [62], which uses a particular automaton model 
called interface automata [21]. The result is called a system-level type system. 

System-level types can be used without modifying the underlying languages, but rather by 
overlaying on standard languages design patterns that make these types explicit. Domain-
polymorphic components are simply those whose system-level types are polymorphic.  

Note that there is considerable precedent for such augmentations of the type system. For example, 
Lucassen and Gifford introduce state into functions using the type system to declare whether 
functions are free of side effects [67]. Martin-Löf introduces dependent types, in which types are 
indexed by terms [72]. Xi uses dependent types to augment the type system to include array sizes, 
and uses type resolution to annotate programs that do not need dynamic array bounds checking 
[90]. The technique uses singleton types instead of general terms [38] to help avoid 
undecidability. While much of the fundamental work has been developed using functional 
languages (especially ML), there is no reason that I can see that it cannot be applied to more 
widely accepted languages. 

On-line Type Systems 

Static support for type systems give the compiler responsibility for the robustness of software 
[16]. This is not adequate when the software architecture is dynamic. The software needs to take 
responsibility for its own robustness [52]. This means that algorithms that support the type system 
need to be adapted to be practically executable at run time. 

ML is an early and well known realization of a “modern type system” [32][83][89]. It was the 
first language to use type inference in an integrated way [42], where the types of variables are not 
declared, but are rather inferred from how they are used. The compile-time algorithms here are 
elegant, but it is not clear to me whether run-time adaptations are practical. 

Many modern languages, including Java and C++, use declared types rather than type inference, 
but their extensive use of polymorphism still implies a need for fairly sophisticated type checking 
and type resolution. Type resolution allows for automatic (lossless) type conversions and for 
optimized run-time code, where the overhead of late binding can be avoided. 

Type inference and type checking can be reformulated as the problem of finding the fixed point 
of a monotonic function on a lattice, an approach due to Dana Scott [79]. The lattice describes a 
partial order of types, where the ordering relationship is the subtype relation. For example, 
Double is a subtype of Number in Java. A typical implementation reformulates the fixed point 
problem as the solution of a system of equations [74] or of inequalities [91]. Reasonably efficient 
algorithms have been identified for solving such systems of inequalities [77], although these 
algorithms are still primarily viewed as part of a compiler, and not part of a run-time system. 



Iteration to a fixed point, at first glance, seems too costly for on-line real-time computation. 
However, there are several languages based on such iteration that are used primarily in a real-time 
context. Esterel is one of these [12]. Esterel compilers synthesize run-time algorithms that 
converge to a fixed point at each clock of a synchronous system [10]. Such synthesis requires 
detailed static information about the structure of the application, but methods have been 
demonstrated that use less static information [24]. Although these techniques have not been 
proposed primarily in the context of a type system, I believe they can be adapted. 

Reflecting Program Dynamics 

Object-oriented programming promises software modularization, but has not completely 
delivered. The type system captures only static, structural aspects of software. It says little about 
the state trajectory of a program (its dynamics) and about its concurrency. Nonetheless, it has 
proved extremely useful, and through the use of reflection, is able to support distributed systems 
and mobile code. 

Reflection, as applied in software, can be viewed as having an on-line model of the software 
within the software itself. In Java for example, this is applied in a simple way. The static structure 
of objects is visible through the Class class and the classes in the reflection package, which 
includes Method, Constructor, and various others. These classes allow Java code to dynamically 
query objects for their methods, determine on-the-fly the arguments of the methods, and construct 
calls to those methods. Reflection is an integral part of Java Beans, mobile code, and CORBA 
support. It provides a run-time environment with the facilities for stitching together components 
with relatively intolerant interfaces. 

However, static structure is not enough. The interfaces between components involve more than 
method templates, including such properties as communication protocols. To get adaptive 
software in the context of real-time applications, it will also be important to reflect program state. 
Thus, we need reflection on the program dynamics. 

In embedded software, this could be used, for example, to systematically realize fault detection, 
isolation, and recovery (FDIR). That is, if the declared dynamic properties of a component are 
violated at run time, the run-time type checking can detect it. For example, suppose a component 
declares as part of its interface definition that it must execute at least once every 10 ms. Then a 
run-time type checker will detect a violation of this requirement. 

The first question becomes at what granularity to do this. Reflection intrinsically refers to a 
particular abstracted representation of a program. E.g., in the case of static structure, Java's 
reflection package does not include finer granularity than methods. 

Process-level reflection could include two critical facets, communication protocols and process 
state. The former would capture in a type system such properties as whether the process uses 
rendezvous, streams, or events to communication with other processes. By contrast, Java Beans 
defines this property universally to all applications using Java Beans. That is, the event model is 
the only interaction mechanism available. If a component needs rendezvous, it must implement 
that on top of events, and the type system provides no mechanism for the component to assert that 
it needs rendezvous. For this reason, Java Beans seem unlikely to be very useful in applications 
that need stronger synchronization between processes, and thus it is unlikely to be used much 
beyond user interface design. 



Reflecting process state could be done with an automaton that simulates the program. (We use the 
term “simulates” in the technical sense of automata theory.) That is, a component or its run-time 
environment can access the “state” of a process (much as an object accesses its own static 
structure in Java), but that state is not the detailed state of the process, but rather the state of a 
carefully chosen automaton that simulates the application. Designing that automaton is then 
similar (conceptually) to designing the static structure of an object-oriented program, but 
represents dynamics instead of static structure.  

Just as we have object-oriented languages to help us develop object oriented programs, we would 
need state-oriented languages to help us develop the reflection automaton. These could be based 
on Statecharts, but would be closer in spirit to UML's state diagrams in that it would not be 
intended to capture all aspects of behavior. This is analogous to the object model of a program, 
which does not capture all aspects of the program structure (associations between objects are only 
weakly described in UML’s static structure diagrams). Analogous to object-oriented languages, 
which are primarily syntactic overlays on imperative languages, a state-oriented language would 
be a syntactic overlay on an object-oriented language. The syntax could be graphical, as is now 
becoming popular with object models (especially UML). 

Well-chosen reflection automata would add value in a number of ways. First, an application may 
be asked, via the network, or based on sensor data, to make some change in its functionality. How 
can it tell whether that change is safe? The change may be safe when it is in certain states, and not 
safe in other states. It would query its reflection automaton, or the reflection automaton of some 
gatekeeper object, to determine how to react. This could be particularly important in real-time 
applications. Second, reflection automata could provide a basis for verification via such 
techniques as model checking. 

This complements what object-oriented languages offer. Their object model indicates safety of a 
change with respect to data layout. But they provide no mechanism for determining safety based 
on the state of the program.  

When a reflection automaton is combined with concurrency, we get something akin to 
Statechart’s concurrent, hierarchical FSMs, but with a twist. In Statecharts, the concurrency 
model is fixed. Here, any concurrency model can be used. We call this generalization “*charts,” 
pronounced “starcharts”, where the star represents a wildcard suggesting the flexibility in 
concurrency models [30]. Some variations of Statecharts support concurrency using models that 
are different from those in the original Statecharts [71][86]. As with Statecharts, concurrent 
composition of reflection automata provides the benefit of compact representation of a product 
automaton that potentially has a very large number of states. In this sense, aggregates of 
components remain components where the reflection automaton of the aggregate is the product 
automaton of the components. But the product automaton never needs to be explicitly 
represented. 

Ideally, reflection automata would also inherit cleanly. Interface theories are evolving that 
promise to explain exactly how to do this [21]. 

In addition to application components being reflective, it will probably be beneficial for 
components in the run-time environment to be reflective. The run-time environment is whatever 
portion of the system outlives all application components. It provides such services as process 
scheduling, storage management, and specialization of components for efficient execution. 



Because it outlives all application components, it provides a convenient place to reflect aspects of 
the application that transcend a single component or an aggregate of closely related components. 

9. Frameworks Supporting Models of Computation 

In this context, a framework is a set of constraints on components and their interaction, and a set 
of benefits that derive from those constraints. This is broader than, but consistent with the 
definition of frameworks in object-oriented design [44]. By this definition, there are a huge 
number of frameworks, some of which are purely conceptual, cultural, or even philosophical, and 
some of which are embodied in software. Operating systems are frameworks where the 
components are programs or processes. Programming languages are frameworks where the 
components are language primitives and aggregates of these primitives, and the possible 
interactions are defined by the grammar. Distributed component middleware such as CORBA [8] 
and DCOM are frameworks. Synchronous digital hardware design principles are a framework. 
Java Beans form a framework that is particularly tuned to user interface construction. A particular 
class library and policies for its use is a framework [44]. 

For any particular application domain, some frameworks are better than others. Operating 
systems with no real-time facilities have limited utility in embedded systems, for example.  

In order to obtain certain benefits, frameworks impose constraints. As a rule, stronger benefits 
come at the expense of stronger constraints. Thus, frameworks may become rather specialized as 
they seek these benefits. 

The drawback with specialized frameworks is that they are unlikely to solve all the framework 
problems for any complex system. To avoid giving up the benefits of specialized frameworks, 
designers of these complex systems will have to mix frameworks heterogeneously. Of course, a 
framework is needed within which to heterogeneously mix frameworks. The design of such a 
framework is the purpose of the Ptolemy project [20]. Each domain, which implements a model 
of computation, offers the designer a specialized framework. But domains can be mixed 
hierarchically using the concept of domain polymorphism. 

A few other research projects have also heterogeneously combined models of computation. The 
Gravity system and its visual editor Orbit, like Ptolemy, provide a framework for heterogeneous 
models [1]. A model in a domain is called a facet, and heterogeneous models are multi-facetted 
designs [6]. Jourdan et al. have proposed a combination of Argos, a hierarchical finite-state 
machine language, with Lustre [33], which has a more dataflow flavor, albeit still within a 
synchronous/reactive concurrency framework [45]. Another interesting integration of diverse 
semantic models is done in Statemate [35], which combines activity charts with statecharts. This 
sort of integration has more recently become part of UML. The activity charts have some of the 
flavor of a process network. 

10. Conclusions 

Embedded software requires a view of computation that is significantly different from the 
prevailing abstractions in computation. Because such software engages the physical world, it has 
to embrace time and other non-functional properties. Suitable abstractions compose components 
according to a model of computation. Models of computation with stronger formal properties tend 
to be more specialized. This specialization limits their applicability, but this limitation can be 



ameliorated by hierarchically combining heterogeneous models of computation. System-level 
types capture key features of components and their interactions through a model of computation, 
and promise to provide robust and understandable composition technologies. 
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