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Editors’ Summary 

Complex control systems integrate a variety of functions and capabilities, which will in general 

rely on different computational mechanisms.  The plant model may be represented as a set of 

ordinary differential equations, the mode switching logic may be expressed as a finite state 

machine, and dataflow models may be used to capture the architecture of a sensor processing 

subsystem, for example.  Design tools are needed that can support these heterogeneous models of 

computation—and their integration within a single control system. 

This chapter describes Ptolemy II, a component-based design environment that allows different 

models of computation to be hierarchically composed. Individual components are called actors; 

these can include simple operators such as an AND gate and, through compositionality in the 

form of arbitrarily nested actor hierarchies, complex functions such as a Kalman filter.  Different 

models of computation can then be realized by imposing a (possibly partial) execution order and 

a communication mechanism on the actors that comprise a composite actor. 

Ptolemy II can be particularly useful for the design of hybrid dynamical systems—systems that 

combine discrete event mode logic and continuous time dynamics within each mode.  By using 
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Ptolemy II to model a hybrid system, we can choose whichever model of computation is most 

appropriate for a particular task while ensuring the consistency and integrity of the overall 

model. 

An application of Ptolemy II to the control of the Furuta inverted pendulum is also described in 

this chapter, with an emphasis on implementation issues relevant to real-time operating systems.  

As noted in Chapter 4, Ptolemy II has been interfaced with the OCP and used to model a 

nonlinear actuator as part of an overall vehicle simulation.  Chapter 5 also notes an OCP-related 

application of the Ptolemy project, in this case to support the validation of reconfiguration 

strategies and other hybrid control aspects. 

1  Introduction 

Computer control is now the standard technique for implementing control systems, mainly for 

two reasons. First is the exponential reduction in the cost of computing; second is the versatility 

of implementing control laws in software. Many developments in control systems are only 

practical with computer control, e.g. to implement the nonlinear and time varying control laws 

associated with adaptive control. Complicated computations can be incorporated into the control 

loop, for example when computer vision is used to guide a robot. 

Designing the software for such control systems is hard because the systems are usually 

heterogeneous. They may include subsystems with very different characteristics, such as 

hydraulic actuators and an inertial navigation system. On the software side the situation is 

similar. The controller may have several operational modes. The control law in each mode can 

be specified by difference equations; the mode switching logic can be specified by a state 

machine. For vision guidance, complex image processing algorithms need to be programmed. 



For each of these subsystems and aspects of the software, formal models that support its 

modeling, analysis, or programming have been developed. For example, image processing 

algorithms can be programmed in various dataflow models [16], [17]. Each formal model 

employs a computational mechanism that dictates what are the components in the model, and 

how they communicate and execute. Such a mechanism is called a model of computation. 

Working with heterogeneous systems requires more than one model of computation. This is evi-

dent from the trend of adding extensions to existing tools and formal models. For example, both 

VHDL and Verilog, originally designed for digital circuits and based on the discrete-event 

model, have been extended to handle analog components [12], [25]. Simulink, a continuous-time 

environment, has been extended with Stateflow [22] for modeling and designing event-driven 

systems. Ideal switching elements, controlled by finite state machines, are added to bond graphs 

for modeling hybrid systems [27]. However, most of these tools and formal models support just a 

few models of computation and few choices in the way they can be combined. Further extensions 

may be awkward or impossible due to the semantic mismatch between the new model of 

computation and the existing infrastructure. 

Ptolemy II [7] is a system-level design environment that supports component-based heteroge-

neous modeling and design. Its model structure allows a variety of models of computation to be 

implemented, and to be hierarchically composed in heterogeneous models. This paper presents 

Ptolemy II and illustrates its application to control system design. We use several case studies in 

section 2 to elaborate the challenges in designing complex control software. The Ptolemy II 

model structure is discussed next. Section 4 gives an overview of the models of computation that 

are useful in control system design. The Ptolemy II modal model structure is presented in section 

5. An inverted pendulum controller is used to demonstrate how Ptolemy II can be used in the 



modeling and design exploration of control systems. In the last section we present conclusions 

and discuss our ongoing work. 

2  Software Complexity in Control Systems 
The use of computers in control systems started in the 1950’s. In the 1980’s computer control 

became the standard technique for implementing new control systems, from simple single-loop 

controllers to large distributed control systems [2]. The versatility of implementing control laws 

in software brings many opportunities to control system design. For example, a proportional-

integral-derivative (PID) controller can come equipped with automatic tuning and gain 

scheduling. As another example, to achieve better performance, a controller can be designed to 

switch among a set of candidate control laws according to the operating region of the controlled 

process. Such developments bring about increased complexity in control software. As the 

following cases from the theory and applications of control systems will demonstrate, the 

capability to build complex and reliable software has become a key enabler of further 

developments in computer-controlled systems. 

• Vision-guided landing of unmanned aerial vehicles (UAVs) [26] 

A UAV equipped with a video camera is to land on a moving landing platform (e.g. the 

landing pad on a ship). The UAV control system uses computer vision as a sensor in the 

feedback control loop. The images captured by the camera are processed and relevant features 

in the field of vision are extracted. The extracted features are further processed by a computer 

vision algorithm to estimate the motion of the UAV relative to the landing platform. The 

control software has to perform complex image transformations and analyses in real-time. 

• Model-based fault diagnosis [24] 



The goal of fault diagnosis is to detect and isolate faults in physical processes. In the model-

based approach to fault diagnosis, a process model is used to predict normal process behavior. 

Faults are detected when observed process behavior deviates from normal behavior. Based on 

the deviation, one or more hypothesized faults can be generated for fault isolation. The 

hypothesized faults are injected into the process model to predict future behavior. The result 

of fault isolation consists of those faults whose predictions are consistent with the 

observations. Elaborate process models are needed to achieve greater resolution and coverage 

in fault diagnosis. When we build a control system that uses model-based fault diagnosis, the 

software for process modeling and simulation is not only an essential design-time tool, but 

also a crucial component in the deployed system. A desirable feature in such software is the 

support of dynamic model modification for fault injection. 

• Multi-modal control [15] 

Many controlled systems have multiple modes of operation. Consider the flight of a 

helicopter. Each possible maneuver - hover, turn, vertical climb, etc. - corresponds to a mode 

of operation. To optimize performance, each mode has its own closed-loop feedback 

controller. The helicopter flight management system can be structured in layers, for example a 

trajectory planner layer and a regulation layer. Given a flight task, for example to fly to a 

certain location, drop the load, and fly back, the trajectory planner comes up with a sequence 

of flight modes (maneuvers), the set points for the controller of each mode, and ending 

conditions. For example, one maneuver in the sequence may be to accelerate horizontally, 

with the ending condition that the horizontal velocity reaches 150 km/h. The regulation layer 

switches controllers according to the flight sequence and ending conditions. The software for 



the regulation layer can be very well structured using the hybrid system formalism [20]. The 

operation modes and switching among modes are captured by a finite state machine (FSM). 

Each mode is represented by a state that contains the controller of that mode. 

Using FSMs in a hierarchical model was first made popular by Harel. He proposed 

Statecharts [11], which combine hierarchical FSMs and concurrency. The proposal stimulated 

many developments in both theory and applications. A recent development, *charts 

(pronounced star-charts) [10], generalizes and unifies Statecharts and hybrid systems. 

• Embedded control systems 

Similar to what happened in control engineering, computer technology has been extensively 

applied to many application domains and opens up many exciting opportunities. For example, 

the concept of “real-time” enterprises has been recently proposed [13]. In such an enterprise, 

all the information that is relevant to business decision-making, from inventory to cash flow, 

is made available at the click of a mouse, not just on a weekly or monthly basis. The 

enterprise can adapt better to the rapidly changing marketplace. This is enabled by the use of 

computer and internet technologies in every aspect of enterprise management. Many 

computer-control systems will be integrated into a larger context. In this vision, the process 

control system of a petrochemical plant will become a component of the production 

management system that also manages the inventory of raw materials and end products and 

schedules production according to supply and demand. Such integration requires a sound 

strategy to interface design and abstraction. It is already a hard problem to integrate software 

systems in the same application domain but from different vendors. Integration across 

application domains can only be more challenging. 



From this brief survey, how to manage what we call heterogeneity emerges as the key question 

to be answered when designing complex control software. To further illustrate the notion of 

heterogeneity, let us consider a flight management system of an unmanned helicopter. The 

system employs multi-modal control, fault diagnosis based on a model of the helicopter 

dynamics, and vision-guided landing. The controllers of some flight modes may be described by 

difference equations. In the landing mode, the controller needs to perform image transformations 

that are best programmed using dataflow languages and models. The dynamics model is 

simulated, possibly by numerically solving ordinary differential equations, to predict the state of 

the helicopter. An FSM captures the mode switching logic. Multi-modal control and fault 

diagnosis are assigned to different tasks in a real-time operating system (RTOS). Such a control 

system is heterogeneous in that its subsystems have very different characteristics. Their 

components may interact by synchronous rendezvous or asynchronous event notification, may 

execute sequentially or in parallel, may communicate via continuous-time signals or streams of 

data. A disciplined approach is indispensable when composing heterogeneous systems from 

diverse subsystems. 

3  The Ptolemy II Model Structure 

The Ptolemy II modeling and design environment [7] uses a component-based design methodol-

ogy that is consistent with component-based techniques used in object-oriented design [29]. The 

components in a Ptolemy II model are called actors. A model is a hierarchical composition of 

actors, as shown in figure 7.1. The atomic actors, such as A1, only appear at the bottom of the 

hierarchy. Actors that contain other actors, such as A2, are composite. A composite actor can be 

contained by another composite actor, so the hierarchy can be arbitrarily nested. 



Atomic actors encapsulate basic computation, from as simple as an AND gate to more complex 

such as a fast Fourier transform (FFT). Through composition, actors that perform even more 

complex functions can be built. Actors have ports, which are their communication interfaces. For 

example, in figure 7.1, A5 receives data from input ports P3 and P4, performs its computation, 

and sends the result to output port P5. A port can be both an input and an output. Communication 

channels among actors are established by connecting ports. A port of a composite actor, such as 

P1, can have connections both to the inside and to the outside, thus linking inside actors to 

outside actors. 

There is one last part in figure 7.1 that we have yet to explain: the directors. As the names actor 

and director suggest, a director controls the execution order of the actors in a composite, and 

mediates their communication. In figure 7.1, D1 may choose to execute A1, A2, and A3 sequen-

tially. Whenever A2 is executed, D2 takes over and executes A4~A7 accordingly. A director 

uses receivers to mediate actor communication. As shown in figure 7.2, one receiver is created 

for each communication channel; it is situated at the input ports, although this makes little 

difference. When the producer actor sends a piece of data, called a token in Ptolemy II, to the 

output port, the receiver decides how the transaction is completed. It may put the token into a 

first-in first-out (FIFO) buffer, from which the consumer actor will get data. It may tag the token 
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FIGURE 7.1  The schematic of a hierarchical Ptolemy II model. 

 



as an event, and put the event in a global event queue. The token will be made available to the 

consumer when time comes for the consumer to process the event. Or it may stall the producer to 

wait for the consumer to be ready. 

By choosing an ordering strategy and a communication mechanism, a director implements a 

model of computation. Within a composite actor, the actors under the immediate control of a 

director interact homogeneously. Properties of the director’s model of computation can be used 

to reason about the interaction. A heterogeneous system is modeled by using multiple directors 

in different places in the hierarchy. A concrete example, complete with the graphical user 

interface to Ptolemy II, is shown in figure 7.3. The directors are carefully designed so that they 

provide a polymorphic execution interface to the director one level up in the hierarchy. This 

ensures that the model of computation at each level in the hierarchy is respected. 

In Ptolemy II, the realization of a model of computation is called a domain, so directors are asso-

ciated with domains. Most actors, however, are not. Such actors are agnostic about how their 

inputs are received and outputs sent. They can be reused in different domains, and are called 

domain-polymorphic. 
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FIGURE 7.2  A receiver is used to mediate communication between actors. 

 



 
 
 

 
 
 

 

FIGURE 7.3  A heterogeneous model realizing the schematic shown in figure 7.1. 

a) Top level, a discrete event model. 

b) A continuous time model embedded in the above discrete event model.

c) The window that controls the simulation of the model and displays the result. 

 



4  Concurrent Models of Computation for Control Systems 

A diverse set of models of computation have been implemented in Ptolemy II. Here we will dis-

cuss a subset of them, those that are most useful in the modeling and design of control systems. 

4.1  Continuous time 

The continuous time (CT) domain [19] models ordinary differential equations (ODEs), extended 

to allow the handling of discrete events. Special actors that represent integrators are connected in 

feedback loops in order to represent the ODEs. Each connection in this domain carries a continu-

ous-time signal. The actors denote the relations among these signals. Event generators, e.g. peri-

odic samplers, triggered samplers, and zero-crossing detectors, and waveform generators, such as 

a zero-order hold, are implemented to convert between continuous-time signals and discrete 

events. A CT model is shown in figure 7.3b. 

The execution of a CT model involves the computation of a numerical solution to the ODEs at a 

discrete set of time points. In order to support the detection of discrete events and the interaction 

with discrete models of computation, the time progression and the execution order of a CT model 

are carefully controlled [19]. The CT domain can be used to model physical processes whose 

dynamics are described by ODEs, or continuous control laws. 

4.2  Discrete event 

In the discrete event (DE) domain [3] of Ptolemy II, actors share a global notion of time and 

communicate through events that are placed on a (continuous) time line. Each event has a value 

and a time stamp. Actors process events in chronological order. The output events produced by 

an actor are required to be no earlier in time than the input events that were consumed. In other 

words, DE models are causal. 



Discrete event models, having the continuous notion of time and the discrete notion of events, 

are widely used in modeling hardware and software timing properties, communication networks, 

and queuing systems. 

4.3  Dataflow models 

In dataflow models [17], connections represent data streams, and actors are processes that com-

pute their output data streams from input streams. In such models, the order of execution for the 

processes are only constrained by the data dependency among them. This makes dataflow 

models amenable to optimized execution, for example to minimize buffer sizes, or to achieve a 

higher degree of parallelism. Dataflow models are very useful in designing signal processing 

algorithms and sampled control laws. 

There are many variants of dataflow models, of which synchronous dataflow (SDF) [16] is a par-

ticularly restricted special case. In SDF, when an actor executes, it consumes a fixed number of 

tokens from each input port, and produces a fixed number of tokens to each output port. For a 

consistent SDF model, a static schedule can be computed, such that the actors always have suffi-

cient data before execution. For algorithms with a fixed structure, SDF is very efficient and pre-

dictable. 

4.4  Timed multitasking 

The timed multitasking (TM) domain in Ptolemy II allows designers to explore priority-based 

scheduling policies such as those found in an RTOS and their effects on real-time software. In 

this domain, actors are software tasks with priorities. The director of this domain implements a 

prioritized event dispatching mechanism and invokes tasks according to their feasibility and 



priority. Both preemptive and nonpreemptive scheduling, as well as static and dynamic priority 

assignment, can be modeled. 

4.5  Synchronous/Reactive 

In the synchronous/reactive (SR) model of computation [9], the connections represent signals 

whose values are aligned with global clock ticks. Thus, they are discrete signals, but need not 

have a value at every clock tick. The actors represent relations between input and output values 

at each tick, and are usually partial functions with certain technical restrictions to ensure determi-

nacy. Examples of languages that use the SR model of computation include Esterel [6] and 

Signal [5]. SR models are excellent for discrete control applications with multiple, tightly-

coupled, and concurrent tasks. Because of the tight synchronization, safety-critical real-time 

applications are a good match. 

4.6  Finite state machines 

An FSM has a set of states and transitions among states. An FSM reacts to input by taking a tran-

sition from its current state. (The transition may be an implicit transition back to the current 

state.) Output may be produced by actions associated with the transition. FSMs are very intuitive 

models of sequential control logic and the discrete evolution of physical processes. FSM models 

are amenable to in-depth formal analysis and verification. Applications of FSM models include 

datapath controllers in microprocessors, and communication protocols. 

In Ptolemy II, the FSM domain provides two modeling mechanisms. One allows designers to 

create actors whose behaviors are specified by FSMs. We can think of this as a graphical 

scripting language for writing new actors. The other one applies to modal models, which are 

hierarchical composition of FSMs with other models of computation. 



5  Modal Models 

Many engineering systems exhibit modes of operation. We call such systems modal systems. 

Defining operational modes is a very useful instrument of abstraction, which helps us to gain a 

high level understanding of system operation. In control engineering, a modal system operates 

with continuous dynamics in each mode. When mode changes, the continuous dynamics change 

abruptly [23]. Such modal systems are more specifically called hybrid systems. One example is a 

multi-tank system, a common experimental platform in control engineering. A modal controller, 

discussed in section 2, is also an example. 

A number of approaches to the modeling and simulation of hybrid systems have been proposed 

[23]. Discrete variables can be introduced into dynamic equations to model the changes in 

system dynamics. Another possibility is to use discrete components in an otherwise continuous 

model, e.g. the ideal switch in switched bond graphs [27]. These approaches merge the discrete 

mode changes and continuous dynamics into one form (one set of equations or one monolithic 

model). The results are usually compact, but capturing all possible system configurations in one 

form may make it hard to understand. These approaches often do not give explicit 

representations to operational modes. 

In Ptolemy II, the model structure naturally dictates how a hybrid system is to be modeled [20]. 

The continuous dynamics of each mode is captured by a CT model (a composite actor with a CT 

director). The discrete mode changes are modeled by an FSM. A modal model actor contains the 

CT models of all modes and the FSM. Each state of the FSM represents a mode and has as 

refinement the CT model of that mode. This modal model matches very well the hybrid I/O 

automata [21]. The schematic of a modal model in Ptolemy II is shown in figure 7.4. A process 

is controlled by a modal controller. There are two actors in the top-level CT model. One actor 



models the process dynamics; the other is a modal model actor. Inside this actor is a two-state 

FSM. From this FSM, we know that the modal controller employs two alternative control laws, 

which are modeled by controllers A and B. The conditions of mode changes are annotated on the 

transitions between states. The conditions are expressed as predicates p and q on the process state 

y. 

The model in figure 7.4 clearly demonstrates the benefits of “orthogonalizing concerns.” Model-

ing discrete mode changes with FSMs yields an easy to understand summary of system 

operation. In each mode, we can deal with pure continuous dynamics. This is possible in Ptolemy 

II because of the variety of models of computation supported. When modeling a heterogeneous 

system, we can choose whichever model of computation that best fits with the aspect or 

subsystem we are working on. Because of the disciplined hierarchical composition of different 

models of computation, their properties are preserved in a heterogeneous model. 

Given the Ptolemy II infrastructure, it is natural to generalize modal models from hybrid system 

modeling to *charts [10], which allow the heterogeneous hierarchical composition of FSM and 
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FIGURE 7.4  The schematic of a modal model in Ptolemy II. 

 



other models of computation. For example, combining FSMs with the synchronous/reactive 

model of computation yields Statecharts-like models, which are widely used in designing com-

plex discrete control logic. If we combine FSMs with process networks [17], the semantics is 

similar to that of the Specification and Description Language (SDL) [4], which is widely used in 

the telecommunications field. 

Modal systems from many application domains can be modeled cleanly with *charts. A particu-

larly useful special case of *charts is the composition of FSM and SDF, which we call hetero-

chronous dataflow (HDF) [10]. As discussed in section 4.3, SDF models have very desirable 

properties but only apply to algorithms with a fixed structure. Many components in signal pro-

cessing systems need to adapt their algorithms to changing environments. For example, in a 

wireless handset, a simple channel equalization algorithm may suffice when the interference 

level is low. A more sophisticated algorithm will be used when the interference level becomes 

high. Such switching of algorithms can be captured by an HDF model. In each mode, the whole 

signal processing system can still be treated as a hierarchical SDF model. 

6  Application - Inverted Pendulum Controller 

In this section, we illustrate how the Ptolemy II environment supports the modeling, simulation, 

and design exploration of control systems, using an inverted pendulum controller as an example. 

(A more detailed model, a helicopter controller, is described in [19].) Controlling the inverted 

pendulum is a classical problem in control laboratories because the pendulum dynamics is both 

nonlinear and unstable. The experimental setup is shown in figure 7.5. The pendulum consists of 

two moving parts, the arm that rotates in the horizontal plane, and the pendulum that moves in 

the vertical plane. The states of the pendulum process are the angle and angular velocity of the 



pendulum, and those of the arm. The process is controlled by the acceleration of arm rotation. 

Complete equations describing the process dynamics can be found in [1]. 

A modal controller can be designed to swing up the pendulum and stabilize it in the upright posi-

tion. The controller has three modes of operation: a swing-up mode, a catch mode, and a stabilize 

mode. The swing-up controller moves the pendulum from its initial downward position towards 

the upright position, using a nonlinear energy-based algorithm. When the pendulum comes close 

enough to the upright equilibrium, the catch controller takes over. The task of the catch mode is 

to reduce the speed of the pendulum and the arm before the stabilize mode is entered. The catch 

and stabilize controllers use linear state feedback. 

The Ptolemy II model of the modal controller is shown in figure 7.6. The mode switching is 

modeled by the FSM. (The init state of the FSM serves no other purpose than to produce 

information about the initial mode of the controller.) On the left are the inputs to the FSM, which 

FIGURE 7.5  The Furuta inverted pendulum.



are the measured states of the pendulum process. For each mode, the computation required by 

the control law is fixed, and is modeled with SDF. 

When the modal controller is implemented on a computer that controls the pendulum, the whole 

system becomes a sampled-data system. The Ptolemy II model of such a system is shown in fig-

ure 7.7. The PendulumDynamics actor is an instance of the DifferentialSystem actor in the 

continuous-time actor library, which can model dynamic equations of the form: 

 
FIGURE 7.6  The modal controller of the inverted pendulum.
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The states of the pendulum process are periodically sampled. The ControlComputer actor con-

tains the modal controller, and computes a control output at each sampling time. The ZeroOrder-

Hold actor converts the sequence of control outputs to a continuous-time signal that is fed back 

to the pendulum process. The TimedPlotter actor plots the control signal and the angle of the 

pendulum. 

The sampled-data model in figure 7.7 helps us to verify with simulation that the control laws are 

effective in a sampled-data system. This is only a first step in the design process from control 

law specifications to the final implementation, because the model does not capture many issues 

present in an actual implementation. For example, the model treats the computation in the control 

computer as taking zero time, and there is no communication delay in the control loop. In 

Ptolemy II, we can elaborate this model to explore a number of such issues, as shown in figure 

7.8. 

 
FIGURE 7.7  The sampled-data model of inverted pendulum control.  



Control software today is often implemented on top of an RTOS. In such a realization, the con-

troller runs as a task in the RTOS and competes with other tasks for resources, e.g. CPU time. 

This may cause jitter in the input-to-output delay and even changes in the sampling period. We 

can model these effects with the TM domain in Ptolemy II. As shown in figure 7.8, the control 

computer is modeled as a composite actor with a TM director. The modal controller actor is 

treated as a task by the TM director. Some other tasks, such as one for fault diagnosis and one for 

I/O, may be added to reflect the dynamics of concurrent tasks running in the same RTOS. With 

such a model, we can evaluate various scheduling mechanisms in terms of control performance. 

The computers, sensors and actuators in a control system are often networked. We can model 

this by using the discrete event domain at the top level. The pendulum model and the control 

computer are both connected to a network model actor, along with other network nodes to reflect 

the contention of network resources. The network model simulates the communication among 

the nodes in the control system, taking into account contention, transmission delay and loss, etc. 

Such a model helps the designers to evaluate different network architectures and protocols. 
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FIGURE 7.8  An elaborate Ptolemy II model that incorporates many implementation issues.

 



7  Conclusions 

The modeling and design of complex control systems require tools that support multiple models 

of computation, and a software architecture to compose heterogeneous systems. The Ptolemy II 

environment has a component-based hierarchical structure that meets these requirements. 

Components in Ptolemy II have a fine-grained interface for execution control, which allows 

directors to compose the execution of components according to various models of computation. 

All directors provide the same execution interface to the outside domain, so that when different 

models of computation are composed in a heterogeneous model, their properties are preserved. 

Ptolemy II includes a number of domains that are useful in control system design. Other 

pertinent models of computation are being implemented, such as Petri nets and port-based 

objects [28]. With modal models, Ptolemy II provides a clean structure for studying modal 

systems that are common in control engineering. 

A framework for studying the dynamic interaction among actors, receivers, and directors is being 

developed. The framework [18] extends the concept of type systems in programming languages. 

Interface automata [8] are used to capture the dynamic behavior of components, and the commu-

nication protocols between components. Type checking, which checks the compatibility of a 

component with a certain domain, is conducted through automata composition. When reusable 

components are used in a model, we can use type checking to study whether the model will 

generate undesirable behavior, such as deadlock. The framework also helps us to verify that 

hierarchically composing different models of computation preserves their properties. 

Another active development in Ptolemy II is code generation [30]. The structure of Ptolemy II 

models provides a good foundation for the code generator. At each hierarchical level of the 



model, the components interact homogeneously according to a specific model of computation. 

The properties of the model of computation can be used to analyze and optimize the model at 

that level for efficient code generation. For example, in an SDF model, the actors can be 

statically scheduled. It is possible to merge the functions of a cluster of actors in the schedule, so 

as to reduce the number of function calls in the generated code. Different models of computation 

offer different optimizations, which can be applied orthogonally in a heterogeneous model. 

The URL of the Ptolemy project homepage is:  

http://ptolemy.eecs.berkeley.edu/ 

The Ptolemy II software can be downloaded from there, complete with source code and design 

documentation. Online demonstrations can be viewed with an applet-enabled Internet browser. 

Most publications from the Ptolemy group are made available in electronic form. 
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