
Heterogeneous Modeling and Design of
Control Systems

Xiaojun Liu, Jie Liu, Johan Eker, Edward A. Lee

Editors’ Summary

Complex control systems integrate a variety of functions and capabilities, which will in general

rely on different computational mechanisms. The plant model may be represented as a set of

ordinary differential equations, the mode switching logic may be expressed as a finite state

machine, and dataflow models may be used to capture the architecture of a sensor processing

subsystem, for example. Design tools are needed that can support these heterogeneous models of

computation—and their integration within a single control system.

This chapter describes Ptolemy II, a component-based design environment that allows different

models of computation to be hierarchically composed. Individual components are called actors;

these can include simple operators such as an AND gate and, through compositionality in the

form of arbitrarily nested actor hierarchies, complex functions such as a Kalman filter. Different

models of computation can then be realized by imposing a (possibly partial) execution order and

a communication mechanism on the actors that comprise a composite actor.

Ptolemy II can be particularly useful for the design of hybrid dynamical systems—systems that

combine discrete event mode logic and continuous time dynamics within each mode. By using

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720, USA
{liuxj, liuj, johane, eal}@eecs.berkeley.edu

liuxj
Software-Enabled Control: Information Technology for Dynamical Systems

liuxj
Tariq Samad and Gary Balas (eds.), Wiley-IEEE Press, April 2003

Ptolemy II to model a hybrid system, we can choose whichever model of computation is most

appropriate for a particular task while ensuring the consistency and integrity of the overall

model.

An application of Ptolemy II to the control of the Furuta inverted pendulum is also described in

this chapter, with an emphasis on implementation issues relevant to real-time operating systems.

As noted in Chapter 4, Ptolemy II has been interfaced with the OCP and used to model a

nonlinear actuator as part of an overall vehicle simulation. Chapter 5 also notes an OCP-related

application of the Ptolemy project, in this case to support the validation of reconfiguration

strategies and other hybrid control aspects.

1 Introduction

Computer control is now the standard technique for implementing control systems, mainly for

two reasons. First is the exponential reduction in the cost of computing; second is the versatility

of implementing control laws in software. Many developments in control systems are only

practical with computer control, e.g. to implement the nonlinear and time varying control laws

associated with adaptive control. Complicated computations can be incorporated into the control

loop, for example when computer vision is used to guide a robot.

Designing the software for such control systems is hard because the systems are usually

heterogeneous. They may include subsystems with very different characteristics, such as

hydraulic actuators and an inertial navigation system. On the software side the situation is

similar. The controller may have several operational modes. The control law in each mode can

be specified by difference equations; the mode switching logic can be specified by a state

machine. For vision guidance, complex image processing algorithms need to be programmed.

For each of these subsystems and aspects of the software, formal models that support its

modeling, analysis, or programming have been developed. For example, image processing

algorithms can be programmed in various dataflow models [16], [17]. Each formal model

employs a computational mechanism that dictates what are the components in the model, and

how they communicate and execute. Such a mechanism is called a model of computation.

Working with heterogeneous systems requires more than one model of computation. This is evi-

dent from the trend of adding extensions to existing tools and formal models. For example, both

VHDL and Verilog, originally designed for digital circuits and based on the discrete-event

model, have been extended to handle analog components [12], [25]. Simulink, a continuous-time

environment, has been extended with Stateflow [22] for modeling and designing event-driven

systems. Ideal switching elements, controlled by finite state machines, are added to bond graphs

for modeling hybrid systems [27]. However, most of these tools and formal models support just a

few models of computation and few choices in the way they can be combined. Further extensions

may be awkward or impossible due to the semantic mismatch between the new model of

computation and the existing infrastructure.

Ptolemy II [7] is a system-level design environment that supports component-based heteroge-

neous modeling and design. Its model structure allows a variety of models of computation to be

implemented, and to be hierarchically composed in heterogeneous models. This paper presents

Ptolemy II and illustrates its application to control system design. We use several case studies in

section 2 to elaborate the challenges in designing complex control software. The Ptolemy II

model structure is discussed next. Section 4 gives an overview of the models of computation that

are useful in control system design. The Ptolemy II modal model structure is presented in section

5. An inverted pendulum controller is used to demonstrate how Ptolemy II can be used in the

modeling and design exploration of control systems. In the last section we present conclusions

and discuss our ongoing work.

2 Software Complexity in Control Systems
The use of computers in control systems started in the 1950’s. In the 1980’s computer control

became the standard technique for implementing new control systems, from simple single-loop

controllers to large distributed control systems [2]. The versatility of implementing control laws

in software brings many opportunities to control system design. For example, a proportional-

integral-derivative (PID) controller can come equipped with automatic tuning and gain

scheduling. As another example, to achieve better performance, a controller can be designed to

switch among a set of candidate control laws according to the operating region of the controlled

process. Such developments bring about increased complexity in control software. As the

following cases from the theory and applications of control systems will demonstrate, the

capability to build complex and reliable software has become a key enabler of further

developments in computer-controlled systems.

• Vision-guided landing of unmanned aerial vehicles (UAVs) [26]

A UAV equipped with a video camera is to land on a moving landing platform (e.g. the

landing pad on a ship). The UAV control system uses computer vision as a sensor in the

feedback control loop. The images captured by the camera are processed and relevant features

in the field of vision are extracted. The extracted features are further processed by a computer

vision algorithm to estimate the motion of the UAV relative to the landing platform. The

control software has to perform complex image transformations and analyses in real-time.

• Model-based fault diagnosis [24]

The goal of fault diagnosis is to detect and isolate faults in physical processes. In the model-

based approach to fault diagnosis, a process model is used to predict normal process behavior.

Faults are detected when observed process behavior deviates from normal behavior. Based on

the deviation, one or more hypothesized faults can be generated for fault isolation. The

hypothesized faults are injected into the process model to predict future behavior. The result

of fault isolation consists of those faults whose predictions are consistent with the

observations. Elaborate process models are needed to achieve greater resolution and coverage

in fault diagnosis. When we build a control system that uses model-based fault diagnosis, the

software for process modeling and simulation is not only an essential design-time tool, but

also a crucial component in the deployed system. A desirable feature in such software is the

support of dynamic model modification for fault injection.

• Multi-modal control [15]

Many controlled systems have multiple modes of operation. Consider the flight of a

helicopter. Each possible maneuver - hover, turn, vertical climb, etc. - corresponds to a mode

of operation. To optimize performance, each mode has its own closed-loop feedback

controller. The helicopter flight management system can be structured in layers, for example a

trajectory planner layer and a regulation layer. Given a flight task, for example to fly to a

certain location, drop the load, and fly back, the trajectory planner comes up with a sequence

of flight modes (maneuvers), the set points for the controller of each mode, and ending

conditions. For example, one maneuver in the sequence may be to accelerate horizontally,

with the ending condition that the horizontal velocity reaches 150 km/h. The regulation layer

switches controllers according to the flight sequence and ending conditions. The software for

the regulation layer can be very well structured using the hybrid system formalism [20]. The

operation modes and switching among modes are captured by a finite state machine (FSM).

Each mode is represented by a state that contains the controller of that mode.

Using FSMs in a hierarchical model was first made popular by Harel. He proposed

Statecharts [11], which combine hierarchical FSMs and concurrency. The proposal stimulated

many developments in both theory and applications. A recent development, *charts

(pronounced star-charts) [10], generalizes and unifies Statecharts and hybrid systems.

• Embedded control systems

Similar to what happened in control engineering, computer technology has been extensively

applied to many application domains and opens up many exciting opportunities. For example,

the concept of “real-time” enterprises has been recently proposed [13]. In such an enterprise,

all the information that is relevant to business decision-making, from inventory to cash flow,

is made available at the click of a mouse, not just on a weekly or monthly basis. The

enterprise can adapt better to the rapidly changing marketplace. This is enabled by the use of

computer and internet technologies in every aspect of enterprise management. Many

computer-control systems will be integrated into a larger context. In this vision, the process

control system of a petrochemical plant will become a component of the production

management system that also manages the inventory of raw materials and end products and

schedules production according to supply and demand. Such integration requires a sound

strategy to interface design and abstraction. It is already a hard problem to integrate software

systems in the same application domain but from different vendors. Integration across

application domains can only be more challenging.

From this brief survey, how to manage what we call heterogeneity emerges as the key question

to be answered when designing complex control software. To further illustrate the notion of

heterogeneity, let us consider a flight management system of an unmanned helicopter. The

system employs multi-modal control, fault diagnosis based on a model of the helicopter

dynamics, and vision-guided landing. The controllers of some flight modes may be described by

difference equations. In the landing mode, the controller needs to perform image transformations

that are best programmed using dataflow languages and models. The dynamics model is

simulated, possibly by numerically solving ordinary differential equations, to predict the state of

the helicopter. An FSM captures the mode switching logic. Multi-modal control and fault

diagnosis are assigned to different tasks in a real-time operating system (RTOS). Such a control

system is heterogeneous in that its subsystems have very different characteristics. Their

components may interact by synchronous rendezvous or asynchronous event notification, may

execute sequentially or in parallel, may communicate via continuous-time signals or streams of

data. A disciplined approach is indispensable when composing heterogeneous systems from

diverse subsystems.

3 The Ptolemy II Model Structure

The Ptolemy II modeling and design environment [7] uses a component-based design methodol-

ogy that is consistent with component-based techniques used in object-oriented design [29]. The

components in a Ptolemy II model are called actors. A model is a hierarchical composition of

actors, as shown in figure 7.1. The atomic actors, such as A1, only appear at the bottom of the

hierarchy. Actors that contain other actors, such as A2, are composite. A composite actor can be

contained by another composite actor, so the hierarchy can be arbitrarily nested.

Atomic actors encapsulate basic computation, from as simple as an AND gate to more complex

such as a fast Fourier transform (FFT). Through composition, actors that perform even more

complex functions can be built. Actors have ports, which are their communication interfaces. For

example, in figure 7.1, A5 receives data from input ports P3 and P4, performs its computation,

and sends the result to output port P5. A port can be both an input and an output. Communication

channels among actors are established by connecting ports. A port of a composite actor, such as

P1, can have connections both to the inside and to the outside, thus linking inside actors to

outside actors.

There is one last part in figure 7.1 that we have yet to explain: the directors. As the names actor

and director suggest, a director controls the execution order of the actors in a composite, and

mediates their communication. In figure 7.1, D1 may choose to execute A1, A2, and A3 sequen-

tially. Whenever A2 is executed, D2 takes over and executes A4~A7 accordingly. A director

uses receivers to mediate actor communication. As shown in figure 7.2, one receiver is created

for each communication channel; it is situated at the input ports, although this makes little

difference. When the producer actor sends a piece of data, called a token in Ptolemy II, to the

output port, the receiver decides how the transaction is completed. It may put the token into a

first-in first-out (FIFO) buffer, from which the consumer actor will get data. It may tag the token

A1 A4 A6 A7 A3A5

D2: director

D1: director

A2

P1 P2

A0

P3

P4
P5

FIGURE 7.1 The schematic of a hierarchical Ptolemy II model.

as an event, and put the event in a global event queue. The token will be made available to the

consumer when time comes for the consumer to process the event. Or it may stall the producer to

wait for the consumer to be ready.

By choosing an ordering strategy and a communication mechanism, a director implements a

model of computation. Within a composite actor, the actors under the immediate control of a

director interact homogeneously. Properties of the director’s model of computation can be used

to reason about the interaction. A heterogeneous system is modeled by using multiple directors

in different places in the hierarchy. A concrete example, complete with the graphical user

interface to Ptolemy II, is shown in figure 7.3. The directors are carefully designed so that they

provide a polymorphic execution interface to the director one level up in the hierarchy. This

ensures that the model of computation at each level in the hierarchy is respected.

In Ptolemy II, the realization of a model of computation is called a domain, so directors are asso-

ciated with domains. Most actors, however, are not. Such actors are agnostic about how their

inputs are received and outputs sent. They can be reused in different domains, and are called

domain-polymorphic.

consumer
actor

producer
actor

receiver

output port

input port

FIGURE 7.2 A receiver is used to mediate communication between actors.

FIGURE 7.3 A heterogeneous model realizing the schematic shown in figure 7.1.

a) Top level, a discrete event model.

b) A continuous time model embedded in the above discrete event model.

c) The window that controls the simulation of the model and displays the result.

4 Concurrent Models of Computation for Control Systems

A diverse set of models of computation have been implemented in Ptolemy II. Here we will dis-

cuss a subset of them, those that are most useful in the modeling and design of control systems.

4.1 Continuous time

The continuous time (CT) domain [19] models ordinary differential equations (ODEs), extended

to allow the handling of discrete events. Special actors that represent integrators are connected in

feedback loops in order to represent the ODEs. Each connection in this domain carries a continu-

ous-time signal. The actors denote the relations among these signals. Event generators, e.g. peri-

odic samplers, triggered samplers, and zero-crossing detectors, and waveform generators, such as

a zero-order hold, are implemented to convert between continuous-time signals and discrete

events. A CT model is shown in figure 7.3b.

The execution of a CT model involves the computation of a numerical solution to the ODEs at a

discrete set of time points. In order to support the detection of discrete events and the interaction

with discrete models of computation, the time progression and the execution order of a CT model

are carefully controlled [19]. The CT domain can be used to model physical processes whose

dynamics are described by ODEs, or continuous control laws.

4.2 Discrete event

In the discrete event (DE) domain [3] of Ptolemy II, actors share a global notion of time and

communicate through events that are placed on a (continuous) time line. Each event has a value

and a time stamp. Actors process events in chronological order. The output events produced by

an actor are required to be no earlier in time than the input events that were consumed. In other

words, DE models are causal.

Discrete event models, having the continuous notion of time and the discrete notion of events,

are widely used in modeling hardware and software timing properties, communication networks,

and queuing systems.

4.3 Dataflow models

In dataflow models [17], connections represent data streams, and actors are processes that com-

pute their output data streams from input streams. In such models, the order of execution for the

processes are only constrained by the data dependency among them. This makes dataflow

models amenable to optimized execution, for example to minimize buffer sizes, or to achieve a

higher degree of parallelism. Dataflow models are very useful in designing signal processing

algorithms and sampled control laws.

There are many variants of dataflow models, of which synchronous dataflow (SDF) [16] is a par-

ticularly restricted special case. In SDF, when an actor executes, it consumes a fixed number of

tokens from each input port, and produces a fixed number of tokens to each output port. For a

consistent SDF model, a static schedule can be computed, such that the actors always have suffi-

cient data before execution. For algorithms with a fixed structure, SDF is very efficient and pre-

dictable.

4.4 Timed multitasking

The timed multitasking (TM) domain in Ptolemy II allows designers to explore priority-based

scheduling policies such as those found in an RTOS and their effects on real-time software. In

this domain, actors are software tasks with priorities. The director of this domain implements a

prioritized event dispatching mechanism and invokes tasks according to their feasibility and

priority. Both preemptive and nonpreemptive scheduling, as well as static and dynamic priority

assignment, can be modeled.

4.5 Synchronous/Reactive

In the synchronous/reactive (SR) model of computation [9], the connections represent signals

whose values are aligned with global clock ticks. Thus, they are discrete signals, but need not

have a value at every clock tick. The actors represent relations between input and output values

at each tick, and are usually partial functions with certain technical restrictions to ensure determi-

nacy. Examples of languages that use the SR model of computation include Esterel [6] and

Signal [5]. SR models are excellent for discrete control applications with multiple, tightly-

coupled, and concurrent tasks. Because of the tight synchronization, safety-critical real-time

applications are a good match.

4.6 Finite state machines

An FSM has a set of states and transitions among states. An FSM reacts to input by taking a tran-

sition from its current state. (The transition may be an implicit transition back to the current

state.) Output may be produced by actions associated with the transition. FSMs are very intuitive

models of sequential control logic and the discrete evolution of physical processes. FSM models

are amenable to in-depth formal analysis and verification. Applications of FSM models include

datapath controllers in microprocessors, and communication protocols.

In Ptolemy II, the FSM domain provides two modeling mechanisms. One allows designers to

create actors whose behaviors are specified by FSMs. We can think of this as a graphical

scripting language for writing new actors. The other one applies to modal models, which are

hierarchical composition of FSMs with other models of computation.

5 Modal Models

Many engineering systems exhibit modes of operation. We call such systems modal systems.

Defining operational modes is a very useful instrument of abstraction, which helps us to gain a

high level understanding of system operation. In control engineering, a modal system operates

with continuous dynamics in each mode. When mode changes, the continuous dynamics change

abruptly [23]. Such modal systems are more specifically called hybrid systems. One example is a

multi-tank system, a common experimental platform in control engineering. A modal controller,

discussed in section 2, is also an example.

A number of approaches to the modeling and simulation of hybrid systems have been proposed

[23]. Discrete variables can be introduced into dynamic equations to model the changes in

system dynamics. Another possibility is to use discrete components in an otherwise continuous

model, e.g. the ideal switch in switched bond graphs [27]. These approaches merge the discrete

mode changes and continuous dynamics into one form (one set of equations or one monolithic

model). The results are usually compact, but capturing all possible system configurations in one

form may make it hard to understand. These approaches often do not give explicit

representations to operational modes.

In Ptolemy II, the model structure naturally dictates how a hybrid system is to be modeled [20].

The continuous dynamics of each mode is captured by a CT model (a composite actor with a CT

director). The discrete mode changes are modeled by an FSM. A modal model actor contains the

CT models of all modes and the FSM. Each state of the FSM represents a mode and has as

refinement the CT model of that mode. This modal model matches very well the hybrid I/O

automata [21]. The schematic of a modal model in Ptolemy II is shown in figure 7.4. A process

is controlled by a modal controller. There are two actors in the top-level CT model. One actor

models the process dynamics; the other is a modal model actor. Inside this actor is a two-state

FSM. From this FSM, we know that the modal controller employs two alternative control laws,

which are modeled by controllers A and B. The conditions of mode changes are annotated on the

transitions between states. The conditions are expressed as predicates p and q on the process state

y.

The model in figure 7.4 clearly demonstrates the benefits of “orthogonalizing concerns.” Model-

ing discrete mode changes with FSMs yields an easy to understand summary of system

operation. In each mode, we can deal with pure continuous dynamics. This is possible in Ptolemy

II because of the variety of models of computation supported. When modeling a heterogeneous

system, we can choose whichever model of computation that best fits with the aspect or

subsystem we are working on. Because of the disciplined hierarchical composition of different

models of computation, their properties are preserved in a heterogeneous model.

Given the Ptolemy II infrastructure, it is natural to generalize modal models from hybrid system

modeling to *charts [10], which allow the heterogeneous hierarchical composition of FSM and

process
dynamics A B

q(y)

p(y)

y(t) u(t)

CT

CT
FSM

modal model actor

CTcontroller A CTcontroller B

y yu u

FIGURE 7.4 The schematic of a modal model in Ptolemy II.

other models of computation. For example, combining FSMs with the synchronous/reactive

model of computation yields Statecharts-like models, which are widely used in designing com-

plex discrete control logic. If we combine FSMs with process networks [17], the semantics is

similar to that of the Specification and Description Language (SDL) [4], which is widely used in

the telecommunications field.

Modal systems from many application domains can be modeled cleanly with *charts. A particu-

larly useful special case of *charts is the composition of FSM and SDF, which we call hetero-

chronous dataflow (HDF) [10]. As discussed in section 4.3, SDF models have very desirable

properties but only apply to algorithms with a fixed structure. Many components in signal pro-

cessing systems need to adapt their algorithms to changing environments. For example, in a

wireless handset, a simple channel equalization algorithm may suffice when the interference

level is low. A more sophisticated algorithm will be used when the interference level becomes

high. Such switching of algorithms can be captured by an HDF model. In each mode, the whole

signal processing system can still be treated as a hierarchical SDF model.

6 Application - Inverted Pendulum Controller

In this section, we illustrate how the Ptolemy II environment supports the modeling, simulation,

and design exploration of control systems, using an inverted pendulum controller as an example.

(A more detailed model, a helicopter controller, is described in [19].) Controlling the inverted

pendulum is a classical problem in control laboratories because the pendulum dynamics is both

nonlinear and unstable. The experimental setup is shown in figure 7.5. The pendulum consists of

two moving parts, the arm that rotates in the horizontal plane, and the pendulum that moves in

the vertical plane. The states of the pendulum process are the angle and angular velocity of the

pendulum, and those of the arm. The process is controlled by the acceleration of arm rotation.

Complete equations describing the process dynamics can be found in [1].

A modal controller can be designed to swing up the pendulum and stabilize it in the upright posi-

tion. The controller has three modes of operation: a swing-up mode, a catch mode, and a stabilize

mode. The swing-up controller moves the pendulum from its initial downward position towards

the upright position, using a nonlinear energy-based algorithm. When the pendulum comes close

enough to the upright equilibrium, the catch controller takes over. The task of the catch mode is

to reduce the speed of the pendulum and the arm before the stabilize mode is entered. The catch

and stabilize controllers use linear state feedback.

The Ptolemy II model of the modal controller is shown in figure 7.6. The mode switching is

modeled by the FSM. (The init state of the FSM serves no other purpose than to produce

information about the initial mode of the controller.) On the left are the inputs to the FSM, which

FIGURE 7.5 The Furuta inverted pendulum.

are the measured states of the pendulum process. For each mode, the computation required by

the control law is fixed, and is modeled with SDF.

When the modal controller is implemented on a computer that controls the pendulum, the whole

system becomes a sampled-data system. The Ptolemy II model of such a system is shown in fig-

ure 7.7. The PendulumDynamics actor is an instance of the DifferentialSystem actor in the

continuous-time actor library, which can model dynamic equations of the form:

FIGURE 7.6 The modal controller of the inverted pendulum.

),,(tuxf
dt
xd vv
v

=),,(tuxgy vvv = 0)0(xx vv =

The states of the pendulum process are periodically sampled. The ControlComputer actor con-

tains the modal controller, and computes a control output at each sampling time. The ZeroOrder-

Hold actor converts the sequence of control outputs to a continuous-time signal that is fed back

to the pendulum process. The TimedPlotter actor plots the control signal and the angle of the

pendulum.

The sampled-data model in figure 7.7 helps us to verify with simulation that the control laws are

effective in a sampled-data system. This is only a first step in the design process from control

law specifications to the final implementation, because the model does not capture many issues

present in an actual implementation. For example, the model treats the computation in the control

computer as taking zero time, and there is no communication delay in the control loop. In

Ptolemy II, we can elaborate this model to explore a number of such issues, as shown in figure

7.8.

FIGURE 7.7 The sampled-data model of inverted pendulum control.

Control software today is often implemented on top of an RTOS. In such a realization, the con-

troller runs as a task in the RTOS and competes with other tasks for resources, e.g. CPU time.

This may cause jitter in the input-to-output delay and even changes in the sampling period. We

can model these effects with the TM domain in Ptolemy II. As shown in figure 7.8, the control

computer is modeled as a composite actor with a TM director. The modal controller actor is

treated as a task by the TM director. Some other tasks, such as one for fault diagnosis and one for

I/O, may be added to reflect the dynamics of concurrent tasks running in the same RTOS. With

such a model, we can evaluate various scheduling mechanisms in terms of control performance.

The computers, sensors and actuators in a control system are often networked. We can model

this by using the discrete event domain at the top level. The pendulum model and the control

computer are both connected to a network model actor, along with other network nodes to reflect

the contention of network resources. The network model simulates the communication among

the nodes in the control system, taking into account contention, transmission delay and loss, etc.

Such a model helps the designers to evaluate different network architectures and protocols.

FSM

SDF

Pendulum
Dynamics

(ODEs)Periodic
Sampler

Zero-Order
Hold

44

CTTM
Modal

Controller
some other
tasks, e.g.

fault
diagnosis

Control
Computer

Network
Model

other network nodes DE

I/O
task

4

FIGURE 7.8 An elaborate Ptolemy II model that incorporates many implementation issues.

7 Conclusions

The modeling and design of complex control systems require tools that support multiple models

of computation, and a software architecture to compose heterogeneous systems. The Ptolemy II

environment has a component-based hierarchical structure that meets these requirements.

Components in Ptolemy II have a fine-grained interface for execution control, which allows

directors to compose the execution of components according to various models of computation.

All directors provide the same execution interface to the outside domain, so that when different

models of computation are composed in a heterogeneous model, their properties are preserved.

Ptolemy II includes a number of domains that are useful in control system design. Other

pertinent models of computation are being implemented, such as Petri nets and port-based

objects [28]. With modal models, Ptolemy II provides a clean structure for studying modal

systems that are common in control engineering.

A framework for studying the dynamic interaction among actors, receivers, and directors is being

developed. The framework [18] extends the concept of type systems in programming languages.

Interface automata [8] are used to capture the dynamic behavior of components, and the commu-

nication protocols between components. Type checking, which checks the compatibility of a

component with a certain domain, is conducted through automata composition. When reusable

components are used in a model, we can use type checking to study whether the model will

generate undesirable behavior, such as deadlock. The framework also helps us to verify that

hierarchically composing different models of computation preserves their properties.

Another active development in Ptolemy II is code generation [30]. The structure of Ptolemy II

models provides a good foundation for the code generator. At each hierarchical level of the

model, the components interact homogeneously according to a specific model of computation.

The properties of the model of computation can be used to analyze and optimize the model at

that level for efficient code generation. For example, in an SDF model, the actors can be

statically scheduled. It is possible to merge the functions of a cluster of actors in the schedule, so

as to reduce the number of function calls in the generated code. Different models of computation

offer different optimizations, which can be applied orthogonally in a heterogeneous model.

The URL of the Ptolemy project homepage is:

http://ptolemy.eecs.berkeley.edu/

The Ptolemy II software can be downloaded from there, complete with source code and design

documentation. Online demonstrations can be viewed with an applet-enabled Internet browser.

Most publications from the Ptolemy group are made available in electronic form.

Acknowledgements

This work is part of the Ptolemy project, which is supported by DARPA/ITO, the State of

California MICRO program, and the following companies: Cadence Design Systems, Hewlett

Packard, Hitachi, Hughes Space and Communications, Motorola, NEC, and Philips.

References

[1] J. Akesson, “Safe Manual Control of Unstable Systems,” Master Thesis ISRN LUTFD2/

TFRT--5646--SE, Department of Automatic Control, Lund Institute of Technology, Lund,

Sweden, September 2000.

[2] K. J. Astrom and B. Wittenmark, Computer-Controlled Systems, 2nd ed., Prentice Hall,

1990.

[3] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete Event System Simulation,

Prentice Hall, August 15, 2000.

[4] F. Belina, D. Hogrefe, and A. Sarma, SDL With Applications From Protocol Specification,

Prentice Hall, 1991.

[5] A. Benveniste and P. Le Guernic, “Hybrid Dynamical Systems Theory and the SIGNAL

Language,” IEEE Tr. on Automatic Control, Vol. 35, No. 5, pp. 525-546, May 1990.

[6] G. Berry and G. Gonthier, “The Esterel synchronous programming language: Design,

semantics, implementation,” Science of Computer Programming, 19(2):87-152, 1992.

[7] J.Davis II, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu, X. Liu, L.Muliadi, S. Neuendorffer, J.

Tsay, B. Vogel, and Y. Xiong, “Heterogeneous Concurrent Modeling and Design in Java,”

Technical Memorandum UCB/ERL M01/12, EECS, University of California, Berkeley,

March 15, 2001. (http://ptolemy.eecs.berkeley.edu/publications/papers/01/HMAD/)

[8] L. de Alfaro and T. A. Henzinger, “Interface Automata,” to appear in Proc. of the Joint 8th

European Software Engineering Conference and 9th ACM SIGSOFT International Sympo-

sium on the Foundations of Software Engineering (ESEC/FSE 01), Austria, 2001.

[9] S. A. Edwards, “The Specification and Execution of Heterogeneous Synchronous Reactive

Systems,” Ph.D. thesis, University of California, Berkeley, May 1997. Available as UCB/

ERL M97/31. (http://ptolemy.eecs.berkeley.edu/papers/97/sedwardsThesis/)

[10] A. Girault, B. Lee, and E. A. Lee, “Hierarchical Finite State Machines with Multiple

Concurrency Models,” IEEE Transactions On Computer-aided Design Of Integrated

Circuits And Systems, Vol. 18, No. 6, June 1999.

[11] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Sci. Comput. Program.,

vol 8, pp. 231-274, 1987.

[12] IEEE Computer Society, IEEE Draft Standard VHDL-AMS Language Reference Manual,

1997.

[13] KnowNow Inc., “Vision: Powering the Real-Time Enterprise,” (http://www.knownow.com/

products/whitepapers/powering.html) 2001.

[14] T.J. Koo, F. Hoffmann, H. Shim, B. Sinopoli, and S. Sastry, “Hybrid Control of Model Heli-

copter,” Proc. of IFAC Workshop on Motion Control, Grenoble, France, Oct. 1999, pp 285-

290.

[15] T. J. Koo, G. J. Pappas, and S. Sastry, “Multi-Modal Control of Systems with Constraints,”

IEEE Conference on Decision and Control. Orlando, FL, December 2001.

[16] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” Proc. of the IEEE, vol. 75,

no. 9, pp. 1235-1245, September, 1987.

[17] E. A. Lee and T. M. Parks, “Dataflow Process Networks,” Proc. of the IEEE, vol. 83, no. 5,

pp. 773-801, May, 1995.

[18] E. A. Lee and Y. Xiong, “System-Level Types for Component-Based Design,” First Work-

shop on Embedded Software, EMSOFT2001, Springer-Verlag, Lake Tahoe, CA, USA, Oct.

8-10, 2001.

[19] Jie Liu and Edward A. Lee, “Component-based Hierarchical Modeling of Systems with

Continuous and Discrete Dynamics,” IEEE Symposium on Computer-Aided Control System

Design (CACSD'00), Anchorage, Alaska, USA, Sep. 2000.

[20] J. Liu, X. Liu, T. J. Koo, B. Sinopoli, S. Sastry, and E. A. Lee, “A Hierarchical Hybrid Sys-

tem Model and Its Simulation,” 38th IEEE Conference on Decision and Control (CDC'99),

Phoenix, Arizona, Dec. 1999.

[21] N. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberg, “Hybrid I/O automata”, Hybrid

Systems III, number 1066 in LNCS, pp. 496-510, Springer Verlag, 1996.

[22] The MathWorks, Inc., Stateflow User’s Guide, May 1997.

[23] P. J. Mosterman, “An overview of hybrid simulation phenomena and their support by

simulation packages,” Hybrid Systems: Computation and Control '99, volume 1569 of

Lecture Notes in Computer Science, pages 165-177. 1999.

[24] S. Narasimhan, F. Zhao, G. Biswas, and E. Hung, “Fault Isolation in Hybrid Systems Com-

bining Model-Based Diagnosis and Signal Processing,” Proc. of IFAC 4th Symposium on

Fault Detection, Supervision, and Safety for Technical Processes, Budapest, Hungary, 2000.

[25] OVI, Verilog-AMS Language Reference Manual, Analog & Mixed-Signal Extensions to Ver-

ilog HDL, Version 1.1, March 13, 1998.

[26] C. S. Sharp, O. Shakernia, and S. Sastry, “A Vision System for Landing an Unmanned

Aerial Vehicle,” International Conference on Robotics and Automation, Seoul, Korea, May

2001.

[27] U. Soderman and J.-E. Stromberg, “Switched bond graphs: Towards systematic composition

of computational models,” International Conference on Bond Graph Modeling and Simula-

tion (ICBGM'95), Volume 27 of Simulation Series, pp. 73-79, SCS Publishing.

[28] D. B. Stewart and P. Khosla, “Chimera methodology: designing dynamically reconfigurable

real-time software using port-based objects,” Proceedings of the Workshop on Object-Ori-

ented Real-Time Dependable Systems (WORDS), pp. 46-53, 1995.

[29] C. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison-Wes-

ley Pub. Co., January 1998.

[30] J. Tsay, C. Hylands, and E. A. Lee, “A Code Generation Framework for Java Component-

Based Designs,” CASES '00, San Jose, CA, November 17-19, 2000.

