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VOLUME 1

INTRODUCTION TO 
PTOLEMY II

This volume describes how to construct Ptolemy II models for web-based modeling or building appli-
cations. The first chapter includes an overview of Ptolemy II software, and a brief description of each
of the models of computation that have been implemented. It describes the package structure of the
software, and includes as an appendix a brief tutorial on UML notation, which is used throughout the
documentation to explain the structure of the software. The second chapter is a tutorial on building
models using Vergil, a graphical user interface where models are built pictorially. The third chapter
discusses the Ptolemy II expression language, which is used to set parameter values. The next chapter
gives an overview of actor libraries. These three chapters, plus one of the domain chapters, will be suf-
ficient for users to start building interesting models in the selected domain. The fifth chapter gives a
tutorial on designing actors in Java.The sixth chapter explains MoML, the XML schema used by
Vergil to store models. And the seventh chapter, the final one in this part, explains how to construct
custom applets.

Volume 2 describes the software architecture of Ptolemy II, and volume 3 describes the domains, each
of which implements a model of computation.



Copyright  1998-2003 The Regents of the University of California.
All rights reserved.

“Java” is a registered trademark of Sun Microsystems.
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Heterogeneous Concurrent Modeling and Design
Introduction

Author: Edward A. Lee
Contributors: The entire Ptolemy team

1.1  Purpose
This document is the first of three volumes describing the Ptolemy II software. This first volume

introduces the software and explains how to use it. The second volume documents the software archi-
tecture and explains how to extend it. The third volume documents the “domains,” which realize mod-
els of computation. Some of these are relatively mature and established, and some are highly
experimental. Indeed, a major part of the Ptolemy Project is experimentation with models of computa-
tion.

Ptolemy II is the current software infrastructure of the Ptolemy Project. For the participants in the
Ptolemy Project, Ptolemy II is first and foremost a laboratory for experimenting with design tech-
niques. It is published freely and in open-source form for several reasons. First, the software comple-
ments more traditional publication media, and serves as a clear, unambiguous, and complete
description our research results. Second, the open architecture and open source encourages researchers
to build their own methods, leveraging and extending the core infrastructure provided by the software.
This creates a community where much of the dialog is through the software. Third, the freely available
software encourages designers to try out the new design techniques that are introduced and give feed-
back to the Ptolemy Project. This helps guide further research. Fourth, the open source software
encourages commercial providers of software tools to commercialize the research results, which then
helps to maximize the impact of the work.

The Ptolemy Project is an informal group of researchers at U.C. Berkeley. There have been many
participants in the project over the years (see “Acknowledgements” on page 28 for a list contributors to
Ptolemy II). Ptolemy II is the third generation of design software to emerge from this group, with each
generation bringing a new set of problems being addressed, new emphasis, and (largely) a new group
of contributors.
1



Introduction
1.1.1  Gabriel (1986-1991)
The first generation of software created by this was group was called Gabriel [16]. It was written

in Lisp and aimed at signal processing. It was during the construction of Gabriel that synchronous
dataflow (SDF) block diagrams and both sequential and parallel scheduling techniques for SDF mod-
els matured. Gabriel included code generators for programmable DSPs that produced efficient assem-
bly code for certain processors (notably, Motorola processors). Gabriel included hardware/software
co-simulators, where parallel code generators would produce assembly code which then ran on instruc-
tion set simulators within a hardware simulation of a multiprocessor architecture. Gabriel had a graph-
ical user interface built on top of Vem, written by Rick Spickelmeyer, which was originally designed
for schematic capture in VLSI CAD. It used Oct, which was the design database developed by the Ber-
keley CAD group under the leadership of Professor Richard Newton.

1.1.2  Ptolemy Classic (1990-1997)
Ptolemy Classic, started jointly by Professors Edward Lee and Dave Messerschmitt in 1990, was

written in C++ [19]. It was the first modeling environment to systematically support multiple models
of computation, hierarchically combined. We ported the SDF capabilities from Gabriel, and also devel-
oped boolean dataflow (BDF), dynamic dataflow (DDF), multidimensional synchronous dataflow
(MDSDF) and process networks (PN) domains. We also ported the DSP code generators, and created
C and VHDL code generators as well. We developed the concept of “targets,” which encapsulated
knowledge about specific hardware platforms, and demonstrated construction of models that executed
on attached embedded processors (such as S-bus cards with DSPs), including models that executed
jointly on a Unix host and the attached embedded processor. We developed a discrete-event domain
and demonstrated joint modeling of communication networks and signal processing, and also devel-
oped a hardware simulation domain called Thor, which was adapted from an open-source hardware
simulator by the same name (see figure 1.1). We made major contributions to SDF scheduling tech-
niques, including introducing the concept of “single appearance schedules” (which minimize gener-
ated code size and enable extensive use of inlining of generated code). We also introduced “higher-
order components,” which greatly increased the expressiveness of visual syntaxes. The Ptolemy Clas-
sic user interface was an extension of the Gabriel interface, still based on Oct and Vem, but extended
by Tycho (written in Itcl, an object-oriented extension of Tcl/Tk). Portions of Ptolemy Classic were
commercialized as part of the Agilent ADS system, and methods from Ptolemy Classic were used in
Cadence’s SPW system.

1.1.3  Ptolemy II (1996-?)
The Ptolemy Project (as it was now known) began working on Ptolemy II in 1996. The major rea-

sons for starting over were to exploit the network integration, migrating code, built-in threading, and
user-interface capabilities of Java. Ptolemy II introduced the notion of domain polymorphism (where
components could be designed to be able to operate in multiple domains) and modal models (where
finite state machines are combined hierarchically with other models of computation). We built a con-
tinuous-time domain, which combined with the modal modeling capability, yields hybrid system mod-
eling. Ptolemy II has a sophisticated type system with type inference and data polymorphism (where
components can be designed to operate on multiple data types), and a rich expression language. The
concept of behavioral types emerged (where components and domains could have interface definitions
that describe not just static structure, as with traditional type systems, but also dynamic behavior).
Some (but not all) of the SDF capabilities from Ptolemy Classic were ported, and the heterochronous
2 Ptolemy II



Introduction
dataflow model was introduced. We contributed to a user-interface toolkit (called Diva) based on Java,
built a user interface for Ptolemy II (called Vergil) based on Diva, designed a Java plotter (PtPlot), and
introduced a 3-D animation domain. We built models that could be used as applets in a web browser.
And we built numerous experimental domains that explored real-time and distributed computing (dis-
tributed discrete events (DDE), timed multitasking (TM), Giotto, and component interaction (CI)). As
for code generation, the tactic in Ptolemy II is significantly different than that in Gabriel or Ptolemy
Classic. Instead of components as generators, Ptolemy II uses a component-specialization framework
built on top of a Java compiler toolkit called Soot. Ptolemy II uses XML for its persistent data repre-
sentation, and has introduced the concept of migrating models.

1.1.4  Organization of this Document
This document is the first of three volumes. This first volume introduces the software and explains

how to use it. It begins with a description of the rationale for the design in this chapter. The second

FIGURE 1.1.  Ptolemy Classic screen image (from 1993) showing an SDF graph at the upper left that is auto-
matically mapped and scheduled onto the two processor architecture, whose model is at the lower right (in 
the “Thor” domain). Assembly code for the two processor is generated, and then ISA simulators of the pro-
cessors (provided by Motorola, lower left) interact with the Thor-domain simulation, resulting in the logic 
analyzer trace at the upper right.
Heterogeneous Concurrent Modeling and Design 3 



Introduction
chapter is a tutorial that explains how to use Ptolemy II via the Vergil visual editor. The third chapter
explains the expression language, which is used extensively in Ptolemy II. The fourth chapter provides
an overview of the actor libraries; note, however, that the most complete documentation for the actors
is built in to the software, accessed through the “Get Documentation” command, obtained by right
clicking on the actor icon. The fifth chapter explains how to write actors. The sixth chapter describes
MoML, the XML schema used to store Ptolemy II models.

1.2  Modeling and Design
The Ptolemy project studies heterogeneous modeling, simulation, and design of concurrent sys-

tems. The focus is on embedded systems [66], particularly those that mix technologies including, for
example, analog and digital electronics, hardware and software, and electronics and mechanical
devices. The focus is also on systems that are complex in the sense that they mix widely different oper-
ations, such as networking, signal processing, feedback control, mode changes, sequential decision
making, and user interfaces.

Modeling is the act of representing a system or subsystem formally. A model might be mathemati-
cal, in which case it can be viewed as a set of assertions about properties of the system such as its func-
tionality or physical dimensions. A model can also be constructive, in which case it defines a
computational procedure that mimics a set of properties of the system. Constructive models are often
used to describe behavior of a system in response to stimulus from outside the system. Constructive
models are also called executable models.

Design is the act of defining a system or subsystem. Usually this involves defining one or more
models of the system and refining the models until the desired functionality is obtained within a set of
constraints.

Design and modeling are obviously closely coupled. In some circumstances, models may be
immutable, in the sense that they describe subsystems, constraints, or behaviors that are externally
imposed on a design. For instance, they may describe a mechanical system that is not under design, but
must be controlled by an electronic system that is under design.

Executable models are sometimes called simulations, an appropriate term when the executable
model is clearly distinct from the system it models. However, in many electronic systems, a model that
starts as a simulation mutates into a software implementation of the system. The distinction between
the model and the system itself becomes blurred in this case. This is particularly true for embedded
software.

1.2.1  Embedded Software
Embedded software is software that resides in devices that are not first-and-foremost computers. It

is pervasive, appearing in automobiles, telephones, pagers, consumer electronics, toys, aircraft, trains,
security systems, weapons systems, printers, modems, copiers, thermostats, manufacturing systems,
appliances, etc. A technically active person probably interacts regularly with more pieces of embedded
software than conventional software. A key feature of embedded software is that it engages the physi-
cal world, and hence has temporal constraints that desktop software does not share.

A major emphasis in Ptolemy II is on the methodology for defining and producing
embedded software together with the systems within which it is embedded.

Executable models are constructed under a model of computation, which is the set of “laws of
4 Ptolemy II



Introduction
physics” that govern the interaction of components in the model. If the model is describing a mechani-
cal system, then the model of computation may literally be the laws of physics. More commonly, how-
ever, it is a set of rules that are more abstract, and provide a framework within which a designer builds
models. A set of rules that govern the interaction of components is called the semantics of the model of
computation. A model of computation may have more than one semantics, in that there might be dis-
tinct sets of rules that impose identical constraints on behavior.

The choice of model of computation depends strongly on the type of model being constructed. For
example, for a purely computational system that transforms a finite body of data into another finite
body of data, the imperative semantics that is common in programming languages such as C, C++,
Java, and MATLAB will be adequate. For modeling a mechanical system, the semantics needs to be
able to handle concurrency and the time continuum, in which case a continuous-time model of compu-
tation such that found in Simulink, Saber, Hewlett-Packard’s ADS, and VHDL-AMS is more appropri-
ate.

The ability of a model to mutate into an implementation depends heavily on the model of compu-
tation that is used. Some models of computation, for example, are suitable for implementation only in
customized hardware, while others are poorly matched to customized hardware because of their intrin-
sically sequential nature. Choosing an inappropriate model of computation may compromise the qual-
ity of design by leading the designer into a more costly or less reliable implementation.

A principle of the Ptolemy project is that the choices of models of computation
strongly affect the quality of a system design.

For embedded systems, the most useful models of computation handle concurrency and time. This
is because embedded systems consist typically of components that operate simultaneously and have
multiple simultaneous sources of stimuli. In addition, they operate in a timed (real world) environment,
where the timeliness of their response to stimuli may be as important as the correctness of the
response.

The objective in Ptolemy II is to support the construction and interoperability of
executable models that are built under a wide variety of models of computation.

Ptolemy II takes a component view of design, in that models are constructed as a set of interacting
components. A model of computation governs the semantics of the interaction, and thus imposes a dis-
cipline on the interaction of components.

Component-based design in Ptolemy II involves disciplined interactions between
components governed by a model of computation.

1.2.2  Actor-Oriented Design
Most (but not all) models of computation in Ptolemy II support actor-oriented design. This con-

trasts with (and complements) object-oriented design by emphasizing concurrency and communication
between components. Components called actors execute and communicate with other actors in a
model, as illustrated in figure 1.2. Like objects, actors have a well defined component interface. This
interface abstracts the internal state and behavior of an actor, and restricts how an actor interacts with
its environment. The interface includes ports that represent points of communication for an actor, and
parameters which are used to configure the operation of an actor. Often, parameter values are part of
the a priori configuration of an actor and do not change when a model is executed, but not always. The
Heterogeneous Concurrent Modeling and Design 5 



Introduction
“port/parameters” shown in figure 1.2 function as both ports and parameters.

Central to actor-oriented design are the communication channels that pass data from one port to
another according to some messaging scheme. Whereas with object-oriented design, components
interact primarily by transferring control through method calls, in actor-oriented design, they interact
by sending messages through channels. The use of channels to mediate communication implies that
actors interact only with the channels that they are connected to and not directly with other actors.

Like actors, a model may also define an external interface; this interface is called its hierarchical
abstraction. This interface consists of external ports and external parameters, which are distinct from
the ports and parameters of the individual actors in the model. The external ports of a model can be
connected by channels to other external ports of the model or to the ports of actors that compose the
model. External parameters of a model can be used to determine the values of the parameters of actors
inside the model.

Taken together, the concepts of models, actors, ports, parameters and channels describe the
abstract syntax of actor-oriented design. This syntax can be represented concretely in several ways,
such as graphically, as in figure 4, in XML as in figure 1.3, or in a program designed to a specific API
(as in SystemC). Ptolemy II offers all three alternatives.

It is important to realize that the syntactic structure of an actor-oriented design says little about the
semantics. The semantics is largely orthogonal to the syntax, and is determined by a model of compu-
tation. The model of computation might give operational rules for executing a model. These rules
determine when actors perform internal computation, update their internal state, and perform external
communication. The model of computation also defines the nature of communication between compo-
nents.

port/parameters

hierarchical abstraction

model

director

annotation

actor
port

relation

external port

FIGURE 1.2.  Illustration of an actor-oriented model (above) and its hierarchical abstraction (below).
6 Ptolemy II



Introduction
Our notion of actor-oriented modeling is related to the work of Gul Agha and others. The term
actor was introduced in the 1970’s by Carl Hewitt of MIT to describe the concept of autonomous rea-
soning agents [48]. The term evolved through the work of Agha and others to describe a formalized
model of concurrency [1-5]. Agha’s actors each have an independent thread of control and communi-
cate via asynchronous message passing. We have further developed the term to embrace a larger family
of models of concurrency that are often more constrained than general message passing. Our actors are
still conceptually concurrent, but unlike Agha’s actors, they need not have their own thread of control.
Moreover, although communication is still through some form of message passing, it need not be
strictly asynchronous.

Actor-oriented modeling has been around for some time, and is in widespread use through such
programs as Simulink, from The Mathworks, LabView, from National Instruments, and many others. It
is gaining broader legitimacy through the efforts of OMG in UML-2 [101], for example, some of
which has its roots in the actor-oriented framework ROOM [116]. Many research projects are based on
some form of actor-oriented modeling, but the Ptolemy Project is unique in the breadth of exploration
of semantic alternatives and in the commitment made to a particular model of computation within a
domain.

1.2.3  Architecture Design
Architecture description languages (ADLs), such as Wright [6] and Rapide [85], focus on formal-

isms for describing the rich sorts of component interactions that commonly arise in software architec-
ture. Ptolemy II, by contrast, might be called an architecture design language, because its objective is
not so much to describe existing interactions, but rather to promote coherent software architecture by
imposing some structure on those interactions. Thus, while an ADL might focus on the compatibility
of a sender and receiver in two distinct components, we would focus on a pattern of interactions among
a set of components. Instead of, for example, verifying that a particular protocol in a single port-to-port
interaction does not deadlock [6], we would focus on whether an assemblage of components can dead-
lock.

It is arguable that our approach is less modular, because components must be designed to the
framework. Typical ADLs can describe pre-existing components, whereas in Ptolemy II, such pre-

<class name="Sinewave">
<property name="samplingFrequency" value="8000.0"/>
<property name="frequency" value="440.0"/>
<property name="phase" value="0.0"/>
<property name="SDF Director" class="ptolemy.domains.sdf.kernel.SDFDirector"/>
<port name="output"><property name="output"/>
<entity name="Ramp" class="ptolemy.actor.lib.Ramp">

<property name="init" value="phase"/>
<property name="step" value="frequency*2*PI/samplingFrequency"/>

</entity>
<entity name="TrigFunction" class="ptolemy.actor.lib.TrigFunction">

<property name="function" value="sin" class="ptolemy.kernel.util.StringAttribute"/>
</entity>
<relation name="relation"/>
<relation name="relation2"/>
<link port="output" relation="relation2"/>
<link port="Ramp.output" relation="relation"/>
<link port="TrigFunction.input" relation="relation"/>
<link port="TrigFunction.output" relation="relation2"/>

</class>

FIGURE 1.3.  An XML representation of a simplified sinewave source.
Heterogeneous Concurrent Modeling and Design 7 



Introduction
existing components would have to wrapped in Ptolemy II actors. Moreover, designing components to
a particular interface may limit their reusability, and in fact the interface may not match their needs
well. All of these are valid points, and indeed a major part of our research effort is to ameliorate these
limitations. The net effect, we believe, is an approach that is much more powerful than ADLs.

First, we design components to be domain polymorphic, meaning that they can interact with other
components within a wide variety of domains. In other words, instead of coming up with an ADL that
can describe a number of different interaction mechanisms, we have come up with an architecture
where components can be easily designed to interact in a number of ways. We argue that this makes
the components more reusable, not less, because disciplined interaction within a well-defined seman-
tics is possible. By contrast, with pre-existing components that have rigid interfaces, the best we can
hope for is ad-hoc synthesis of adapters between incompatible interfaces, something that is likely to
lead to designs that are very difficult to understand and to verify. Whereas ADLs draw an analogy
between compatibility of interfaces and type checking [6], we use a technique much more powerful
than type checking alone, namely polymorphism [68].

Second, to avoid the problem that a particular interaction mechanism may not fit the needs of a
component well, we provide a rich set of interaction mechanisms embodied in the Ptolemy II domains.
The domains force component designers to think about the overall pattern of interactions, and trade off
uniformity for expressiveness. Where expressiveness is paramount, the ability of Ptolemy II to hierar-
chically mix domains offers essentially the same richness of more ad-hoc designs, but with much more
discipline. By contrast, a non-trivial component designed without such structure is likely to use a
melange, or ad-hoc mixture of interaction mechanisms, making it difficult to embed it within a com-
prehensible system.

Third, whereas an ADL might choose a particular model of computation to provide it with a for-
mal structure, such as CSP for Wright [6], we have developed a more abstract formal framework that
describes models of computation at a meta level [71]. This means that we do not have to perform awk-
ward translations to describe one model of computation in terms of another. For example, stream based
communication via FIFO channels are awkward in Wright [6].

We make these ideas concrete by describing the models of computation implemented in the
Ptolemy II domains.

1.3  Models of Computation
There is a rich variety of models of computation that deal with concurrency and time in different

ways. Each gives an interaction mechanism for components. The utility of a model of computation
stems from the modeling properties that apply to all similar models. For many models of computation
these properties are derived through formal mathematics. Depending on the model of computation, the
model may be determinate [55], statically schedulable [72], or time safe [47]. Because of its modeling
properties, a model of computation represents a style of modeling that is useful in any circumstance
where those properties are desirable. In other words, models of computation form design patterns of
component interaction, in the same sense that Gamma, et al. describe design patterns in object oriented
languages [35].

For a particular application, an appropriate model of computation does not impose unnecessary
constraints, and at the same time is constrained enough to result in useful derived properties. For
example, by restricting the design space to synchronous designs, Scenic [74] enables cycle-driven sim-
ulation [41], which greatly improves execution efficiency over more general discrete-event models of
8 Ptolemy II
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computation (such as that found in VHDL). However, for applications with multirate behavior, syn-
chronous design can be constraining. In such cases, a less constrained model of computation, such as
synchronous dataflow [72] or Kahn process networks [55] may be more appropriate. One drawback of
this relaxation of synchronous design constraints is that buffering becomes more difficult to analyze.
On the other hand, techniques exist for synchronous dataflow that allow co-optimization of memory
usage and execution latency [118] that would otherwise be difficult to apply to a multirate system.
Selecting an appropriate model of computation for a particular application is often difficult, but this is
a problem we should embrace instead of avoiding. 

In this section, we describe models of computation that are implemented in Ptolemy II domains.
Our focus has been on models of computation that are most useful for embedded systems. All of these
can lend a semantics to the same bubble-and-arc, or block-and-arrow diagram shown in figure 1.4.
Ptolemy II models are (clustered, or hierarchical) graphs of the form of figure 1.4, where the nodes are
entities and the arcs are relations. For most domains, the entities are actors (entities with functionality)
and the relations connecting them represent communication between actors.

1.3.1  Component Interaction - CI
The component interaction (CI) domain, created by Xiaojun Liu and Yang Zhao, models systems

that blend data-driven and demand-driven styles of computation. As an example, the interaction
between a web server and a browser is mostly demand-driven. When the user clicks on a link in the
browser, it pulls the corresponding page from the web server. A stock-quote service can use a data-
driven style of computation. The server generates events when stock prices change. The data drive the
clients to update their displayed information. Such push/pull interaction between a data producer and
consumer is common in distributed systems, and has been included in middleware services, most nota-
bly in the CORBA event service. These services motivated the design of this domain to study the inter-
action models in distributed systems, such as stock-quote services, traffic or weather information
systems. Other applications include database systems, file systems, and the Click modular router [57]. 

An actor in a CI model can be active, which means it possesses its own thread of execution. For
example, an interrupt source of an embedded system can be modeled as an active source actor. Such a
source generates events asynchronously with respect to the software execution on the embedded pro-
cessor. CI models can be used to simulate and study how the embedded software handles the asynchro-
nous events, such as external interrupts and asynchronous I/O. 

1.3.2  Communicating Sequential Processes - CSP
In the CSP domain (communicating sequential processes), created by Neil Smyth [117], actors

A

C

B

FIGURE 1.4.  A single syntax (bubble-and-arc or block-and-arrow diagram) 
can have a number of possible semantics (interpretations).
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represent concurrently executing processes, implemented as Java threads. These processes communi-
cate by atomic, instantaneous actions called rendezvous (or sometimes, synchronous message passing).
If two processes are to communicate, and one reaches the point first at which it is ready to communi-
cate, then it stalls until the other process is ready to communicate. “Atomic” means that the two pro-
cesses are simultaneously involved in the exchange, and that the exchange is initiated and completed in
a single uninterruptable step. Examples of rendezvous models include Hoare’s communicating sequen-
tial processes (CSP) [51] and Milner’s calculus of communicating systems (CCS) [90]. This model of
computation has been realized in a number of concurrent programming languages, including Lotos and
Occam.

Rendezvous models are particularly well-matched to applications where resource sharing is a key
element, such as client-server database models and multitasking or multiplexing of hardware
resources. A key feature of rendezvous-based models is their ability to cleanly model nondeterminate
interactions. The CSP domain implements both conditional send and conditional receive.  It also
includes an experimental timed extension.

1.3.3  Continuous Time - CT
In the CT domain (continuous time), created Jie Liu [81], actors represent components that interact

via continuous-time signals. Actors typically specify algebraic or differential relations between inputs
and outputs. The job of the director in the domain is to find a fixed-point, i.e., a set of continuous-time
functions that satisfy all the relations.

The CT domain includes an extensible set of differential equation solvers. The domain, therefore,
is useful for modeling physical systems with linear or nonlinear algebraic/differential equation descrip-
tions, such as analog circuits and many mechanical systems. Its model of computation is similar to that
used in Simulink, Saber, and VHDL-AMS, and is closely related to that in Spice circuit simulators.

Mixed Signal Models. Embedded systems frequently contain components that are best modeled using
differential equations, such as MEMS and other mechanical components, analog circuits, and micro-
wave circuits. These components, however, interact with an electronic system that may serve as a con-
troller or a recipient of sensor data. This electronic system may be digital. Joint modeling of a
continuous subsystem with digital electronics is known as mixed signal modeling [82]. The CT domain
is designed to interoperate with other Ptolemy domains, such as DE, to achieve mixed signal modeling.
To support such modeling, the CT domain models of discrete events as Dirac delta functions. It also
includes the ability to precisely detect threshold crossings to produce discrete events.

Modal Models and Hybrid Systems. Physical systems often have simple models that are only valid
over a certain regime of operation.  Outside that regime, another model may be appropriate.  A modal
model is one that switches between these simple models when the system transitions between regimes.
The CT domain interoperates with the FSM domain to create modal models. Such modal models are
often called hybrid systems.

1.3.4  Discrete-Events - DE
In the discrete-event (DE) domain, created by Lukito Muliadi [94], the actors communicate via

sequences of events placed in time, along a real time line. An event consists of a value and time stamp.
Actors can either be processes that react to events (implemented as Java threads) or functions that fire
when new events are supplied. This model of computation is popular for specifying digital hardware
and for simulating telecommunications systems, and has been realized in a large number of simulation
10 Ptolemy II



Introduction
environments, simulation languages, and hardware description languages, including VHDL and Ver-
ilog.

DE models are excellent descriptions of concurrent hardware, although increasingly the globally
consistent notion of time is problematic. In particular, it over-specifies (or over-models) systems where
maintaining such a globally consistent notion is difficult, including large VLSI chips with high clock
rates. Every event is placed precisely on a globally consistent time line.

The DE domain implements a fairly sophisticated discrete-event simulator. DE simulators in gen-
eral need to maintain a global queue of pending events sorted by time stamp (this is called a priority
queue). This can be fairly expensive, since inserting new events into the list requires searching for the
right position at which to insert it. The DE domain uses a calendar queue data structure [17] for the
global event queue. A calendar queue may be thought of as a hashtable that uses quantized time as a
hashing function. As such, both enqueue and dequeue operations can be done in time that is indepen-
dent of the number of events in the queue.

In addition, the DE domain gives deterministic semantics to simultaneous events, unlike most
competing discrete-event simulators. This means that for any two events with the same time stamp, the
order in which they are processed can be inferred from the structure of the model. This is done by ana-
lyzing the graph structure of the model for data precedences so that in the event of simultaneous time
stamps, events can be sorted according to a secondary criterion given by their precedence relation-
ships. VHDL, for example, uses delta time to accomplish the same objective.

1.3.5  Distributed Discrete Events - DDE
The distributed discrete-event (DDE) domain, created by John Davis [26], can be viewed either as

a variant of DE or as a variant of PN (described below). Still highly experimental, it addresses a key
problem with discrete-event modeling, namely that the global event queue imposes a central point of
control on a model, greatly limiting the ability to distribute a model over a network. Distributing mod-
els might be necessary either to preserve intellectual property, to conserve network bandwidth, or to
exploit parallel computing resources.

The DDE domain maintains a local notion of time on each connection between actors, instead of a
single globally consistent notion of time. Each actor is a process, implemented as a Java thread, that
can advance its local time to the minimum of the local times on each of its input connections. The
domain systematizes the transmission of null events, which in effect provide guarantees that no event
will be supplied with a time stamp less than some specified value.

1.3.6  Discrete Time - DT
The discrete-time (DT) domain, written by Chamberlain Fong [32], extends the SDF domain

(described below) with a notion of time between tokens. Communication between actors takes the
form of a sequence of tokens where the time between tokens is uniform. Multirate models, where dis-
tinct connections have distinct time intervals between tokens, are also supported. There is considerable
subtlety in this domain when multirate components are used. The semantics is defined so that compo-
nent behavior is always causal, in that outputs whose values depend on inputs are never produced at
times prior to those of the inputs.

1.3.7  Finite-State Machines - FSM
The finite-state machine (FSM) domain, written by Xiaojun Liu, is radically different from the
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other Ptolemy II domains. The entities in this domain represent not actors but rather state, and the con-
nections represent transitions between states. Execution is a strictly ordered sequence of state transi-
tions. The FSM domain leverages the built-in expression language in Ptolemy II to evaluate guards,
which determine when state transitions can be taken.

FSM models are excellent for expressing control logic and for building modal models (models
with distinct modes of operation, where behavior is different in each mode). FSM models are amena-
ble to in-depth formal analysis, and thus can be used to avoid surprising behavior.

*Charts. FSM models have some key weaknesses. First, at a very fundamental level, they are not as
expressive as the other models of computation described here. They are not sufficiently rich to
describe all partial recursive functions. However, this weakness is acceptable in light of the formal
analysis that becomes possible. Many questions about designs are decidable for FSMs and undecidable
for other models of computation. A second key weakness is that the number of states can get very large
even in the face of only modest complexity. This makes the models unwieldy.

Both problems can often be solved by using FSMs in combination with concurrent models of com-
putation. This was first noted by David Harel, who introduced that Statecharts formalism. Statecharts
combine a loose version of synchronous-reactive modeling (described below) with FSMs [42]. FSMs
have also been combined with differential equations, yielding the so-called hybrid systems model of
computation [45].

The FSM domain in Ptolemy II can be hierarchically combined with other domains. We call the
resulting formalism “*charts” (pronounced “starcharts”) where the star represents a wildcard [38].
Since most other domains represent concurrent computations, *charts model concurrent finite state
machines with a variety of concurrency semantics. When combined with CT, they yield hybrid systems
and modal models. When combined with SR (described below), they yield something close to State-
charts. When combined with process networks, they resemble SDL [115].

1.3.8  Process Networks - PN
In the process networks (PN) domain, created by Mudit Goel [39], processes communicate by

sending messages through channels that can buffer the messages. The sender of the message need not
wait for the receiver to be ready to receive the message. This style of communication is often called
asynchronous message passing. There are several variants of this technique, but the PN domain specif-
ically implements one that ensures determinate computation, namely Kahn process networks [55].

In the PN model of computation, the arcs represent sequences of data values (tokens), and the enti-
ties represent functions that map input sequences into output sequences. Certain technical restrictions
on these functions are necessary to ensure determinacy, meaning that the sequences are fully specified.
In particular, the function implemented by an entity must be prefix monotonic. The PN domain realizes
a subclass of such functions, first described by Kahn and MacQueen [56], where blocking reads ensure
monotonicity.

PN models are loosely coupled, and hence relatively easy to parallelize or distribute. They can be
implemented efficiently in both software and hardware, and hence leave implementation options open.
A key weakness of PN models is that they are awkward for specifying control logic, although much of
this awkwardness may be ameliorated by combining them with FSM.

The PN domain in Ptolemy II has a highly experimental timed extension. This adds to the blocking
reads a method for stalling processes until time advances. We anticipate that this timed extension will
make interoperation with timed domains much more practical.
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1.3.9  Synchronous Dataflow - SDF
The synchronous dataflow (SDF) domain, created by Steve Neuendorffer, handles regular compu-

tations that operate on streams. Dataflow models, popular in signal processing, are a special case of
process networks (for the complete explanation of this, see [70]). Dataflow models construct processes
of a process network as sequences of atomic actor firings. Synchronous dataflow (SDF) is a particu-
larly restricted special case with the extremely useful property that deadlock and boundedness are
decidable. Moreover, the schedule of firings, parallel or sequential, is computable statically, making
SDF an extremely useful specification formalism for embedded real-time software and for hardware.

Certain generalizations sometimes yield to similar analysis. Boolean dataflow (BDF) models
sometimes yield to deadlock and boundedness analysis, although fundamentally these questions are
undecidable. Dynamic dataflow (DDF) uses only run-time analysis, and thus makes no attempt to stat-
ically answer questions about deadlock and boundedness. Neither a BDF nor DDF domain has yet
been written in Ptolemy II. Process networks (PN) serves in the interim to handle computations that do
not match the restrictions of SDF.

1.3.10  Giotto
The Giotto domain, created by Christoph Meyr Kirsch, realizes a model of computation developed

by Tom Henzinger, Christoph Kirsch, Ben Horowitz and Haiyang Zheng [44]. This domain has a time-
triggered flavor, where each actor is invoked periodically with a specified period. The domain is
designed to work with the FSM domain to realize modal models. It is intended for hard-real-time sys-
tems, where resource allocation is precomputed.

1.3.11  Synchronous/Reactive - SR
In the synchronous/reactive (SR) domain, written by Paul Whitaker [121] implements a model of

computation [11] where the arcs represent data values that are aligned with global clock ticks. Thus,
they are discrete signals, but unlike discrete time, a signal need not have a value at every clock tick.
The entities represent relations between input and output values at each tick, and are usually partial
functions with certain technical restrictions to ensure determinacy. Examples of languages that use the
SR model of computation include Esterel [13], Signal [12], Lustre [23], and Argos [86].

SR models are excellent for applications with concurrent and complex control logic. Because of
the tight synchronization, safety-critical real-time applications are a good match. However, also
because of the tight synchronization, some applications are overspecified in the SR model, limiting the
implementation alternatives. Moreover, in most realizations, modularity is compromised by the need
to seek a global fixed point at each clock tick. The SR domain implementation in Ptolemy II is similar
to the SR implementation in Ptolemy Classic by Stephen Edwards[28].

1.3.12  Timed Multitasking - TM
The timed multitasking (TM) domain, created by Jie Liu [80], supports the design of concurrent

real-time software. It assumes an underlying priority-driven preemptive scheduler, such as that typi-
cally found in a real-time operating systems (RTOS). But the behavior of models is more deterministic
than that obtained by more ad hoc uses of an RTOS.

In TM, each actor executes (conceptually) as a concurrent task. It is a timed domain, meaning that
there is a notion of "model time" that advances monotonically and uniformly. Each actor has a speci-
fied execution time T, and it delays the production of the outputs until it has had access to the CPU for
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that specified amount of time (in model time, which may or may not match real time). Actors execute
when they receive new inputs, so the execution is event driven. Conceptually, the actor begins execu-
tion at some time t, and its output is produced at time t + T + P, where T is the declared execution time,
and P is the amount of time where the actor is suspended due to being preempted by a higher priority
actor.  At any given model time t, the task with the highest priority that has received inputs but not yet
produced its outputs has the CPU.  All other tasks are suspended.

TM offers a way to design real-time systems that is more deterministic than ad hoc uses of an
RTOS. In particular, typically, a task produces outputs at a time that depends on the actual execution
time of the task, rather than on some declared parameter. This means that consumers of that data may
or may not see updates to the data, depending on when their execution occurs relative to the actual exe-
cution time. Thus, the computational results that are produced depend on the actual execution time.
TM avoids this by declaring the time that elapses before production of the outputs. By maintaining
model time correctly, TM ensures that the data computation is deterministic, irrespective of actual exe-
cution time.

1.4  Choosing Models of Computation
The rich variety of concurrent models of computation outlined in the previous section can be

daunting to a designer faced with having to select them. Most designers today do not face this choice
because they get exposed to only one or two. This is changing, however, as the level of abstraction and
domain-specificity of design software both rise. We expect that sophisticated and highly visual user
interfaces will be needed to enable designers to cope with this heterogeneity.

An essential difference between concurrent models of computation is their modeling of time.
Some are very explicit by taking time to be a real number that advances uniformly, and placing events
on a time line or evolving continuous signals along the time line. Others are more abstract and take
time to be discrete. Others are still more abstract and take time to be merely a constraint imposed by
causality. This latter interpretation results in time that is partially ordered, and explains much of the
expressiveness in process networks and rendezvous-based models of computation. Partially ordered
time provides a mathematical framework for formally analyzing and comparing models of computa-
tion [71].

A grand unified approach to modeling would seek a concurrent model of computation that serves
all purposes. This could be accomplished by creating a melange, a mixture of all of the above, but such
a mixture would be extremely complex and difficult to use, and synthesis and simulation tools would
be difficult to design.

Another alternative would be to choose one concurrent model of computation, say the rendezvous
model, and show that all the others are subsumed as special cases. This is relatively easy to do, in the-
ory. It is the premise of Wright [6] and Metropolis (http://www.gigascale.org/metropolis/), for exam-
ple. Most of these models of computation are sufficiently expressive to be able to subsume most of the
others. However, this fails to acknowledge the strengths and weaknesses of each model of computa-
tion. Wright, for example, uses rendezvous, which is very good at resource management, but very
awkward for loosely coupled data-oriented computations. Asynchronous message passing is the
reverse, where resource management is awkward, but data-oriented computations are natural1. Thus,
to design interesting systems, designers need to use heterogeneous models.
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1.5  Visual Syntaxes
Visual depictions of systems have always held a strong human appeal, making them extremely

effective in conveying information about a design. Many of the domains of interest in the Ptolemy
project use such depictions to completely and formally specify models. 

One of the principles of the Ptolemy project is that visual depictions of systems can
help to offset the increased complexity that is introduced by heterogeneous modeling.

These visual depictions offer an alternative syntax to associate with the semantics of a model of com-
putation. Visual syntaxes can be every bit as precise and complete as textual syntaxes, particularly
when they are judiciously combined with textual syntaxes.

Figures 1.5 and 1.6 show two different visual renditions of Ptolemy II models. Both renditions are
constructed in Vergil, the visual editor framework in Ptolemy II designed by Steve Neuendorffer. In
figure 1.5, a Ptolemy II model is shown as a block diagram, which is an appropriate rendition for many
discrete event models. In this particular example, records are constructed at the left by composing
strings with integers representing a sequence number. The records are launched into a network that

1. Consider the difference between the telephone (rendezvous) and email (asynchronous message passing). If you 
are trying to schedule a meeting between four busy people, getting them all on a conference call would lead to a 
quick resolution of the meeting schedule. Scheduling the meeting by email could take several days, and may in 
fact never converge. Other sorts of communication, however, are far more efficient by email.

FIGURE 1.5.  Visual rendition of a Ptolemy II model as a block diagram in Vergil (in the DE domain).
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introduces random delay. The records may arrive at the right out of order, but the Sequence actor is
used to re-order them using the sequence number.

Figure 1.6 also shows a visual rendition of a Ptolemy II model, but now, the components are repre-
sented by circles, and the connections between components are represented by labeled arcs. This visual
syntax is a familiar way to represent finite state machines (FSMs). Each circle represents a state of the
model, and the arcs represent transitions between states. The particular example in the figure comes
from a hybrid system model, where the two states, Separate and Together, represent two different
modes of operation of a continuous-time system. The arcs are labeled with two lines, the first of which
is a guard, and the second of which is an action. The guard is a boolean-valued textual expression that
specifies when the transition should be taken, and the action is a sequence of commands that are exe-
cuted when the transition is taken.

The visual renditions in figures 1.5 and 1.6 are both constructed using the same underlying infra-
structure, Vergil, built by Stephen Neuendorffer. Vergil, in turn, in built on top of a GUI package called
Diva, developed by John Reekie and Michael Shilman at Berkeley. Diva, in turn, is built on top of
Swing and Java 2D, which are part of the Java platform from Sun Microsystems. In Vergil, a visual
editor is constructed as an assembly of components in a Ptolemy II model. Thus, the system is config-
urable and customizable, and a great deal of infrastructure can be shared between the two distinct
visual editors of figures 1.5 and 1.6.

Visual representations of models have a mixed history. In circuit design, schematic diagrams used
to be routinely used to capture all of the essential information needed to implement some systems.
Schematics are often replaced today by text in hardware description languages such as VHDL or Ver-
ilog. In other contexts, visual representations have largely failed, for example flowcharts for capturing

FIGURE 1.6.  Visual rendition of a Ptolemy II model as a state transition diagram in Vergil (FSM domain).
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the behavior of software. Recently, a number of innovative visual formalisms have been garnering sup-
port, including visual dataflow, hierarchical concurrent finite state machines, and object models. The
UML visual language for object modeling has been receiving a great deal of attention. The static struc-
ture diagrams of UML, in fact, are used fairly extensively in the design of Ptolemy II itself (see appen-
dix A of this chapter). Moreover, the Statecharts diagrams of UML are very similar to a hierarchical
composition of the FSM and SR domains in Ptolemy II.

A subset of visual languages that are recognizable as “block diagrams” represent concurrent sys-
tems. There are many possible concurrency semantics (and many possible models of computation)
associated with such diagrams. Formalizing the semantics is essential if these diagrams are to be used
for system specification and design. Ptolemy II supports exploration of the possible concurrency
semantics. A principle of the project is that the strengths and weaknesses of these alternatives make
them complementary rather than competitive. Thus, interoperability of diverse models is essential.

1.6  Ptolemy II Architecture
Ptolemy II offers a unified infrastructure for implementations of a number of models of computa-

tion. The overall architecture consists of a set of packages that provide generic support for all models
of computation and a set of packages that provide more specialized support for particular models of
computation. Examples of the former include packages that contain math libraries, graph algorithms,
an interpreted expression language, signal plotters, and interfaces to media capabilities such as audio.
Examples of the latter include packages that support clustered graph representations of models, pack-
ages that support executable models, and domains, which are packages that implement a particular
model of computation.

Ptolemy II is modular, with a careful package structure that supports a layered approach. The core
packages support the data model, or abstract syntax, of Ptolemy II designs. They also provide the
abstract semantics that allows domains to interoperate with maximum information hiding. The UI
packages provide support for our XML file format, called MoML, and a visual interface for construct-
ing models graphically. The library packages provide actor libraries that are domain polymorphic,
meaning that they can operate in a variety of domains. And finally, the domain packages provide
domains, each of which implements a model of computation, and some of which provide their own,
domain-specific actor libraries.

1.6.1  Core Packages
The core packages are shown in figure 1.7. This is a UML package diagram. The name of each

package is in the tab at the top of each box. Subpackages are contained within their parent package.
Dependencies between packages are shown by dotted lines with arrow heads. For example, actor
depends on kernel which depends on kernel.util. Actor also depends on data and graph. The role of
each package is explained below.

actor This package supports executable entities that receive and send data through ports. 
It includes both untyped and typed actors. For typed actors, it implements a sophis-
ticated type system that supports polymorphism. It includes the base class Director 
that is extended in domains to control the execution of a model.

actor.lib This subpackage and its subpackages contain domain polymorphic actors. The 
actor.lib package is discussed further in section 1.6.4.

actor.parameters
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FIGURE 1.7.  The core packages shown here support the data model (abstract syntax) and the actor model, 
(abstract semantics) of Ptolemy II designs.

data

AWTImageToken
AbstractConvertibleToken
AbstractNotConvertibleToken
ActorToken
ArrayToken
BitwiseOperationToken
BooleanMatrixToken
BooleanToken
ComplexMatrixToken
ComplexToken
DoubleMatrixToken
DoubleToken
EventToken
FixMatrixToken
FixToken
ImageToken
IntMatrixToken
IntMatrixToken
IntToken
LongMatrixToken
LongToken
MatrixToken
Numerical
ObjectToken
RecordToken
ScalarToken
StringToken
Token
TokenUtilities
UnsignedByteToken

data.expr

AST...Node (generated)
AbstractParseTreeVisitor
CachedMethod
ConcreteMatrixToken
ConcreteScalarToken
Constants
ConversionUtilities
ExplicitScope
ExpressionFunction
FixPointFunctions
JJTMatrixParserState
JJTPtParserState
MatlabUtilities
MatrixParser
MatrixParserConstants
MatrixParserTokenManager
MatrixParserTreeConstants
ModelScope
NamedConstantsScope
NestedScope
Node
NotEditableParameter
Parameter
ParseException
ParseTree... (various classes)
ParserScope
PtParser
PtParserConstants
PtParserTokenManager
PtParserTreeConstants
ScopeExtender
ScopeExtendingAttribute
SimpleCharStream
SimpleNode
Token
TokenMgrError
UnknownResultException
UnknownToken
UtilityFunctions
Variable

AbstractReceiver
Actor
AtomicActor
CompositeActor
Director
Executable
ExecutionListener
FiringEvent
GraphReader
IOPort
IORelation
Mailbox
Manager
NoRoomException
NoTokenException
QueueReceiver
Receiver
StreamExecutionListener
TypeAttribute
TypeConflictException
TypeEvent
TypeListener
TypedActor
TypedAtomicActor
TypedCompositeActor
TypedIOPort
TypedIORelation

kernel

actor

graph

ComponentEntity
ComponentPort
ComponentRelation
CompositeEntity
Entity
Port
Relation

CPO
DirectedAcyclicGraph
DirectedGraph
Edge
Element
ElementList
Graph
GraphActionException
GraphConstructionException
GraphElementException
GraphException
GraphStateException
GraphTopologyException
GraphWeightException
Graphs
Inequality
InequalitySolver
InequalityTerm
LabeledList
Node

math

data.type

ArrayType
BaseType
RecordType
StructuredType
Type
TypeConstant
TypeLattice
Typeable

...

actor.process

actor.util

CQComparator
CalendarQueue
FIFOQueue
TimedEvent

ArrayStringFormat
Complex
ComplexArrayMath
ComplexBinaryOperation
ComplexMatrixMath
ComplexUnaryOperation
DoubleArrayMath
DoubleArrayStat
DoubleBinaryOperation
DoubleMatrixMath
DoubleUnaryOperation
ExtendedMath
FixPoint
FloatArrayMath
FloatBinaryOperation
FloatMatrixMath
FloatUnaryOperation
Fraction
IntegerArrayMath
IntegerBinaryOperation
IntegerMatrixMath
IntegerUnaryOperation
Interpolation
LongArrayMath
LongBinaryOperation
LongMatrixMath
LongUnaryOperation
Overflow
Precision
Quantization
Quantizer
Rounding
SignalProcessing

Attribute
BasicModelErrorHandler
ChangeListener
ChangeRequest
Configurable
ConfigurableAttribute
CrossRefList
DebugEvent
DebugListener
Debuggable
IllegalActionException
InternalErrorException
InvalidStateException
KernelException
KernelRuntimeException
Locatable
Location
ModelErrorHandler
NameDuplicationException
Nameable
NamedList
NamedObj
NoSuchItemException
NotPersistant
PtolemyThread
RecorderListener
Settable
SingletonAttribute
SingletonConfigurableAttribute
StreamChangeListener
StreamListener
StringAttribute
TransientSingletonConfigurableAttribute
ValueListener
Workspace

kernel.util

actor.lib

BoundaryDetector
Branch
BranchController
CompositeProcessDirector
MailboxBoundaryReceiver
NotifyThread
ProcessDirector
ProcessReceiver
ProcessThread
TerminateProcessException

Firing
NotSchedulableException
Schedule
ScheduleElement
Scheduler
StaticSchedulingDirector

actor.sched

kernel.attributes

FileAttribute
RequireVersion
URIAttribute
VersionAttribute

...

actor.gui

graph.analysis

AcyclicAnalysis
Analysis
Mapping
SelfLoopAnalysis
SinkNodeAnalysis
SourceNodeAnalysis
TransitiveClosureAnalysis

IntRangeParameter
LocationParameter
ParameterPort
PortParameter

actor.parameters
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This subpackage provides specialized parameters for specifying locations, ranges 
of values, etc.

actor.process This subpackage provides infrastructure for domains where actors are processes 
implemented on top of Java threads.

actor.sched This subpackage provides infrastructure for domains where actors are statically 
scheduled by the director, or where there is static analysis of the topology of a 
model associated with scheduling.

actor.util This subpackage contains utilities that support directors in various domains. Spe-
cifically, it contains a simple FIFO Queue and a sophisticated priority queue called 
a calendar queue.

copernicus This subpackage contains the “actor specialization” infrastructure (Java code gen-
eration).

data This package provides classes that encapsulate and manipulate data that is trans-
ported between actors in Ptolemy models. The key class is the Token class, which 
defines a set of polymorphic methods for operating on tokens, such as add(), sub-
tract(), etc.

data.expr This class supports an extensible expression language and an interpreter for that 
language. Parameters can have values specified by expressions. These expressions 
may refer to other parameters. Dependencies between parameters are handled 
transparently, as in a spreadsheet, where updating the value of one will result in the 
update of all those that depend on it.

data.type This package contains classes and interfaces for the type system.
graph This package provides algorithms for manipulating and analyzing mathematical 

graphs. This package is expected to supply a growing library of algorithms. These 
algorithms support scheduling and analysis of Ptolemy II models.

kernel This package provides the software architecture for the Ptolemy II data model, or 
abstract syntax. This abstract syntax has the structure of clustered graphs. The 
classes in this package support entities with ports, and relations that connect the 
ports. Clustering is where a collection of entities is encapsulated in a single com-
posite entity, and a subset of the ports of the inside entities are exposed as ports of 
the composite entity.

kernel.attributes
This subpackage of the kernel package provides specialized attributes such as File-
Attribute, which is used in actors to specify a file or URL.

kernel.util This subpackage of the kernel package provides a collection of utility classes that 
do not depend on the kernel package. It is separated into a subpackage so that these 
utility classes can be used without the kernel. The utilities include a collection of 
exceptions, classes supporting named objects with attributes, lists of named 
objects, a specialized cross-reference list class, and a thread class that helps 
Ptolemy keep track of executing threads.

math This package encapsulates mathematical functions and methods for operating on 
matrices and vectors. It also includes a complex number class, a class supporting 
fractions, and a set of classes supporting fixed-point numbers.

matlab This package contains the MATLAB interface.
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util This package contains various Ptolemy-independent utilities, such as string utilities 
and XML utilities.

1.6.2  Overview of Key Classes
Some of the key classes in Ptolemy II are shown in figure 1.8. This is a UML static structure dia-

gram (see appendix A of this chapter). The key syntactic elements are boxes, which represent classes,
the hollow arrow, which indicates generalization (or subclassing), and other lines, which indicate asso-
ciations. Some lines have a small diamond, which indicates aggregation. The details of these classes
will be discussed in subsequent chapters.

Instances of all of the classes shown can have names; they all implement the Nameable interface.
Most of the classes generalize NamedObj, which in addition to being nameable can have a list of
attributes associated with it. Attributes themselves are instances of NamedObj.

Entity, Port, and Relation are three key classes that extend NamedObj. These classes define the

FIGURE 1.8.  Some of the key classes in Ptolemy II. These are defined in the kernel, kernel.util, and actor 
packages. They define the Ptolemy II abstract syntax and abstract semantics.
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primitives of the abstract syntax supported by Ptolemy II. They are fully explained in the kernel chap-
ter. ComponentPort, ComponentRelation, and ComponentEntity extend these classes by adding sup-
port for clustered graphs. CompositeEntity extends ComponentEntity and represents an aggregation of
instances of ComponentEntity and ComponentRelation.

The Executable interface, explained in the actors chapter, defines objects that can be executed. The
Actor interface extends this with capability for transporting data through ports. AtomicActor and Com-
positeActor are concrete classes that implement this interface. The Executable and Actor interfaces are
key to the Ptolemy II abstract semantics.

An executable Ptolemy II model consists of a top-level CompositeActor with an instance of Direc-
tor and an instance of Manager associated with it. The manager provides overall control of the execu-
tion (starting, stopping, pausing). The director implements a semantics of a model of computation to
govern the execution of actors contained by the CompositeActor.

Director is the base class for directors that implement models of computation. Each such director
is associated with a domain. We have defined in Ptolemy II directors that implement continuous-time
modeling (ODE solvers), process networks, synchronous dataflow, discrete-event modeling, and com-
municating sequential processes.

1.6.3  Domains
The domains in Ptolemy II are subpackages of the ptolemy.domains package. The more mature

and frequently used domains are shown in figure 1.9. The experimental domains and less commonly
used domains are not shown, but the examples in figure 1.9 are illustrative of their structure. These
packages generally contain a kernel subpackage, which defines classes that extend those in the actor or
kernel packages of Ptolemy II. The lib subpackage, when it exists, includes domain-specific actors.

1.6.4  Library Packages
Most domains extend classes in the actor package to give a specific semantic interpretation to an

interconnection of actors. It is possible, and strongly encouraged, to define actors in such a way that
they can operate in multiple domains. Such actors are said to be domain polymorphic. Actor that are
domain polymorphic are organized in the packages shown in figure 1.10. These packages are briefly
described below:

actor.lib This package is the main library of polymorphic actors.
actor.lib.comm

This is a library of actors for modeling communications systems.
actor.lib.conversions

This package provides domain polymorphic actors that convert data between dif-
ferent types.

actor.lib.gui This package is a library of polymorphic actors with user interface components, 
such as plotters.

actor.lib.hoc This package is a library of higher-order components, which are components that 
construct portions of a model.

actor.lib.image
This package is a library of image processing actors.
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actor.lib.io This package provides file I/O.
actor.lib.io.comm

This package provides an actor that communicate via the serial ports. This actor 
works only under Windows.

actor.lib.jai This is a library of image processing actors based on the Java advanced imaging 
API.

actor.lib.javasound
This package provides sound actors.

actor.lib.jmf This is a library of image processing actors based on the Java media framework 

FIGURE 1.9.  Package structure of common Ptolemy II domains.
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FIGURE 1.10.  The major actor libraries are in packages containing domain-polymorphic actors.
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API.
actor.lib.joystick

This package provides an example actor that communicates with a particular I/O 
device, a joystick.

actor.lib.jxta This is a library of experimental actors supporting the JXTA discovery mechanism 
from Sun Microsystems.

actor.lib.logic This package provides actors that perform logical functions like AND, OR and 
NOT.

actor.lib.net This package provides actors that communicate using datagrams.
actor.lib.python

This package provides an actor whose operation can be specified in Python.

1.6.5  User Interface Packages
The UI packages provide support for our XML file format, called MoML, and a visual interface

for constructing models graphically, called Vergil. These packages are organized as shown in figures
1.11 and 1.12. The intent of each package is described below:

actor.gui This package contains the configuration infrastructure, which supports modular 
construction of user interfaces that are themselves Ptolemy II models.

actor.gui.style This package contains classes that decorate attributes to serve as hints to a user 
interface about how to present these attributes to the user.

gui This package contains generically useful user interface components.
media This package encapsulates a set of classes supporting audio and image processing.
moml This package contains classes support our XML modeling markup language 

(MoML), which is used to describe Ptolemy II models.
moml.filter This package provides backward compatibility between Ptolemy release. We hope 

to replace it with an XSL based solution in a future release.
plot This package and its packages provides two-dimensional signal plotting widgets.
vergil This package and its packages contains the Ptolemy II graphical user interface. It 

builds on Diva, a toolkit that extends Java 2D. For more information about Diva, 
see http://www.gigascale.org/diva

1.6.6  Capabilities
Ptolemy II is a third generation system. Its immediate predecessor, Ptolemy Classic, still has active

users and developers, particularly through a commercial product that is based partly on it, Agilent’s
ADS. Ptolemy II has a somewhat different emphasis, and through its use of Java, concurrency, and
integration with the network, is aggressively experimental. Some of the major capabilities in Ptolemy
II that we believe to be new technology in modeling and design environments include:

• Higher level concurrent design in JavaTM. Java support for concurrent design is very low level, 
based on threads and monitors. Maintaining safety and liveness can be quite difficult [60]. Ptolemy 
II includes a number of domains that support design of concurrent systems at a much higher level 
24 Ptolemy II



Introduction
FIGURE 1.11.  Packages in Ptolemy II that support the user interfaces, including the MoML XML schema, 
plotters and other display infrastructure, and support for windows and application configurations.
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FIGURE 1.12.  Packages in Ptolemy II provide the Vergil visual editor.
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of abstraction, at the level of their software architecture. Some of these domains use Java threads 
as an underlying mechanism, while others offer an alternative to Java threads that is much more 
efficient, scalable, and understandable.

• Better modularization through the use of packages. Ptolemy II is divided into packages that can be 
used independently and distributed on the net, or drawn on demand from a server. This breaks with 
tradition in design software, where tools are usually embedded in huge integrated systems with 
interdependent parts.

• Complete separation of the abstract syntax from the semantics. Ptolemy designs are structured as 
clustered graphs. Ptolemy II defines a clean and thorough abstract syntax for such clustered 
graphs, and separates into distinct packages the infrastructure supporting such graphs from mecha-
nisms that attach semantics (such as dataflow, analog circuits, finite-state machines, etc.) to the 
graphs.

• Improved heterogeneity via a well-defined abstract semantics. Ptolemy Classic provided a worm-
hole mechanism for hierarchically coupling heterogeneous models of computation. This mecha-
nism is improved in Ptolemy II through the use of opaque composite actors, which provide better 
support for models of computation that are very different from dataflow, the best supported model 
in Ptolemy Classic. These include hierarchical concurrent finite-state machines and continuous-
time modeling techniques.

• Thread-safe concurrent execution. Ptolemy models are typically concurrent, but in the past, sup-
port for concurrent execution of a Ptolemy model has been primitive. Ptolemy II supports concur-
rency throughout, allowing for instance for a model to mutate (modify its clustered graph 
structure) while the user interface simultaneously modifies the structure in different ways. Consis-
tency is maintained through the use of monitors and read/write semaphores [51] built upon the 
lower level synchronization primitives of Java.

• A software architecture based on object modeling. Since Ptolemy Classic was constructed, soft-
ware engineering has seen the emergence of sophisticated object modeling [89][110][113] and 
design pattern [35] concepts. We have applied these concepts to the design of Ptolemy II, and they 
have resulted in a more consistent, cleaner, and more robust design. We have also applied a simpli-
fied software engineering process that includes systematic design and code reviews [107].

• A truly polymorphic type system. Ptolemy Classic supported rudimentary polymorphism through 
the “anytype” particle. Even with such limited polymorphism, type resolution proved challenging, 
and the implementation is ad-hoc and fragile. Ptolemy II has a more modern type system based on 
a partial order of types and monotonic type refinement functions associated with functional blocks. 
Type resolution consists of finding a fixed point, using algorithms inspired by the type system in 
ML [92]. The type system is described in [124] and [125].

• Domain-polymorphic actors. In Ptolemy Classic, actor libraries were separated by domain. 
Through the notion of subdomains, actors could operate in more than one domain. In Ptolemy II, 
this idea is taken much further. Actors with intrinsically polymorphic functionality can be written 
to operate in a much larger set of domains. The mechanism they use to communicate with other 
actors depends on the domain in which they are used. This is managed through a concept that we 
call a process level type system.

• Extensible XML-based file formats. XML is an emerging standard for representation of informa-
tion that focuses on the logical relationships between pieces of information. Human-readable rep-
resentations are generated with the help of style sheets. Ptolemy II will use XML as its primary 
format for persistent design data.
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• Distributed models. Ptolemy II has (still preliminary) infrastructure supporting distributed model-
ing using CORBA, Java RMI, or lower-level networking primitives. Ptolemy II has (still prelimi-
nary) support for migrating software components.

• Component specialization. Ptolemy II has an evolving code generation mechanism that is very dif-
ferent from that in Ptolemy Classic. In Ptolemy Classic, each component has to have a definition in 
the target language, and the code generator merely stitches together these components. In Ptolemy 
II, components are defined in Java, and the Java definition is parsed. An API for performing opti-
mization transformations on the abstract syntax tree is defined, and then compiler back ends can be 
used to generate target code. A preliminary implementation of this approach is described in [98], 
[119] and [120].

• Fully integrated expression language. The Ptolemy II expression language is a higher-order, richly 
expressive language that is fully integrated with actor-oriented modeling. The type system infer-
ence mechanism propagates through expressions, parameters, and actor ports seamlessly.

1.6.7  Future Capabilities
Capabilities that we anticipate making available in the future include:

• Integrated verification tools. Modern verification tools based on model checking [46] could be 
integrated with Ptolemy II at least to the extent that finite state machine models can be checked. 
We believe that the separation of control logic from concurrency will greatly facilitate verification, 
since only much smaller cross-sections of the system behavior will be offered to the verification 
tools.

• Reflection of dynamics. Java supports reflection of static structure, but not of dynamic properties 
of process-based objects. For example, the data layout required to communicate with an object is 
available through the reflection package, but the communication protocol is not. We plan to extend 
the notion of reflection to reflect such dynamic properties of objects.

• Meta modeling. The domains in Ptolemy II are constructed based on an intuitive understanding of 
a useful class of modeling techniques, and then the support infrastructure for specifying and exe-
cuting models in the domain are built by hand by writing Java code. Others have built tools that 
have the potential of improving on this situation by meta modeling. In Dome (from Honeywell) 
and GME (from Vanderbilt), for example, a modeling strategy itself is modeled, and user inter-
faces supporting that modeling strategy are synthesized from that model. We can view the current 
component-based architecture of Vergil as a starting point in this direction. In the future, we expect 
to see much more use of Ptolemy II itself to define and construct Ptolemy II domains and their user 
interfaces.
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Appendix A: UML — Unified Modeling Language
UML (the unified modeling language) [33][106] defines a suite of visual syntaxes for describing

various aspects of software architecture. We make heavy use of two of these visual syntaxes, package
diagrams and static structure diagrams. These syntaxes are summarized here. As with most descriptive
syntaxes, any use of the syntax involves certain stylistic choices. These stylistic choices are not part of
UML, but nonetheless can be important to understanding the diagrams. We explain the style that we
use here.

A.1  Package Diagrams
Figures 1.7 and 1.9 show UML package diagrams, which have a simple syntax. A package is

given as a box with a tab, with the tab containing the name of the package. Subpackages are enclosed
in the box of the parent package, and package dependencies are indicated with arrows. A package
dependency occurs when a Java file in a package includes a class in another package (using import in
Java).

A.2  Static Structure Diagrams
Figure 1.8 is a different kind of UML diagram, called a static structure diagram or class diagram.

It represents the relationships between classes, including inheritance relationships, containment rela-
tionships, and cross references. These relationships are called an object model, and represent many
essential features about the design.

A.2.1 Classes
A simplified static structure diagram for some Ptolemy II classes is shown in figure 1.13. In this

diagram, each class is shown in a box. The class name is at the top of each box, its attributes are below
that, and its methods below that. Thus, each box is divided into three segments separated by horizontal
lines. The attributes are members of the Java classes, which may be public, package friendly, pro-
tected, or private. Private members are prefixed by a minus sign “-”, as for example the _container
attribute of Port. Although private members are not visible directly to users of the class, they may
nonetheless be a useful part of the object model because they indicate the state information contained
by an instance of the class. Public members have a leading “+” and protected methods a leading “#” in
a UML diagram. There are no public or protected members shown in figure 1.13. The type of a mem-
ber is indicated after a colon, so for example, the _container method of Port is of type Entity.

Methods, which are shown below attributes, also have a leading “+” for public, “#” for protected,
and “-” for private. Our object models do not show private methods, since they are not inherited and
are not visible in the interface to the object. Figure 1.13 shows a number of public methods and one
protected method, _link() in Port. The return value of a method is given after a colon, so for example,
getContainer() of Port returns an Entity. 

Although not usually included in UML diagrams, our diagrams show class constructors. They are
listed first among the methods and have names that are the same as the name of the class. No return
type is shown. For completeness, our object models typically show all public and protected methods of
these classes, although a proper object model might only show those relevant to the issues being dis-
cussed. Figure 1.13 does not show all methods, so that we can simplify the discussion of UML. Our
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diagrams do not include deprecated methods or methods that are present in parent classes.
Arguments to a method or constructor are shown in parentheses, with the types after a colon, so for

example, ComponentEntity shows a single constructor that takes two arguments, one of type Compos-
iteEntity and the other of type String.

A.2.2 Inheritance
Subclasses are indicated by lines with white triangles (or outlined arrow heads). The class on the

side of the arrow head is the superclass or base class. The class on the other end is the subclass or
derived class. The derived class is said to specialize the base class, or conversely, the base class to gen-
eralize the derived class. The derived class inherits all the methods shown in the base class and may
override or some of them. In our object models, we do not explicitly show methods that override those
defined in a base class or are inherited from a base class. For example, in figure 1.13, ComponentEn-
tity has all the methods of Entity and NamedObj, and may override some of those methods, but only

ComponentEntity

+ComponentEntity(container : CompositeEntity, name : String)
+getContainer() : CompositeEntity
+isAtomic() : boolean

-_container : CompositeEntity

CompositeEntity

+CompositeEntity(container : CompositeEntity, name : String)
+entityList() : List

AtomicActor

+AtomicActor(container : CompositeActor, name : String)

«Interface»
Executable

+fire()

CompositeActor

+CompositeActor(container : CompositeActor, name : String)

0..n
0..1

0..1

0..n container

«Interface»
Actor

+inputPortList() : List
+outputPortList() : List

Entity

+Entity()
+getPortList() : List

Port

+Port()
+getContainer() : Entity
#_link(r : Relation)

-_container : Entity

0..n

0..1

container

NamedObj

0..n

0..1

FIGURE 1.13.  Simplified static structure diagram for some Ptolemy II classes. This diagram illustrates fea-
tures of UML syntax that we use.
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shows the one method it adds. Thus, the complete set of methods of a class is cumulative. Every class
has its own methods plus those of all its superclasses.

An exception to this is constructors. In Java, constructors are not inherited. Thus, in our class dia-
grams, the only constructors available for a class are those shown in the box defining the class. Figure
1.13 does not show all the constructors of these classes, for simplicity.

Classes shown in boxes outlined with dashed lines, such as NamedObj in figure 1.13, are fully
described elsewhere. This is not standard UML notation, but it gives us a convenient way to partition
diagrams. Often, these classes belong to another package. 

A.2.3 Interfaces
Figure 1.13 also shows two examples of interfaces, Executable and Actor. An interface is indi-

cated by the label “<<Interface>>” and by italics in the name. An interface defines a set of methods
without providing an implementation for them. It cannot be instantiated, and therefore has no construc-
tors. When a class implements an interface, the object model shows the relationship with a dotted-line
with an arrow. Any concrete class (one that can be instantiated) that implements an interface must pro-
vide implementations of all its methods. In our object models, we do not show those methods explic-
itly in the concrete class, just like inherited methods, but their presence is implicit in the relationship to
the interface.

One interface can extend another. For example, in figure 1.13, Actor extends Executable. This
means that any concrete class that implements Actor must implement the methods of Actor and Exe-
cutable.

We will occasionally show abstract classes, which are like interfaces in that they cannot be instan-
tiated, but unlike interfaces in that they may provide default implementations for some methods and
may even have private members. Abstract classes are indicated by italics in the class name. There are
no abstract classes in figure 1.13.

A.2.4 Associations
Inheritance and implementation are types of associations between entities in the object model.

Associations of other types are indicated by other lines, often annotated with ranges like “0..n” or with
diamonds on one end or the other.

Aggregations are shown as associations with diamonds. For example, an Entity is an aggregation
of any number (0..n) instances of Port. More strongly, we say that a Port is contained by 0 or 1
instances of Entity. By containment, we mean that a port can only be contained by a single Entity. In a
weaker form of aggregation, more than one aggregate may refer to the same component. The stronger
form of aggregation (containment) is indicated by the filled diamond, while the weaker form is indi-
cated by the unfilled diamond. There are no unfilled diamonds in figure 1.13. In fact, they are fairly
rare in Ptolemy II, since many of its architectural features depend on containment relationships, where
an object can have at most one container.

The relationship between ComponentEntity and CompositeEntity is particularly interesting. An
instance of CompositeEntity can contain any number of instances of ComponentEntity, but Composi-
teEntity is derived from ComponentEntity. Thus, a CompositeEntity can contain any number of
instances of either ComponentEntity or CompositeEntity. This is the classic Composite design pattern
[35], which supports arbitrarily deeply nested containment hierarchies.

In figure 1.13, a CompositeActor is an aggregation of AtomicActors and CompositeActors. These
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two aggregation relations are derived from the aggregation relationship between ComponentEntity and
CompositeEntity. This derived association is indicated with a dashed line with an open arrowhead.
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Appendix B: Ptolemy II Naming Conventions
We have made an effort to be consistent about naming of classes, methods and members. This

appendix describes our policy.

B.1  Classes
Class names are capitalized with internal word boundaries also capitalized (as in “CompositeEn-

tity”). Most names are made up of complete words (“CompositeEntity” rather than “CompEnt”)1.
Interface names suggest their potential (as in “Executable,” which means “can be executed”).

Despite having packages to divide up the namespace, we attempt nonetheless to keep class names
unique. This helps avoid confusion and bugs that may arise from having Java import statements in the
wrong order. In many cases, a domain includes a specialized version of some more generic class. In
this case, we create a unique name by prefixing the generic name with the domain name. For example,
while Director is a base class in the actor package, DEDirector is a derived class in the DE domain.

For the most part, we try to avoid prefixing actor names with the domain name. e.g., we define
Delay rather than DEDelay. Occasionally however, the domain prefix is useful to distinguish two ver-
sions of some similar functionality, both of which might be useful in a domain. For example, the DE
domain can use actors derived from Transformer or from DETransformer, where the latter is special-
ized to DE.

B.2  Members
Member names are not capitalized, although internal word boundaries usually are (e.g. “declared-

Type”). If the member is private or protected, then its name begins with a leading underscore (e.g.
“_declaredType”).

B.3  Methods
Method names are similar to member names, in that they are not capitalized, except on internal

word boundaries. Private and protected methods have a leading underscore. In text referring to meth-
ods, the method name is followed by open and close parentheses, as in “getName().” Usually, no argu-
ments are given, even if the method takes arguments.

Method names that are plural, such as insideRelations(), usually return an enumeration (or some-
times an array, or an iterator). Methods that return Lists are usually of the form portList().

1. There are some (perhaps regrettable) exceptions to this, such as NamedObj.
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2.1  Introduction
There are many ways to use Ptolemy II. It can be used as a framework for assembling software

components, as a modeling and simulation tool, as a block-diagram editor, as a system-level rapid pro-
totyping application, as a toolkit supporting research in component-based design, or as a toolkit for
building Java applications. This chapter introduces its use as a modeling and simulation tool.

In this chapter, we describe how to graphically construct models using Vergil, a graphical user
interface (GUI) for Ptolemy II. Figure 2.1 shows a simple Ptolemy II model in Vergil, showing the
graph editor, one of several editors available in Vergil. Keep in mind as you read this document that
graphical entry of models is only one of several possible entry mechanisms available in Ptolemy II.
Moreover, only some of the execution engines (called domains) are described here. A major emphasis
of Ptolemy II is to provide a framework for the construction of modeling and design tools, so the spe-
cific modeling and design tools described here should be viewed as representative of our efforts.

2.2  Quick Start
This section shows how to start Vergil, how to execute and explore pre-built models, and how to

construct your own models.

2.2.1  Starting Vergil
First start Vergil. From the command line, enter “vergil”, or select Vergil or Ptolemy II in the Start

menu, or click on a Web Start link on a web page supporting the web edition. You should see an initial
welcome window that looks like the one in figure 2.2. Feel free to explore the links in this window.
The “Quick tour” link takes you to the page shown in figure 2.3.
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2.2.2  Executing a Pre-Built Model: A Signal Processing Example
The very first example on the quick tour page is the model shown in figure 2.1, which creates a

sinusoidal signal, multiplies it by a sinusoidal carrier, and adds noise. You can execute this model in
either of two ways. First, you can select Run Window in the View menu, and then click on Go. The
result is shown in figure 2.4. The upper plot shows the spectrum of the time-domain signal shown in
the lower plot. Note the four peaks, which indicate the modulated sinusoid. In the run window you can

FIGURE 2.1.  Example of a Vergil window.

FIGURE 2.2.  Initial welcome window.
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adjust the frequencies of the signal and the carrier as well as the amount of noise. These can also be
adjusted in the block diagram in figure 2.1 by double clicking on the bulleted parameters near the
upper right of the window.

The second alternative for running the model is to click on the run button in the toolbar, which is
indicated by a red triangle pointing to the right. If you use this alternative, then the two signal plots are
displayed in their own windows.

You can study the way the model is constructed in figure 2.1. Note the Expression actor in the mid-
dle, whose icon indicates the expression being calculated: “signal*carrier + noise”. The identi-
fiers in this expression, signal, carrier, and noise refer to the input ports by name. The names of
these ports are shown in the diagram. The Expression actor is a very flexible actor in the Ptolemy II
actor library. It can have any number of input ports, with arbitrary names, and uses a rich and expres-
sive expression language to specify the value of the output as a function of the inputs (and parameters
of the containing model, if desired).

Three of the actors in figure 2.1 are composite actors, which means that their implementation is
itself given as a block diagram. Composite actors are indicated visually by the red outline. You can
look inside to reveal the implementation, as shown in figure 2.5, which shows the implementation of

FIGURE 2.3.  The quick-tour page.
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the Signal Source in figure 2.1. It is evident from the block diagram how a sinusoidal signal is gener-
ated.

2.2.3  Executing a Pre-Built Model: A Continuous-Time Example
A key principle of the Ptolemy II system is that the model of computation that defines the meaning

of a block diagram is not built-in, but is rather specified by the director component that is included in
the model. The box labeled “SDF Director” in figures 2.1 and 2.5 specifies that these block diagrams
have synchronous dataflow semantics, which is explained further below. The second example in the
quick tour of figure 2.3, by contrast, has continuous-time semantics (the one labeled “Continuous-
Time Modeling”). The example is the well-known Lorenz attractor, a non-linear feedback system that
exhibits chaotic behavior.

The Lorenz attractor model, shown in figure 2.1, is a block diagram representation of a set of non-
linear ordinary differential equations. The blocks with integration signs in their icons are integrators.
At any given time t, their output is given by

, (1)

FIGURE 2.4.  The run window for the model shown in figure 2.1.
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where  is the initial state of the integrator,  is the start time of the model, and  is the input sig-
nal. Note that since the output is the integral of the input, then at any given time, the input is the deriv-
ative of the output,

. (2)

Thus, the system describes either an integral equation or a differential equation, depending on which of
these two forms you use.

Let the output of the top integrator in figure 2.1 be , the output of the middle integrator be ,
and the output of the bottom integrator be . Then the equations described by figure 2.1 are

FIGURE 2.5.  Look inside composite actors to reveal their implementation.
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. (3)

For each equation, the expression on the right is implemented by an Expression actor, whose icon
shows the expression. Each expression refers to parameters (such as lambda for  and sigma for )
and input ports of the actor (such as x1 for  and x2 for ). The names of the input ports are not
shown in the diagram, but if you linger over them with the mouse cursor, the name will pop up in a
tooltip. The expression in each Expression actor can be edited by double clicking on the actor, and the
parameter values can be edited by double clicking on the parameters, which are shown next to bullets
on the right.

The integrators each also have initial values, which you can examine and change by double click-
ing on the corresponding integrator icon. These define the initial values of , , and , respec-
tively. For this example, all three are set to 1.0.

The Continuous-Time (CT) Solver, shown at the upper right, manages a simulation of the model. It
contains a sophisticated ODE solver, and to use it effectively, you will need to understand some of its
parameters. The parameters are accessed by double clicking on solver box, which results in the dialog
shown in figure 2.7. The simplest of these parameters are the startTime and the stopTime, which are
self-explanatory. They define the region of the time line over which a simulation will execute.

To execute the model, you can click on the run button in the toolbar (with a red triangle icon), or
you can open the Run Window in the View menu. In the former case, the model executes, and the

FIGURE 2.6.  A block diagram representation of a set of nonlinear ordinary differential equations.

x·1 t( ) σ x2 t( ) x1 t( )–( )=

x·2 t( ) λ x3 t( )–( )x1 t( ) x2 t( )–=

x·3 t( ) x1 t( )x2 t( ) bx3 t( )–=

λ σ
x1 x2

x1 x2 x3
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results are plotted in their own window, as shown in figure 2.8. What is plotted is  vs.  for
values of t in between startTime and stopTime.

Like the Lorenz model, a typical continuous-time model contains integrators in feedback loops, or
more elaborate blocks that realize linear and non-linear dynamical systems given abstract mathemati-
cal representations of them (such as Laplace transforms). In the next section, we will explore how to
build a model from scratch.

FIGURE 2.7.  Dialog box showing solver parameters for the model in figure 2.1.

FIGURE 2.8.  Result of running the Lorenz model using the run button in the toolbar.

x1 t( ) x2 t( )
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2.2.4  Creating a New Model
Create a new model by selecting File->New->Graph Editor in the welcome window. You should

see something like the window shown in figure 2.9. Ignoring the menus and toolbar for a moment, on
the left is a palette of objects that can be dragged onto the page on the right. To begin with, the page on
the right is blank. Open the actor library in the palette, and go into the sources library. Find the Const
actor under generic sources and drag an instance over onto the blank page. Then go into the sinks
library (generic sinks sublibrary) and drag a Display actor onto the page. Each of these actors can be
dragged around on the page. However, we would like to connect one to the other. To do this, drag a
connection from the output port on the right of the Const actor to the input port of the Display actor.
Lastly, open the director library and drag an SDF Director onto the page. The director gives a meaning
(semantics) to the graph, but for now we don’t have to be concerned about exactly what that is.

Now you should have something that looks like figure 2.10. The Const actor is going to create our
string, and the Display actor is going to print it out for us. We need to take care of one small detail to
make it look like figure 2.10: we need to tell the Const actor that we want the string “Hello World”. To
do this we need to edit one of the parameters of the Const. To do this, either double click on the Const
actor icon, or right click on the Const actor icon and select “Configure”. You should see the dialog box
in figure 2.11. Enter the string "Hello World" for the value parameter and click the Commit button. Be
sure to include the double quotes, so that the expression is interpreted as a string.

You may wish to save your model, using the File menu. File names for Ptolemy II models should
end in “.xml” or “.moml” so that Vergil will properly process the file the next time you open that file.

FIGURE 2.9.  An empty Vergil Graph Editor.

library of components

navigation area

model-building area
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2.2.5  Running the Model
To run the example, go to the View menu and select the Run Window. If you click the “Go” button,

you will see a large number of strings in the display at the right. To stop the execution, click the “Stop”
button. To see only one string, change the iterations parameter of the SDF Director to 1, which can be
done in the run window, or in the graph editor in the same way you edited the parameter of the Const
actor before. The run window is shown in figure 2.12.

2.2.6  Making Connections
The model constructed above contained only two actors and one connection between them. If you

FIGURE 2.10.  The Hello World example.

FIGURE 2.11.  The Const parameter editor.
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move either actor (by clicking and dragging), you will see that the connection is routed automatically.
We can now explore how to create and manipulate more complicated connections.

First create a model in a new graph editor that includes an SDFDirector, a Ramp actor (found in
the sources) library, a Display actor, and a SequencePlotter actor, found in the sinks library, as shown
in figure 2.13. Suppose we wish to route the output of the Ramp to both the Display and the Sequence-
Plotter. If we simply attempt to make the connections, we get the exception shown in figure 2.13.
Don’t panic! Exceptions are normal and common. The key line in this exception report is the last one,
which says

Attempt to link more than one relation to a single port.

FIGURE 2.12.  Execution of the Hello World example.

FIGURE 2.13.  Exception that occurs if you attempt to simply wire the output of the Ramp in figure 2.14 to 
the inputs of the other two actors.

FIGURE 2.14.  Three unconnected actors in a model.
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The line above that gives the names of the objects involved, which are 

Object names: .<Unnamed Object>.Ramp.output and .<Unnamed 
Object>.relation2

In Ptolemy II models, all objects have a dotted name. The dots separate elements in the hierarchy.
Thus, “.<Unnamed Object>.Ramp.output” is an object named “output” contained by an object named
“Ramp”, which is contained by an unnamed object (the model itself). The model has no name because
we have not assigned one (it acquires a name when we save it).

Why did this exception occur? Ptolemy II supports two distinct flavors of ports, indicated in the
diagrams by a filled triangle or an unfilled triangle. The output port of the Ramp actor is a single port,
indicated by a filled triangle, which means that it can only support a single connection. The input port
of the Display and SequencePlotter actors are multiports, indicated by unfilled triangles, which means
that they can support multiple connections. Each connection is treated as a separate channel, which is a
path from an output port to an input port (via relations) that can transport a single stream of tokens. 

So how do we get the output of the Ramp to the other two actors? We need an explicit relation in
the diagram. A relation is represented in the diagram by a black diamond, as shown in figure 2.15. It
can be created by either control-clicking on the background or by clicking on the button in the toolbar
with the black diamond on it.

Making a connection to a relation can be tricky, since if you just click and drag on the relation, the 
relation gets selected and moved. To make a connection, hold the control button while clicking and 
dragging on the relation.
In the model shown in figure 2.15, the relation is used to broadcast the output from a single port to

a number of places. The single port still has only one connection to it, a connection to a relation. Rela-
tions can also be used to control the routing of wires in the diagram. However, as of the 3.0 release of
Ptolemy II, a connection can only have a single relation on it, so the degree to which routing can be
controlled is limited.

To explore multiports, try putting some other signal source in the diagram and connecting it to the
SequencePlotter or to the Display. If you explore this fully, you will discover that the SequencePlotter
can only accept inputs of type double, or some type that can be losslessly converted to double, such as
int. These data type issues are explored next.

FIGURE 2.15.  A relation can be used to broadcast an output from a single port.

Click here to create
a relation, or control-
click on the background.
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2.3  Tokens and Data Types
In the example of figure 2.10, the Const actor creates a sequence of values on its output port. The

values are encapsulated as tokens, and sent to the Display actor, which consumes them and displays
them in the run window.

The tokens produced by the Const actor can have any value that can be expressed in the Ptolemy II
expression language. We will say more about the expression language in chapter 3, ”Expressions”, but
for now, try giving the value 1 (the integer with value one), or 1.0 (the floating-point number with
value one), or {1.0} (An array containing a one), or {value=1, name="one"} (A record with two ele-
ments: an integer named “value” and a string named “name”), or even [1,0;0,1] (the two-by-two iden-
tity matrix). These are all expressions.

The Const actor is able to produce data with different types, and the Display actor is able to display
data with different types. Most actors in the actor library are polymorphic, meaning that they can oper-
ate on or produce data with multiple types. The behavior may even be different for different types.
Multiplying matrices, for example, is not the same as multiplying integers, but both are accomplished
by the MultiplyDivide actor in the math library. Ptolemy II includes a sophisticated type system that
allows this to be done efficiently and safely.

To explore data types a bit further, try creating the model in figure 2.16. The Ramp actor is listed
under sources, sequence sources, and the AddSubtract actor is listed under math. Set the value param-
eter of the constant to be 0 and the iterations parameter of the director to 5. Running the model should
result in 5 numbers between 0 and 4, as shown in the figure. These are the values produced by the
Ramp, which are having the value of the Const actor subtracted from them. Experiment with changing
the value of the Const actor and see how it changes the 5 numbers at the output.

Now for the real test: change the value of the Const actor back to "Hello World". When you exe-
cute the model, you should see an exception window, as shown in figure 2.17. Do not worry; excep-
tions are a normal part of constructing (and debugging) models. In this case, the exception window is
telling you that you have tried to subtract a string value from an integer value, which doesn’t make
much sense at all (following Java, adding strings is allowed). This is an example of a type error.

Exceptions can be a very useful debugging tool, particularly if you are developing your own com-
ponents in Java. To illustrate how to use them, click on the Display Stack Trace button in the exception
window of figure 2.17. You should see the stack trace shown in figure 2.18. This window displays the
execution sequence that resulted in the exception. For example, the line

FIGURE 2.16.  Another example, used to explore data types in Ptolemy II.
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at ptolemy.data.IntToken.subtract(IntToken.java:547)

indicates that the exception occurred within the subtract() method of the class ptolemy.data.IntToken,
at line 547 of the source file IntToken.java. Since Ptolemy II is distributed with source code (except in
the Windows installer version and the Web Start Web Edition), this can be very useful information. For
type errors, you probably do not need to see the stack trace, but if you have extended the system with
your own Java code, or you encounter a subtle error that you do not understand, then looking at the
stack trace can be very illuminating.

To find the file IntToken.java referred to above, find the Ptolemy II installation directory. If that
directory is $PTII, then the location of this file is given by the full class name, but with the periods

FIGURE 2.17.  An example that triggers an exception when you attempt to execute it. Strings cannot be sub-
tracted from integers.

FIGURE 2.18.  Stack trace for the exception shown in figure 2.17.
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replaced by slashes; in this case, it is at $PTII/ptolemy/data/IntToken.java (the slashes might be back-
slashes under Windows).

Let’s try a small change to the model to get something that does not trigger an exception. Discon-
nect the Const from the lower port of the AddSubtract actor and connect it instead to the upper port, as
shown in figure 2.19. You can do this by selecting the connection and deleting it (using the delete key),
then adding a new connection, or by selecting it and dragging one of its endpoints to the new location.
Notice that the upper port is an unfilled triangle; this indicates that it is a multiport, meaning that you
can make more than one connection to it. Now when you run the model you should see strings like
“0HelloWorld”, as shown in the figure.

There are two interesting things going on here. The first is that, as in Java, strings are added by
concatenating them. The second is that the integers from the Ramp are converted to strings and concat-
enated with the string “Hello World”. All the connections to a multiport must have the same type. In
this case, the multiport has a sequence of integers coming in (from the Ramp) and a sequence of strings
(from the Const).

Ptolemy II automatically converts the integers to strings when integers are provided to an actor
that requires strings. But in this case, why does the AddSubtract actor require strings? Because it
would not work to require integers; the string “Hello World” would have to be converted to an integer.
As a rough guideline, Ptolemy II will perform automatic type conversions when there is no loss of
information. An integer can be converted to a string, but not vice versa. An integer can be converted to
a double, but not vice versa. An integer can be converted to a long, but not vice versa. The details are
explained in the Data chapter, but many users will not need to understand the full sophistication of the
system. You should find that most of the time it will just do what you expect.

To further explore data types, try modifying the Ramp so that its parameters have different types.
For example, try making init and step strings.

2.4  Hierarchy
Ptolemy II supports (and encourages) hierarchical models. These are models that contain compo-

nents that are themselves models. Such components are called composite actors. Consider a small sig-
nal processing problem, where we are interested in recovering a signal based only on noisy
measurements of it. We will create a composite actor modeling a communication channel that adds
noise, and then use that actor in a model.

FIGURE 2.19.  Addition of a string to an integer.
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2.4.1  Creating a Composite Actor
First open a new graph editor and drag in a Typed Composite Actor from the utilities library. This

actor is going to add noise to our measurements. First, using the context menu (obtained by right click-
ing over the composite actor), select “Customize Name”, and give the composite a better name, like
“Channel”, as shown in figure 2.20. Then, using the context menu again, select “Look Inside” on the
actor. You should get a blank graph editor, as shown in figure 2.21. The original graph editor is still
open. To see it, move the new graph editor window by dragging the title bar of the window.

2.4.2  Adding Ports to a Composite Actor
First we have to add some ports to the composite actor. There are several ways to do this, but click-

ing on the port buttons in the toolbar is probably the easiest. You can explore the ports in the toolbar by
lingering with the mouse over each button in the toolbar. A tool tip pops up that explains the button.

FIGURE 2.20.  Changing the name of an actor.

FIGURE 2.21.  Looking inside a composite actor.
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The buttons are summarized in figure 2.22. Create an input port and an output port and rename them
input and output right by clicking on the ports and selecting “Customize Name”. Note that, as shown in
figure 2.23, you can also right click on the background of the composite actor and select Configure
Ports to change whether a port is an input, an output, or a multiport. The resulting dialog also allows
you to set the type of the port, although much of the time you will not need to do this, since the type
inference mechanism in Ptolemy II will figure it out from the connections.

Then using these ports, create the diagram shown in figure 2.241. The Gaussian actor creates val-
ues from a Gaussian distributed random variable, and is found in the random library. Now if you close

1. Hint: to create a connection starting on one of the external ports, hold down the control key 
when dragging.

FIGURE 2.22.  Summary of toolbar buttons for creating new ports.

New input port
New output port
New input/output port
New input multiport
New output multiport
New input/output multiport

FIGURE 2.23.  Right clicking on the background brings up a dialog that can be used to configure ports.

FIGURE 2.24.  A simple channel model defined as a composite actor.
50 Ptolemy II



Using Vergil
this editor and return to the previous one, you should be able to easily create the model shown in figure
2.25. The Sinewave actor is listed under sources, and the SequencePlotter actor is found in sinks.
Notice that the Sinewave actor is also a hierarchical model, as suggested by its red outline (try looking
inside). If you execute this model (you will probably want to set the iterations to something reasonable,
like 100), you should see something like figure 2.26.

2.4.3  Setting the Types of Ports
In the above example, we never needed to define the types of any ports. The types were inferred

from the connections. Indeed, this is usually the case in Ptolemy II, but occasionally, you will need to
set the types of the ports. Notice in figure 2.23 that there is a position in the dialog box that configures
ports for specifying the type. Thus, to specify that a port has type boolean, you could enter boolean
into the dialog box. There are other commonly used types: complex, double, fixedpoint, general, int,
long, matrix, object, scalar, string, and unknown. Let’s take a more complicated case. How would you
specify that the type of a port is a double matrix? Easy:

[double]

This expression actually creates a 1 by 1 matrix containing a double (the value of which is irrelevant).
It thus serves as a prototype to specify a double matrix type. Similarly, we can specify an array of com-

FIGURE 2.25.  A simple signal processing example that adds noise to a sinusoidal signal.

FIGURE 2.26.  The output of the simple signal processing model in figure 2.25.
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plex numbers as

{complex}

In the Ptolemy II expression language, square braces are used for matrices, and curly braces are used
for arrays. What about a record containing a string named “name” and an integer named “address”?
Easy:

{name=string, address=int}

2.5  Annotations and Parameterization
In this section, we will enhance the model in figure 2.25 in a number of ways.
First, notice from figure 2.26 that the noise overwhelms the sinusoid, making it barely visible. A

useful channel model would have a parameter that sets the level of the noise. Look inside the channel
model, and add a parameter by dragging one in from the utilities library, as shown in figure 2.27. Right
click on the parameter to change its name to “noisePower”. (In order to be able to use this parameter in
expressions, the name cannot have any spaces in it.) Also, right click or double click on the parameter
to change its default value to 0.1.

Now we can use this parameter. First, let’s use it to set the amount of noise. The Gaussian actor
has a parameter called standardDeviation. In this case, the power of the noise is equal to the variance
of the Gaussian, not the standard deviation. If you recall from basic statistics, the standard deviation is
equal to the square root of the variance. Change the standardDeviation parameter of the Gaussian
actor so its value is “sqrt(noisePower)”, as shown in figure 2.28. This is an expression that references
the noisePower parameter. We will explain the expression language in the next chapter. But first, let
check our improved model. Return to the top-level model, and edit the parameters of the Channel actor
(by either double clicking or right clicking and selecting “Configure”). Change the noise power from
the default 0.1 to 0.01. Run the model. You should now get a relatively clean sinusoid like that shown
in figure 2.29.

Note that you can also add parameters to a composite actor without dragging from the utilities
library by clicking on the “Add” button in the edit parameters dialog for the Channel composite. This
dialog can be obtained by either double clicking on the Channel icon, or by right clicking and selecting
“Configure”, or by right clicking on the background inside the composite and selecting “Edit Parame-
ters”.

FIGURE 2.28.  The standard deviation of the Gaussian actor is set to the square root of the noise power.
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There are several other useful enhancements you could make to this model. Try dragging an anno-
tation from the utilities library and creating a title on the diagram. Also, try setting the title of the plot
by clicking on the second button from the right in the row of buttons at the top right of the plot. This
button produces the tool tip “Set the plot format” and bring up the format control window.

2.6  Navigating Larger Models
Sometimes, a model gets large enough that it is not convenient to view it all at once. There are four

toolbar buttons, shown in figure 2.27 that help. These buttons permit zooming in and out. The “Zoom
reset” button restores the zoom factor to the “normal” one, and the “Zoom fit” calculates the zoom fac-
tor so that the entire model is visible in the editor window.

In addition, it is possible to pan over a model. Consider the window shown in figure 2.31. Here, we
have zoomed in so that icons are larger than the default. The pan window at the lower left shows the

FIGURE 2.27.  Adding a parameter to the channel model.
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entire model, with a red box showing the visible portion of the model. By clicking and dragging in the
pan window, it is easy to navigate around the entire model. Clicking on the “Zoom fit” button in the
toolbar results in the editor area showing the entire model, just as the pan window does.

2.7  Domains
A key innovation in Ptolemy II is that, unlike other design and modeling environments, there are

several available models of computation that define the meaning of a diagram. In the above examples,
we directed you to drag in an SDF Director without justifying why. A director in Ptolemy II gives
meaning (semantics) to a diagram. It specifies what a connection means, and how the diagram should
be executed. In Ptolemy II terminology, the director realizes a domain. Thus, when you construct a
model with an SDF director, you have constructed a model “in the SDF domain.”

The SDF director is fairly easy to understand. “SDF” stands for “synchronous dataflow.” In data-
flow models, actors are invoked (fired) when their input data is available. SDF is particularly simple
case of dataflow where the order of invocation of the actors can be determined statically from the
model. It does not depend on the data that is processed (the tokens that are passed between actors).

FIGURE 2.29.  The output of the simple signal processing model in figure 2.25.with noise power = 0o.01

FIGURE 2.30.  Summary of toolbar buttons for zooming and fitting.

Zoom in
Zoom reset
Zoom fit
Zoom out
Full screen
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But there are other models of computation available in Ptolemy II. It can be difficult to determine
which one to use without having experience with several. Moreover, you will find that although most
actors in the library do something in any domain in which you use them, they do not always do some-
thing useful. It is important to understand the domain you are working with and the actors you are
using. Here, we give a very brief introduction to some of the domains. But we begin first by explaining
some of the subtleties in SDF.

2.7.1  SDF and Multirate Systems
So far we have been dealing with relatively simple systems. They are simple in the sense that each

actor produces and consumes one token from each port at a time. In this case, the SDF director simply
ensures that an actor fires after the actors whose output values it depends on. The total number of out-
put values that are created by each actor is determined by the number of iterations, but in this simple
case only one token would be produced per iteration.

It turns out that the SDF scheduler is actually much more sophisticated. It is capable of scheduling
the execution of actors with arbitrary prespecified data rates. Not all actors produce and consume just a
single sample each time they are fired. Some require several input token before they can be fired, and
produce several tokens when they are fired.

One such actor is a spectral estimation actor. figure 2.32 shows a system that computes the spec-
trum of the same noisy sine wave that we constructed in figure 2.25. The Spectrum actor has a single
parameter, which gives the order of the FFT used to calculate the spectrum. Figure 2.33 shows the out-
put of the model with order set to 8 and the number of iterations set to 1. Note that there are 256 out-

FIGURE 2.31.  The pan window at the lower left has a red box representing the visible are of the model in 
the main editor window. This red box can be moved around to view different parts of the model.
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put samples output from the Spectrum actor. This is because the Spectrum actor requires 2^8, or 256
input samples to fire, and produces 2^8, or 256 output samples when it fires. Thus, one iteration of the
model produces 256 samples. The Spectrum actor makes this a multirate model, because the firing
rates of the actors are not all identical.

It is common in SDF to construct models that require exactly one iteration to produce a useful
result. In some multirate models, it can be complicated to determine how many firings of each actor
occur per iteration of the model. See the SDF chapter for details.

A second subtlety with SDF models is that if there is a feedback loop, as in figure 2.34, then the
loop must have at least one instance of the SampleDelay actor in it (found in the flow control library).
Without this actor, the loop will deadlock. The SampleDelay actor produces initial tokens on its output,
before the model begins firing. The initial tokens produced are given by a the initialOutputs parameter,
which specifies an array of tokens. These initial tokens enable downstream actors and break the circu-
lar dependencies that would result otherwise from a feedback loop.

A final issue to consider with the SDF domain is time. Notice that in all the examples above we
have suggested using the SequencePlotter actor, not the TimedPlotter actor, which is in the same sinks
library. This is because the SDF domain does not include in its semantics a notion of time. Time does

FIGURE 2.32.  A multirate SDF model. The Spectrum actor requires 256 tokens to fire, so one iteration of 
this model results in 256 firings of Sinewave, Channel, and SequencePlotter, and one firing of Spectrum.

FIGURE 2.33.  A single iteration of the SDF model in figure 2.32 produces 256 output tokens.
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not advance as an SDF model executes, so the TimedPlotter actor would produce very uninteresting
results, where the horizontal axis value would always be zero. The SequencePlotter actor uses the
index in the sequence for the horizontal axis. The first token received is plotted at horizontal position
0, the second at 1, the third at 2, etc. The next domain we consider, DE, includes much stronger notion
of time, and it is almost always more appropriate in the DE domain to use the TimedPlotter actor.

2.7.2  Discrete-Event Systems
In discrete-event (DE) systems, the connections between actors carry signals that consist of events

placed on a time line. Each event has both a value and a time stamp, where its time stamp is a double-
precision floating-point number. This is different from dataflow, where a signal consists of a sequence
of tokens, and there is no time significance in the signal.

A DE model executes chronologically, processing the oldest events first. Time advances as events
are processed. There is potential confusion, however, between model time, the time that evolves in the
model, and real time, the time that elapses in the real world while the model executes (also called wall-
clock time). Model time may advance more rapidly than real time or more slowly. The DE director has
a parameter, synchronizeToRealTime, that, when set to true, attempts to synchronize the two notions of
time. It does this by delaying execution of the model, if necessary, allowing real time to catch up with
model time.

Consider the DE model shown in figure 2.35. This model includes a PoissonClock actor, a Cur-
rentTime actor, and a WallClockTime actor, all found in the sources library. The PoissonClock actor
generates a sequence of events with random times, where the time between events is exponentially dis-
tributed. Such an event sequence is known as a Poisson process. The value of the events produced by
the PoissonClock actor is a constant, but the value of that constant is ignored in this model. Instead,
these events trigger the CurrentTime and WallClockTime actors. The CurrentTime actor outputs an
event with the same time stamp as the input, but whose value is the current model time (equal to the
time stamp of the input). The WallClockTime actor an event with the same time stamp as the input, but
whose value is the current real time, in seconds since initialization of the model.

The plot in figure 2.35 shows an execution. Note that model time has advanced approximately 10
seconds, but real time has advanced almost not at all. In this model, model time advances much more
rapidly than real time. If you build this model, and set the synchronizeToRealTime parameter of the
director to true, then you will find that the two plots coincide almost perfectly.

A significant subtlety in using the DE domain is in how simultaneous events are handled. Simulta-
neous events are simply events with the same time stamp. We have stated that events are processed in
chronological order, but if two events have the same time stamp, then there is some ambiguity. Which
one should be processed first? If the two events are on the same signal, then the answer is simple: pro-

FIGURE 2.34.  An SDF model with a feedback loop must have at least one instance of the SampleDelay 
actor in it.
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cess first the one that was produced first. However, if the two events are on different signals, then the
answer is not so clear.

Consider the model shown in figure 2.36, which produces a histogram of the interarrival times of
events from the PoissonClock actor. In this model, we calculate the difference between the current

FIGURE 2.35.  Model time vs. real time (wall clock time).

FIGURE 2.36.  Histogram of interarrival times, illustrating handling of simultaneous events.
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event time and the previous event time, resulting in the plot that is shown in the figure. The Previous
actor is a zero-delay actor, meaning that it produces an output with the same time stamp as the input
(except on the first firing, where in this case it produces no output). Thus, when the PoissonClock actor
produces an output, there will be two simultaneous events, one at the input to the plus port of the
AddSubtract actor, and one at the input of the Previous actor. Should the director fire the AddSubtract
actor or the Previous actor? Either seems OK if it is to respect chronological order, but it seems intui-
tive that the Previous actor should be fired first.

It is helpful to know how the AddSubtract actor works. When it fires, it adds all available tokens
on the plus port, and subtracts all available tokens on the minus port. If the AddSubtract actor fires
before the Previous actor, then the only available token will be the one on the plus port, and the
expected subtraction will not occur. Intuitively, we would expect the director to invoke the Previous
actor before the AddSubtract actor so that the subtraction occurs.

How does the director deliver on the intuition that the Previous actor should be fired first? Before
executing the model, the DE director constructs a topological sort of the model. A topological sort is
simply a list of the actors in data-precedence order. For the model in figure 2.36, there is only one
allowable topological sort:
• PoissonClock, CurrentTime, Previous, AddSubtract, HistogramPlotter
In this list, AddSubtract is after Previous. So the when they have simultaneous events, the DE director
fires Previous first.

Thus, the DE director, by analyzing the structure of the model, usually delivers the intuitive behav-
ior, where actors that produce data are fired before actors that consume their results, even in the pres-
ence of simultaneous events.

There remains one key subtlety. If the model has a directed loop, then a topological sort is not pos-
sible. In the DE domain, every feedback loop is required to have at least one actor in it that introduces
a time delay, such as the TimedDelay actor, which can be found in the domain specific library under
discrete-event (this library is shown on the left in figure 2.37). Consider for example the model shown
in figure 2.37. That model has a Clock actor, which is set to produce events every 1.0 time units. Those
events trigger the Ramp actor, which produces outputs that start at 0 and increase by 1 on each firing.
In this model, the output of the Ramp goes into an AddSubtract actor, which subtracts from the Ramp
output its own prior output delayed by one time unit. The result is shown in the plot in the figure.

Occasionally, you will need to put a TimedDelay actor in a feedback loop with a delay of 0.0. This
is particularly true if you are building complex models that mix domains, and there is a delay inside a
composite actor that the DE director cannot recognize as a delay. The TimedDelay actor with a delay of
0.0 can be thought of as a way to let the director know that there is a time delay in the preceding actor,
without specifying the amount of the time delay.

2.7.3  Continuous-Time Systems
The continuous-time domain (CT) is another relatively mature domain with semantics consider-

ably different from either DE or SDF. In CT, the signals sent along connections between actors are usu-
ally continuous-time signals. A CT example is described above in section 2.2.3.

The CT domain can also handle discrete events. These events are usually related to a continuous-
time signal, for example representing a zero-crossing of the continuous-time signal. The CT director is
quite sophisticated in its handling of such mixed signal systems.
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2.8  Hybrid Systems and Modal Models
Hybrid systems are models that combine continuous dynamics with discrete mode changes. They

are created in Ptolemy II by creating a modal model, found in the utilities library. We start by examin-
ing a pre-built modal model, and conclude by illustrating how to construct one. Modal models can be
constructed with other domains besides CT, but this section will concentrate on CT. Feel free to exam-
ine other examples of modal models given in the quick tour, figure 2.3.

2.8.1  Examining a Pre-Built Model
Consider the bouncing ball example, which can be found under “Hybrid Systems” in figure 2.3.

The top-level contents of this model is shown in figure 2.38. It contains only two actors, a Ball Model
and a TimedPlotter. The Ball Model is an instance of the modal model found in the utilities library, but
renamed. If you execute the model, you should see a plot like that in the figure. The continuous
dynamics correspond to the times when the ball is in the air, and the discrete events correspond to the
times when the ball hits the surface and bounces.

If you look inside the Ball Model, you will see something like figure 2.39. Figure 2.39 shows a
state-machine editor, which has a slightly different toolbar and a significantly different library at the

FIGURE 2.37.  Discrete-event model with feedback, which requires a delay actor such as TimedDelay. 
Notice the library of domain-specific actors at the left.
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left. The circles in figure 2.39 are states, and the arcs between circles are transitions between states. A
modal model is one that has modes, which represent regimes of operation. Each mode in a modal
model is represented by a state in a finite-state machine.

The state machine in figure 2.39 has three states, named init, free, and stop. The init state is the ini-
tial state, which is set as shown in figure 2.40. The free state represents the mode of operation where
the ball is in free fall, and the stop state represents the mode where the ball has stopped bouncing.

At any time during the execution of the model, the modal model is in one of these three states.
When the model begins executing, it is in the init state. During the time a modal model is in a state, the

FIGURE 2.38.  Top level of the 
bouncing ball example.

FIGURE 2.39.  Inside the Ball Model of figure 2.38.
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behavior of the modal model is specified by the refinement of the state. The refinement can be exam-
ined by looking inside the state. As shown in figure 2.41, the init state has no refinement. 

Consider the transition from init to free. It is labeled as follows:

true
free.initialPosition = initialPosition; free.initialVelocity = 0.0

The first line is a guard, which is predicate that determines when the transition is enabled. In this case,
the transition is always enabled, since the predicate has value true. Thus, the first thing this model will
do is take this transition and change modes to free. The second line specifies a sequence of actions,
which in this case set parameters of the destination mode free.

If you look inside the free state, you will see the refinement shown in figure 2.42. This model rep-
resents the laws of gravity, which state that an object of any mass will have an acceleration of roughly

 meters/second2 (roughly). The acceleration is integrated to get the velocity. which is, in turn, inte-
grated to get the vertical position.

In figure 2.42, a ZeroCrossingDetector actor is used to detect when the vertical position of the ball
is zero. This results in production of an event on the (discrete) output bump. Examining figure 2.39,
you can see that this event triggers a state transition back to the same free state, but where the initialVe-

FIGURE 2.40.  The initial state of a state machine is set by right clicking on the background and specifying the 
state name.

FIGURE 2.41.  A state may or may not have a refinement, which specified the behavior of the model while the 
model is in that state. In this case, init has no refinement.

10–
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locity parameter is changed to reverse the sign and attenuate it by the elasticity. This results in the ball
bouncing, and losing energy, as shown by the plot in figure 2.38.

As you can see from figure 2.39, when the position and velocity of the ball drop below a specified
threshold, the state machine transitions to the state stop, which has no refinement. This results in the
model producing no further output.

2.8.2  Numerical Precision and Zeno Conditions
The bouncing ball model of figures 2.38 and 2.39 illustrates an interesting property of hybrid sys-

tem modeling. The stop state, it turns out, is essential. Without it, the time between bounces keeps
decreasing, as does the magnitude of each bounce. At some point, these numbers get smaller than the
representable precision, and large errors start to occur. If you remove the stop state from the FSM, and
re-run the model, you get the result shown in figure 2.43. The ball, in effect, falls through the surface
on which it is bouncing and then goes into a free-fall in the space below.

The error that occurs here illustrates some fundamental pitfalls with hybrid system modeling. The
event detected by the ZeroCrossingDetector actor can be missed by the simulator. This actor works
with the solver to attempt to identify the precise point in time when the event occurs. It ensures that the
simulation includes a sample time at that time. However, when the numbers get small enough, numeri-
cal errors take over, and the event is missed.

A related phenomenon is called the Zeno phenomenon. In the case of the bouncing ball, the time
between bounces gets smaller as the simulation progresses. Since the simulator is attempting to capture
every bounce event with a time step, we could encounter the problem where the number of time steps

FIGURE 2.42.  The refinement of the free state, shown here, is a continuous-model representing the laws of 
gravity.

FIGURE 2.43.  Result of running the bouncing ball model without the stop state.
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becomes infinite over a finite time interval. This makes it impossible for time to advance. In fact, in
theory, the bouncing ball example exhibits this Zeno phenomenon. However, numerical precision
errors take over, since the simulator cannot possibly keep decreasing the magnitude of the time incre-
ments.

The lesson is that some caution needs to be exercised when relying on the results of a simulation of
a hybrid system. Use your judgement.

2.8.3  Constructing Modal Models
A modal model is a component in a larger continuous-time (or other kind of) model. You can cre-

ate a modal model by dragging one in from the utilities library. By default, it has no ports. To make it
useful, you will need to add ports. The mechanism for doing that is identical to adding ports to a com-
posite model, and is explained in section 2.4.2. Figure 2.38 shows a top-level continuous-time model
with a single modal model that has been renamed Ball Model. Three output ports have been added to
that modal model, but only the top one is used. It gives the vertical distance of the ball from the surface
on which it bounces.

If you create a new modal model by dragging it in from the utilities library, create an output port
and name it output, and then look inside, you will get an FSM editor like that shown in figure 2.44.
Note that the output port is (regrettably) located at the upper left, and is only partially visible. The
annotation text suggests delete once you no longer need it. You may want to move the port to a more
reasonable location (where it is visible).

The output port that you created is in fact indicated in the state machine as being both an output
and input port. The reason for this is that guards in the state machine can refer to output values that are
produced on this port by refinements. In addition, the output actions of a transition can assign an out-
put value to this port. Hence, the port is, in fact, both an output and input for the state machine.

FIGURE 2.44.  Inside of a new modal model that has had a single output port added.

output port
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To create a finite-state machine like that in figure 2.39, drag in states (white circles), or click on the
state icon in the toolbar. You can rename these states by right clicking on them and selecting “Custom-
ize Name”. Choose names that are pertinent to your application. In figure 2.39, there is an init state for
initialization, a free state for when the ball is in the air, and a stop state for when the ball is no longer
bouncing. You must specify the initial state of the FSM by right clicking on the background of the
FSM Editor, selecting “Edit Parameters”, and specifying an initial state name, as shown in figure 2.40.
In that figure, the initial state is named init.

Creating Transitions. To create transitions, you must hold the control button on the keyboard while
clicking and dragging from one state to the next (a transition can also go back to the same state). The
handles on the transition can be used to customize its curvature and orientation. Double clicking on the
transition (or right clicking and selecting “Configure”) allows you to configure the transition. The dia-
log for the transition from init to free is shown in figure 2.45. In that dialog, we see the following:
• The guard expression is true, so this transition is always enabled. The transition will be taken as 

soon as the model begins executing. A guard expression can be any boolean-valued expression 
that depends on the inputs, parameters, or even the outputs of any refinement of the current state 
(see below). Thus, this transition is used to initialize the model.

• The output actions are empty, meaning that when this transition is taken, no output is specified. 
This parameter can have a list of assignments of values to output ports, separated by semicolons. 
Those values will be assigned to output ports when the transition is taken.

• The set actions field contains the following statements:

free.initialPosition = initialPosition; free.initialVelocity = 0.0

The “free” in these expressions refers to the mode refinement in the free state. Thus, free.initialPo-
sition is a parameter of that mode refinement. Here, its value is assigned to the value of the param-
eter initialPosition. The parameter free.initialVelocity is set to zero.

• The reset parameter is set to true, meaning that the destination mode refinement will be initialized 
when the transition is taken.

• The preemptive parameter is set to false. In this case, it makes no difference, since the init state has 
no refinement. Normally, if a transition out of a state is enabled and preemptive is true, then the 
transition will be taken without first executing the refinement. Thus, the refinement will not affect 
the outputs of the modal model.

A state may have several outgoing transitions. However, it is up to the model builder to ensure that at

FIGURE 2.45.  Transition dialog for the transition from init to free in figure 2.39.
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no time does more than one guard on these transitions evaluate to true. In other words, Ptolemy II does
not allow nondeterministic state machines, and will throw an exception if it encounters one.

Creating Refinements. Both states and transitions can have refinements. To create a refinement, right
click on the state or transition, and select “Add Refinement.” You will see a dialog like that in figure
2.46. As shown in the figure, you will be offered the alternatives of a “Default Refinement” or a “State
Machine Refinement.” The first of these provides a block diagram model as the refinement. The sec-
ond provides another finite state machine as the refinement. In the former case (the default), a blank
refinement model will open, as shown in the figure. As before, the output port will appear in an incon-
venient location. You will almost certainly want to move it to a more convenient location. You will
have to create a director in the refinement. The modal model will not operate without a director in the
refinement.

You can also create refinements for transitions, but these have somewhat different behavior. They
will execute exactly once when the transition is taken. For this reason, only certain directors make
sense in such refinements. The most commonly useful is the SDF director. Such refinements are typi-
cally used to perform arithmetic computations that are too elaborate to be conveniently specified as an
action on the transition.

Once you have created a refinement, you can look inside a state or transition. For the bouncing ball
example, the refinement of the free state is shown in figure 2.42. This model exhibits certain key prop-
erties of refinements:
• Refinements must contain directors. In this case, the CTEmbeddedDirector is used. When a con-

tinuous-time model is used inside a mode, this director must be used instead of the default CTDi-
rector (see the CT domain documentation for details).

• The refinement has the same ports as the modal model, and can read input value and specify output 
values. When the state machine is in the state of which this is the refinement, this model will be 
executed to read the inputs and produce the outputs.

FIGURE 2.46.  Adding a refinement to a state.

output port
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2.8.4  Execution Semantics
The behavior of a refinement is simple. When the modal model is executed, the following

sequence of events occurs:
• For any transitions out of the current state for which preemptive is true, the guard is evaluated. If 

exactly one such guard evaluates to true, then that transition is chosen. The output actions of the 
transition are executed, and the refinements of the transition (if any) are executed, followed by the 
set actions.

• If no preemptive transition evaluated to true, then the refinement of the current state, if there is 
one, is evaluated at the current time step.

• Once the refinement has been evaluated (and it has possibly updated its output values), the guard 
expressions on all the outgoing transitions of the current state are evaluated. If none is true, the 
execution is complete. If one is true, then that transition is taken. If more than one is true, then an 
exception is thrown (the state machine is nondeterministic). What it means for the transition to be 
“taken” is that its output actions are executed, its refinements (if any) are executed, and its set 
actions are executed.

• If reset is true on a transition that is taken, then the refinement of the destination mode (if there is 
one) is initialized.

There is a subtle distinction between the output actions and the set actions. The intent of these two
fields on the transition is that output actions are used to define the values of output ports, while set
actions are used to define state variables in the refinements of the destination modes. The reason that
these two actions are separated is that while solving a continuous-time system of equations, the solver
may speculatively execute models at certain time steps before it is sure what the next time step will be.
The output actions make no permanent changes to the state of the system, and hence can be executed
during this speculative phase. The set actions, however, make permanent changes to the state variables
of the destination refinements, and hence are not executed during the speculative phase.

2.9  Using the Plotter
Several of the plots shown above have flaws that can be fixed using the features of the plotter. For

instance, the plot shown in figure 2.33 has the default (uninformative) title, the axes are not labeled,
and the horizontal axis ranges from 0 to 2551, because in one iteration, the Spectrum actor produces
256 output tokens. These outputs represent frequency bins that range between  and  radians per
second.

1. Hint: Notice the “x102” at the bottom right, which indicates that the label “2.5” stands for “250”.

π– π
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The SequencePlotter actor has some pertinent parameters, shown in figure 2.47. The xInit parame-
ter specifies the value to use on the horizontal axis for the first token. The xUnit parameter specifies the
value to increment this by for each subsequent token. Setting these to “-PI” and “PI/128” respectively
results in the plot shown in figure 2.48.

This plot is better, but still missing useful information. To control more precisely the visual appear-
ance of the plot, click on the second button from the right in the row of buttons at the top right of the
plot. This button brings up a format control window. It is shown in figure 2.49, filled in with values
that result in the plot shown in figure 2.50. Most of these are self-explanatory, but the following point-
ers may be useful:

FIGURE 2.47.  Dialog for creating a refinement of a state.

FIGURE 2.48.  Better labeled plot, where the horizontal axis now properly represents the frequency values.

FIGURE 2.49.  Format control window for a plot.
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• The grid is turned off to reduce clutter.
• Titles and axis labels have been added.
• The X range and Y range are determined by the fill button at the upper right of the plot.
• Stem plots can be had by clicking on “Stems”
• Individual tokens can be shown by clicking on “dots”
• Connecting lines can be eliminated by deselecting “connect”
• The X axis label has been changed to symbolically indicate multiples of PI/2. This is done by 

entering the following in the X Ticks field:

-PI -3.14159, -PI/2 -1.570795, 0 0.0, PI/2 1.570795, PI 3.14159

The syntax in general is:

label value, label value, ...

where the label is any string (enclosed in quotation marks if it includes spaces), and the value is a 
number.

FIGURE 2.50.  Still better labeled plot.
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3.1  Introduction
In Ptolemy II, models specify computations by composing actors. Many computations, however,

are awkward to specify this way. A common situation is where we wish to evaluate a simple algebraic
expression, such as “sin(2π (x-1)).” It is possible to express this computation by composing actors in a
block diagram, but it is far more convenient to give it textually.

The Ptolemy II expression language provides infrastructure for specifying algebraic expressions
textually and for evaluating them. The expression language is used to specify the values of parameters,
guards and actions in state machines, and for the calculation performed by the Expression actor. In
fact, the expression language is part of the generic infrastructure in Ptolemy II, and it can be used by
programmers extending the Ptolemy II system. In this chapter, we describe how to use expressions
from the perspective of a user rather than a programmer.

3.1.1  Expression Evaluator
Vergil provides an interactive expression evaluator, which is accessed through the File:New menu.

This operates like an interactive command shell, and is shown in figure 3.1. It supports a command his-
tory. To access the previously entered expression, type the up arrow or Control-P. To go back, type the
down arrow or Control-N. The expression evaluator is useful for experimenting with expressions.
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3.2  Simple Arithmetic Expressions
3.2.1  Constants and Literals

The simplest expression is a constant, which can be given either by the symbolic name of the con-
stant, or by a literal. By default, the symbolic names of constants supported are PI, pi, E, e, true, false,
i, j, NaN, Infinity, PositiveInfinity, NegativeInfinity, MaxUnsignedByte, MinUnsignedByte, MaxInt,
MinInt, MaxLong, MinLong, MaxDouble, MinDouble. For example,

PI/2.0

is a valid expression that refers to the symbolic name “PI” and the literal “2.0.” The constants i and j
are the imaginary number with value equal to the square root of −1. The constant NaN is “not a num-
ber,” which for example is the result of dividing 0.0/0.0. The constant Infinity is the result of dividing
1.0/0.0. The constants that start with “Max” and “Min” are the maximum and minimum values for
their corresponding types.

Numerical values without decimal points, such as “10” or “−3” are integers (type int). Numerical
values with decimal points, such as “10.0” or “3.14159” are of type double. Numerical values without
decimal points followed by the character “l” (el) or “L” are of type long. Unsigned integers followed
by “ub” or “UB” are of type unsignedByte, as in “5ub”. An unsignedByte has a value between 0 and
255; note that it not quite the same as the Java byte, which has a value between -128 and 127.

Numbers of type int, long, or unsignedByte can be specified in decimal, octal, or hexadecimal.
Numbers beginning with a leading “0” are octal numbers. Numbers beginning with a leading “0x” are
hexadecimal numbers. For example, “012” and “0xA” are both equal to the integer 10. 

A complex is defined by appending an “i” or a “j” to a double for the imaginary part. This gives a
purely imaginary complex number which can then leverage the polymorphic operations in the Token

FIGURE 3.1.  Expression evaluator, which is accessed through the File:New menu.
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classes to create a general complex number. Thus “2 + 3i” will result in the expected complex num-
ber. You can optionally write this “2 + 3*i”.

Literal string constants are also supported. Anything between double quotes, “...”, is interpreted as
a string constant. The following built-in string-valued constants are defined:

The value of these variables is the value of the Java virtual machine property, such as user.home. The
properties user.dir and user.home are standard in Java. Their values are platform dependent; see the
documentation for the java.lang.System.getProperties() method for details. Note that user.dir and
user.home are usually not readable in unsigned applets, in which case, attempts to use these variables
in an expression will result in an exception. Vergil will display all the Java properties if you invoke
JVM Properties in the View menu of a Graph Editor.

The ptolemy.ptII.dir property is set automatically when Vergil or any other Ptolemy II executable
is started up. You can also set it when you start a Ptolemy II process using the java command by a syn-
tax like the following:

java -Dptolemy.ptII.dir=${PTII} classname

where classname is the full class name of a Java application.
The constants() utility function returns a record with all the globally defined constants. If you open

the expression evaluator and invoke this function, you will see that its value is something like:

{CWD="C:\ptII\ptolemy\data\expr", E=2.718281828459, HOME="C:\Documents 
and Settings\eal", Infinity=Infinity, MaxDouble=1.7976931348623E308, 
MaxInt=2147483647, MaxLong=9223372036854775807L, 
MaxUnsignedByte=255ub, MinDouble=4.9E-324, MinInt=-2147483648, 
MinLong=-9223372036854775808L, MinUnsignedByte=0ub, NaN=NaN, 
NegativeInfinity=-Infinity, PI=3.1415926535898, PTII="c:\ptII", 
PositiveInfinity=Infinity, boolean=false, complex=0.0 + 0.0i, 
double=0.0, e=2.718281828459, false=false, fixedpoint=fix(0.0,2,1), 
general=present, i=0.0 + 1.0i, int=0, j=0.0 + 1.0i, long=0L, matrix=[], 
object=object(null),pi=3.1415926535898, scalar=present, string="", 
true=true, unknown=present, unsignedByte=0ub}

3.2.2  Variables
Expressions can contain identifiers that are references to variables within the scope of the expres-

sion. For example,

PI*x/2.0

is valid if “x” is a variable in scope. In the expression evaluator, the variables that are in scope include

TABLE 1: String-valued constants defined in the expression language.

Variable name Meaning Property name Example under Windows

PTII The directory in which Ptolemy II is installed ptolemy.ptII.dir c:\tmp

HOME The user home directory user.home c:\Documents and Settings\you

CWD The current working directory user.dir c:\ptII
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the built-in constants plus any assignments that have been previously made. For example,

>> x = pi/2
1.5707963267949
>> sin(x)
1.0
>>

In the context of Ptolemy II models, the variables in scope include all parameters defined at the same
level of the hierarchy or higher. So for example, if an actor has a parameter named “x” with value 1.0,
then another parameter of the same actor can have an expression with value “PI*x/2.0”, which will
evaluate to π /2.

Consider a parameter P in actor X which is in turn contained by composite actor Y. The scope of an
expression for P includes all the parameters contained by X and Y, plus those of the container of Y, its
container, etc. That is, the scope includes any parameters defined above in the hierarchy.

You can add parameters to actors (composite or not) by right clicking on the actor, selecting “Con-
figure” and then clicking on “Add”, or by dragging in a parameter from the utilities library. Thus, you
can add variables to any scope, a capability that serves the same role as the “let” construct in many
functional programming languages.

3.2.3  Operators
The arithmetic operators are +, −, *, /, ^, and %. Most of these operators operate on most data

types, including arrays, records, and matrices. The ^ operator computes “to the power of” or exponen-
tiation where the exponent can only be an int or an unsignedByte. 

The unsignedByte, int and long types can only represent integer numbers. Operations on these
types are integer operations, which can sometimes lead to unexpected results. For instance, 1/2 yields 0
if 1 and 2 are integers, whereas 1.0/2.0 yields 0.5. The exponentiation operator ‘^’ when used with
negative exponents can similarly yield unexpected results. For example, 2^−1 is 0 because the result is
computed as 1/(2^1).

The % operation is a modulo or remainder operation. The result is the remainder after division.
The sign of the result is the same as that of the dividend (the left argument). For example,

>> 3.0 % 2.0
1.0
>> -3.0 % 2.0
-1.0
>> -3.0 % -2.0
-1.0
>> 3.0 % -2.0
1.0

The magnitude of the result is always less than the magnitude of the divisor (the right argument). Note
that when this operator is used on doubles, the result is not the same as that produced by the remain-
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der() function (see Table 5 on page 96). For instance,

>> remainder(-3.0, 2.0)
1.0

The remainder() function calculates the IEEE 754 standard remainder operation. It uses a rounding
division rather than a truncating division, and hence the sign can be positive or negative, depending on
complicated rules (see page 90). For example, counter intuitively,

>> remainder(3.0, 2.0)
-1.0

When an operator involves two distinct types, the expression language has to make a decision
about which type to use to implement the operation. If one of the two types can be converted without
loss into the other, then it will be. For instance, int can be converted losslessly to double, so 1.0/2 will
result in 2 being first converted to 2.0, so the result will be 0.5. Among the scalar types, unsignedByte
can be converted to anything else, int can be converted to double, and double can be converted to com-
plex. Note that long cannot be converted to double without loss, nor vice versa, so an expression like
2.0/2L yields the following error message:

Error evaluating expression "2.0/2L"
 in .Expression.evaluator
Because:
divide method not supported between ptolemy.data.DoubleToken '2.0' and 
ptolemy.data.LongToken '2L' because the types are incomparable.

All scalar types have limited precision and magnitude. As a result of this, arithmetic operations are
subject to underflow and overflow. 
• For double numbers, overflow results in the corresponding positive or negative infinity. Underflow 

(i.e. the precision does not suffice to represent the result) will yield zero.
• For integer types and fixedpoint, overflow results in wraparound. For instance, while the value of 

MaxInt is 2147483647, the expression MaxInt + 1 yields −2147483648. Similarly, while Max-
UnsignedByte has value 255ub, MaxUnsignedByte + 1ub has value 0ub. Note, however, that 
MaxUnsignedByte + 1 yields 256, which is an int, not an unsignedByte. This is because Max-
UnsignedByte can be losslessly converted to an int, so the addition is int addition, not unsigned-
Byte addition.

The bitwise operators are &, |, #, and ~. They operate on boolean, unsignedByte, int and long (but not
fixedpoint, double or complex). The operator & is bitwise AND, ~ is bitwise NOT, and | is bitwise OR,
and # is bitwise XOR (exclusive or, after MATLAB). 
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The relational operators are <, <=, >, >=, == and !=. They return type boolean. Note that these
relational operators check the values when possible, irrespective of type. So, for example,

1 == 1.0

returns true. If you wish to check for equality of both type and value, use the equals() method, as in

>> 1.equals(1.0)
false

Boolean-valued expressions can be used to give conditional values. The syntax for this is 

boolean ? value1 : value2

If the boolean is true, the value of the expression is value1; otherwise, it is value2.
The logical boolean operators are &&, ||, !, & and |. They operate on type boolean and return type

boolean. The difference between logical && and logical & is that & evaluates all the operands regardless
of whether their value is now irrelevant. Similarly for logical || and |. This approach is borrowed
from Java. Thus, for example, the expression “false && x” will evaluate to false irrespective of
whether x is defined. On the other hand, “false & x” will throw an exception.

The << and >> operators performs arithmetic left and right shifts respectively. The >>> operator
performs a logical right shift, which does not preserve the sign. They operate on unsignedByte, int, and
long.

3.2.4  Comments
In expressions, anything inside /*...*/ is ignored, so you can insert comments.

3.3  Uses of Expressions
3.3.1  Parameters

The values of most parameters of actors can be given as expressions1. The variables in the expres-
sion refer to other parameters that are in scope, which are those contained by the same container or
some container above in the hierarchy. They can also reference variables in a scope-extending
attribute, which includes variables defining units, as explained below in section 3.9. Adding parame-
ters to actors is straightforward, as explained in the previous chapter.

3.3.2  Port Parameters
It is possible to define a parameter that is also a port. Such a PortParameter provides a default

value, which is specified like the value of any other parameter. When the corresponding port receives

1. The exceptions are parameters that are strictly string parameters, in which case the value of 
the parameter is the literal string, not the string interpreted as an expression, as for example 
the function parameter of the TrigFunction actor, which can take on only “sin,” “cos,” 
“tan”, “asin”, “acos”, and “atan” as values.
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data, however, the default value is overridden with the value provided at the port. Thus, this object
functions like a parameter and a port. The current value of the PortParameter is accessed like that of
any other parameter. Its current value will be either the default or the value most recently received on
the port.

A PortParameter might be contained by an atomic actor or a composite actor. To put one in a com-
posite actor, drag it into a model from the utilities library, as shown in figure 3.2. The resulting icon is
actually a combination of two icons, one representing the port, and the other representing the parame-
ter. These can be moved separately, but doing so might create confusion, so we recommend selecting
both by clicking and dragging over the pair and moving both together.

To be useful, a PortParameter has to be given a name (the default name, “portParameter,” is not
very compelling). To change the name, right click on the icon and select “Customize Name,” as shown
in figure 3.2. In the figure, the name is set to “noiseLevel.” Then set the default value by either double
clicking or selecting “Configure.” In the figure, the default value is set to 10.0.

An example of a library actor that uses a PortParameter is the Sinewave actor, which is found in
the sources library in Vergil. It is shown in figure 3.3. If you double click on this actor, you can set the
default values for frequency and phase. But both of these values can also be set by the corresponding
ports, which are shown with grey fill.

3.3.3  Expression Actor
The Expression actor is a particularly useful actor found in the math library. By default, it has one

output and no inputs, as shown in Figure 3.4(a). The first step in using it is to add ports, as shown in (b)
and (c), resulting in a new icon as shown in (d). Note: In (c) when you click on Add, you will be
prompted for a Name (pick one) and a Class. Leave the Class entry blank and click OK. You then spec-
ify an expression using the port names, as shown in (e), resulting in the icon shown in (f).

FIGURE 3.2.  A portParameter is both a port and a parameter. To use it in a composite actor, drag it into the 
actor, change its name to something meaningful, and set its default value.

customize the name:
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3.3.4  State Machines
Expressions give the guards for state transitions, as well as the values used in actions that produce

outputs and actions that set values of parameters in the refinements of destination states. This mecha-
nism was explained in the previous chapter.

3.4  Composite Data Types
3.4.1  Arrays

Arrays are specified with curly brackets, e.g., “{1, 2, 3}” is an array of int, while “{"x",
"y", "z"}” is an array of string. The types are denoted “{int}” and “{string}” respectively. An
array is an ordered list of tokens of any type, with the only constraint being that the elements all have

FIGURE 3.3.  Sinewave actor, showing its port parameters, and their use at the lower level of the hierarchy.
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the same type. If an array is given with mixed types, the expression evaluator will attempt to losslessly
convert the elements to a common type. Thus, for example, 

{1, 2.3}

has value

{1.0, 2.3}

Its type is {double}. The elements of the array can be given by expressions, as in the example
“{2*pi, 3*pi}.” Arrays can be nested; for example, “{{1, 2}, {3, 4, 5}}” is an array of
arrays of integers. The elements of an array can be accessed as follows:

>> {1.0, 2.3}(1)
2.3

which yields 2.3. Note that indexing begins at 0. Of course, if name is the name of a variable in scope

FIGURE 3.4.  Illustration of the Expression actor.

(a)

(b)

(c)

(d)

(e) (f)
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whose value is an array, then its elements may be accessed similarly, as shown in this example:

>> x = {1.0, 2.3}
{1.0, 2.3}
>> x(0)
1.0

Arithmetic operations on arrays are carried out element-by-element, as shown by the following
examples:

>> {1, 2}*{2, 2}
{2, 4}
>> {1, 2}+{2, 2}
{3, 4}
>> {1, 2}-{2, 2}
{-1, 0}
>> {1, 2}^2
{1, 4}
>> {1, 2}%{2, 2}
{1, 0}

An array can be checked for equality with another array as follows:

>> {1, 2}=={2, 2}
false
>> {1, 2}!={2, 2}
true

For other comparisons of arrays, use the compare() function (see Table 5 on page 96). As with scalars,
testing for equality using the == or != operators tests the values, independent of type. For example,

>> {1, 2}=={1.0, 2.0}
true

3.4.2  Matrices
In Ptolemy II, arrays are ordered sets of tokens. Ptolemy II also supports matrices, which are more

specialized than arrays. They contain only certain primitive types, currently boolean, complex, double,
fixedpoint, int, and long. Currently unsignedByte matrices are not supported. Matrices cannot contain
arbitrary tokens, so they cannot, for example, contain matrices. They are intended for data intensive
computations.

Matrices are specified with square brackets, using commas to separate row elements and semico-
lons to separate rows. E.g., “[1, 2, 3; 4, 5, 5+1]” gives a two by three integer matrix (2 rows and 3 col-
umns). Note that an array or matrix element can be given by an expression. A row vector can be given
as “[1, 2, 3]” and a column vector as “[1; 2; 3]”. Some MATLAB-style array constructors are sup-
ported. For example, “[1:2:9]” gives an array of odd numbers from 1 to 9, and is equivalent to “[1, 3, 5,
7, 9].” Similarly, “[1:2:9; 2:2:10]” is equivalent to “[1, 3, 5, 7, 9; 2, 4, 6, 8, 10].” In the syntax
“[p:q:r]”, p is the first element, q is the step between elements, and r is an upper bound on the last ele-
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ment. That is, the matrix will not contain an element larger than r. If a matrix with mixed types is spec-
ified, then the elements will be converted to a common type, if possible. Thus, for example, “[1.0, 1]”
is equivalent to “[1.0, 1.0],” but “[1.0, 1L]” is illegal (because there is no common type to which both
elements can be converted losslessly).

Reference to elements of matrices have the form “matrix(n, m)” or “name(n, m)” where name is
the name of a matrix variable in scope, n is the row index, and m is the column index. Index numbers
start with zero, as in Java, not 1, as in MATLAB. For example,

>> [1, 2; 3, 4](0,0)
1
>> a = [1, 2; 3, 4]
[1, 2; 3, 4]
>> a(1,1)
4

Matrix multiplication works as expected. For example, as seen in the expression evaluator (see fig-
ure 3.1),

>> [1, 2; 3, 4]*[2, 2; 2, 2]
[6, 6; 14, 14]

Of course, if the dimensions of the matrix don’t match, then you will get an error message. To do ele-
ment wise multiplication, use the multipyElements() function (see Table 6 on page 98). Matrix addi-
tion and subtraction are element wise, as expected, but the division operator is not supported. Element
wise division can be accomplished with the divideElements() function, and multiplication by a matrix
inverse can be accomplished using the inverse() function (see Table 6 on page 98). A matrix can be
raised to an int or unsignedByte power, which is equivalent to multiplying it by itself some number of
times. For instance,

>> [3, 0; 0, 3]^3
[27, 0; 0, 27]

A matrix can also be multiplied or divided by a scalar, as follows:

>> [3, 0; 0, 3]*3
[9, 0; 0, 9]

A matrix can be added to a scalar. It can also be subtracted from a scalar, or have a scalar subtracted
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from it. For instance,

>> 1-[3, 0; 0, 3]
[-2, 1; 1, -2]

A matrix can be checked for equality with another matrix as follows:

>> [3, 0; 0, 3]!=[3, 0; 0, 6]
true
>> [3, 0; 0, 3]==[3, 0; 0, 3]
true

For other comparisons of matrices, use the compare() function (see Table 5 on page 96). As with sca-
lars, testing for equality using the == or != operators tests the values, independent of type. For exam-
ple,

>> [1, 2]==[1.0, 2.0]
true

To get type-specific equality tests, use the equals() method, as in the following examples:

>> [1, 2].equals([1.0, 2.0])
false
>> [1.0, 2.0].equals([1.0, 2.0])
true
>> 

3.4.3  Records
A record token is a composite type containing named fields, where each field has a value. The

value of each field can have a distinct type. Records are delimited by curly braces, with each field
given a name. For example, “{a=1, b="foo"}” is a record with two fields, named “a” and “b”, with
values 1 (an integer) and “foo” (a string), respectively. The value of a field can be an arbitrary expres-
sion, and records can be nested (a field of a record token may be a record token).

Fields may be accessed using the period operator. For example,

{a=1,b=2}.a

yields 1. You can optionally write this as if it were a method call:

{a=1,b=2}.a()

The arithmetic operators +, −, *, /, and % can be applied to records. If the records do not have identical
fields, then the operator is applied only to the fields that match, and the result contains only the fields
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that match. Thus, for example,

{foodCost=40, hotelCost=100} + {foodCost=20, taxiCost=20}

yields the result

{foodCost=60}

You can think of an operation as a set intersection, where the operation specifies how to merge the val-
ues of the intersecting fields. You can also form an intersection without applying an operation. In this
case, using the intersect() function, you form a record that has only the common fields of two specified
records, with the values taken from the first record. For example,

>> intersect({a=1, c=2}, {a=3, b=4})
{a=1}

Records can be joined (think of a set union) without any operation being applied by using the
merge() function. This function takes two arguments, both of which are record tokens. If the two
record tokens have common fields, then the field value from the first record is used. For example,

merge({a=1, b=2}, {a=3, c=3})

yields the result {a=1, b=2, c=3}. 
Records can be compared, as in the following examples:

>> {a=1, b=2}!={a=1, b=2}
false
>> {a=1, b=2}!={a=1, c=2}
true

Note that two records are equal only if they have the same field labels and the values match. As with
scalars, the values match irrespective of type. For example:

>> {a=1, b=2}=={a=1.0, b=2.0+0.0i}
true

The order of the fields is irrelevant. Hence

>> {a=1, b=2}=={b=2, a=1}
true

Moreover, record fields are reported in alphabetical order, irrespective of the order in which they are
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defined. For example,

>> {b=2, a=1}
{a=1, b=2}

To get type-specific equality tests, use the equals() method, as in the following examples:

>> {a=1, b=2}.equals({a=1.0, b=2.0+0.0i})
false
>> {a=1, b=2}.equals({b=2, a=1})
true
>> 

3.5  Invoking Methods
Every element and subexpression in an expression represents an instance of the Token class in

Ptolemy II (or more likely, a class derived from Token). The expression language supports invocation
of any method of a given token, as long as the arguments of the method are of type Token and the
return type is Token (or a class derived from Token, or something that the expression parser can easily
convert to a token, such as a string, double, int, etc.). The syntax for this is (token).methodName(args),
where methodName is the name of the method and args is a comma-separated set of arguments. Each
argument can itself be an expression. Note that the parentheses around the token are not required, but
might be useful for clarity. As an example, the ArrayToken and RecordToken classes have a length()
method, illustrated by the following examples:

{1, 2, 3}.length()
{a=1, b=2, c=3}.length()

each of which returns the integer 3.
The MatrixToken classes have three particularly useful methods, illustrated in the following exam-

ples:

[1, 2; 3, 4; 5, 6].getRowCount()

which returns 3, and

[1, 2; 3, 4; 5, 6].getColumnCount()

which returns 2, and

[1, 2; 3, 4; 5, 6].toArray()

which returns {1, 2, 3, 4, 5, 6}. The latter function can be particularly useful for creating arrays using
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MATLAB-style syntax. For example, to obtain an array with the integers from 1 to 100, you can enter:

[1:1:100].toArray()

3.6  Defining Functions
The expression language supports definition of functions. The syntax is:

function(arg1:Type, arg2:Type...)
    function body 

where “function” is the keyword for defining a function. The type of an argument can be left unspeci-
fied, in which case the expression language will attempt to infer it. The function body gives an expres-
sion that defines the return value of the function. The return type is always inferred based on the
argument type and the expression. For example:

function(x:double) x*5.0

defines a function that takes a double argument, multiplies it by 5.0, and returns a double. The return
value of the above expression is the function itself. Thus, for example, the expression evaluator yields:

>> function(x:double) x*5.0
(function(x:double) (x*5.0))
>> 

To apply the function to an argument, simply do

>> (function(x:double) x*5.0) (10.0)
50.0
>> 

Alternatively, in the expression evaluator, you can assign the function to a variable, and then use the
variable name to apply the function. For example,

>> f = function(x:double) x*5.0
(function(x:double) (x*5.0))
>> f(10)
50.0
>> 

Functions can be passed as arguments to certain “higher-order functions” that have been defined
(see table Table 9 on page 102). For example, the iterate() function takes three arguments, a function,
an integer, and an initial value to which to apply the function. It applies the function first to the initial
value, then to the result of the application, then to that result, collecting the results into an array whose
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length is given by the second argument. For example, to get an array whose values are multiples of 3,
try

>> iterate(function(x:int) x+3, 5, 0)
{0, 3, 6, 9, 12}

The function given as an argument simply adds three to its argument. The result is the specified initial
value (0) followed by the result of applying the function once to that initial value, then twice, then
three times, etc.

Another useful higher-order function is the map() function. This one takes a function and an array
as arguments, and simply applies the function to each element of the array to construct a result array.
For example,

>> map(function(x:int) x+3, {0, 2, 3})
{3, 5, 6}

A typical use of functions in a Ptolemy II model is to define a parameter in a model whose value is
a function. Suppose that the parameter named “f” has value “function(x:double) x*5.0”. Then
within the scope of that parameter, the expression “f(10.0)” will yield result 50.0.

Functions can also be passed along connections in a Ptolemy II model. Consider the model shown
in figure 3.5. In that example, the Const actor defines a function that simply squares the argument. Its
output, therefore, is a token with type function. That token is fed to the “f” input of the Expression
actor. The expression uses this function by applying it to the token provided on the “y” input. That
token, in turn, is supplied by the Ramp actor, so the result is the curve shown in the plot on the right.

A more elaborate use is shown in figure 3.6. In that example, the Const actor produces a function,
which is then used by the Expression actor to create new function, which is then used by Expression2
to perform a calculation. The calculation performed here adds the output of the Ramp to the square of
the output of the Ramp.

FIGURE 3.5.  Example of a function being passed from one actor to another.
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Functions can be recursive, as illustrated by the following (rather arcane) example:

>> fact = function(x:int,f:(function(x,f) int)) (x<1?1:x*f(x-1,f))
(function(x:int, f:function(a0:general, a1:general) int) 
(x<1)?1:(x*f((x-1), f)))
>> factorial = function(x:int) fact(x,fact)
(function(x:int) (function(x:int, f:function(a0:general, a1:general) 
int) (x<1)?1:(x*f((x-1), f)))(x, (function(x:int, f:function(a0:gen-
eral, a1:general) int) (x<1)?1:(x*f((x-1), f)))))
>> map(factorial, [1:1:5].toArray())
{1, 2, 6, 24, 120}
>> 

The first expression defines a function named “fact” that takes a function as an argument, and if the
argument is greater than or equal to 1, uses that function recursively. The second expression defines a
new function “factorial” using “fact.” The final command applies the factorial function to an array to
compute factorials.

3.7  Built-In Functions
The expression language includes a set of functions, such as sin(), cos(), etc. The functions that are

built in include all static methods of the classes shown in Table 2 on page 88, which together provide a
rich set1. The functions currently available are shown in the tables in the appendix, which also show
the argument types and return types.

In most cases, a function that operates on scalar arguments can also operate on arrays and matrices.

1. Moreover, the set of available can easily be extended if you are writing Java code by registering another class 
that includes static methods (see the PtParser class in the ptolemy.data.expr package).

FIGURE 3.6.  More elaborate example with functions passed between actors.
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Thus, for example, you can fill a row vector with a sine wave using an expression like

sin([0.0:PI/100:1.0])

Or you can construct an array as follows,

sin({0.0, 0.1, 0.2, 0.3})

Functions that operate on type double will also generally operate on int or unsignedByte, because these
can be losslessly converted to double, but not generally on long or complex.

Tables of available functions are shown in the appendix. For example, Table 4 on page 95 shows
trigonometric functions. Note that these operate on double or complex, and hence on int and unsigned-
Byte, which can be losslessly converted to double. The result will always be double. For example,

>> cos(0)
1.0

These functions will also operate on matrices and arrays, in addition to the scalar types shown in the
table, as illustrated above. The result will be a matrix or array of the same size as the argument, but
always containing elements of type double

Table 5 on page 96 shows other arithmetic functions beyond the trigonometric functions. As with
the trigonometric functions, those that indicate that they operate on double will also work on int and
unsignedByte, and unless they indicate otherwise, they will return whatever they return when the argu-
ment is double. Those functions in the table that take scalar arguments will also operate on matrices
and arrays. For example, since the table indicates that the max() function can take int, int as arguments,

TABLE 2: The classes whose static methods are available as functions in the expression language.

java.lang.Math ptolemy.math.IntegerMatrixMath

java.lang.Double ptolemy.math.DoubleMatrixMath

java.lang.Integer ptolemy.math.ComplexMatrixMath

java.lang.Long ptolemy.math.LongMatrixMath

java.lang.String ptolemy.math.IntegerArrayMath

ptolemy.data.MatrixToken ptolemy.math.DoubleArrayStat

ptolemy.data.RecordToken ptolemy.math.ComplexArrayMath

ptolemy.data.expr.UtilityFunctions ptolemy.math.LongArrayMath

ptolemy.data.expr.FixPointFunctions ptolemy.math.SignalProcessing

ptolemy.math.Complex ptolemy.math.FixPoint

ptolemy.math.ExtendedMath
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then by implication, it can also take {int}, {int}. For example,

>> max({1, 2}, {2, 1})
{2, 2}

Notice that the table also indicates that max() can take {int} as an argument. E.g.

>> max({1, 2, 3})
3

In the former case, the function is applied pointwise to the two arguments. In the latter case, the
returned value is the maximum over all the contents of the single argument.

Table 6 shows functions that only work with matrices, arrays, or records (that is, there is no corre-
sponding scalar operation). Recall that most functions that operate on scalars will also operate on
arrays and matricesTable 7 shows utility functions for evaluating expressions given as strings or repre-
senting numbers as strings. Of these, the eval() function is the most flexible (see page 89). 

A few of the functions have sufficiently subtle properties that they require further explanation.
That explanation is here.

eval() and traceEvaluation()

The built-in function eval() will evaluate a string as an expression in the expression language. For
example,

eval("[1.0, 2.0; 3.0, 4.0]")

will return a matrix of doubles. The following combination can be used to read parameters from a file:

eval(readFile("filename"))

where the filename can be relative to the current working directory (where Ptolemy II was started, as
reported by the property user.dir), the user’s home directory (as reported by the property user.home), or
the classpath, which includes the directory tree in which Ptolemy II is installed.

Note that if eval() is used in an Expression actor, then it will be impossible for the type system to
infer any more specific output type than general. If you need the output type to be more specific, then
you will need to cast the result of eval(). For example, to force it to type double:

>> cast(double, eval("pi/2"))
1.5707963267949

The traceEvaluation() function evaluates an expression given as a string, much like eval(), but instead
of reporting the result, reports exactly how the expression was evaluated. This can be used to debug
expressions, particularly when the expression language is extended by users.

random(), gaussian()

The functions random() and gaussian() shown in Table 5 on page 96 return one or more random
numbers. With the minimum number of arguments (zero or two, respectively), they return a single
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number. With one additional argument, they return an array of the specified length. With a second
additional argument, they return a matrix with the specified number of rows and columns.

There is a key subtlety when using these functions in Ptolemy II. In particular, they are evaluated
only when the expression within which they appear is evaluated. The result of the expression may be
used repeatedly without re-evaluating the expression. Thus, for example, if the value parameter of the
Const actor is set to “random()”, then its output will be a random constant, i.e., it will not change on
each firing. The output will change, however, on successive runs of the model. In contrast, if this is
used in an Expression actor, then each firing triggers an evaluation of the expression, and consequently
will result in a new random number.

property()

The property() function accesses system properties by name. Some possibly useful system proper-
ties are:
• ptolemy.ptII.dir: The directory in which Ptolemy II is installed.
• ptolemy.ptII.dirAsURL: The directory in which Ptolemy II is installed, but represented as a URL.
• user.dir: The current working directory, which is usually the directory in which the current execut-

able was started.

remainder()

This function computes the remainder operation on two arguments as prescribed by the IEEE 754
standard, which is not the same as the modulo operation computed by the % operator. The result of
remainder(x, y) is , where  is the integer closest to the exact value of . If two integers
are equally close, then  is the integer that is even. This yields results that may be surprising, as indi-
cated by the following examples:

>> remainder(1,2)
1.0
>> remainder(3,2)
-1.0

Compare this to

>> 3%2
1

which is different in two ways. The result numerically different and is of type int, whereas remain-
der() always yields a result of type double. The remainder() function is implemented by the
java.lang.Math class, which calls it IEEEremainder(). The documentation for that class gives the
following special cases:
• If either argument is NaN, or the first argument is infinite, or the second argument is positive zero 

or negative zero, then the result is NaN. 
• If the first argument is finite and the second argument is infinite, then the result is the same as the 

first argument.

DCT() and IDCT()

The DCT function can take one, two, or three arguments. In all three cases, the first argument is an
array of length  and the DCT returns an 

x yn– n x/y
n

N 0>
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(4)

for  from 0 to , where  is the size of the specified array and  is the size of the DCT. If only
one argument is given, then  is set to equal the next power of two larger than . If a second argu-

ment is given, then its value is the order of the DCT, and the size of the DCT is . If a third argu-
ment is given, then it specifies the scaling factors  according to the following table:

The default, if a third argument is not given, is “Normalized.”
The IDCT function is similar, and can also take one, two, or three arguments. The formula in this

case is

. (5)

3.8  Fixed Point Numbers
Ptolemy II includes a preliminary fixed point data type. We represent a fixed point value in the

expression language using the following format: 

fix(value, totalBits, integerBits)

Thus, a fixed point value of 5.375 that uses 8 bit precision of which 4 bits are used to represent the
(signed) integer part can be represented as:

fix(5.375, 8, 4)

The value can also be a matrix of doubles. The values are rounded, yielding the nearest value repre-
sentable with the specified precision. If the value to represent is out of range, then it is saturated, mean-

TABLE 3: Normalization options for the DCT function

Name Third argument Normalization

Normalized 0

Unnormalized 1

Orthonormal 2
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ing that the maximum or minimum fixed point value is returned, depending on the sign of the specified
value. For example,

fix(5.375, 8, 3)

will yield 3.968758, the maximum value possible with the (8/3) precision.
In addition to the fix() function, the expression language offers a quantize() function. The argu-

ments are the same as those of the fix() function, but the return type is a DoubleToken or DoubleMa-
trixToken instead of a FixToken or FixMatrixToken. This function can therefore be used to quantize
double-precision values without ever explicitly working with the fixed-point representation.

To make the FixToken accessible within the expression language, the following functions are
available: 
• To create a single FixPoint Token using the expression language:

fix(5.34, 10, 4)

This will create a FixToken. In this case, we try to fit the number 5.34 into a 10 bit representation 
with 4 bits used in the integer part. This may lead to quantization errors. By default the round 
quantizer is used. 

• To create a Matrix with FixPoint values using the expression language:
fix([ -.040609, -.001628, .17853 ], 10, 2) 

This will create a FixMatrixToken with 1 row and 3 columns, in which each element is a FixPoint 
value with precision(10/2). The resulting FixMatrixToken will try to fit each element of the given 
double matrix into a 10 bit representation with 2 bits used for the integer part. By default the round 
quantizer is used.

• To create a single DoubleToken, which is the quantized version of the double value given, using 
the expression language:
quantize(5.34, 10, 4)

This will create a DoubleToken. The resulting DoubleToken contains the double value obtained by 
fitting the number 5.34 into a 10 bit representation with 4 bits used in the integer part. This may 
lead to quantization errors. By default the round quantizer is used. 

• To create a Matrix with doubles quantized to a particular precision using the expression language:
quantize([ -.040609, -.001628, .17853 ], 10, 2) 

This will create a DoubleMatrixToken with 1 row and 3 columns. The elements of the token are 
obtained by fitting the given matrix elements into a 10 bit representation with 2 bits used for the 
integer part. Instead of being a fixed point value, the values are converted back to their double rep-
resentation and by default the round quantizer is used.

3.9  Units
Ptolemy II supports units systems, which are built on top of the expression language. Units sys-

tems allow parameter values to be expressed with units, such as “1.0 * cm”, which is equal to “0.01 *
meters”. These are expressed this way (with the * for multiplication) because “cm” and “meters” are
actually variables that become in scope when a units system icon is dragged in to a model. A few sim-
ple units systems are provided (mainly as examples) in the utilities library.
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A model using one of the simple provided units systems is shown in figure 3.7. This unit system is
called BasicUnits; the units it defines can be examined by double clicking on its icon, or by invoking
Configure, as shown in figure 3.8. In that figure, we see that “meters”, “meter”, and “m” are defined,
and are all synonymous. Moreover, “cm” is defined, and given value “0.01*meters”, and “in”, “inch”
and “inches” are defined, all with value “2.54*cm”.

FIGURE 3.7.  Example of a model that includes a unit system.

FIGURE 3.8.  Units defined in a units system can be examined by invoking Configure on its icon.
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In the example in figure 3.7, a constant with value “1.0 * meter” is fed into a Scale actor with scale
factor equal to “2.0/ms”. This produces a result with dimensions of length over time. If we feed this
result directly into a Display actor, then it is displayed as “2000.0 meters/seconds”, as shown in figure
3.9, top display. The canonical units for length are meters, and for time are seconds.

In figure 3.7, we also take the result and feed it to the InUnitsOf actor, which performs divides its
input by its argument, and checks to make sure that the result is unitless. This tells us that 2 meters/ms
is equal to about 78,740 inches/second.

The InUnitsOf actor can be used to ensure that numbers are interpreted correctly in a model, which
can be effective in catching certain kinds of critical errors. For example, if in figure 3.7 we had entered
“seconds/inch” instead of “inches/second” in the InUnitsOf actor, we would have gotten the exception
in figure 3.10 instead of the execution in figure 3.9.

Units systems are built entirely on the expression language infrastructure in Ptolemy II. The units
system icons actually represent instances of scope-extending attributes, which are attributes whose
parameters are in scope as if those parameters were directly contained by the container of the scope-
extending attribute. That is, scope-extending attributes can define a collection of variables and con-
stants that can be manipulated as a unit. In version 2.0 of Ptolemy II, two fairly extensive units systems
are provided, CGSUnitBase and ElectronicUnitBase. Nonetheless, these are intended as examples
only, and can no doubt be significantly improved and extended.

FIGURE 3.9.  Result of running the model in figure 3.7.

FIGURE 3.10.  Example of an exception resulting from a units mismatch.
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Appendix A. Tables of Functions
In this appendix, we tabulate the functions available in the expression language. Further explana-

tion of many of these functions is given in section section 3.7 above.

A.1  Trigonometric Functions

TABLE 4: Trigonometric functions.

function argument type(s) return type description

acos double in the range
[-1.0, 1.0] or
complex

double in the range
[0.0, pi] or NaN if out of range or
complex

arc cosine

complex case: 

asin double in the range
[-1.0, 1.0] or
complex

double in the range
[-pi/2, pi/2] or NaN if out of range
or complex

arc sine

complex case: 

atan double or
complex

double in the range [-pi/2, pi/2]
or complex

arc tangent

complex case: 

atan2 double, double double in the range [-pi, pi] angle of a vector (note: the arguments are (y, x), not (x, y) 
as one might expect).

acosh double greater than 1 or 
complex

double or
complex

hyperbolic arc cosine, defined for both double and complex 

case by: 

asinh double or
complex

double or
complex

hyperbolic arc sine

complex case: 

cos double or
complex

double in the range , or
complex

cosine

complex case: 

cosh double or
complex

double or
complex

hyperbolic cosine, defined for double or complex by: 

sin double or
complex

double or
complex

sine function

complex case: 

sinh double or
complex

double or
complex

hyperbolic sine, defined for double or complex by: 

tan double or
complex

double or
complex

tangent function, defined for double or complex by: 

tanh double or
complex

double or
complex

hyperbolic tangent, defined for double or complex by: 

acos z( ) i z isqrt 1 z2–( )+( )log–=
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A.2  Basic Mathematical Functions
TABLE 5: Basic mathematical functions

function argument type(s) return type description

abs double or int or long or com-
plex

double or int or long
(complex returns double)

absolute value

complex case: 

angle complex double in the range [-pi, pi] angle or argument of the complex number: 

ceil double double ceiling function, which returns the smallest (closest to neg-
ative infinity) double value that is not less than the argu-
ment and is an integer.

compare double, double int compare two numbers, returning -1, 0, or 1 if the first argu-
ment is less than, equal to, or greater than the second.

conjugate complex complex complex conjugate

exp double or
complex

double in the range
[0.0, infinity] or complex

exponential function (e^argument)

complex case: 

floor double double floor function, which is the largest (closest to positive 
infinity) value not greater than the argument that is an inte-
ger.

gaussian double, double or
double, double, int, or
double, double, int, int

double or
{double} or
[double]

one or more Gaussian random variables with the specified 
mean and standard deviation (see page 89).

imag complex double imaginary part

isInfinite double boolean return true if the argument is infinite

isNaN double boolean return true if the argument is “not a number”

log double or
complex

double or
complex

natural logarithm
complex case: 

log10 double double log base 10

log2 double double log base 2

max double, double or
int, int or
long, long or
unsignedByte, unsignedByte or
{double} or
{int} or
{long} or
{unsignedByte}

double or
int or
long or
unsignedByte

maximum

min double, double or
int, int or
long, long or
unsignedByte, unsignedByte or
{double} or
{int} or
{long} or
{unsignedByte}

double or
int or
long or
unsignedByte

minimum

abs a ib+( ) z a2 b2+= =

z∠

ea ib+ ea b( )cos i b( )sin+( )=

z( )log abs z( ) iangle z( )+( )log=
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neighborhood type, type, double boolean return true if the first argument is in the neighborhood of 
the second, meaning that the distance is less than or equal 
to the third argument. The first two arguments can be any 
type for which such a distance is defined. For composite 
types, arrays, records, and matrices, then return true if the 
first two arguments have the same structure, and each cor-
responding element is in the neighborhood.

pow double, double or
complex, complex

double or
complex

first argument to the power of the second

random no arguments or
int or
int, int

double or
{double} or
[double]

one or more random numbers between 0.0 and 1.0 (see 
page 89)

real complex double real part

remainder double, double double remainder after division, according to the IEEE 754 float-
ing-point standard (see page 90).

round double long round to the nearest long, choosing the next greater integer 
when exactly in between, and throwing an exception if out 
of range. If the argument is NaN, the result is 0L. If the 
argument is out of range, the result is either MaxLong or 
MinLong, depending on the sign.

roundToInt double int round to the nearest int, choosing the next greater integer 
when exactly in between, and throwing an exception if out 
of range. If the argument is NaN, the result is 0. If the argu-
ment is out of range, the result is either MaxInt or MinInt, 
depending on the sign.

sgn double int -1 if the argument is negative, 1 otherwise

sqrt double or
complex

double or
complex

square root. If the argument is double with value less than 
zero, then the result is NaN.

complex case: 

toDegrees double double convert radians to degrees

toRadians double double convert degrees to radians

TABLE 5: Basic mathematical functions

function argument type(s) return type description

sqrt z( ) z z∠
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A.3  Matrix, Array, and Record Functions.
TABLE 6: Functions that take or return matrices, arrays, or records.

function argument type(s) return type description

arrayToMatrix {type}, int, int [type] Create a matrix from the specified array with the specified 
number of rows and columns

conjugateTranspose [complex] [complex] Return the conjugate transpose of the specified matrix.

createSequence type, type, int {type} Create an array with values starting with the first argument, 
incremented by the second argument, of length given by the 
third argument.

crop [int], int, int, int, int or
[double], int, int, int, int or
[complex], int, int, int, int or
[long], int, int, int, int or

[int] or
[double] or
[complex] or
[long] or

Given a matrix of any type, return a submatrix starting at the 
specified row and column with the specified number of rows 
and columns.

determinant [double] or 
[complex]

double or
complex

Return the determinant of the specified matrix.

diag {type} [type] Return a diagonal matrix with the values along the diagonal 
given by the specified array.

divideElements [type], [type] [type] Return the element-by-element division of two matrices

hilbert int [double] Return a square Hilbert matrix, where .

A Hilbert matrix is nearly, but not quite singular.

identityMatrixComplex int [complex] Return an identity matrix with the specified dimension.

identityMatrixDouble int [double] Return an identity matrix with the specified dimension.

identityMatrixInt int [int] Return an identity matrix with the specified dimension.

identityMatrixLong int [long] Return an identity matrix with the specified dimension.

intersect record, record record Return a record that contains only fields that are present in 
both arguments, where the value of the field is taken from the 
first record.

inverse [double] or 
[complex]

[double] or
[complex]

Return the inverse of the specified matrix, or throw an excep-
tion if it is singular.

matrixToArray [type] {type} Create an array containing the values in the matrix

merge record, record record Merge two records, giving priority to the first one when they 
have matching record labels.

multiplyElements [type], [type] [type] Multiply element wise the two specified matrices.

orthogonalizeColumns [double] or 
[complex]

[double] or 
[complex]

Return a similar matrix with orthogonal columns.

orthogonalizeRows [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthogonal rows.

orthonormalizeColumns [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthonormal columns.

orthonormalizeRows [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthonormal rows.

repeat int, type {type} Create an array by repeating the specified token the specified 
number of times.

sum {type} or
[type]

type Sum the elements of the specified array or matrix. This throws 
an exception if the elements do not support addition or if the 
array is empty (an empty matrix will return zero).

trace [type] type Return the trace of the specified matrix.

Aij 1/ i j 1+ +( )=
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A.4  Functions for Evaluating Expressions

transpose [type] [type] Return the transpose of the specified matrix.

zeroMatrixComplex int, int [complex] Return a zero matrix with the specified number of rows and 
columns.

zeroMatrixDouble int, int [double] Return a zero matrix with the specified number of rows and 
columns.

zeroMatrixInt int, int [int] Return a zero matrix with the specified number of rows and 
columns.

zeroMatrixLong int, int [long] Return a zero matrix with the specified number of rows and 
columns.

TABLE 7: Utility functions for evaluating expressions

function argument type(s) return type description

eval string any type evaluate the specified expression (see page 89).

parseInt string or
string, int

int return an int read from a string, using the given radix if a sec-
ond argument is provided.

parseLong string or
string, int

int return a long read from a string, using the given radix if a sec-
ond argument is provided.

toBinaryString int or long string return a binary representation of the argument

toOctalString int or long string return an octal representation of the argument

toString double or
int or
int, int or
long or
long, int

string return a string representation of the argument, using the given 
radix if a second argument is provided.

traceEvaluation string string evaluate the specified expression and report details on how it 
was evaluated (see page 89).

TABLE 6: Functions that take or return matrices, arrays, or records.

function argument type(s) return type description
Heterogeneous Concurrent Modeling and Design 99 



Expressions
A.5  Signal Processing Functions
TABLE 8: Functions performing signal processing operations

function argument type(s) return type description

convolve {double}, {double} 
or
{complex}, {com-
plex}

{double} or 
{complex}

Convolve two arrays and return an array whose length is sum 
of the lengths of the two arguments minus one. Convolution of 
two arrays is the same as polynomial multiplication.

DCT {double} or
{double}, int or
{double}, int, int

{double} Return the discrete cosine transform of the specified array, 
using the specified (optional) length and normalization strat-
egy (see page 90).

downsample {double}, int or
{double}, int, int

{double} Return a new array with every -th element of the argument 

array, where  is the second argument. If a third argument is 

given, then it must be between 0 and , and it specifies 
an offset into the array (by giving the index of the first output).

FFT {double} or
{complex} or
{double}, int
{complex}, int

{complex} Return the fast Fourier transform of the specified array. If the 
second argument is given with value , then the length of the 

transform is . Otherwise, the length is the next power of 
two greater than or equal to the length of the input array. If the 
input length does not match this length, then input is padded 
with zeros.

generateBartlettWindow int {double} Return a Bartlett (rectangular) window with the specified 
length. The end points have value 0.0, and if the length is odd, 
the center point has value 1.0. For length M + 1, the formula 

is: 

generateBlackmanWindow int {double} Return a Blackman window with the specified length. For 
length M + 1, the formula is: 

generateBlackmanHarrisWindow int {double} Return a Blackman-Harris window with the specified length. 
For length M + 1, the formula is: 

generateGaussianCurve double, double, int {double} Return a Gaussian curve with the specified standard deviation, 
extent, and length. The extent is a multiple of the standard 
deviation. For instance, to get 100 samples of a Gaussian 
curve with standard deviation 1.0 out to four standard devia-
tions, use generateGaussianCurve(1.0, 4.0, 100).

generateHammingWindow int {double} Return a Hamming window with the specified length. For 
length M + 1, the formula is: 

generateHanningWindow int {double} Return a Hanning window with the specified length. For 
length M + 1, the formula is: 

n
n

n 1–

n

2n

w n( )
2 n

M
-----;  if 0 n M

2
-----≤ ≤

2 2 n
M
-----;   – if M2

----- n M≤ ≤








=

w n( ) 0.42 0.5 2πn/M( )cos 0.08 4πn/M( )cos+ +=

w n( ) 0.35875 0.48829 2πn/M( )cos
0.14128 4πn/M( )cos 0.01168 6πn/M( )cos

+ +
+

=

w n( ) 0.54 0.46 2πn/M( )cos–=

w n( ) 0.5 0.5 2πn/M( )cos–=
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generatePolynomialCurve {double}, double, 
double, int

{double} Return samples of a curve specified by a polynomial. The first 
argument is an array with the polynomial coefficients, begin-
ning with the constant term, the linear term, the squared term, 
etc. The second argument is the value of the polynomial vari-
able at which to begin, and the third argument is the increment 
on this variable for each successive sample. The final argu-
ment is the length of the returned array.

generateRaisedCosinePulse double, double, int {double} Return an array containing a symmetric raised-cosine pulse. 
This pulse is widely used in communication systems, and is 
called a “raised cosine pulse” because the magnitude its Fou-
rier transform has a shape that ranges from rectangular (if the 
excess bandwidth is zero) to a cosine curved that has been 
raised to be non-negative (for excess bandwidth of 1.0). The 
elements of the returned array are samples of the function: 

,

where x is the excess bandwidth (the first argument) and T is 
the number of samples from the center of the pulse to the first 
zero crossing (the second argument). The samples are taken 
with a sampling interval of 1.0, and the returned array is sym-
metric and has a length equal to the third argument. With an 
excessBandwidth of 0.0, this pulse is a sinc pulse.

generateRectangularWindow int {double} Return an array filled with 1.0 of the specified length. This is a 
rectangular window.

IDCT {double} or
{double}, int or
{double}, int, int

{double} Return the inverse discrete cosine transform of the specified 
array, using the specified (optional) length and normalization 
strategy (see page 90).

IFFT {double} or
{complex} or
{double}, int
{complex}, int

{complex} Return the inverse fast Fourier transform of the specified 
array. If the second argument is given with value , then the 

length of the transform is . Otherwise, the length is the 
next power of two greater than or equal to the length of the 
input array. If the input length does not match this length, then 
input is padded with zeros.

nextPowerOfTwo double int Return the next power of two larger than or equal to the argu-
ment.

poleZeroToFrequency {complex}, {com-
plex}, complex, int

{complex} Given an array of pole locations, an array of zero locations, a 
gain term, and a size, return an array of the specified size rep-
resenting the frequency response specified by these poles, 
zeros, and gain. This is calculated by walking around the unit 
circle and forming the product of the distances to the zeros, 
dividing by the product of the distances to the poles, and mul-
tiplying by the gain.

sinc double double Return the sinc function, , where special care is 
taken to ensure that 1.0 is returned if the argument is 0.0.

TABLE 8: Functions performing signal processing operations

function argument type(s) return type description

h t( ) πt/T( )sin
πt/T

----------------------- xπt/T( )cos
1 2xt/T( )2–
------------------------------×=

n

2n

x( )/xsin
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A.6  I/O Functions and Other Miscellaneous Functions

toDecibels double double Return , where  is the argument.

unwrap {double} {double} Modify the specified array to unwrap the angles. That is, if the 
difference between successive values is greater than  in 
magnitude, then the second value is modified by multiples of 

 until the difference is less than or equal to . In addition, 
the first element is modified so that its difference from zero is 
less than or equal to  in magnitude. 

upsample {double}, int {double} Return a new array that is the result of inserting  zeroes 
between each successive sample in the input array, where  is 
the second argument. The returned array has length , 
where L is the length of the argument array. It is required that 

.

TABLE 9: Miscellaneous functions.

function argument type(s) return type description

cast type1, type2 type1 Return the second argument converted to the type of the first, 
or throw an exception if the conversion is invalid.

constants none record Return a record identifying all the globally defined constants 
in the expression language.

findFile string string Given a file name relative to the user directory, current direc-
tory, or classpath, return the absolute file name of the first 
match, or return the name unchanged if no match is found.

freeMemory none long Return the approximate number of bytes available for future 
memory allocation.

iterate function, int, type {type} Return an array that results from first applying the specified 
function to the third argument, then applying it to the result of 
that application, and repeating to get an array whose length is 
given by the second argument.

map function, {type} {type} Return an array that results from applying the specified func-
tion to the elements of the specified array.

property string string Return a system property with the specified name from the 
environment, or an empty string if there is none. Some useful 
properties are java.version, ptolemy.ptII.dir, 
ptolemy.ptII.dirAsURL, and user.dir.

readFile string string Get the string text in the specified file, or throw an exception if 
the file cannot be found. The file can be absolute, or relative to 
the current working directory (user.dir), the user’s home direc-
tory (user.home), or the classpath.

readResource string string Get the string text in the specified resource (which is a file 
found relative to the classpath), or throw an exception if the 
file cannot be found.

totalMemory none long Return the approximate number of bytes used by current 
objects plus those available for future object allocation.

TABLE 8: Functions performing signal processing operations

function argument type(s) return type description

20 log10 z( )× z

π

2π π

π

n 1–
n
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4.1  Overview
Ptolemy II focuses on component-based design. In this design approach, components are aggre-

gated and connected to construct a model. One of the advantages of component-based design is that
reuse of components becomes possible. Polymorphism is one of the key tenets of object-oriented
design. It refers to the ability of a component to adapt in a controlled way to the type of data being sup-
plied. For example, an addition operation is realized differently when adding vectors than when adding
scalars. In Ptolemy II, use of polymorphism maximizes the potential for reuse of components. 

We call this classical form of polymorphism data polymorphism, because objects are polymorphic
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with respect to data types. A second form of polymorphism, introduced in Ptolemy II, is domain poly-
morphism, where a component adapts in a controlled way to the protocols that are used to exchange
data between components. For example, an addition operation can accept input data delivered by any
of a number of mechanisms, including discrete events, rendezvous, and asynchronous message pass-
ing.

Ptolemy II includes libraries of polymorphic actors that use both kinds of polymorphism to maxi-
mize reusability. Actors from these libraries can be used in a broad range of domains, where the
domain provides the communication protocol between actors. In addition, most of these actors are data
polymorphic, meaning that they can operate on a broad range of data types. In general, writing data
and domain polymorphic actors is considerably more difficult than writing more specialized actors.
This chapter discusses some of the issues.

4.2  Actor Classes
Figure 4.1 shows a UML static structure diagram for the key classes in the ptolemy.actor.lib pack-

age (see appendix A of chapter 1 for an introduction to UML). All the classes in figure 4.1 extend
TypedAtomicActor, except TimedActor and SequenceActor, which are interfaces. TypedAtomicActor
is in the ptolemy.actor package, and is described in more detail in volume 2, on software architecture.
For our purposes here, it is sufficient to know that TypedAtomicActor provides a base class for actors
with ports where the ports carry typed data (encapsulated in objects called tokens).

None of the classes in figure 4.1 have any methods, except those inherited from the base classes
(which are not shown). The classes in figure 4.1 do, however, have public members, most of which are
instances of TypedIOPort or Parameter. By convention, actors in Ptolemy II expose their ports and
parameters as public members, and much of the functionality of an actor is accessed through its ports
and parameters.

Many of the actors are transformers, which extend the Transformer base class. These actors read
input data, modify it in some way, and produce output data. Some other actors that also have this char-
acter, such as AddSubtract, MultiplyDivide, and Expression, do not extend Transformer because they
have somewhat unconventional port names. These actors are represented in figure 4.1 by the box
labeled “... Other Actors ...”.

The stacked boxes labeled “... Transformers ...” and “... Other Actors ...” in figure 4.1 are not stan-
dard UML. They are used here to refer to a set of actors that are listed below. There are too many
actors to show them individually in the static structure diagram. The diagram would lose its utility
because of the resulting clutter.

Most of the library actors can be used in any domain. Some domains, however, can only execute a
subset of the actors in this library. For example, the CT (continuous time) domain, which solves ordi-
nary differential equations, may present data to actors that represent arbitrarily spaced samples of a
continuous-time signal. For such signals, the data presented to an actor cannot be assumed by the actor
to be a sequence, since the domain determines how closely spaced the samples are. For example, the
SampleDelay actor would produce unpredictable results, since the spacing of samples is likely to be
uneven over time.

The TimedActor and SequenceActor interfaces are intended to declare assumptions that the actor
makes about the inputs. They are empty interfaces (i.e., they contain no methods), and hence they are
used only as markers. An actor that implements SequenceActor declares that it assumes its inputs are
sequences of distinct data values, and that it will produce sequences of distinct data values as outputs.
In particular, the input must not be a continuous-time waveform. Thus, any actor that will not work
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properly in the CT domain should declare that it implements this interface1. Most actors do not imple-
ment SequenceActor, because they do not care whether the input is a sequence.

An actor that implements the TimedActor interface declares that the current time in a model exe-
cution affects its behavior. Currently, all domains can execute actors that implement TimedActor,
because all directors provide a notion of current time. However, the results may not be what is
expected. The SDF (synchronous dataflow) domain, for example, does not advance current time. Thus,

1. Unfortunately, a scan of the current actor library (as of version 3.0) will reveal that we have not been very rigor-
ous about this, and many actors that make a sequential assumption about the input fail to implement this inter-
face. We are working on a more rigorous way of making this distinction, based on the concept of behavioral 
types.

FIGURE 4.1.  Key actor base classes and interfaces.

... SequenceSources ...... SequenceSources ...... RandomSources ...... RandomSources ...

Source

+output : TypedIOPort
+trigger : TypedIOPort(Token,multi)

TypedAtomicActor

«Interface»
SequenceActor

«Interface»
TimedActor

Sink

+input : TypedIOPort(multi)

Transformer

+input : TypedIOPort
+output : TypedIOPort

... Sinks ... ... Sources ... ... Transformers ... ... Other Actors ...

TimedSource

+stopTime : Parameter(DoubleToken)

SequenceSource

+firingCountLimit : Parameter(IntToken)

RandomSource

+seed : Parameter(LongToken)

... Timed Sources ... ... SequenceSources ...... RandomSources ...
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if SDF is the top-level domain, the current time will always be zero, which is likely to lead to some
confusion with timed actors.

4.3  Actor Summaries
In this section, we summarize the actors that are provided in the default Vergil actor library, shown

at the left-hand side of the window in figure 4.2. Note that this library is organized for user conve-
nience, and the organization does not exactly match the package structure. Here, we give brief descrip-
tions of each actor to give a high-level view of what actors are available in the library. Refer to the
class documentation for a complete description of these actors (in Vergil, you can right-click on an
icon and select “Get Documentation” to get the detailed documentation for an actor). 

It is useful to know some general patterns of behavior:
• Unless otherwise stated, actors will read at most one input token from each input channel of each 

input port, and will produce at most one output token. No output token is produced unless there are 
input tokens.

• Unless otherwise stated, actors can operate in all domains except the FSM (finite state machine) 
domain, where components are instances of the State class. Additionally, actors that implement the 
SequenceActor or TimedActor interfaces may be rejected by some domains.

4.3.1  Sources
A source actor is a source of tokens. Most source actors extend the Source base class, as shown in

figure 4.1. Such actors have a trigger input port, which in some domains serves to stimulate an output.
In the DE (discrete event) domain, for example, an input at the trigger port causes the current value of
the source to be produced at the time stamp of the trigger input. The trigger port is a multiport, mean-

FIGURE 4.2.  The default Vergil actor library is shown at the left, expanded to the first level.
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ing that multiple channels can be connected to it. The trigger port can also be left unconnected in
domains that will invoke the actor automatically (SDF, DT, PN, ...). There is no need for a trigger in
these domains.

Some source actors use the fireAt() method of the director to request that the actor be fired at par-
ticular times in the future. In domains that do not ignore fireAt(), such as DE, such actors will fire
repeatedly even if there is no trigger input. In the DE domain, the fireAt() method schedules an event
in the future to refire the actor.

Source actors that extend TimedSource have a parameter called stopTime. When the current time
of the model reaches this time, then the actor requests of the director that this actor not be invoked
again. Thus, stopTime can be used to generate a finite source signal. By default, the stopTime parame-
ter has value 0.0, which indicates unbounded execution.

Source actors that extend SequenceSource have a parameter called firingCountLimit. When the
number of iterations of the actor reaches this limit, then the actor requests of the director that this actor
not be invoked again. Thus, firingCountLimit can be used to generate a finite source signal. By default,
the firingCountLimit parameter has value 0, which indicates unbounded execution.

In some domains, such as SDF and DT, it makes no sense to stop the execution of a single actor.
The statically constructed schedule would be disrupted. In these domains, when the specified stopTime
or firingCountLimit is reached, the execution of the entire model will stop.

Some of the most useful actors are Clock, which is used extensively in DE models to trigger regu-
larly timed events; Ramp, which produces a counting sequence; Const, which produces a constant; and
Pulse, which produces an arbitrary sequence. In Vergil, the source library is divided into generic
sources, timed sources, and sequence sources. The first group includes only one source, Const, which
is agnostic about whether its output is interpreted as a timed output or a sequence output. The other
two groups contain actors for which the output is either timed or is logically a sequence.

Generic Sources

Const (extends Source): Produce a constant output with value given by value.

Timed Sources

Clock (extends TimedSource): Produce samples of a piecewise constant signal with the specified val-
ues. The transitions between values occur with the specified period and offsets within the period. This
actor uses fireAt() to schedule firings when time matches the transition times, and thus will at least
produce outputs at these times. To generate a continuous-time clock, you will likely want to use Con-
tinuousClock instead; that version produces two outputs at the transition times, one with the old value
and one with the new.

CurrentTime (extends TimedSource): Produce an output token with value equal to the current time
(the model time when the actor is fired).

PoissonClock (extends TimedSource): Produce samples of a piecewise constant signal with the speci-
fied values. The transitions between values occur according to a Poisson process (which has random
interarrival times with an exponential distribution). This actor uses fireAt() to schedule firings when
time matches the transition times, and thus will at least produce outputs at these times.
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TimedSinewave (composite actor) Output samples of a sinusoidal waveform taken at current time
(when the actor is fired). Note that to generate a continuous-time sine wave in the CT domain you
probably want to use ContinuousSinewave instead.

TriggeredClock (extends Clock): This actor is an extension of Clock with a start and stop input. A
token at the start input will start the clock. A token at the stop input will stop the clock, if it is still run-
ning. To generate a continuous-time clock, you will likely want to use TriggeredContinuousClock
instead; that version produces two outputs at the transition times, one with the old value and one with
the new.

VariableClock (extends Clock): An extension of Clock with an input to dynamically control the period.
NOTE: This actor will likely be replaced at some point by a version of Clock with a period PortParam-
eter.

Sequence Sources

InteractiveShell (extends TypedAtomicActor): This actor creates a command shell on the screen, send-
ing commands that are typed by the user to its output port, and reporting strings received at its input by
displaying them. Each time it fires, it reads the input, displays it, then displays a command prompt
(which by default is ">>"), and waits for a command to be typed. The command is terminated by an
enter or return character, which then results in the command being produced on the output

Interpolator (extends SequenceSource): Produce an output sequence by interpolating a specified set of
values. This can be used to generate complex, smooth waveforms.

Pulse (extends SequenceSource): Produce a sequence of values at specified iteration indexes. The
sequence repeats itself when the repeat parameter is set to true. This is similar to the Clock actor, but it
is not timed. Whenever it is fired, it progresses to the next value in the values array, irrespective of the
current time.

Ramp (extends SequenceSource): Produce a sequence that begins with the value given by init and is
incremented by step after each iteration. The types of init and step are required to support addition.

Sinewave (composite actor): Output successive samples of a sinusoidal waveform. This is a sequence
actor. The timed and continuous versions are TimedSinewave and ContinuousSinewave respectively.

SketchedSource (implements SequenceActor): Output a signal that has been sketched by the user on
the screen.

4.3.2  Sinks
Sink actors are the ultimate destinations for tokens. Sink actors have no outputs, and include actors

that display data in plots, textual form, or tables.
Many of these actors are shown in figure 4.3, which shows a UML static structure diagram. Sev-

eral of these sinks have both time-based and sequence-based versions. TimedPlotter, for example, dis-
plays a plot of its input data as a function of time. SequencePlotter, by contrast, ignores current time,
and uses for the horizontal axis the position of an input token in a sequence of inputs. XYPlotter, on the
other hand, uses neither time nor sequence number, and therefore implements neither TimedActor nor
SequenceActor. All three are derived from Plotter, a base class with a public member, plot, which
implements the plot. This base class has a fillOnWrapup parameter, which has a boolean value. If the
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FIGURE 4.3.  Organization of actors in the ptolemy.actor.lib.gui package.
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value is true (the default), then at the conclusion of the execution of the model, the axes of the plot will
be adjusted to just fit the observed data.

All of the sink actors implement the Placeable interface. Actors that implement this interface have
graphical widgets that a user of the actor may wish to place on the screen. Vergil constructs a display
panel by placing such actors. More customized placement can be achieved by calling the place()
method of the Placeable interface in custom Java code.

In Vergil, the sinks library is divided into generic sinks, timed sinks, and sequence sinks. The first
group includes sinks that are agnostic about whether their inputs are interpreted as a timed events or as
sequence inputs. The other two groups contain actors for which the input is either timed or is logically
a sequence.

Generic Sinks

Discard (extends Sink): Consume and discard input tokens.

Display (extends Sink): Display input tokens in a text area on the screen.

MonitorValue (extends Sink): Display input tokens in the icon of the actor in the block diagram. The
value parameter specifies what to display before any inputs are provided.

Recorder (extends Sink): Record all input tokens for later querying (by Java code). This actor is useful
for Java code that executes models and then wishes to query for results.

SetVariable (extends TypedAtomicActor): Set the value of a variable contained by the container. The
change to the value of the variable takes hold at the end of the current iteration. This helps ensure that
users of value of the variable will see changes to the value deterministically (independent of the sched-
ule of execution of the actors).

XYPlotter (extends Plotter): Display a plot of the data on each inputY channel vs. the data on the cor-
responding inputX channel.

XYScope (extends XYPlotter): Display a plot of the data on each inputY channel vs. the data on the
corresponding inputX channel with finite persistence.

Timed Sinks

TimedPlotter (extends Plotter): Plot inputs as a function of time.

TimedScope (extends TimedPlotter): Plot inputs as a function of time in an oscilloscope style.

Sequence Sinks

ArrayPlotter (extends Plotter): Plot a sequence of arrays of doubles.

BarGraph (extends ArrayPlotter): Plot bar graphs, given arrays of doubles as inputs.

HistogramPlotter (extends PlotterBase): Display a histogram of the data on each input channel.

SequencePlotter (extends Plotter): Plot the input tokens vs. their index number.
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SequenceScope (extends SequencePlotter): Plot sequences that are potentially infinitely long in an
oscilloscope style.

4.3.3  I/O
The “io” library (see figure 4.2) consists of actors that read and write to the file system or network.

Note that the “comm” library under “more libraries” includes a Windows only SerialComm actor that
communicates with serial and parallel ports.

ArrowKeySensor (extends TypedAtomicActor): Pop up a frame that senses arrow keystrokes and pro-
duces outputs accordingly.

DatagramReader (extends TypedAtomicActor): Read datagram packets from the network socket
specified by localSocketNumber and produce them on the output.

DatagramWriter (extends TypedAtomicActor): Send input data received on data port as a UDP data-
gram packet to the network address specified by remoteAddress and remoteSocketNumber.

ExpressionReader (extends LineReader): Read a file or URL, one line at a time, evaluate each line as
an expression, and output the token resulting from the evaluation.

ExpressionWriter (extends LineWriter): Read input tokens and write them, one line at a time, to a
specified file.

LineReader (extends Source): Read a file or URL, one line at a time, and output each line as a string
token.

LineWriter (extends LineWriter): Read input string-valued tokens and write them, one line at a time, to
a specified file.

URLDirectoryReader (extends URLReader): If the URL names a directory, it outputs the name of
each file or subdirectory contained in the directory, and if the URL names a file, then it outputs the
name of that file.

4.3.4  Math
The math library (see figure 4.2) consists mostly of transformer actors, each of which calculates

some mathematical function. Some of these actors operate on type “scalar”, meaning all numerical
data types (complex, double, int, long, and fix)1.

AbsoluteValue (extends Transformer): Produce an output on each firing with a value that is equal to
the absolute value of the input.

AddSubtract (extends TypedAtomicActor): Add tokens on the plus input channels and subtract tokens
on the minus input channels.

Accumulator (extends Transformer): Output the initial value plus the sum of all the inputs since the
last time a true token was received at the reset port.

1. In future releases, these actors may operate also on arrays and matrices.
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Average (extends Transformer): Output the average of the inputs since the last time a true token was
received at the reset port. The reset input may be left disconnected in most domains.

Counter (extends TypedAtomicActor): An up-down counter of received tokens.

Differential (extends Transformer): Output the difference between successive inputs.

DotProduct (extends TypedAtomicActor): Output the dot product of two input arrays.

Expression (extends TypedAtomicActor): On each firing, evaluate the expression parameter, whose
value is set by an expression that may include references to any input ports that have been added to the
actor. The expression language is described in the Expressions chapter, with the addition that the
expressions can refer to the values of inputs, and to the current time by the variable name “time,” and
to the current iteration count by the variable named “iteration.” To add input ports to the actor in
Vergil, right click on its icon and select “Configure Ports,” and then select “Add.”

Limiter (extends Transformer): Produce an output token on each firing with a value that is equal to the
input if the input lies between top and bottom. Otherwise, if the input is greater than top, output top. If
the input is less than bottom, output bottom.

LookupTable (extends Transformer): Output the value in the array of tokens specified by the table
parameter at the index specified by the input port.

MathFunction (extends TypedAtomicActor): Produce an output token with a value that is a function of
the input(s). The function is specified by the function attribute, where valid functions are exp, log,
modulo, sign, square, and sqrt.

Maximum (extends TypedAtomicActor): Broadcast an output token on each firing on maximumValue
with a value that is the maximum of the values on the input channels. The index of this maximum is
broadcast on channelNumber.

Minimum (extends TypedAtomicActor): Broadcast an output token on each firing on minimumValue
with a value that is the minimum of the values on the input channels. The index of this minimum is
broadcast on channelNumber.

MultiplyDivide (extends TypedAtomicActor): Multiply tokens on the multiply input channels, and
divide by tokens on the divide input channels.

Quantizer (extends Transformer): Produce an output token with the value in levels that is closest to the
input value.

Remainder (extends Transformer): Produce an output token with the value that is the remainder after
dividing the token on the input port by the divisor.

Scale (extends Transformer): Produce an output that is the product of the input and the factor.

TrigFunction (extends Transformer): Produce an output token with a value that is a function of the
input. The function is specified by the function attribute, where valid functions are acos, asin, atan,
cos, sin, and tan.

4.3.5  Random
The random library (see figure 4.2) consists of actors that generate random data.
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Bernoulli (extends RandomSource): Produce a random sequence of booleans (a source of coin flips).

DiscreteRandomSource (extends RandomSource): Produce tokens with the given probability mass
function.

Gaussian (extends RandomSource): Produce a random sequence with a Gaussian distribution.

Rician (extends RandomSource): Produce a random sequence with a Rician or Rayleigh distribution.

Uniform (extends RandomSource): Produce a random sequence with a uniform distribution.

4.3.6  Flow Control
The flow control actors route tokens or otherwise affect the flow of control. The output of some of

these actors are controlled via a control or select port. The flow control directory of the Vergil actor
library contains a subdirectory named “boolean flow control”. Actors in this subdirectory are variants
of actors in the “flow control” directory that have boolean select or control ports.

Aggregators

BusAssembler (extends TypedAtomicActor): Aggregate all input relation channels into one output
"bus" relation.

BusDisassembler (extends TypedAtomicActor): Split the input bus relation into individual (possibly
bus) output port relations.

Commutator (extends Transformer): Interleave the data on the input channels into a single sequence
on the output.

Distributor (extends Transformer): Distribute the data on the input sequence into multiple sequences
on the output channels.

Multiplexor (extends Transformer): Produce as output the token on the channel of input specified by
the select input. Exactly one token is consumed from each channel of input in each firing.

RecordAssembler (extends TypedAtomicActor): Produce an output token that results from combining a
token from each of the input ports (which must be added by the user). To add input ports to the actor in
Vergil, right click on its icon and select “Configure Ports,” and then select “Add.” The name of each
field in the record is the name of the port that supplies the field.

RecordDisassembler (extends TypedAtomicActor): Produce output tokens on the output ports (which
must be added by the user) that result from separating the record on the input port. To add output ports
to the actor in Vergil, right click on its icon and select “Configure Ports,” and then select “Add.” The
name of each field extracted from the record is the name of the output port to which the value of the
field is sent.

RecordUpdater (extends TypedAtomicActor): Produce an output token that results from the union of
the record read from the input port and the values supplied by the other input ports. The user must cre-
ate the other input ports. Input ports with the same name as a field in the original input record are used
to update the corresponding field in the output token.
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Select (extends Transformer): Produce as output the token on the channel of input specified by the
control input. Tokens on channels that are not selected are not consumed.

Switch (extends Transformer): Produce the token read from the input port on the channel of output
specified by the control input.

Synchronizer (extends Transformer): Wait until at least one token exists on each channel of input, then
consume exactly one token from each input channel and output each token on its corresponding output
channel.

VectorAssembler (extends Transformer): On each firing, read exactly one token from each channel of
the input port and assemble the tokens into a double matrix with one column.

VectorDisassembler (extends Transformer): On each firing, read one column vector (i.e. a double
matrix token with one column) from the input port and send out individual doubles to each channel of
the output port.

Boolean Flow Control

BooleanMultiplexor (extends TypedAtomicActor): Produce as output the token from either trueInput
or falseInput as specified by the select input. Exactly one token from each input port is consumed.

BooleanSelect (extends TypedAtomicActor): Produce as output the token from either trueInput or
falseInput as specified by the control input. Tokens from the port that is not selected are not consumed.

BooleanSwitch (extends TypedAtomicActor): Produce the token read from the input port on either the
trueOutput or the falseOutput port, as specified by the control input port.

Sequence Control

Chop (extends SDFTransformer): Chop an input sequence and construct from it a new output
sequence. This actor can be used, for example, for zero-padding, overlapping windows, delay lines,
etc.

Repeat (extends SDFTransformer): Repeat each input sample (a block of tokens) a specified number
of times.

SampleDelay (extends SDFTransformer): Produce a set of initial tokens during the initialize() method,
and subsequently pass input tokens to the output. Used to break dependency cycles in directed loops of
SDF models.

Sequencer (extends Transformer): Put tokens in order according to their numbers in a sequence.

Execution Control

Stop (extends Sink): Stop execution of a model when it receives a true token on any input channel.

ThrowException (extends Sink): Throw an IllegalActionException when it receives a true token on
any input channel.
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ThrowModelError (extends Sink): Throw a model error when it receives a true token on any input
channel. A model error is an exception that is passed up the containment hierarchy rather than being
immediately thrown as an exception.

4.3.7  Real Time
The behavior of the real time actors is affected by the amount of elapsed real time.

RealTimePlotter (extends Plotter): Plot input data as a function of elapsed real time.

Sleep (extends Transformer): Produce as output the tokens received on input after an amount of real
time specified by the sleepTime parameter.

VariableSleep (extends Transformer): Produce as output the tokens received on input after an amount
of real time specified by the sleepTime input. NOTE: This will likely be replaced by a version of Sleep
with a PortParameter.

WallClockTime (extends Source): Output the elapsed real time in seconds. This actor also appears in
the “real time” directory of the Vergil actor library.

4.3.8  Logic
The logic actors perform logical operations on inputs.

Comparator (extends TypedAtomicActor): Produce an output token with a value that is a comparison
of the input. The comparison is specified by the comparison attribute, where valid comparisons are >,
>=, <, <=, and ==.

Equals (extends Transformer): Consume at most one token from each channel of input, and produce
an output token with value true if these tokens are equal in value, and false otherwise.

IsPresent (extends Transformer): Consume at most one token from each channel of input, and output a
boolean on the corresponding output channel (if there is one). The value of the boolean is true if the
input is present and false otherwise.

LogicalNot (extends Transformer): Produce an output token which is the logical negation of the input
token.

LogicFunction (extends Transformer): Produce an output token with a value that is a logical function
of the tokens on the channels of input. The function is specified by the function attribute, where valid
functions are and, or, xor, nand, nor, and xnor.

4.3.9  Conversions
Ptolemy II has a sophisticated type system that allows actors to be polymorphic (to operate on

multiple data types). Typically, actors express type constraints between their ports and their parame-
ters. When actors are connected, these type constraints are resolved to determine the type of each port.
Conversions between types are automatic if they result in no loss of data. However, sometimes, a
model builder may wish to force a particular conversion. The actors in the conversions library support
this.

BooleanToAnything (extends Converter): Convert a Boolean input token to any data type.
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BitsToInt (extends SDFConverter): Convert 32 successive binary inputs into a two’s complement inte-
ger.

CartesianToComplex (extends TypedAtomicActor): Convert two tokens representing the real and
imaginary of a complex number into their complex representation.

CartesianToPolar (extends TypedAtomicActor): Convert a Cartesian pair (a token on the x input and a
token on the y input) to two tokens representing its polar form (which are output on angle and magni-
tude).

ComplexToCartesian (extends TypedAtomicActor): Convert a token representing a complex number
into its Cartesian components (which are output on real and imag).

ComplexToPolar (extends TypedAtomicActor): Convert a token representing a complex number into
two tokens representing its polar form (which are output on angle and magnitude).

DoubleToFix (extends Converter): Convert a double into a fix point number with a specific precision,
using a specific quantization strategy.

ExpressionToToken (extends Converter): Read a string expression from the input port and outputs the
token resulting from the evaluation.

FixToDouble (extends Converter): Convert a fix point into a double, by first setting the precision of
the fix point to the supplied precision, using a specific quantization strategy.

FixToFix (extends Converter): Convert a fix point into another fix point with possibly a different pre-
cision, using a specific quantizer and overflow strategy. 

IntToBits (extends SDFConverter): Convert an input integer into 32 successive binary outputs.

InUnitsOf (extends Transformer): Convert input tokens to specified units by dividing the input by the
value of the units parameter. This actor is designed to be used with a unit system, which must be
included in the model (note that some Ptolemy II applications do not include unit systems).

LongToDouble (extends Converter): Convert an input of type long to an output of type double.

PolarToCartesian (extends TypedAtomicActor): Converts two tokens representing a polar coordinate
(a token on angle and a token on magnitude) to two tokens representing their Cartesian form (which
are output on x and y).

PolarToComplex (extends TypedAtomicActor): Converts two tokens representing polar coordinates (a
token on angle and a token on magnitude) to a token representing their complex form.

Round (extends TypedAtomicActor): Produce an output token with a value that is a rounded version of
the input. The rounding method is specified by the function attribute, where valid functions are ceil,
floor, round, and truncate.

StringToUnsignedByteArray (extends Converter): Convert an input of type string to an array of type
unsignedByte.

TokenToExpression (extends Converter): Read a string expression from the input port and output the
token resulting from the evaluation.
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UnsignedByteArrayToString (extends Converter): Convert an input that is an array of bytes into a
string.

4.3.10  Array
The array library supports manipulations of arrays, which are ordered collections of tokens of arbi-

trary type.

ArrayAppend (extends Transformer): Append arrays on the input channels to produce a single output
array.

ArrayElement (extends Transformer): Extract an element from an array and produce it on the output.

ArrayExtract (extends Transformer): Extract a subarray from an array and produce it on the output.

ArrayLength (extends Transformer): Output the length of the input array.

ArrayMaximum (extends Transformer): Extract the maximum element from an array.

ArrayMinimum (extends Transformer): Extract the minimum element from an array.

ArrayToSequence (extends SDFTransformer): Extract all elements from an input array and produce
them sequentially on the output port.

SequenceToArray (extends SDFTransformer): Collect a sequence of inputs into an array and produce
the array on the output port.

4.3.11  Matrix
The matrix library supports matrix manipulations. Currently this library is very small; if you need

matrix operations that are not in this library, then very likely they are available in the expression lan-
guage (see the Expression chapter). You can access these using the Expression actor.

MatrixToSequence (extends SDFTransformer): Unbundle a matrix into a sequence of output tokens.
On each firing, this actor writes the elements of the array to the output as a sequence of output tokens.

MatrixViewer (extends Sink): Display the contents of a matrix input.

SequenceToMatrix (extends SDFTransformer): Bundle a specified number of input tokens into a
matrix. On each firing, this actor reads rows times columns input tokens and writes one output matrix
token with the specified number of rows and columns.

4.3.12  Signal Processing
The signal processing library is divided into sublibraries.

Audio

The audio library provides actors that can read and write audio files, can capture data from an
audio input such as a CD or microphone, and can play audio data through the speakers of the comput-
ers. It uses the javasound library, which is part of the Sun Microsystems’ Java 2 Standard Edition
(J2SE) version 1.3.0 and higher. The AudioCapture and AudioPlayer actors are unusual in that they
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have coupled parameter values. Changing the parameters of one results in the parameters of the other
being changed. Also, as of this writing, they have the restriction that only one of each may be used in a
model at a time, and that if there are two models that use them, then those two models may not be exe-
cuted simultaneously.

AudioCapture (extends Source): Capture audio from the audio input port of the computer, or from its
microphone, and produce the samples at the output.

AudioReader (extends Source): Read audio from a URL, and produce the samples at the output.

AudioPlayer (extends Sink): Play audio samples on the audio output port of the computer, or from its
speakers.

AudioWriter (extends Sink): Write audio data to a file.

Communications

The communications library collects actors that support modeling and design of digital communi-
cation systems.

ConvolutionalCoder (extends Transformer): Encode an input sequence of bits using a convolutional
code.

DeScrambler (extends Transformer): Descramble the input bit sequence using a feedback shift regis-
ter.

HadamardCode (extends Source): Produce a Hadamard codeword by selecting a row from a Had-
amard matrix.

LineCoder (extends SDFTransformer): Read a sequence of booleans (of length wordLength) and inter-
pret them as a binary index into the table, from which a token is extracted and sent to the output.

LMSAdaptive (extends FIR): Filter the input with an adaptive filter, and update the coefficients of the
filter using the input error signal according to the LMS (least mean-square) algorithm.

RaisedCosine (extends FIR): An FIR filter with a raised cosine frequency response. This is typically
used in a communication systems as a pulse shaper or a matched filter.

Scrambler (extends Transformer): Scramble the input bit sequence using a feedback shift register.

ViterbiDecoder (extends Transformer): Decode inputs using (hard or soft) Viterbi decoding.

Filtering

DelayLine (extends SDFTransformer): In each firing, output the n most recent input tokens collected
into an array, where n is the length of initialValues. In the beginning, before there are n most recent
tokens, use the tokens from initialValues.

DownSample (extends SDFTransformer): Read factor inputs and produce only one of them on the out-
put.
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FIR (extends SDFTransformer): Produce an output token with a value that is the input filtered by an
FIR filter with coefficients given by taps.

IIR (extends Transformer): Produce an output token with a value that is the input filtered by an IIR fil-
ter using a direct form II implementation.

Lattice (extends Transformer): Produce an output token with a value that is the input filtered by an FIR
lattice filter with coefficients given by reflectionCoefficients.

LinearDifferenceEquationSystem (extends Transformer): Linear system given by an [A, b, c, d] state-
space model.

LMSAdaptive (extends FIR): Filter the input with an adaptive filter, and update the coefficients of the
filter using the input error signal according to the LMS (least mean-square) algorithm.

RecursiveLattice (extends Transformer): Produce an output token with a value that is the input filtered
by a recursive lattice filter with coefficients given by reflectionCoefficients.

UpSample (extends SDFTransformer): Read one input token and produce factor outputs, with all but
one of the outputs being a zero of the same type as the input.

VariableFIR (extends FIR): Filter the input sequence with an FIR filter with coefficients given on the
newTaps input port. The blockSize parameter specifies the number of successive inputs that are pro-
cessed for each set of taps provided on newTaps.

VariableLattice (extends Lattice): Filter the input sequence with an FIR lattice filter with coefficients
given on the newCoefficients input port. The blockSize parameter specifies the number of successive
inputs that are processed for each set of taps provided on newCoefficients.

VariableRecursiveLattice (extends Lattice): Filter the input sequence with a recursive lattice filter
with coefficients given on the newCoefficients input port. The blockSize parameter specifies the num-
ber of successive inputs that are processed for each set of taps provided on newCoefficients.

Image Processing
A preliminary image processing library is provided with the 3.0 release, but it is at a sufficiently

early stage of development that we do not document here. See the on-line documentation. 

Spectrum

DB (extends Transformer): Produce a token that is the value in decibels (k*log10(z)) of the token
received, where k is 10 if inputIsPower is true, and 20 otherwise. The output is never less than min (it
is clipped if necessary).

FFT (extends SDFTransformer): A fast Fourier transform of size 2order.

IFFT (extends SDFTransformer): An inverse fast Fourier transform of size 2order.

LevinsonDurbin (extends SDFTransformer): Calculate the linear predictor coefficients (for both an
FIR and Lattice filter) for the specified autocorrelation input.
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MaximumEntropySpectrum (composite actor): A fancy spectrum estimator that uses the Levinson-
Durbin algorithm to calculate linear predictor coefficients, and then uses those as a parametric model
for the random process.

Periodogram (composite actor): A spectrum estimator calculates a periodogram.

PhaseUnwrap (extends Transformer): A simple phase unwrapper.

SmoothedSpectrum (composite actor): A spectrum estimator called the Blackman-Tukey algorithm,
which estimates an autocorrelation function by averaging products of the input samples, and then cal-
culates the FFT of that estimate.

Spectrum (composite actor): A simple spectrum estimator that calculates the FFT of the input. For a
random process, this is called the periodogram spectral estimate.

Statistical

A small number of statistical analysis actors are provided.

Autocorrelation (extends SDFTransformer): Estimate the autocorrelation by averaging products of the
input samples.

PowerEstimate (extends Transformer): Estimate the power of the input signal.

4.3.13  Domain Specific
Several sublibraries contain actors that are primarily useful only with corresponding directors.

Continuous Time

The continuous-time library contains a set of actors designed specifically for use in the CT
domain. The continuous time directory of the Vergil actor library contains subdirectories named “event
generators and “waveform generators”.

ContinuousClock: Generate a piecewise-constant signal with instantaneous transitions between levels.

TriggeredContinuousClock: Generate a piecewise-constant signal with instantaneous transitions
between levels, where two input ports are provided to start and stop the clock.

ContinuousSinewave: Generate a continuous-time sinusoidal signal.

CTCompositeActor: Composite actor to use when a continuous-time model is created within a contin-
uous-time model.

Continuous Time: Dynamics

The actors in this sublibrary have continuous-time dynamics (i.e., they involve integrators, and
hence must coordinate with the differential equation solver).

Integrator: Integrate the input signal over time to produce the output signal. That is, the input is the
derivative of the output with respect to time. This actor can be used to close feedback loops in CT to
define interesting differential equation systems.
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LaplaceTransferFunction: Filter the input with the specified rational Laplace transform transfer func-
tion. Note that this actor constructs a submodel, so it might be interesting to look inside the actor after
it is initialized.

LinearStateSpace: Filter the input with a linear system. Note that this actor constructs a submodel, so
it might be interesting to look inside the actor after it is initialized.

DifferentialSystem: Filter the input with the specified system, which can nonlinear, and is specified
using the expression language. Note that this actor constructs a submodel, so it might be interesting to
look inside the actor after it is initialized.

RateLimiter: Limit the first derivative of the input signal, and produce the result as an output
sequence.

Continuous Time: To Discrete

The actors in this sublibrary produce discrete event signals, which are signals that only have values
at discrete points in time.

EventSource: Output a set of events at discrete set of time points.

LevelCrossingDetector: A event detector that converts continuous signals to discrete events when the
continuous signal crosses a level threshold. 

PeriodicSampler: Sample the input signal with the specified rate, producing discrete output events.

TriggeredSampler: Sample the input signal at times where the trigger input has a discrete input events.

ThresholdMonitor: Output true if the input value is in the interval [a, b], which is centered at thresh-
oldCenter and has width thresholdWidth. This actor controls the integration step size so that the input
does not cross the threshold without producing at least one true output.

ZeroCrossingDetector: When the trigger is zero (within the specified errorTolerance), then output the
value from the input port as a discrete event. This actor controls the integration step size to accurately
resolve the time at which the zero crossing occurs.

Continuous Time: To Continuous

The actors in this sublibrary convert discrete event signals into continuous-time signals.

ZeroOrderHold: Convert discrete events at the input to a continuous-time signal at the output by hold-
ing the value of the discrete event until the next discrete event arrives.

FirstOrderHold: Convert discrete events at the input to a continuous-time signal at the output by pro-
jecting the value with the derivative.

4.3.14  Discrete Event
A library of actors is provided to particularly support discrete-event models. In discrete-event

models, signals consist of events placed in time, where time is a double. Events are processed in chro-
nological order.
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EventButton: Output a token in response to the click of a button.

EventFilter: An actor that filters a stream of Boolean Tokens. Every true input token that it receives is
reproduced on the output port. False tokens are discarded. This is usually used to properly trigger other
discrete event actors (such as inhibit and select) based on boolean values.

Inhibit: Output a received input token, unless the inhibit port receives a token. 

Merge: Merge input events into a single signal.

PreemptableTask: Simulate a preemptable task. 

Previous: On each iteration, this actor produces the token received on the previous iteration. On the
first iteration, it produces the token given by the initialValue parameter, if such a value has been set.

Queue: This actor implements an event queue. When a token is received on the input port, it is stored
in the queue. When the trigger port receives a token, the oldest element in the queue is output. If there
is no element in the queue when a token is received on the trigger port, then no output is produced. 

QueueWithNextOut: This actor is like the Queue actor above. An additional output port, nextOut, has
been added which allows the model to know what's next to come out. This new output produces a
token whenever the queue has been empty and a new token is queued. It also produces an output when-
ever a token is taken from the queue and at least one token remains. Otherwise, no output token is pro-
duced at nextOut. The token produced is the oldest token remaining in the queue. 

Sampler: On each trigger input, produce at the output the most recently seen input.

SamplerWithDefault: Output the most recent input token when the trigger port receives a token. If no
token has been received on the input port when a token is received on the trigger port, then the value of
the initialValue parameter is produced.

Server: Delay input events until they have been “served” for the specified amount of time.

SingleEvent: Produce a single event with the specified time and value.

TimedDelay: Delay input events by the specified amount.

TimeGap: Produce at the output the amount of time between input events.

Timer: Given an input time value, produce value on the output that amount of time in the future.

VariableDelay: Delay input events by the specified amount.

WaitingTime: Measure the amount of time that one event (arriving on waiter) has to wait for an event
to arrive on waitee. There is an output event for every event that arrives on waiter, where the value of
that output is the time spent waiting, and the time of the output is time of the arriving waitee event.

4.4  Data Polymorphism
A data polymorphic actor is one that can operate on any of a number of input data types. For exam-

ple, AddSubtract can accept any type of input. Addition and subtraction are possible on any type of
token because they are defined in the base class Token.
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Figure 4.4 shows the methods defined in the base class Token. All data exchanged between actors
in Ptolemy is wrapped in an instance of Token (or more precisely, in an instance of a class derived
from Token). Notice that add() and subtract() are methods of this base class. This makes it easy to
implement a data polymorphic adder.

It is instructive to examine the code in an actor that performs data polymorphic operations. The
fire() method of the AddSubtract actor is shown in figure 4.5. In this code, we first iterate through the
channels of plus input. The first token read (by the get() method) is assigned to sum. Subsequently, the
polymorphic add() method of that token is used to add additional tokens. The second iteration, over the
channels at the minus input port, is slightly trickier. If no tokens were read from the plus input, then the
variable sum is initialized by calling the polymorphic zero() method of the first token read at the minus
port. The zero() method returns whatever a zero value is for the token in question.

FIGURE 4.4.  The Token class defines a polymorphic interface that includes basic arithmetic operations.

Token

+add(rightArg : Token) : Token
+addReverse(leftArg : Token) : Token
+convert(token : Token) : Token
+divide(divisor : Token) : Token
+divideReverse(dividend : Token) : Token
+getType() : Type
+isEqualTo(token : Token) : BooleanToken
+modulo(rightArg : Token) : Token
+moduloReverse(leftArg : Token) : Token
+multiply(rightFactor : Token) : Token
+multiplyReverse(leftFactor : Token) : Token
+one() : Token
+subtract(rightArg : Token) : Token
+subtractReverse(leftArg : Token) : Token
+zero() : Token

FIGURE 4.5.  The fire() method of the AddSubtract shows the use of polymorphic add() and subtract() meth-
ods in the Token class (see figure 4.4).

public void fire() throws IllegalActionException {
Token sum = null;
for (int i = 0; i < plus.getWidth(); i++) {

if (plus.hasToken(i)) {
if (sum == null) {

sum = plus.get(i);
} else {

sum = sum.add(plus.get(i));
}

    }
}
for (int i = 0; i < minus.getWidth(); i++) {

if (minus.hasToken(i)) {
Token in = minus.get(i);
if (sum == null) {

sum = in.zero();
}
sum = sum.subtract(in);

}
}
if (sum != null) {

output.send(0, sum);
}

}
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Not all classes derived from Token override all its methods. For example, StringToken overrides
add() but not subtract(). Adding strings means simply concatenating them, but it is hard to assign a rea-
sonable meaning to subtraction. Thus, if AddSubtract is used on strings, then the minus port must not
ever receive tokens. It may be simply left disconnected, in which case minus.getWidth() returns zero.
If the subtract() method of a StringToken is called, then a runtime exception will be thrown.

4.5  Domain Polymorphism
Most actors access their ports as shown in figure 4.5, using the hasToken(), get(), and send() meth-

ods. Those methods are polymorphic, in that their exact behavior depends on the domain. For example,
get() in the CSP domain causes a rendezvous to occur, which means that the calling thread is sus-
pended until another thread sends data to the same port (using, for example, the send() method on one
of its ports). Correspondingly, a call to send() causes the calling thread to suspend until some other
thread calls a corresponding get(). In the PN domain, by contrast, send() returns immediately (if there
is room in the channel buffers), and only get() causes the calling thread to suspend.

Each domain has slightly different behavior associated with hasToken(), get(), send() and other
methods of ports. The actor, however, does not really care. The fire() method shown in figure 4.5 will
work for any reasonable implementation of these methods. Thus, the AddSubtract actor is domain
polymorphic.

Domains also have different behavior with respect to when the fire() method is invoked. In pro-
cess-oriented domains, such as CSP and PN, a thread is created for each actor, and an infinite loop is
created to repeatedly invoke the fire() method. Moreover, in these domains, hasToken() always returns
true, since you can call get() on a port and it will not return until there is data available. In the DE
domain, the fire() method is invoked only when there are new inputs that happen to be the oldest ones
in the systems, and hasToken() returns true only if there is new data on the input port. The design of
actors for multiple domains is covered in the Designing Actors chapter.
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5.1  Overview
Ptolemy is about component-based design. The domains define the semantics of the interaction

between components. This chapter explains the common, domain-independent principles in the design
of components that are actors. Actors are components with input and output that at least conceptually
operate concurrently with other actors.

As explained in the previous chapter, some actors are designed to be domain polymorphic, mean-
ing that they can operate in multiple domains. Others are domain specific. Refer to the domain chap-
ters in part 3 for domain-specific information relevant to the design of actors. This chapter explains
how to design actors so that they are maximally domain polymorphic. As also explained in the previ-
ous chapter, many actors are also data polymorphic. This means that they can operate on a wide variety
of token types. Domain and data polymorphism help to maximize the reusability of actors and to mini-
mize the amount of duplicated code when building an actor library.

Code duplication can also be avoided by using object-oriented inheritance. Inheritance can also
help to enforce consistency across a set of actors. Figure 4.1 shows a UML static structure diagram of
the Ptolemy actor library. Three base classes, Source, Sink, and Transformer, exist to ensure consistent
naming of ports and to avoid duplicating code associated with those ports. Since most actors in the
library extend these base classes, users of the library can guess that an input port is named “input” and
an output port is named “output,” and they will probably be right. Using base classes avoids input ports
named “in” or “inputSignal” or something else. This sort of consistency helps to promote re-use of
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actors because it makes them easier to use. Thus, we recommend using a reasonably deep class hierar-
chy to promote consistency.

5.2  Anatomy of an Actor
Each actor consists of a source code file written in Java. Sources are compiled to Java byte code as

directed by the makefile in their directory. Thus, when creating a new actor, it is necessary to add its
name to the local makefile. Vergil, described fully in its own chapter, is the graphical design tool com-
monly used to compose actors and other components into a complete program, a “Ptolemy model.” To
facilitate using an actor in Vergil, it must appear in one of the actor libraries. This permits it to be
dragged from the library pallet onto the design canvas. The libraries are XML files. Many of the actor
libraries are in the $PTII/ptolemy/actor/lib directory.

The basic structure of an actor is shown in figure 5.1. In that figure, keywords in bold are features
of Ptolemy II that are briefly described here and described in more detail in the chapters of part 2. Italic
text would be substituted with something pertinent in an actual actor definition.

We will go over this structure in detail in this chapter. The source code for existing Ptolemy II
actors, located mostly in $PTII/ptolemy/actor/lib, should also be viewed as a key reference.

5.2.1  Ports
By convention, ports are public members of actors. They represent a set of input and output chan-

nels through which tokens may pass to other ports. Figure 5.1 shows a single port portName that is an
instance of TypedIOPort, declared in the line

public TypedIOPort portName;

Most ports in actors are instances of TypedIOPort, unless they require domain-specific services, in
which case they may be instances of a domain-specific subclass, such as DEIOPort. The port is actu-
ally created in the constructor by the line

portName = new TypedIOPort(this, "portName", true, false);

The first argument to the constructor is the container of the port, this actor. The second is the name of
the port, which can be any string, but by convention, is the same as the name of the public member.
The third argument specifies whether the port is an input (it is in this example), and the fourth argu-
ment specifies whether it is an output (it is not in this example). There is no difficulty with having a
port that is both an input and an output, but it is rarely useful to have one that is neither.

Multiports and Single Ports. A port can be a single port or a multiport. By default, it is a single port. It
can be declared to be a multiport with a statement like

portName.setMultiport(true);

All ports have a width, which corresponds to the number of channels the port represents. If a port is not
connected, the width is zero. If a port is a single port, the width can be zero or one. If a port is a multi-
port, the width can be larger than one. 
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/** Javadoc comment for the actor class. */
public class ActorClassName extends BaseClass implements MarkerInterface {

/** Javadoc comment for constructor. */
public ActorClassName(CompositeEntity container, String name)

throws NameDuplicationException, IllegalActionException  {
super(container, name);
// Create and configure ports, e.g. ...
portName = new TypedIOPort(this, "portName", true, false);
// Create and configure parameters, e.g. ...
parameterName = new Parameter(this, "parameterName");
parameterName.setTypeEquals(BaseType.DOUBLE);

}

///////////////////////////////////////////////////////////////////
////                     ports and parameters                  ////

/** Javadoc comment for port. */
    public TypedIOPort portName;

/** Javadoc comment for parameter. */
public Parameter parameterName;

///////////////////////////////////////////////////////////////////
////                         public methods                    ////

/** Javadoc comment for fire method. */
public void fire() {

super.fire();
... read inputs and produce outputs ...

}

/** Javadoc comment for initialize method. */
public void initialize() {

super.initialize();
... initialize local variables ...

}

/** Javadoc comment for prefire method. */
public boolean prefire() {

... determine whether firing should proceed and return false if not ...
return super.prefire();

}

/** Javadoc comment for preinitialize method. */
public void preinitialize() {

super.preinitialize();
... set port types and/or scheduling information ...

}

/** Javadoc comment for postfire method. */
public boolean postfire() {

... update persistent state ...

... determine whether firing should continue to next iteration and return false if not ...
return super.postfire();

}

/** Javadoc comment for wrapup method. */
public void wrapup() {

super.wrapup();
... display final results ...

}
}

FIGURE 5.1.  Anatomy of an actor.
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Reading and Writing. Data (encapsulated in a token) can be sent to a particular channel of an output
port with the syntax

portName.send(channelNumber, token);

where channelNumber is the number of the channel (beginning with 0 for the first channel). The width
of the port, the number of channels, can be obtained by

int width = portName.getWidth();

If the port is unconnected, then the token is not sent anywhere. The send() method will simply return.
Note that in general, if the channel number refers to a channel that does not exist, the send() method
simply returns without complaining.

A token can be sent to all output channels of a port (or none if there are none) by

portName.broadcast(token);

You can generate a token from a value and then send this token by

portName.send(channelNumber, new IntToken(integerValue));

A token can be read from a channel by

Token token = portName.get(channelNumber);

You can read from channel 0 of a port and extract the contained value (if you know its type) by

double variableName = ((DoubleToken)portName.get(0)).doubleValue();

You can query an input port to see whether such a get() will succeed (whether a token is available) by 

boolean tokenAvailable = portName.hasToken(channelNumber);

You can also query an output port to see whether a send() will succeed using

boolean spaceAvailable = portName.hasRoom(channelNumber);

although with most current domains, the answer is always true. Note that the get(), hasRoom() and has-
Token() methods throw IllegalActionException if the channel is out of range, but send() just silently
returns.

Type Constraints. Ptolemy II includes a sophisticated type system, described fully in the Type System
chapter. This type system supports specification of type constraints in the form of inequalities between
types. These inequalities can be easily understood as representing the possibility of lossless conver-
sion. Type a is less than type b if an instance of a can be losslessly converted to an instance of b. For
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example, IntToken is less than DoubleToken, which is less than ComplexToken. However, LongToken
is not less than DoubleToken, and DoubleToken is not less than LongToken, so these two types are said
to be incomparable.

Suppose that you wish to ensure that the type of an output is greater than or equal to the type of a
parameter. You can do so by putting the following statement in the constructor:

portName.setTypeAtLeast(parameterName);

This is called a relative type constraint because it constrains the type of one object relative to the type
of another. Another form of relative type constraint forces two objects to have the same type, but with-
out specifying what that type should be:

portName.setTypeSameAs(parameterName);

These constraints could be specified in the other order,

parameterName.setTypeSameAs(portName);

which obviously means the same thing, or

parameterName.setTypeAtLeast(portName);

which is not quite the same.
Another common type constraint is an absolute type constraint, which fixes the type of the port

(i.e. making it monomorphic rather than polymorphic),

portName.setTypeEquals(BaseType.DOUBLE);

The above line declares that the port can only handle doubles. Another form of absolute type constraint
imposes an upper bound on the type,

portName.setTypeAtMost(BaseType.COMPLEX);

which declares that any type that can be losslessly converted to ComplexToken is acceptable. By
default, for any input port that has no declared type constraints, type constraints are automatically cre-
ated that declares its type to be less than that of any output ports that have no declared type constraints.
If there are input ports with no constraints, but no output ports lacking constraints, then those input
ports will be unconstrained. Conversely, if there are output ports with no constraints, but no input ports
lacking constraints, then those output ports will be unconstrained. Of course, you can declare a port to
be unconstrained by saying

portName.setTypeAtMost(BaseType.GENERAL);

For full details of the type system, see the Type System chapter in volume 2.
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Examples. To be concrete, consider first the code segment shown in figure 5.2, from the Transformer
class in the ptolemy.actor.lib package. This actor is a base class for actors with one input and one out-
put. The code shows two ports, one that is an input and one that is an output. By convention, the Java-
doc1 comments indicate type constraints on the ports, if any. If the ports are multiports, then the
Javadoc comment will indicate that. Otherwise, they are assumed to be single ports. Derived classes
may change this, making the ports into multiports, in which case they should document this fact in the
class comment. Derived classes may also set the type constraints on the ports.

An extension of Transformer is shown in figure 5.3, the SimplerScale actor, which is a simplified
version of the Scale actor which is defined in $PTII/ptolemy/actor/lib/Scale.java. This actor produces
an output token on each firing with a value that is equal to a scaled version of the input. The actor is
polymorphic in that it can support any token type that supports multiplication by the factor parameter.
In the constructor, the output type is constrained to be at least as general as both the input and the fac-
tor parameter.

Notice in figure 5.3 how the fire() method uses hasToken() to ensure that no output is produced if
there is no input. Furthermore, only one token is consumed from each input channel, even if there is
more than one token available. This is generally the behavior of domain-polymorphic actors. Notice
also how it uses the multiply() method of the Token class. This method is polymorphic. Thus, this scale
actor can operate on any token type that supports multiplication, including all the numeric types and
matrices.

1. Javadoc is a program that generates HTML documentation from Java files based on comments enclosed in “/** 
... */”.

public class Transformer extends TypedAtomicActor {

    /** Construct an actor with the given container and name.
     *  @param container The container.
     *  @param name The name of this actor.
     *  @exception IllegalActionException If the actor cannot be contained
     *   by the proposed container.
     *  @exception NameDuplicationException If the container already has an
     *   actor with this name.
     */
    public Transformer(CompositeEntity container, String name)
            throws NameDuplicationException, IllegalActionException  {
        super(container, name);
        input = new TypedIOPort(this, "input", true, false);
        output = new TypedIOPort(this, "output", false, true);
    }

    ///////////////////////////////////////////////////////////////////
    ////                     ports and parameters                  ////

    /** The input port.  This base class imposes no type constraints except
     *  that the type of the input cannot be greater than the type of the
     *  output.
     */
    public TypedIOPort input;

    /** The output port. By default, the type of this output is constrained
     *  to be at least that of the input.
     */
    public TypedIOPort output;

}

FIGURE 5.2.  Code segment showing the port definitions in the Transformer class.
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import ptolemy.actor.lib.Transformer;
import ptolemy.data.IntToken;
import ptolemy.data.expr.Parameter;
import ptolemy.data.Token;
import ptolemy.kernel.util.*;
import ptolemy.kernel.CompositeEntity;

public class SimplerScale extends Transformer {
...
public SimplerScale(CompositeEntity container, String name)

            throws NameDuplicationException, IllegalActionException  {
super(container, name);
factor = new Parameter(this, "factor", new IntToken(1));

// set the type constraints.
output.setTypeAtLeast(input);
output.setTypeAtLeast(factor);

    }

    ///////////////////////////////////////////////////////////////////
    ////                     ports and parameters                  ////

/** The factor.
     * This parameter can contain any token that supports multiplication.
     *  The default value of this parameter is the IntToken 1.
     */
    public Parameter factor;

    ///////////////////////////////////////////////////////////////////
    ////                         public methods                    ////

/** Clone the actor into the specified workspace. This calls the
     *  base class and then sets the type constraints.
     *  @param workspace The workspace for the new object.
     *  @return A new actor.
     *  @exception CloneNotSupportedException If a derived class has
     *   an attribute that cannot be cloned.
     */
    public Object clone(Workspace workspace)
            throws CloneNotSupportedException {
        SimplerScale newObject = (SimplerScale)super.clone(workspace);
        newObject.output.setTypeAtLeast(newObject.input);
        newObject.output.setTypeAtLeast(newObject.factor);
        return newObject;
    }

    /** Compute the product of the input and the <i>factor</i>.
     *  If there is no input, then produce no output.
     *  @exception IllegalActionException If there is no director.
     */
    public void fire() throws IllegalActionException {
        if (input.hasToken(0)) {
            Token in = input.get(0);
            Token factorToken = factor.getToken();
            Token result = factorToken.multiply(in);
            output.send(0, result);
        }
    }
}

FIGURE 5.3.  Code segment from the SimplerScale actor, showing the handling of ports and parameters.
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5.2.2  Parameters
Like ports, parameters are public members of actors by convention. Figure 5.3 shows a parameter

factor that is an instance of Parameter, declared in the line

public Parameter factor;

and created in the line

factor = new Parameter(this, "factor", new IntToken(1));

The third argument to the constructor, which is optional, is a default value for the parameter. In this
example, the factor parameter defaults to the integer one. Alternatively, the default value of the param-
eter can be set via an expression, as in

factor = new Parameter(this, "factor");
factor.setExpression("2*PI");

As with ports, you can specify type constraints on parameters. The most common type constraint is
to fix the type, using

parameterName.setTypeEquals(BaseType.DOUBLE);

In fact, exactly the same relative or absolute type constraints that one can specify for ports can be spec-
ified for parameters as well. But in addition, arbitrary constraints on parameter values are possible, not
just type constraints.

An actor is notified when a parameter value changes by having its attributeChanged() method
called. Consider the example shown in figure 5.4, taken from the PoissonClock actor. This actor gener-
ates timed events according to a Poisson process. One of its parameters is meanTime, which specifies
the mean time between events. This must be a double, as asserted in the constructor.

The attributeChanged() method is passed the parameter that changed. (Typically it is being
changed by the user via the Configure dialog.) If this is meanTime, then this method checks to make
sure that the specified value is positive, and if not, it throws an exception. This exception is presented
to the user in a new dialog box. It shows up when the user attempts to commit a non-positive value.
The new dialog requests that the user choose a new value or cancel the change.

A change in a parameter value sometimes has broader repercussions than just the local actor. It
may, for example, affect the schedule of execution of actors. An actor can call the invalidateSchedule()
method of the director, which informs the director that any statically computed schedule (if there is
one) is no longer valid. This would be used, for example, if the parameter affects the number of tokens
produced or consumed when an actor fires.

When the type of a parameter changes, the attributeTypeChanged() method in the actor containing
that parameter will be called. The default implementation of this method in TypedAtomicActor is to
invalidate type resolution. So parameter type change will cause type resolution to be performed in the
model. This default implementation is suitable for most actors. In fact, most of the actors in the actor
library do not override this method. However, if for some reason, an actor does not wish to redo type
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resolution upon parameter type change, the attributeTypeChanged() method can be overridden. But
this is rarely necessary.

5.2.3  Constructors
We have seen already that the major task of the constructor is to create and configure ports and

parameters. In addition, you may have noticed that it calls

super(container, name);

and that it declares that it throws NameDuplicationException and IllegalActionException. The latter is
the most widely used exception, and many methods in actors declare that they can throw it. The former
is thrown if the specified container already contains an actor with the specified name. For more details
about exceptions, see the Kernel chapter.

5.2.4  Cloning
All actors are cloneable. A clone of an actor needs to be a new instance of the same class, with the

same parameter values, but without any connections to other actors.
Consider the clone() method in figure 5.5, taken from the SimplerScale actor. This method begins

public class PoissonClock extends TimedSource {

public Parameter meanTime;
public Parameter values;

public PoissonClock(CompositeEntity container, String name)
            throws NameDuplicationException, IllegalActionException  {

super(container, name);
meanTime = new Parameter(this, "meanTime", new DoubleToken(1.0));
meanTime.setTypeEquals(BaseType.DOUBLE);
...

}

/** If the argument is the meanTime parameter, check that it is
     *  positive.
     *  @exception IllegalActionException If the meanTime value is
     *   not positive.
     */

public void attributeChanged(Attribute attribute)
            throws IllegalActionException {
        if (attribute == meanTime) {
            double mean = ((DoubleToken)meanTime.getToken()).doubleValue();
            if (mean <= 0.0) {
                throw new IllegalActionException(this,
                        "meanTime is required to be positive.  meanTime given: "
                        + mean);
            }
        } else if (attribute == values) {
            ArrayToken val = (ArrayToken)(values.getToken());
            _length = val.length();
        } else {
            super.attributeChanged(attribute);
        }
    }

...
}

FIGURE 5.4.  Code segment from the PoissonClock actor, showing the attributeChanged() method.
Heterogeneous Concurrent Modeling and Design 133 



Designing Actors
with:

SimplerScale newObject = (SimplerScale)super.clone(workspace);

The convention in Ptolemy II is that each clone method begins the same way, so that cloning works its
way up the inheritance tree until it ultimately uses the clone() method of the Java Object class. That
method performs what is called a “shallow copy,” which is not sufficient for our purposes. In particu-
lar, members of the class that are references to other objects, including public members such as ports
and parameters, are copied by copying the references. The NamedObj and TypedAtomicActor base
classes implement a “deep copy” so that all the contained objects are cloned, and public members ref-
erence the proper cloned objects2.

Although the base classes neatly handle most aspects of the clone operation, there are subtleties
involved with cloning type constraints. Absolute type constraints on ports and parameters are carried
automatically into the clone, so clone() methods should never call setTypeEquals(). However, relative
type constraints are not cloned automatically because of the difficulty of ensuring that the other object
being referred to in a relative constraint is the intended one. Thus, in figure 5.5, the clone() method

2. Be aware that the implementation of the deep copy relies on a strict naming convention. Public members that 
reference ports and parameters must have the same name as the object that they are referencing in order to be 
properly cloned.

public class SimplerScale extends Transformer {
...
public SimplerScale(CompositeEntity container, String name)

            throws NameDuplicationException, IllegalActionException  {
super(container, name);
output.setTypeAtLeast(input);
output.setTypeAtLeast(factor);

    }

    ///////////////////////////////////////////////////////////////////
    ////                     ports and parameters                  ////

    /** The factor.  The default value of this parameter is the integer 1. */
    public Parameter factor;

    ///////////////////////////////////////////////////////////////////
    ////                         public methods                    ////

    /** Clone the actor into the specified workspace. This calls the
     *  base class and then sets the type constraints.
     *  @param workspace The workspace for the new object.
     *  @return A new actor.
     *  @exception CloneNotSupportedException If a derived class has
     *   has an attribute that cannot be cloned.
     */
    public Object clone(Workspace workspace) throws CloneNotSupportedException {

SimplerScale newObject = (SimplerScale)super.clone(workspace);
newObject.output.setTypeAtLeast(newObject.input);
newObject.output.setTypeAtLeast(newObject.factor);
return newObject;

    }
...

}

FIGURE 5.5.  Code segment from the SimplerScale actor, showing the clone() method.
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repeats the relative type constraints that were specified in the constructor:

newObject.output.setTypeAtLeast(newObject.input);
newObject.output.setTypeAtLeast(newObject.factor);

Note that at no time during cloning is any constructor invoked, so it is necessary to repeat in the
clone() method any initialization in the constructor. For example, the clone() method in the Expression
actor sets the values of a few private variables:

newObject._iterationCount = 1;
newObject._time = (Variable)newObject.getAttribute("time");
newObject._iteration = 

(Variable)newObject.getAttribute("iteration");

5.3  Action Methods
Figure 5.1 shows a set of public methods called the action methods because they specify the action

performed by the actor. By convention, these are given in alphabetical order in Ptolemy II Java files,
but we will discuss them here in the order that they are invoked. The first to be invoked is the preini-
tialize() method, which is invoked exactly once before any other action method is invoked. The preini-
tialize() method is often used to set type constraints. After the preinitialize() method is called, type
resolution happens and all the type constraints are resolved. The initialize() method is invoked next,
and is typically used to initialize state variables in the actor, which generally depends on type resolu-
tion.

After the initialize() method, the actor experiences some number of iterations, where an iteration is
defined to be exactly one invocation of prefire(), some number of invocations of fire(), and at most one
invocation of postfire().

5.3.1  Initialization
The initialize() method of the Average actor is shown in figure 5.6. This data- and domain-poly-

morphic actor computes the average of tokens that have arrived. To do so, it keeps a running sum in a
private variable _sum, and a running count of the number of tokens it has seen in a private variable

public class Average extends Transformer {
...
public void initialize() throws IllegalActionException {

super.initialize();
_count = 0;
_sum = null;

}
...

///////////////////////////////////////////////////////////////////
////                         private members                   ////

private Token _sum;
private int _count = 0;

}

FIGURE 5.6.  Code segment from the Average actor, showing the initialize() method.
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_count. Both of these variables are initialized in the initialize() method. Notice that the actor also
calls super.initialize(), allowing the base class to perform any initialization it expects to perform. This
is essential because one of the base classes initializes the ports. An actor will almost certainly fail to
run properly if super.initialize() is not called.

Note that the initialization of the Average actor does not affect, or depend on, type resolution. This
means that the code to initialize this actor can be placed either in the preinitialize() method, or in the
initialize() method. However, in some cases an actor may require part of its initialization to happen
before type resolution, in the preinitialize() method, or part after type resolution, in the initialize()
method. For example, an actor may need to dynamically create type constraints before each execu-
tion3. Such an actor must create its type constraints in preinitialize(). On the other hand, an actor may
wish to produce (send or broadcast) an initial output token once at the beginning of an execution of a
model. This production can only happen during initialize(), because data transport through ports
depends on type resolution.

5.3.2  Prefire
The prefire() method is the only method that is invoked exactly once per iteration4. It returns a

boolean that indicates to the director whether the actor wishes for firing to proceed. The fire() method
of an actor should never be called until after its prefire() method has returned true. The most common
use of this method is to test a condition to see whether the actor is ready to fire.

Consider for example an actor that reads from trueInput if a private boolean variable _state is
true, and otherwise reads from falseInput. The prefire() method might look like this:

public boolean prefire() throws IllegalActionException {
if (_state) {

return trueInput.hasToken(0);
} else {

return falseInput.hasToken(0);
}

}

It is good practice to check the superclass in case it has some reason to decline to be fired. The above
example becomes:

public boolean prefire() throws IllegalActionException {
if (_state) {

return trueInput.hasToken(0) && super.prefire();
} else {

return falseInput.hasToken(0) && super.prefire();
}

}

3. The need for this is relatively rare, but important. Examples include higher-order functions, which are actors that 
replace themselves with other subsystems, and certain actors whose ports are not created at the time they are 
constructed, but rather are added later. In most cases, the type constraints of an actor do not change and are sim-
ply specified in the constructor.

4. Some domains invoke the fire() method only once per iteration, but others will invoke it multiple times (search-
ing for global convergence to a solution, for example).
136 Ptolemy II



Designing Actors
The prefire() method can also be used to perform an operation that will happen exactly once per
iteration. Consider the prefire method of the Bernoulli actor in figure 5.7:

public boolean prefire() throws IllegalActionException {
if (_random.nextDouble() < 

((DoubleToken)(trueProbability.getToken())).doubleValue()) {
_current = true;

} else {
_current = false;

}
return super.prefire();

}

This method selects a new boolean value that will correspond to the token sent during each firing in
that iteration.

5.3.3  Fire
The fire() method is the main point of execution and is generally responsible for reading inputs and

producing outputs. It may also read the current parameter values, and the output may depend on them.
Things to remember when writing fire() methods are:
• To get data polymorphism, use the methods of the Token class for arithmetic whenever possible

(see the Data Package chapter). Consider for example the Average actor, shown in figure 5.8.
Notice the use of the add() and divide() methods of the Token class to achieve data polymorphism.

public class Bernoulli extends RandomSource {

public Bernoulli(CompositeEntity container, String name)
            throws NameDuplicationException, IllegalActionException  {

super(container, name);

output.setTypeEquals(BaseType.BOOLEAN);

trueProbability = new Parameter(this, "trueProbability", new DoubleToken(0.5));
trueProbability.setTypeEquals(BaseType.DOUBLE);

    }

public Parameter trueProbability;

public void fire() {
super.fire();
output.send(0, new BooleanToken(_current));

}

public boolean prefire() throws IllegalActionException {
if (_random.nextDouble() < ((DoubleToken)(trueProbability.getToken())).doubleValue()) {

_current = true;
} else {

_current = false;
}
return super.prefire();

}

private boolean _current;
}

FIGURE 5.7.  Code for the Bernoulli actor, which is not data polymorphic.
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public class Average extends Transformer {

... constructor ...

    ///////////////////////////////////////////////////////////////////
    ////                     ports and parameters                  ////

    public TypedIOPort reset;

    ///////////////////////////////////////////////////////////////////
    ////                         public methods                    ////

... clone method ...

    public void fire() throws IllegalActionException {
        _latestSum = _sum;
        _latestCount = _count + 1;
        // Check whether to reset.
        for (int i = 0; i < reset.getWidth(); i++) {
            if (reset.hasToken(i)) {
                BooleanToken r = (BooleanToken)reset.get(0);
                if b(r.booleanValue()) {
                    // Being reset at this firing.
                    _latestSum = null;
                    _latestCount = 1;
                }
            }
        }
        if (input.hasToken(0)) {
            Token in = input.get(0);
            if (_latestSum == null) {
                _latestSum = in;
            } else {
                _latestSum = _latestSum.add(in);
            }
            Token out = _latestSum.divide(new IntToken(_latestCount));
            output.send(0, out);
        }
    }

    public void initialize() throws IllegalActionException {
        super.initialize();
        _count = 0;
        _sum = null;
    }

    public boolean postfire() throws IllegalActionException {
_sum = _latestSum;

        _count = _latestCount;
        return super.postfire();
    }

    ///////////////////////////////////////////////////////////////////
    ////                         private members                   ////

    private Token _sum;
    private Token _latestSum;
    private int _count = 0;
    private int _latestCount;
}

FIGURE 5.8.  Code segment from the Average actor, showing the action methods.
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• When data polymorphism is not practical or not desired, then it is usually easiest to use the set-
TypeEquals() to define the type of input ports. The type system will assure that you can safely cast
the tokens that you read to the type of the port. Consider again the Average actor shown in figure
5.8. This actor declares the type of its reset input port to be BaseType.BOOLEAN. In the fire()
method, the input token is read and cast to a BooleanToken. The type system ensures that no cast
error will occur. The same can be done with a parameter, as with the Bernoulli actor shown in fig-
ure 5.7.

• A domain-polymorphic actor cannot assume that there is data at all the input ports. Most domain-
polymorphic actors will read at most one input token from each port, and if there are sufficient
inputs, produce exactly one token on each output port.

• Some domains invoke the fire() method multiple times, working towards a converged solution.
Thus, each invocation of fire() can be thought of as doing a tentative computation with tentative
inputs and producing tentative outputs. Thus, the fire() method should not update persistent state.
Instead, that should be done in the postfire() method, as discussed in the next section.

5.3.4  Postfire
The postfire() method has two tasks:

• updating persistent state, and
• determining whether the execution of an actor is complete.
Consider the fire() and postfire() methods of the Average actor in figure 5.8. Notice that the persistent
state variables _sum and _count are not updated in fire(). Instead, they are shadowed by
_latestSum and _latestCount, and updated in postfire().

The return value of postfire() is a boolean that indicates to the director whether execution of the
actor is complete. By convention, the director should avoid iterating further an actor after its postfire()
method returns false. In other words, the director won’t call prefire(), fire(), or postfire() again during
this execution of the model.

Consider the two examples shown in figure 5.9. These are base classes for source actors.
SequenceSource is a base class for actors that output sequences. Its key feature is a parameter firing-
CountLimit, which specifies a limit on the number of iterations of the actor. When this limit is reached,
the postfire() method returns false. Thus, this parameter can be used to define sources of finite
sequences.

TimedSource is similar, except that instead of specifying a limit on the number of iterations, it
specifies a limit on the current model time. When that limit is reached, the postfire() method returns
false.

5.3.5  Wrapup
The wrapup() method is used typically for displaying final results. It is invoked exactly once at the

end of an execution, including when an exception occurs that stops execution (as opposed to an excep-
tion occurring in, say, attributeChanged(), which does not stop execution). However, when an actor is
removed from a model during execution, the wrapup() method is not called.

An actor may lock a resource (which it intends to release in wrapup() for example), or its designer
may have another reason to ensure that wrapup() always is called, even when the actor is removed
from an executing model. This can be achieved by overriding the setContainer() method. In this case,
the actor would have a setContainer() method which might look like this:
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public class SequenceSource extends Source implements SequenceActor {

public SequenceSource(CompositeEntity container, String name)
            throws NameDuplicationException, IllegalActionException  {
        super(container, name);
        firingCountLimit = new Parameter(this, "firingCountLimit", new IntToken(0));

firingCountLimit.setTypeEquals(BaseType.INT);
}

public Parameter firingCountLimit;

...
public void attributeChanged(Attribute attribute)

            throws IllegalActionException {
        if (attribute == firingCountLimit) {
            _firingCountLimit =
                ((IntToken)firingCountLimit.getToken()).intValue();
        }
    }

public boolean postfire() throws IllegalActionException {
if (_firingCountLimit != 0) {

_iterationCount++;
        if (_iterationCount == _firingCountLimit) {

return false;
}

}
        return true;

}

protected int _firingCountLimit;
protected int _iterationCount = 0;

}

public class TimedSource extends Source implements TimedActor {

public TimedSource(CompositeEntity container, String name)
            throws NameDuplicationException, IllegalActionException  {
        super(container, name);
        stopTime = new Parameter(this, "stopTime", new DoubleToken(0.0));

stopTime.setTypeEquals(BaseType.DOUBLE);
...

}

public Parameter stopTime;

...

public boolean postfire() throws IllegalActionException {
        double time = ((DoubleToken)stopTime.getToken()).doubleValue();
        if (time > 0.0 && getDirector().getCurrentTime() >= time) {
            return false;
        }
        return true;

}
}

FIGURE 5.9.  Code segments from the SequenceSource and TimedSource base classes.
140 Ptolemy II



Designing Actors
public void setContainer(CompositeEntity container) 
throws IllegalActionException, NameDuplicationException {

if (container != getContainer()) {
wrapup();

}
super.setContainer(container);

}

When overriding the setContainer() method in this way, it is best to make wrapup() idempotent
(implying that it can be invoked many times without causing harm), because future implementations of
the director might automatically unlock resources of removed actors, or call wrapup() on removed
actors.

5.4  Coupled Port and Parameter
Often, in the design of an actor, it is hard to decide whether a quantity should be given by a port or

by a parameter. Fortunately, you can design an actor to offer both options. An example of such an actor
is shown in figure 5.10. This actor starts with an initial value, given by the init parameter, and incre-
ments it each time by the value of step. The value of step is given by either a parameter named step or
a port named step. To use the parameter exclusively, the model builder simply leaves the port uncon-
nected. If the port is connected, then the parameter provides the default value, used before anything
arrives on the port. But after something arrives on the port, that is used.

When the model containing a Ramp actor is saved, only the parameter value is stored. No data that
arrives on the port is stored. Thus, the default value given by the parameter is persistent, while the val-
ues that arrive on the port are transient.

To set up this arrangement, the Ramp actor creates an instance of the class PortParameter in its
constructor, as shown in figure 5.10. This is a parameter that, when created, creates a coupled port.
There is no need to explicitly create the port. The Ramp actor creates an instance of Parameter to spec-
ify the init value, since it makes less sense for the value of init to be provided via a port.

Referring to figure 5.10, the constructor, after creating init and step, sets up type constraints. These
specify that the type of the output is at least as general as the types of init and step. The PortParameter
class takes care of an additional constraint, which is that the type of the step parameter must match the
type of the step port. The clone() method duplicates the type constraints that are given explicitly.

In the attributeChanged() method, the actor resets its state if init is the parameter that changed.
This will work with an instance of Parameter, but it is not recommended for an instance of PortParam-
eter. The reason is that each time you call getToken() on an instance of PortParameter, the method
checks to see whether there is an input on the port, and consumes it if there is. Actors are expected to
consume inputs in their action methods, fire() and postfire(), not in attributeChanged(). Some domains,
like SDF, will be confused by the consumption of the token too early.

In the Ramp actor in figure 5.10, the fire() method simply outputs the current state, whereas the
postfire() method calls getToken() on step and adds its value to the state. This follows the Ptolemy II
convention that the state of the actor is not modified in fire(), but only in postfire(). Thus, this actor can
be used in domains with fixed-point semantics, such as SR.

When using a PortParameter in an actor, care must be exercised to call update() exactly once per
firing prior to calling getToken(). Each time update() is called, a new token will be consumed from the
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associated port (if the port is connected and has a token). If this is called multiple times in an iteration,
it may result in consuming tokens that were intended for subsequent iterations. Thus, for example,
update() should not be called in fire() and then again in postfire().  Moreover, in some domains (such
as DE), it is essential that if a token is provided on a port, that it is consumed.  In DE, the actor will be
repeatedly fired until the token is consumed.  Thus, it is an error to not call update() once per iteration.

It is important that the actor call getToken() exactly once in either the fire() method or in the post-
fire() method. In particular, it should not call it in both, because this could result in consumption of two
tokens from the input port, inappropriately. Moreover, it should always call it, even if it has no use for
the value. Otherwise, in the DE domain, the actor will be repeatedly fired if an input event is provided

public class Ramp extends SequenceSource {

    public Ramp(CompositeEntity container, String name)
            throws NameDuplicationException, IllegalActionException  {
        super(container, name);
        init = new Parameter(this, "init", new IntToken(0));
        step = new PortParameter(this, "step", new IntToken(1));

// set the type constraints.
output.setTypeAtLeast(init);
output.setTypeAtLeast(step);

}

public Parameter init;
public PortParameter step;

public void attributeChanged(Attribute attribute) throws IllegalActionException {
if (attribute == init) {

_stateToken = init.getToken();
} else {

super.attributeChanged(attribute);
}

    }

public Object clone(Workspace workspace) throws CloneNotSupportedException {
Ramp newObject = (Ramp)super.clone(workspace);
newObject.output.setTypeAtLeast(newObject.init);
newObject.output.setTypeAtLeast(newObject.step);
...
return newObject;

}

public void fire() throws IllegalActionException {
super.fire();
output.send(0, _stateToken);

}

public void initialize() throws IllegalActionException {
super.initialize();
_stateToken = init.getToken();

}

...

public boolean postfire() throws IllegalActionException {
step.update();
_stateToken = _stateToken.add(step.getToken());
return super.postfire();

}

    private Token _stateToken = null;

FIGURE 5.10.  Code segments from the Ramp actor.
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on the port but not consumed. Time cannot advance until that event is processed.
The way that the PortParameter class works is as follows. On each call to getToken(), the step

instance of PortParameter first checks to see whether an input has arrived at the associated step port
since the last setExpression() or setToken(), and if so, returns a token read from that port. Also, any
call to get() on the associated port will result in the value of this parameter being updated, although
normally an actor writer will not call get() on the port.

5.5  Iterate Method
Some domains (such as SDF) will always invoke prefire(), fire(), and postfire() in sequence, one

after another, so there is no benefit from having their functionality separated into three methods. More-
over, in SDF this sequence of method invocations may be repeated a large number of times. An actor
designer can improve execution efficiency by providing an iterate() method. Figure 5.11 shows the
iterate() method of the Ramp actor. Its behavior is equivalent to invoking prefire(), and that returns
true, then invoking fire() and postfire() in sequence. Moreover the iterate() method takes an integer
argument, which specifies how many times this sequence of operations should be repeated. The return
values are NOT_READY, STOP_ITERATING, or COMPLETED, which are constants defined in the Execut-

public class Ramp extends SequenceSource {

public Ramp(CompositeEntity container, String name)
            throws NameDuplicationException, IllegalActionException  {
        super(container, name);

...
_resultArray = new Token[1];

}

...
public Object clone(Workspace workspace) throws CloneNotSupportedException {

...
_resultArray = new Token[1];
return newObject;

}

public int iterate(int count) throws IllegalActionException {
// Check whether we need to reallocate the output token array.
if (count > _resultArray.length) {

_resultArray = new Token[count];
}
for (int i = 0; i < count; i++) {

 _resultArray[i] = _stateToken;
step.update();
_stateToken = _stateToken.add(step.getToken());

}
output.send(0, _resultArray, count);
if (_firingCountLimit != 0) {

  _iterationCount += count;
    if (_iterationCount >= _firingCountLimit) {

return STOP_ITERATING;
    }

}
return COMPLETED;

}

...

private Token[] _resultArray;
}

FIGURE 5.11.  More code segments from the Ramp actor of figure 5.10, showing the iterate() method.
Heterogeneous Concurrent Modeling and Design 143 



Designing Actors
able interface of the actor package. Returning NOT_READY is appropriate when prefire() would have
returned false. Returning STOP_ITERATING is appropriate when postfire() would have returned false.
Otherwise, the proper return value is COMPLETED.

5.6  Time
An actor whose behavior depends on current model time should implement the TimedActor inter-

face. This is a marker interface (with no methods). Implementing this interface alerts the director that
the actor depends on time. Domains that have no meaningful notion of time can reject such actors.

An actor can access current model time using:

double currentTime = getDirector().getCurrentTime();

Notice that although the director has a public method setCurrentTime(), an actor should never use it.
Typically, only another enclosing director will call this method.

An actor can request an invocation at a future time using the fireAt() or fireAtCurrentTime()
method of the director. These method returns immediately (for a correctly implemented director). The
fireAt() method takes two arguments, an actor and a time. The fireAtCurrentTime() method takes only
one argument, an actor. The director is responsible for performing one iteration of the specified actor at
the specified time. These methods can be used to get a source actor started, and to keep it operating. In
the actor’s initialize() method, it can call fireAt() with a zero time. Then in each invocation of post-
fire(), it calls fireAt() again. Notice that the call should be in postfire() not in fire() because a request
for a future firing is persistent state.

Note that while fireAt() can safely be called by any of the actors action methods, code which exe-
cutes asynchronously from the director should avoid calling fireAt(). Examples of such code include
the private thread within the DatagramReader actor and the serialEvent() callback method of the Seri-
alComm actor. Because these process hardware events, which can occur at any time, they instead use
the fireAtCurrentTime() method. When fireAt() was used (before fireAtCurrentTime() was written)
exceptions were occasionally thrown as model time advanced just as a firing was being requested at
the previous (formerly current) model time.

5.7  Icons
An actor designer can specify a custom icon when defining the actor. The Ramp actor, for instance,

specifies the icon shown in figure 5.12 using the code shown in the constructor in figure 5.13. It uses a

convenience method, _attachText(), which is a protected method defined in the base class Named-
Obj. This method creates an attribute named “_iconDescription” with a textual value, where in this
case, the textual value is:

<svg>

FIGURE 5.12.  The Ramp icon.
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<rect x="-30" y="-20" width="60" height="40" style="fill:white"/>
<polygon points="-20,10 20,-10 20,10" style="fill:grey"/>

</svg>

This is XML, using the schema SVG (scalable vector graphics). The Ptolemy II visual editor (Vergil)
is built on top of a graphics package called Diva, which has limited support for SVG. As of this writ-
ing, the SVG elements that are supported are shown in figure 5.14. The positions in SVG are given by
real numbers, where the values are increasing to the right and down from the origin, which is the nom-
inal center of the figure. The Ramp icon contains a white rectangle and a polygon that forms a triangle.

Most of the elements in figure 5.14 support style attributes, as summarized in the table. A style
attribute has value keyword:value. It can also have multiple keyword:value pairs, separated by semico-
lons. For example, the keywords currently supported by the rect element are “fill”, “stroke” and
“stroke-width.” The “fill” gives the color of the body of the figure (for figures for which this makes
sense), while the “stroke” gives the color of the outline. The supported colors are black, blue, cyan,
darkgray, gray, green, lightgray, magenta, orange, pink, red, white, and yellow, plus any color sup-
ported by the Java Color class getColor() method. The “stroke-width” is a real number giving the
thickness of the outline line, where the default is 1.0.

The image element, although tempting, is problematic in the current implementation. Images are
very slow to load. It is not recommended.

5.8  Code Format
Ptolemy software follows fairly rigorous conventions for code formatting. Although many of these

conventions are arbitrary, the resulting consistency makes reading the code much easier, once you get
used to the conventions. We recommend that if you extend Ptolemy II in any way, that you follow
these conventions. To be included in future versions of Ptolemy II, the code must follow the conven-
tions.

A template that follows these rules can be found in $(PTII)/doc/coding/templates. There are also
templates for other common files. In general, consult the template or highly rated (green) code if you
have questions that are not covered here.

Several useful tools are provided in the directories under $PTII/util/ to help enforce the stan-

public class Ramp extends SequenceSource {

public Ramp(CompositeEntity container, String name)
            throws NameDuplicationException, IllegalActionException  {
        super(container, name);

...
_attachText("_iconDescription", "<svg>\n"

                + "<rect x=\"-30\" y=\"-20\" "
                + "width=\"60\" height=\"40\" "
                + "style=\"fill:white\"/>\n"
                + "<polygon points=\"-20,10 20,-10 20,10\" "
                + "style=\"fill:grey\"/>\n"
                + "</svg>\n");

}

...

}

FIGURE 5.13.  The Ramp actor defines a custom icon as shown.
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dards. lisp/ptjavastyle.el is a lisp module for GNU Emacs that has appropriate indenting
rules. testsuite/jindent is a shell script that uses Emacs and the above module to properly
indent many files at once. testsuite/ptspell is a script that checks Java code and prints out an
alphabetical list of unrecognized spellings. It properly handles namesWithEmbeddedCapitalization
and has a list of author names. testsuite/chkjava is a shell script for checking various other
potentially bad things in Java code, such as debugging code, and FIXME’s.

5.8.1  Indentation
Nested statements should be indented by 4 characters, as in: 

if (container != null) {
Manager manager = container.getManager();
if (manager != null) {

FIGURE 5.14.  SVG subset currently supported by Diva, useful for creating custom icons.

SVG element Attributes

rect x: horizontal position of the upper left corner
y: vertical position of the upper left corner
width: the width of the rectangle
height: the height of the rectangle
style: fill, stroke, stroke-width

circle cx: horizontal position of the center of the circle
cy: vertical position of the center of the circle
r: radius of the circle
style: fill, stroke, stroke-width

ellipse cx: horizontal position of the center of the ellipse
cy: vertical position of the center of the ellipse
rx: horizontal radius of the ellipse
ry: vertical radius of the ellipse
style: fill, stroke, stroke-width

line x1: horizontal position of the start of the line
y1: vertical position of the start of the line
x2: horizontal position of the end of the line
y2: vertical position of the end of the line
style: stroke, stroke-width

polyline points: List of x,y pairs of points, vertices of line segments, delimited by commas or spaces
style: stroke, stroke-width

polygon points: List of x,y pairs of points, vertices of the polygon, delimited by commas or spaces
style: fill, stroke, stroke-width

text x: horizontal position of the text
y: vertical position of the text
style: font-family, font-size, fill

image x: horizontal position of the image
y: vertical position of the image
width: the width of the image
height: the height of the image
xlink:href: A URL for the image
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manager.requestChange(change);
}

}

Closing brackets should be on a line by themselves, aligned with the beginning of the line that contains
the open bracket. Tabs are 8 space characters, not a Tab character. The reason for this is that code
becomes unreadable when the Tab character is interpreted differently by different programs. Do not
override this in your text editor5. Long lines should be broken up into many small lines. The easiest
places to break long lines are usually just before operators, with the operator appearing on the next
line. Long strings can be broken up using the + operator in Java, with the + starting the next line. Con-
tinuation lines are indented by 8 characters, as in the throws clause of the constructor in figure 5.1.

5.8.2  Spaces
Use a space after each comma: 
          Right: foo(a, b); 
          Wrong: foo(a,b); 

Use spaces around operators such as plus, minus, multiply, divide or equals signs, and after semi-
colons. Java keywords such as if, for and while should have a space before the opening parenthesis: 

          Right: a = b + 1; 
          Wrong: a=b+1; 
          Right: for (i = 0; i < 10; i += 2) 
          Wrong: for(i=0 ;i<10;i+=2) 

5.8.3  Comments
Comments should be complete sentences and complete thoughts, capitalized at the beginning and

with a period at the end. Spelling and grammar should be correct. Comments should include honest
information about the limitations of the object definition. 

Comments for base class methods that are intended to be overridden should include information
about what the method generally does, along with a description of how the base class implements it.
Comments in derived classes for methods that override the base class should copy the general descrip-
tion from the base class, and then document the particular implementation. In general comments with
FIXME’s and implementation details should be used liberally in the code, but never in the interface
description. (The interface description is the sum of all the Javadoc comments. These are the com-
ments that will be visible in Vergil via the Get Documentation context menu choice.) If something is
important to know when using the actor, put it in one of the Javadoc comments. Otherwise, put the
comment elsewhere.

5.8.4  Names
In general, the names of classes, methods and members should consist of complete words sepa-

rated using internal capitalization6. Class names, and only class names have their first letter capital-
ized, as in AtomicActor. Method and member names are not capitalized, except at internal word

5. For information about how to set this in Eclipse, see $PTII/doc/coding/eclipse.htm
6. Yes, there are exceptions (NamedObj, CrossRefList, IOPort). Many discussions dealt with these names, and we 

still regret not making them complete words.
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boundaries, as in getContainer(). Protected or private members and methods are preceded by a leading
underscore “_” as in _protectedMethod().

Static final constants should be in uppercase, with words separated by underscores, as in
INFINITE_CAPACITY. A leading underscore should be used if the constant is protected or private.

Package names should be short and not capitalized, as in “de” for the discrete-event domain.
In Java, there is no limit to name sizes (as it should be). Do not hesitate to use long names.

5.8.5  Exceptions
A number of exceptions are provided in the ptolemy.kernel.util package. Use these exceptions

when possible because they provide convenient constructor arguments of type Nameable that identify
the source of the exception by name in a consistent way.

A key decision you need to make is whether to use a compile-time exception or a run-time excep-
tion. A run-time exception is one that implements the RuntimeException interface. Run-time excep-
tions are more convenient in that they do not need to be explicitly declared by methods that throw
them. However, this can have the effect of masking problems in the code.

The convention we follow is that a run-time exception is acceptable only if the cause of the excep-
tion can be tested for prior to calling the method. This is called a testable precondition. For example, if
a particular method will fail if the argument is negative, and this fact is documented, then the method
can throw a run-time exception if the argument is negative. On the other hand, consider a method that
takes a string argument and evaluates it as an expression. The expression may be malformed, in which
case an exception will be thrown. Can this be a run-time exception? No, because to determine whether
the expression is malformed, you really need to invoke the evaluator. Making this a compile-time
exception forces the caller to explicitly deal with the exception, or to declare that it too throws the
same exception. In general, we prefer to use compile-time exceptions wherever possible.

When throwing an exception, the detail message should be a complete sentence that includes a
string that fully describes what caused the exception. For example

throw IllegalActionException(this,
"Cannot append an object of type: "
+ obj.getClass().getName() + "because "
+ "it does not implement Cloneable.");

Note that the exception not only gives a way to identify the objects that caused the exception, but also
why the exception occurred. There is no need to include in the message an identification of the “this”
object passed as the first argument to the exception constructor. That object will be identified when the
exception is reported to the user.

Sometimes, a piece of code will throw an Exception that is caught and then rethrown as a Ptolemy
Exception. The Ptolemy Kernel exceptions usually have a constructor that takes a cause argument,
which is the exception that caused the exception that is being constructed. When the exception is dis-
played, the stack trace of the initial exception that was passed in via the cause argument will also be
displayed. For example, failure to open a file might throw an IOException, which will be caught and
rethrown as an IllegalActionException:

try {
// Code that throws an IOException

} catch (IOException ex) 
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throw new IllegalActionException(this, ex,
"Failed to open ‘" + fileName + "");

}

5.8.6  Javadoc
Javadoc is a program distributed with Java that generates HTML documentation files from Java

source code files. Javadoc comments begin with “/**” and end with “*/”. The comment immediately
preceding a method, member, or class documents that method, member, or class. Ptolemy II classes
include Javadoc documentation for all classes and all public and protected members and methods. Pay
special attention to the first sentence of each Javadoc comment. This first sentence is used as a sum-
mary in the Javadocs. Private members and methods need not be documented by Javadoc comments.
Documentation can include embedded HTML formatting. For example, by convention, in actor docu-
mentation, we set in italics the names of the ports and parameters using the syntax

/** In this actor, inputs are read from the <i>input</i> port ... */

By convention, method names are set in the default font, but followed by empty parentheses, as in

/** The fire() method is called when ... */

The parentheses are empty even if the method takes arguments. The arguments are not shown. If the
method is overloaded (has several versions with different argument sets), then the text of the documen-
tation needs to distinguish which version is being used.

It is common in the Java community to use the following style for documenting methods:

/** Sets the expression of this variable. 
*  @param expression The expression for this variable.
*/

public void setExpression(String expression) {
...

}

We use instead the imperative tense, as in

/** Set the expression of this variable.
*  @param expression The expression for this variable.
*/

public void setExpression(String expression) {
...

}

The reason we do this is that our sentence is a well-formed, grammatical English sentence, while the
usual convention is not (it is missing the subject). Moreover, calling a method is a command “do this,”
so it seems reasonable that the documentation say “Do this.” The use of imperative tense has a large
impact on how interfaces are documented, especially when using the Listener design pattern. For
instance, the java.awt.event.ItemListener interface has the method:
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/**
* Invoked when an item has been selected or deselected.
* The code written for this method performs the operations
* that need to occur when an item is selected (or deselected).
*/

void itemStateChanged(ItemEvent e);

A naive attempt to rewrite this in imperative tense might result in:

/**
* Notify this object that an item has been selected or deselected.
*/

void itemStateChanged(ItemEvent e);
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However, this sentence does not capture what the method does. The method may be called in order to
notify the listener, but the listener does not “notify this object”. The correct way to concisely document
this method in imperative tense (and with meaningful names) is:

/**
* React to the selection or deselection of an item.
*/

void itemStateChanged(ItemEvent event);

The annotation for the arguments (the @param statement) is not a complete sentence, since it is
usually presented in tabular format. However, we do capitalize it and end it with a period.

Exceptions that are thrown by a method need to be identified in the Javadoc comment. An
@exception tag should read like this: 

* @exception MyException If such and such occurs.

Notice that the body always starts with "If", not "Thrown if", or anything else. Just look at the Javadoc
output to see why this occurs. In the case of an interface or base class that does not throw the excep-
tion, use the following: 

* @exception MyException Not thrown in this base class. Derived
*  classes may throw it if such and such happens.

The exception still has to be declared so that derived classes can throw it, so it needs to be documented
as well.

The Javadoc program gives extensive diagnostics when run on a source file. Our policy is to for-
mat the comments until there are no Javadoc warnings.

5.8.7  Code Organization
The basic file structure that we use follows the outline in figure 5.1, preceded by a one-line

description of the file and a copyright notice. The key points to note about this organization are:
• The file is divided into sections with highly visible delimiters. The sections contain constructors,

ports and parameters (and other public members, if there are any), public methods, protected meth-
ods, protected members, private methods, and private members, in that order. Note in particular
that although it is customary in the Java community to list private members at the beginning of a
class definition, we put them at the end. They are not part of the public interface, and thus should
not be the first thing you see.

• Within each section, methods appear in alphabetical order, in order to easily search for a particular
method. If you wish to group methods together, try to name them so that they have a common pre-
fix. Static methods are generally mixed with non-static methods.
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6.1  Introduction
Ptolemy II models might be simulations (executable models of some other system) or implementa-

tions (the system itself). They might be classical computer programs (applications), or any of a number
of network-integrated programs (applets, servlets, or CORBA services, for example). 

Models can be specified in a number of ways. You can write Java code that instantiates compo-
nents, parameterizes them, and interconnects them. Or you can use Vergil (see the Vergil chapter
above) to graphically construct models. Vergil stores models in ASCII files using an XML schema
called MoML. MoML (which stands for Modeling Markup Language) is the primary persistent file
format for Ptolemy II models. It is also the primary mechanism for constructing models whose defini-
tion and execution is distributed over the network.

This chapter explains MoML. Most users will not need to edit MoML files directly. Use Vergil
instead. Occasionally, however, it is useful to examine and/or edit MoML files directly.

MoML is a modeling markup schema in the Extensible Markup Language (XML). It is intended
for specifying interconnections of parameterized components. A MoML file can be executed as an
application using any of the following commands,

ptolemy filename.xml
ptexecute filename.xml
vergil filename.xml
moml configuration.xml filename.xml

These commands are defined in the directory $PTII/bin, which must be in your path1, where $PTII
is the location of the Ptolemy II installation. In all cases, the filename can be replaced by a URL. The
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ptolemy command assumes that the file defines an executable Ptolemy II model, and opens a control
panel to execute it. The ptexecute command executes it without a control panel. The vergil
command opens a graphical editor to edit and execute the model. The moml command uses the speci-
fied configuration file (a MoML file containing a Ptolemy II configuration) to invoke some set of cus-
tomized views or editors on the model. The filename extension can be “.xml” or “.moml” for MoML
files. And the same XML file can be used in an applet2.

To get a quick start, try entering the following into a file called test.xml (This file is also avail-
able as $PTII/ptolemy/moml/demo/test.xml):

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<entity name="test" class="ptolemy.actor.TypedCompositeActor">

<property name="director"
 class="ptolemy.domains.sdf.kernel.SDFDirector"/>

<entity name="ramp" class="ptolemy.actor.lib.Ramp"/>
<entity name="plot" class="ptolemy.actor.lib.gui.SequencePlotter"/>
<relation name="r" class="ptolemy.actor.TypedIORelation"/>
<link port="ramp.output" relation="r"/>
<link port="plot.input" relation="r"/>

</entity>

This code defines a model in a top-level entity called “test”. By convention, we use the same name for
the top-level model and the file in which it resides. The top-level model is an instance of the Ptolemy II
class ptolemy.actor.TypedCompositeActor. It contains a director, two entities, a relation, and
two links. The model is depicted in figure 6.1, where the director is not shown. It can be run using the
command

ptolemy test.xml

You should get a window looking like that in figure 6.2. Enter “10” in the iterations box and hit the
“Go” button to execute the model for 10 iterations (leaving the default “0” in the iterations box exe-

1. These commands are executed this way on Unix systems and on Windows systems with Cygwin installed. On 
other configurations, the equivalent commands are invoked in some other way.

2. An applet is a Java program that is downloaded from a web server by a browser and executed in the client’s 
computer (usually within a plug-in for the browser).

FIGURE 6.1.  Simple example in the file $PTII/ptolemy/moml/demo/test.xml.

output

ramp plot

inputr

test
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cutes it forever, until you hit the “Stop” button). 
The structure of the above MoML text is explained in detail in this chapter. A more interesting

example is given in the appendix to this chapter. You may wish to refer to that example as you read
about the details. The next chapter explains how to bypass MoML and write applets directly. The chap-
ter after that describes the actors libraries that are included in the current Ptolemy II version.

6.2  MoML Principles
The key features of MoML include:

• Web integration. MoML is an XML schema. XML, the popular extensible markup language[122],
provides a standard syntax and a standard way of defining the content within that syntax. The syn-
tax is a subset of SGML[123], and is similar to HTML. It is intended for use on the Internet, and is
intended for precisely this sort of specialization into schemas. File references are via URIs (in
practice, URLs), both relative and absolute, so MoML is equally comfortable working in applets
and applications.

• Implementation independence. MoML is designed to work with a variety of tools. A modeling tool
that reads MoML files is expected to provide a class loader in some form. Given the name of a
class, and possibly a URL for the class definition, the class loader must be able to instantiate it.
Classes might be defined in MoML or in some base language such as Java. In Java, the class loader
could be that built in to the JVM. In C++ or other languages, the class loader would have to be
implemented by the modeling tool. Ptolemy II can be viewed as a reference implementation of a
MoML tool that uses Java as its base language.

• Extensibility. Components can be parameterized in two ways. First, they can have named proper-
ties with string values. Second, they can be associated with an external configuration file that can
be in any format understood by the component. Typically, the configuration will be in some other
XML schema, such as PlotML or SVG (scalable vector graphics).

• Classes and inheritance. Components can be defined in MoML as classes which can then be

FIGURE 6.2.  Simple example of a Ptolemy II model execution control window.
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instantiated in a model. Components can extend other components through an object-oriented
inheritance mechanism.

• Semantics independence. MoML defines no semantics for an interconnection of components. It
represents only the hierarchical containment relationships between entities with properties, their
ports, and the connections between their ports. In Ptolemy II, the meaning of a connection (the
semantics of the model) is defined by the director for the model, which is a property of the top-
level entity. The director defines the semantics of the interconnection. MoML knows nothing
about directors except that they are instances of classes that can be loaded by the class loader and
assigned as properties.

6.2.1  Clustered Graphs
A model is given as a clustered graph, which is an abstract syntax for representing netlists, state

transition diagrams, block diagrams, etc. An abstract syntax is a conceptual data organization. A par-
ticular clustered graph configuration is called a topology. A topology is a collection of entities and
relations. Furthermore, entities have ports and relations connect the ports. We consistently use the term
connection to denote the association between connected ports (or their entities), and the term link to
denote the association between ports and relations. Thus, a connection consists of a relation and two or
more links.

The concept of an abstract syntax can be contrasted with a concrete syntax, which is a persistent,
readable representation of the data. For example, EDIF is a concrete syntax for representing netlists.
MoML is a concrete syntax for the clustered graph abstract syntax. Furthermore, we use the visual
notation shown in figure 6.3, where entities are depicted as rounded boxes, relations as diamonds, and
entities as filled circles.

The use of ports and hierarchy distinguishes our topologies from mathematical graphs. In a mathe-
matical graph, an entity would be a vertex, and an arc would be a connection between entities. A vertex
could be represented in our schema using entities that always contain exactly one port. In a directed
graph, the connections are divided into two subsets, one consisting of incoming arcs, and the other of
outgoing arcs. The vertices in such a graph could be represented by entities that contain two ports, one
for incoming arcs and one for outgoing arcs. Thus, in mathematical graphs, entities always have one or
two ports, depending on whether the graph is directed. Our schema generalizes this by permitting an
entity to have any number of ports, thus dividing its connections into an arbitrary number of subsets. 

FIGURE 6.3.  Visual notation and terminology.
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A second difference between our graphs and mathematical graphs is that our relations are multi-
way associations, whereas an arc in a graph is a two-way association. A third difference is that mathe-
matical graphs normally have no notion of hierarchy (clustering).

Relations are intended to serve a mediators, in the sense of the Mediator design pattern[35].
“Mediator promotes loose coupling by keeping objects from referring to each other explicitly...” For
example, a relation could be used to direct messages passed between entities. Or it could denote a tran-
sition between states in a finite state machine, where the states are represented as entities. Or it could
mediate rendezvous between processes represented as entities. Or it could mediate method calls
between loosely associated objects, as for example in remote method invocation over a network.

6.2.2  Abstraction
Composite entities (clusters) are entities that can contain a topology (entities and relations). Clus-

tering is illustrated by the example in figure 6.4. A port contained by a composite entity has inside as
well as outside links. Such a port serves to expose ports in the contained entities as ports of the com-
posite. This is the converse of the “hiding” operator often found in process algebras. Ports within an
entity are hidden by default, and must be explicitly exposed to be visible (linkable) from outside the
entity3. The composite entity with ports thus provides an abstraction of the contents of the composite.

3. Unless level-crossing links are allowed. MoML supports these, but they are discouraged.

P1

P2

P3

P4 E4

P5

P6

FIGURE 6.4.  Ports (P3 and P4) are linked to relations (R1 and R2) below their container (E1) in the hierar-
chy. They may also be linked to relations at the same level (R3 and R4).
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6.3  Specification of a Model
In this section, we describe the XML elements that are used to define MoML models.

6.3.1  Data Organization
As with all XML files, MoML files have two parts, one defining the MoML language and one con-

taining the model data. The first part is called the document type definition, or DTD. This dual specifi-
cation of content and structure is a key XML innovation. The DTD for MoML is given in figure 6.5. If
you are adept at reading these, it is a complete specification of the schema. However, since it is not
particularly easy to read, we explain its key features here.

Every MoML file must either contain or refer to a DTD. The simplest way to do this is with the
following file structure:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<entity name="modelname" class="classname">

model definition ...
</entity>

Here, “model definition” is a set of XML elements that specify a clustered graph. The syntax for
these elements is described in subsequent sections. The first line above is required in any XML file. It
asserts the version of XML that this file is based on (1.0) and states that the file includes external refer-
ences (in this case, to the DTD). The second and third lines declare the document type (model) and
provide references to the DTD.

The references to the DTD above refer to a “public” DTD. The name of the DTD is

-//UC Berkeley//DTD MoML 1//EN

which follows the standard naming convention of public DTDs. The leading dash “-” indicates that
this is not a DTD approved by any standards body. The first field, surrounded by double slashes, is the
name of the “owner” of the DTD, “UC Berkeley.” The next field is the name of the DTD, “DTD
MoML 1” where the “1” indicates version 1 of the MoML DTD. The final field, “EN” indicates that the
language assumed by the DTD is English. The Ptolemy II MoML parser requires that the public DTD
be given exactly as shown, or it will not recognize the file as MoML.

In addition to the name of the DTD, the DOCTYPE element includes a URL pointing to a copy of
the DTD on the web. If a particular MoML tool does not have access to a local copy of the DTD, then
it finds it at this web site.

The “entity” element may be replaced by a “class” element, as in:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE class PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<class name="modelname" class="classname">
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FIGURE 6.5.  MoML version 1.2 DTD.

<!ELEMENT class (class | configure | deleteEntity | deletePort | deleteRelation | director |
doc | entity | group | import | input | link | port | property | relation | rename |
rendition | unlink)*>

<!ATTLIST class name CDATA #REQUIRED
 extends CDATA #IMPLIED
 source CDATA #IMPLIED>

<!ELEMENT configure (#PCDATA)>
<!ATTLIST configure source CDATA #IMPLIED>

<!ELEMENT deleteEntity EMPTY>
<!ATTLIST deleteEntity name CDATA #REQUIRED>

<!ELEMENT deletePort EMPTY>
<!ATTLIST deletePort name CDATA #REQUIRED>

<!ELEMENT deleteProperty EMPTY>
<!ATTLIST deleteProperty name CDATA #REQUIRED>

<!ELEMENT deleteRelation EMPTY>
<!ATTLIST deleteRelation name CDATA #REQUIRED>

<!ELEMENT doc (#PCDATA)>
<!ATTLIST doc name CDATA #IMPLIED>

<!ELEMENT entity (class | configure | deleteEntity | deletePort | deleteRelation | director |
doc | entity | group | import | input | link | port | property | relation | rename |
rendition | unlink)*>

<!ATTLIST entity name CDATA #REQUIRED
class CDATA #IMPLIED
source CDATA #IMPLIED>

<!ELEMENT group ANY>
<!ATTLIST group name CDATA #IMPLIED>

<!ELEMENT input EMPTY>
<!ATTLIST input source CDATA #REQUIRED>

<!ELEMENT link EMPTY>
<!ATTLIST link insertAt CDATA #IMPLIED

insertInsideAt CDATA #IMPLIED
               port CDATA #REQUIRED
               relation CDATA #IMPLIED
               vertex CDATA #IMPLIED>
<!ELEMENT port (configure | doc | property | rename)*>
<!ATTLIST port class CDATA #IMPLIED
               name CDATA #REQUIRED>
<!ELEMENT property (configure | doc | property | rename)*>
<!ATTLIST property class CDATA #IMPLIED
                    name CDATA #REQUIRED
                    value CDATA #IMPLIED>
<!ELEMENT relation (configure | doc | property | rename | vertex)*>
<!ATTLIST relation name CDATA #REQUIRED
                   class CDATA #IMPLIED>
<!ELEMENT rename EMPTY>
<!ATTLIST rename name CDATA #REQUIRED>
<!ELEMENT unlink EMPTY>
<!ATTLIST unlink index CDATA #IMPLIED

 insideIndex CDATA #IMPLIED
 port CDATA #REQUIRED
 relation CDATA #IMPLIED>

<!ELEMENT vertex (configure | doc | location | property | rename)*>
<!ATTLIST vertex name CDATA #REQUIRED
                 pathTo CDATA #IMPLIED
                 value CDATA #IMPLIED>
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class definition ...
</class>

We will say more about class definitions below.

6.3.2  Overview of XML
An XML document consists of the header tags “<?xml ... ?>” and “<!DOCTYPE ... >” fol-

lowed by exactly one element. The element has the structure:

start tag
body
end tag

where the start tag has the form

<elementName attributes>

and the end tag has the form

</elementName>

The body, if present, can contain additional elements as well as arbitrary text. If the body is not
present, then the element is said to be empty; it can optionally be written using the shorthand:

<elementName attributes/>

where the body and end tag are omitted.
The attributes are given as follows:

<elementName attributeName="attributeValue" .../>

Which attributes are legal in an element is defined by the DTD. The quotation marks delimit the value
of the attributes, so if the attribute value needs to contain quotation marks, then they must be given
using the special XML entity “&quot;” as in the following example:

<elementName attributeName="&quot;foo&quot;"/>

The value of the attribute will be

"foo"

(with the quotation marks).
In XML “&quot;” is called an entity, creating possible confusion with our use of entity in

Ptolemy II. In XML, an entity is a named storage unit of data. Thus, “&quot;” references an entity
called “quot” that stores a double quote character.
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6.3.3  Names and Classes
Most MoML elements have name and class attributes. The name is a handle for the object being

defined or referenced by the element. In MoML, the same syntax is used to reference a pre-existing
object as to create a new object. If a new object is being created, then the class attribute (usually) must
be given. If a pre-existing object is being referenced, or if the MoML reader has a built-in default class
for the element, then the class attribute is optional. If the class attribute is given, then the pre-existing
object must be an instance of the specified class.

A name is either absolute or relative. Absolute names begin with a period “.” and consist of a
series of name fields separated by periods, as in “.x.y.z”. Each name field can have alphanumeric char-
acters, spaces, or the underscore “_” character. The first field is the name of the top-level model or
class object. The second field is the name of an object immediately contained by that top-level.

Any name that does not begin with a period is relative to the current context, the object defined or
referenced by an enclosing element. The first field of such a name refers to or defines an object imme-
diately contained by that object. For example, inside of an object with absolute name “.x” the name
“y.z” refers to an object with absolute name “.x.y.z”.

A name is required to be unique within its container. That is, in any given model, the absolute
names of all the objects must be unique. There can be two objects named “z”, but they must not be
both contained by “.x.y”.

Not much more will be said about classes. Particular implementations of MoML can use this field
as necessary to specify different variations of the basic syntactic objects. The class names that are used
in the Ptolemy II implementation of MoML are always fully qualified Java class names. In addition, in
Ptolemy II a MoML file can be referenced as a class in the same way

6.3.4  Top-Level Entities
A very simple MoML file looks like this:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">
<entity name="modelname" class="classname">
</entity>

The entity element has name and class attributes, and defines a Ptolemy II model. This value of the
class attribute must be a class that instantiable by the MoML tool. For example, in Ptolemy II, we can
define a model with:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">
<entity name="ptIImodel" class="ptolemy.actor.TypedCompositeActor">
</entity>

Here, ptolemy.actor.TypedCompositeActor is a class that a Java class loader can find and that
the MoML parser can instantiate. In Ptolemy II, it is a container class for clustered graphs representing
executable models or libraries of instantiable model classes. A model can be an instance of
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ptolemy.kernel.util.NamedObj or any derived class, although most useful models will be
instances of ptolemy.kernel.CompositeEntity or a derived class. TypedCompositeAc-
tor, as in the above example, is derived from CompositeEntity.

6.3.5  Entity Element
A model typically contains entities, as in the following Ptolemy II example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">
<entity name="ptIImodel" class="ptolemy.actor.TypedCompositeActor">

<entity name="source" class="ptolemy.actor.lib.Ramp"/>
<entity name="sink" class="ptolemy.actor.lib.SequencePlotter"/>

</entity>

Notice the common XML shorthand here of writing “<entity ... />” rather than “<entity
...></entity>.” Of course, the shorthand only works if there is nothing in the body of the entity
element.

An entity can contain other entities, as shown in this example:

<entity name="ptIImodel" class="ptolemy.actor.TypedCompositeActor">
<entity name="container" class="ptolemy.actor.TypedCompositeActor">

<entity name="source" class="ptolemy.actor.lib.Ramp"/>
</entity>

</entity>

An entity must specify a class unless the entity already exists in the containing entity or model. The
name of the entity reflects the container hierarchy. Thus, in the above example, the source entity has
the full name “.ptIImodel.container.source”.

The definition of an entity can be distributed in the MoML file. Once created, it can be referred to
again by name as follows:

<entity name="top" class="classname">
<entity name="x" class="classname"/>
...
<entity name="x">

<property name="y">
</entity>

</entity>

The property element (see section 6.3.6 below) is added to the pre-existing entity with name “x” when
the second entity element is encountered.

In principle, MoML supports multiple containment, as in the following:

<entity name="top" class="classname">
<entity name="x" class="classname"/>
...
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<entity name="y" class="classname">
<entity name=".top.x"/>

</entity>
</entity>

Here, the element named “x” appears both in “top” and in “.top.y”, i.e. the same instance appears in
two different places. Thus, it would have two full names, “.top.x” and “.top.y.x”. However, Ptolemy II
does not support this, as it implements a strict container relationship, where an object can have only
one container. Thus, attempting to parse the above MoML will result in an exception being thrown.

6.3.6  Properties
Entities (and some other elements) can be parameterized. There are two mechanisms. The simplest

one is to use the property element:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="init"

value="5"
class="ptolemy.data.expr.Parameter"/>

</entity>

The property element has a name, at minimum (the value and class are optional). It is common for the
enclosing class to already contain properties, in which case the property element is used only to set the
value. For example:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="init" value="5"/>

</entity>

In the above, the enclosing object (source, an instance of ptolemy.actor.lib.Ramp) must already
contain a property with the name init. This is typically how library components are parameterized. In
Ptolemy II, the value of a property may be an expression, as in “PI/50”. The expression may refer to
other properties of the containing entity or of its container. Note that the expression language is not
part of MoML, but is rather part of Ptolemy II. In MoML, a property value is simply an uninterpreted
string. It is up to a MoML tool, such as Ptolemy II, to interpret that string.

A property can be declared without a class and without a pre-existing property if it is a pure prop-
erty, one with only a name and no value. For example:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="abc"/>

</entity>

A property can also contain a property, as in

<property name="x" value="5">
<property name="y" value="10"/>

</property>

A second, much more flexible mechanism is provided for parameterizing entities. The configure
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element can be used to specify a relative or absolute URL pointing to a file that configures the entity,
or it can be used to include the configuration information in line. That information need not be MoML
information. It need not even be XML, and can even be binary encoded data (although binary data can-
not be in line; it must be in an external file). For example,

<entity name="sink" class="ptolemy.actor.lib.SequencePlotter">
<configure source="url"/>

</entity>

Here, url can give the name of a file containing data, or a URL for a remote file. (For the Sequence-
Plotter actor, that external data will have PlotML syntax; PlotML is another XML schema for config-
uring plotters.) Configure information can also be given in the body of the MoML file as follows:

<entity name="sink" class="ptolemy.actor.lib.SequencePlotter">
<configure>

configure information
</configure>

</entity>

With the above syntax, the configure information must be textual data. It can contain XML markup
with only one restriction: if the tag “</configure>” appears in the textual data, then it must be pre-
ceeded by a matching “<configure>”. That is, any configure elements in the markup must have bal-
anced start and end tags.4

You can give both a source attribute and in-line configuration information, as in the following:

<entity name="sink" class="ptolemy.actor.lib.SequencePlotter">
<configure source="url">

configure information
</configure>

</entity>

In this case, the file data will be passed to the application first, followed by the in-line configuration
data.

In Ptolemy II, the configure element is supported by any class that implements the Configurable
interface. That interface defines a configure() method that accepts an input stream. Both external file
data and in-line data are provided to the class as a character stream by calling this method.

There is a subtle limitation with using markup within the configure element. If any of the elements
within the configure element match MoML elements, then the MoML DTD will be applied to assign
default values, if any, to their attributes. Thus, this mechanism works best if the markup within the
configure element is not using an XML schema that happens to have element names that match those
in MoML. Alternatively, if it does use MoML element names, then those elements are used with their
MoML meaning. This limitation can be fixed using XML namespaces, something we will eventually

4. XML allow markup to be included in arbitrary data as long as it appears within either a processing instruction or 
a CDATA body. However, for reasons that would only baffle anyone familiar with modern programming lan-
guages, processing instructions and CDATA bodies cannot be nested within one another. The MoML configure 
element can be nested, so it offers a much more flexible mechanism than the standard ones in XML.
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implement.

6.3.7  Doc Element
Some elements can be documented using the doc element. For example,

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="init" value="5">

<doc>Initialize the ramp above the default because... </doc>
</property>
<doc>
This actor produces an increasing sequence beginning with 5.
</doc>

</entity>

With the above syntax, the documentation information must be textual data. It can include markup, as
in the following example, which uses XHTML5 formatting within the doc element:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<doc><H1>Using HTML</H1>Text with <I>markup</I>.</doc>

</entity>

An alternative method is to use an XML processing instruction as follows:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<doc><?xhtml <H1>Using HTML</H1>Text with <I>markup</I>.?></doc>

</entity>

This requires that any utility that uses the documentation information be able to handle the xhtml pro-
cessing instruction, but it makes it very clear that the contents are XHTML. However, for reasons we
do not understand, XML does not allow processing instructions to be nested, so this technique has its
limitations.

More than one doc element can be included in an element. To do this, give each doc element a
name, as follows:

<entity name="entityname" class="classname">
<doc name="docname">

doc contents
</doc>

</entity>

The name must not conflict with any preexisting property. If a doc element or a property with the spec-
ified name exists, then it is removed and replaced with the property. If no name is given, then the doc
element is assigned the name “_doc”.

5. XHTML is HTML with additional constraints so that it conforms with XML syntax rules. In particular, every 
start tag must be matched by an end tag, something that ordinary HTML does not require (but fortunately, does 
allow).
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A common convention, used in Ptolemy II, is to add doc elements with the name “tooltip” to
define a tooltip for GUI views of the component. A tooltip is a small window with short documenta-
tion that pops up when the mouse lingers on the graphical component.

Note that the same limitation of using markup within configure elements also applies to doc ele-
ments.

6.3.8  Ports
An entity can declare a port:

<entity name="A" class="classname">
<port name="out"/>

</entity>

In the above example, no class is given for the port. If a port with the specified name already exists in
the class for entity A, then that port is the one referenced. Otherwise, a new port is created in Ptolemy
II by calling the newPort() method of the container. Alternatively, we can specify a class name, as in

<entity name="A" class="classname">
<port name="out" class="classname"/>

</entity>

In this case, a port will be created if one does not already exist. If it does already exist, then its class is
checked for consistency with the declared class (the pre-existing port must be an instance of the
declared class). In Ptolemy II, the typical classname for a port would be 

ptolemy.actor.TypedIOPort

In Ptolemy II, the container of a port is required to be an instance of ptolemy.kernel.Entity or a derived
class.

It is often useful to declare a port to be an input, an output, or both. To do this, enclose in the port a
property named “input” or “output” or both, as in the following example:

<port name="out" class="ptolemy.actor.IOPort">
<property name="output"/>

</port>

This is an example of a pure property. Optionally, the property can be given a boolean value, as in

<port name="out" class="ptolemy.actor.IOPort">
<property name="output" value="true"/>

</port>

The value can be either “true” or “false”, where the latter will define the port to not be an output. A
port can be defined to be both an input and an output, as follows

<port name="out" class="ptolemy.actor.IOPort">
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<property name="output" value="true"/>
<property name="input" value="true"/>

</port>

It is also sometimes necessary to declare that a port is a multiport. To do this, enclose in the port a
property named “multiport” as in the following example:

<port name="out" class="ptolemy.actor.IOPort">
<property name="multiport"/>

</port>

The enclosing port must be an instance of IOPort (or a derived class such as TypedIOPort), or else the
property is treated as an ordinary property. As with the input and output attribute, the multiport prop-
erty can be given a boolean value, as in

<port name="out" class="ptolemy.actor.IOPort">
<property name="multiport" value="true"/>

</port>

If a port is an instance of TypedIOPort (for library actors, most are), then you can set the type of
the port in MoML as follows:

<port name="out" class="ptolemy.actor.IOPort">
<property name="type"

 value="double"
 class="ptolemy.actor.TypeAttribute"/>

</port>

This is occasionally useful when you need to constrain the types beyond what the built-in type system
takes care of. The names of the built-in types are (currently) boolean, booleanMatrix, complex, com-
plexMatrix, double, doubleMatrix, fix, fixMatrix, int, intMatrix, long, longMatrix, unsignedByte,
unsignedByteMatrix, object, string, and general. These are defined in the class
ptolemy.data.type.BaseType.

6.3.9  Relations and Links
To connect entities, you create relations and links. The following example describes the topology

shown in figure 6.6:

<entity name="top" class="classname">
<entity name="A" class="classname">

<port name="out"/>
</entity>
<entity name="B" class="classname">

<port name="out"/>
</entity>
<entity name="C" class="classname">

<port name="in">
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<property name="multiport"/>
</port>

</entity>
<relation name="r1" class="classname"/>
<relation name="r2" class="classname"/>
<link port="A.out" relation="r1"/>
<link port="B.out" relation="r2"/>
<link port="C.in" relation="r1"/>
<link port="C.in" relation="r2"/>

</entity>

In Ptolemy II, the typical classname for a relation would be ptolemy.actor.TypedIORelation.
The classname may be omitted, in which case the newRelation() method of the container is used to cre-
ate a new relation. The container is required to be an instance of ptolemy.kernel.CompositeEntity, or a
derived class. As usual, the class attribute may be omitted if the relation already exists in the contain-
ing entity.

Notice that this example has two distinct links to C.in from two different relations. The order of
these links may be important to a MoML tool, so any MoML tool must preserve the order in which
they are specified, as Ptolemy II does. We say that C has two links, indexed 0 and 1.

The link element can explicitly give the index number at which to insert the link. For example,
we could have achieved the same effect above by saying

<link port="C.in" relation="r1" insertAt="0"/>
<link port="C.in" relation="r2" insertAt="1"/>

Whenever the insertAt option is not specified, the link is always appended to the end of the list of
links.

When the insertAt option is specified, the link is inserted at that position, so any pre-existing links
with larger indices will have their index numbers incremented. For example, if we do

<link port="C.in" relation="r1" insertAt="0"/>
<link port="C.in" relation="r2" insertAt="1"/>
<link port="C.in" relation="r3" insertAt="1"/>

FIGURE 6.6.  Example topology.
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then there will be a link to r1 with index 0, a link to r2 with index 2 (note! not 1), and a link to r3 with
index 1.

If the specified index is beyond the existing number of links, then null links (i.e. links to nothing)
are created to fill in. So for example, if the first link we create is given by

<link port="C.in" relation="r2" insertAt="1"/>

then the port will have two links, not one, but the first one will be an empty link. If we then say

<link port="C.in" relation="r2"/>

then the port will have three links, with the first one being empty. If we then say

<link port="C.in" relation="r2" insertAt="0"/>

then there will be four links, with the second one being empty.
Normally, it is not necessary in MoML to specify whether a link occurs on the inside of a port or

on the outside. This can be determined automatically by identifying the relation.For example, in figure
5.4, port P4 is linked on the inside to relation R2 and on the outside to relations R3 and R4.

However, close examination of the DTD reveals that the relation attribute is optional. If the rela-
tion attribute is not present, then a null link is inserted. However, if you do not specify a relation, then
there is no way to determine whether an inside null link or an outside null link was intended. MoML
defines the default to be an outside null link.  To specify an inside null link, use the insertInsideAt
attribute.  For example, to insert a null link on the inside of P4 in figure 6.4 prior to the link to R2, use:

<entity name="E0.E1">
   <link port="P4.in" insertInsideAt="0"/>
</entity>

Note that the index number is not the same thing as the channel number in Ptolemy II. In Ptolemy
II, a relation may have a width greater than one, so a single link may represent more than one channel
(actually, it could even represent zero channels if that relation is not linked to another ports).

6.3.10  Classes
So far, entities have been instances of externally defined classes accessed via a class loader. They

can also be instances of classes defined in MoML. To define a class in MoML, use the class element,
as in the following example:6

<?xml version="1.0" standalone="no"?>
<!DOCTYPE class PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">
<class name="Gen" extends="ptolemy.actor.TypedCompositeActor">

6. This is a simplified version of the Sinewave class, whose complete definition is given in the appendix.
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<entity name="ramp" class="ptolemy.actor.lib.Ramp">
<port name="output"/>
<property name="step" value="2*PI/50"/>

</entity>
<entity name="sine" class="ptolemy.actor.lib.TrigFunction">

<port name="input"/>
<port name="output"/>

</entity>
<port name="output" class="ptolemy.actor.TypedIOPort"/>
<relation name="r1" class="ptolemy.actor.TypedIORelation"/>
<relation name="r2" class="ptolemy.actor.TypedIORelation"/>
<link port="ramp.output" relation="r1"/>
<link port="sine.input" relation="r1"/>
<link port="sine.output" relation="r2"/>
<link port="output" relation="r2"/>

</class>

The class element may be the top-level element in a file, in which case the DOCTYPE should be
declared as “class” as done above. It can also be nested within a model. The above example specifies
the topology shown in figure 6.7. Once defined, it can be instantiated as if it were a class loaded by the
class loader:

<entity name="instancename" class="classname"/>

or
<entity name="instancename" class="classname" source="url"/>

The first form can be used if the class definition can be found from the classname. There are two ways
that this could happen. First, the classname might be an absolute name for a class defined within the
same top level entity that this entity element is in. Second, the classname might be sufficient to find the
class definition in a file, much the way Java classes are found. For example, if the classname is
ptolemy.actor.lib.Sinewave and the class is defined in the file $PTII/ptolemy/actor/
lib/Sinewave.xml, then there is no need to use the second form to specify the URL where the class
is defined. Specifically, the CLASSPATH7 is searched for a file matching the classname. By conven-
tion, the file defining the class has the same name as the class, with the extension “.xml” or “.moml”.

In the first of these techniques, the class name follows the same convention as entity names, except

FIGURE 6.7.  Sine wave generator topology.
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that a classname referring to a class defined within the same MoML top-level must be absolute. In fact,
a class is an entity with the additional feature that one can create new instances of it with the entity ele-
ment. Consider for example,

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">
<entity name="top" extends="ptolemy.kernel.CompositeEntity">

<class name="Gen" extends="ptolemy.actor.TypedCompositeActor">
class definition ...

</class>
<entity name="derived" class=".top.Gen"/>

</entity>

Here, the entity derived is an instance of .top.Gen, which is defined within the same MoML top
level. The absolute class name is “.top.Gen”.

The ability to give a URL as the source of a class definition is very powerful. It means that a model
may be build from component libraries that are defined worldwide. There is no need to localize these.
Of course, referencing a URL means the usual risks that the link will become invalid. It is our hope
that reliable and trusted sources of components will emerge who will not allow this to happen.

The Gen class given at the beginning of this subsection generates a sine wave with a period of 50
samples. It is not all that useful without being parameterized. Let us extend it and add properties:8

<class name="Sinegen" extends="Gen">
<property name="samplingFrequency"

value="8000.0"
class="ptolemy.data.expr.Parameter">

<doc>The sampling frequency in Hertz.</doc>
</property>
<property name="frequency"

value="440.0"
class="ptolemy.data.expr.Parameter">

<doc>The frequency in Hertz.</doc>
</property>
<property name="ramp.step"

value="frequency*2*PI/samplingFrequency">
<doc>Formula for the step size.</doc>

</property>
<property name="ramp.init"

value="phase">
</property>

</class>

This class extends Gen by adding two properties, and then sets the properties of the component entities

7. CLASSPATH is an environment variable that Java uses to find Java classes. The Ptolemy II implementation of 
MoML simply leverages this so that MoML classes can also be found if they are on the CLASSPATH.

8. This is still not quite as elaborate as the Sinewave class defined in the appendix, which is why we give it a 
slightly different name, Sinegen.
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to have values that are expressions. 

6.3.11  Inheritance
MoML supports inheritance by permitting you to extend existing classes. For example, consider

the following MoML file:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">
<entity name="top" class="ptolemy.kernel.CompositeEntity">

<class name="base" extends="ptolemy.kernel.CompositeEntity">
<entity name="e1" class="ptolemy.kernel.ComponentEntity">
</entity>

</class>
<class name="derived" extends=".top.base">

<entity name="e2" class="ptolemy.kernel.ComponentEntity"/>
</class>
<entity name="instance" extends=".top.derived"/>

</entity>

Here, the “derived” class extends the “base” class by adding another entity to it, and “instance” is an
instance of derived. The class “derived” can also give a source attribute, which gives a URL for the
source definition.

6.3.12  Directors
Recall that a clustered graph in MoML has no semantics. However, a particular model has seman-

tics. It may be a dataflow graph, a state machine, a process network, or something else. To give it
semantics, Ptolemy II requires the specification of a director associated with a model, an entity, or a
class. The director is a property of the model. The following example gives discrete-event semantics to
a Ptolemy II model:

<entity name="top" class="ptolemy.actor.TypedCompositeActor">
<property name="director"

 class="ptolemy.domains.de.kernel.DEDirector">
<property name="stopTime" value="100.0"/>

</director>
...

</entity>

This example also sets a property of the director. The name of the director is not important, except that
it cannot collide with the name of any other property in the model.

6.3.13  Input Element
It is possible to insert MoML from another file or URL into a particular point in your model. For

example:

<entity name="top" class="...">
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<entity name="a" class="...">
<input source="url"/>

</entity>
</entity>

This takes the contents of the URL specified in the source attribute of the input element and places
them inside the entity named “a”. The base of the current document (the one containing the import
statement) is used to interpret a relative URL, or if the current document has no base, then the current
working directory is used, or if that fails, the current CLASSPATH.

6.3.14  Annotations for Visual Rendering
The abstract syntax of MoML, clustered graphs, is amenable to visual renditions as bubble and arc

diagrams or as block diagrams. To support tools that display and/or edit MoML files visually, MoML
allows a relation to have multiple vertices that form a path. Links can then be made to individual verti-
ces. Consider the following example:

<relation name="r" class="ptolemy.actor.TypedIORelation">
<vertex name="v1" class="classname" value="location"/>
<vertex name="v2" class="classname" value="location" pathTo="v1"/>

</relation>
<link port="A.out" relation="r" vertex="v1"/>
<link port="B.in" relation="r" vertex="v1"/>
<link port="C.in" relation="r" vertex="v2"/>

This assumes that there are three entities named A, B, and C. The relation is annotated with a set of
vertices, v1 and v2, which will normally be rendered as graphical objects. The vertices are linked
together with paths, which in a simple visual tool might be straight lines, or in a more sophisticated
tool might be autorouted paths. In the above example, v1 and v2 are linked by a path. The link ele-
ments specify not just a relation, but also a vertex within that relation. This tells the visual rendering
tool to draw a path from the specified port to the specified vertex.

Figure 6.8 illustrates how the above fragment might be rendered. The square boxes are icons for
the three entities. They have ports with arrowheads suggesting direction. There is a single relation,
which shows up visually only as a set of lines and two vertices. The vertices are shown as small dia-
monds.

A vertex is exactly like a property, except that it has an additional attribute, pathTo, used to link
vertices, and it can be referenced in a link element. Like any other property, it has a class attribute,
which specifies the class implementing the vertex. In Ptolemy II, the class for a vertex is typically
ptolemy.moml.Vertex. Like other properties, a vertex can have a value. This value will typically spec-

FIGURE 6.8.  Example showing how MoML might be visually rendered.
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ify a location for a visual rendition. For example, in Ptolemy II, the first vertex above might be given
as

<vertex name="v1"
 class="ptolemy.moml.Vertex"
 value="184.0, 93.0"/>

This indicates that the vertex should be rendered at the location 184.0, 93.0.
Ptolemy II uses ordinary MoML properties to specify other visual aspects of a model. First, an

entity can contain a location property, which is a hint to a visual renderer, as follows:

<entity name="ramp" class="ptolemy.actor.lib.Ramp">
<property name="location"

 class="ptolemy.moml.Location"
 value="50.0, 50.0"/>

</entity>

This suggests to the visual renderer that the Ramp actor should be drawn at location 50.0, 50.0.
Ptolemy II also supports a powerful and extensible mechanism for specifying the visual rendition

of an entity. Consider the following example:

<entity name="ramp" class="ptolemy.actor.lib.Ramp">
<property name="location"

 class="ptolemy.moml.Location"
 value="50.0, 50.0"/>

<property name="iconDescription"
 class="ptolemy.kernel.util.SingletonAttribute">

   <configure><svg>
<rect x="0" y="0" width="80" height="20"

style="fill:green;stroke:black;stroke-width:5"/>
</svg></configure>

</property>
</entity>

The SingletonAttribute class is used to attach an XML description of the rendition, which in this case
is a wide box filled with green. The XML schema used to define the icon is SVG (scalable vector
graphics), which can be found at http://www.w3.org/TR/SVG/.9

The rendering of the icon is done by another property of class XMLIcon, which need not be
explicitly specified because the visual renderer will create it if it isn’t present. However, it is possible
to create totally customized renditions by defining classes derived from XMLIcon, and attaching them
to entities as properties. This is beyond the scope of this chapter.

9. Currently, the Diva graphics infrastructure, which is used by Vergil to render these icons, only supports a small 
subset of SVG. Eventually, we hope it will support the full specification.
174 Ptolemy II



MoML
6.4  Incremental Parsing
MoML may be used as a command language to modify existing models, as well as being used to

specify complete models. This technique is known as incremental parsing.

6.4.1  Adding Entities
Consider for example the simple model created as follows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">
<entity name="top" class="ptolemy.actor.TypedCompositeActor">
    ... contents of the model ...
</entity>

Later, the following MoML element can be used to add an entity to the model:

<entity name=".top">
<entity name="inside" class="ptolemy.actor.TypedCompositeActor"/>

</entity>

The name of the outer entity “.top” is the name of the top-level model created by the first segment of
MoML. (Recall that the leading period means that the name is absolute.) The line

<entity name=".top">

defines the context for evaluation of the element

<entity name="inside" class="ptolemy.actor.TypedCompositeActor"/>

Any entity constructed in a previous parsing phase can be specified as the context for evaluation of a
new MoML element.

Of course, the MoML parser must have a reference to the context in order to later parse this incre-
mental element. This is accomplished by either using the same parser, which keeps track of the top-
level entity in the last model it parsed, or by calling the setTopLevel() or setContext() methods of the
parser, passing as an argument the model.

6.4.2  Using Absolute Names
Above, we have used the fact that an entity element can refer to a pre-existing element by name.

That name can be relative to the context in which the entity element exists, or it can be absolute. If it is
absolute, then it must nonetheless be properly contained by the enclosing entity. The following exam-
ple is incorrect, and will trigger an exception:

<entity name="top" class="ptolemy.actor.TypedCompositeActor">
<entity name="a" class="ptolemy.actor.TypedCompositeActor"/>
<entity name="b" class="ptolemy.actor.TypedCompositeActor">
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<entity name=".top.a"/>
</entity>

</entity>

The “.top.a” cannot be specified within “b” because it is already contained within “top.”

6.4.3  Adding Ports, Relations, and Links
A port or relation can be added to an entity that has been previously constructed by the parser. For

example, assuming that .top.inside has been constructed as before, we can add a port to it with the
following MoML segment:

<entity name=".top.inside">
<port name="input" class="ptolemy.actor.TypedIOPort"/>

</entity>

A relation and link can then be added as follows:

<entity name=".top">
<relation name="r" class="ptolemy.actor.TypedIORelation"/>
<link port="inside.input" relation="r"/>

</entity>

6.4.4  Changing Port Configurations
A port that is an input can be converted to an output with the following MoML segment:

<port name="portname">
<property name="input" value="false"/>
<property name="output" value="true"/>

</port>

A port can be made into a multiport as follows:

<port name="portname">
<property name="multiport" value="true"/>

</port>

6.4.5  Deleting Entities, Relations, and Ports
An entity that has been previously constructed by a parser can be deleted by evaluating MoML.

For example, assuming that .top.inside has been constructed as before, we can delete it with the
following MoML segment:

<entity name=".top">
<deleteEntity name="inside"/>

</entity>
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Any links to ports of the entity will also be deleted. Similarly, relations can be deleted using the dele-
teRelation element, and ports can be deleted using the deletePort element.

6.4.6  Renaming Objects
A previously existing entity can be renamed using the rename element, as follows:

<entity name="entityName">
<rename name="newName"/>

</entity>

The new name is required to not have any periods in it. It consists of alphanumeric characters, the
underscore, and spaces.

6.4.7  Changing Documentation, Properties, and Directors
Documentation is attached to entities using the doc element (see section 6.3.7). A doc element can

optionally be given a name; if no name is given, then the name is implicitly “_doc”. To replace a doc
element, just give a new doc element with the same name. To remove a doc element, give a doc ele-
ment with the same name and an empty body, as in

<doc name="docname"></doc>

or

<doc name="docname"/>

Properties can have their value changed using the property element (see section 6.3.6) with a new
value, for example:

<property name="propertyname" value="propertyvalue"/>

A property can be deleted using the deleteProperty element

<deleteProperty name="propertyname"/>

Since a director is a property, this same mechanism can be used to remove a director.

6.4.8  Removing Links
To remove individual links, use the unlink element. This element has three forms. The first is

<unlink port="portname" relation="relationname"/>

This unlinks a port from the specified relation. If the port is linked more than once to the specified rela-
tion, then all links to this relation are removed. It makes no difference whether the link is an inside link
or an outside link, since this can be determined from the containers of the port and the relation.

The second and third forms are
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<unlink port="portname" index="linknumber"/>
<unlink port="portname" insideIndex="linknumber"/>

These both remove a link by index number. The first is used for an outside link, and the second for an
inside link. The valid indices range from 0 to one less than the number of links that the port has. If the
port is not a multiport, then there is at most one valid index, number 0. If an invalid index is given then
the element is ignored. Note that the indexes of links above that of the removed link will be decre-
mented by one.

The unlink element can also be used to remove null links. For example, if we have created a link
with

<link port="portname" relation="r" insertAt="1"/>

where there was previously no link on this port, then this leaves a null link (not linked to anything)
with index 0 (see section 6.3.9), and of course a link to relation r with index 1. The null link can be
removed with

<unlink port="portname" insideIndex="0"/>

which leaves the link to r as the sole link, having index 0.
Note that the index is not the same thing as the channel number. A relation may have a width

greater than one, so a single link may represent more than one channel (actually, it could even repre-
sent zero channels if that relation is not linked to other suitable ports).

6.4.9  Grouping Elements
Occasionally, you may wish to incrementally parse a set of elements. For example, in the Ptolemy

II implementation, the parser has a method for setting the context, so you could set the context to a
CompositeEntity and then create several entities by parsing the following MoML:

<entity name="firstEntity" class="classname"/>
<entity name="firstEntity" class="classname"/>
<entity name="firstEntity" class="classname"/>

However, the XML parser will fail to parse this because it requires that there be a single top-level ele-
ment. The group element is provided for this purpose:

<group>
<entity name="firstEntity" class="classname"/>
<entity name="firstEntity" class="classname"/>
<entity name="firstEntity" class="classname"/>

</group>

This element is ignored by the parser, in that it does not define a new container for the enclosed enti-
ties. It simply aggregates them, leaving the context the same as it is for the group element itself.

The group element may be given a name attribute, in which case it defines a namespace. All
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named objects (such as entities) that are immediately inside the group will have their names modified
by prepending them with the name of the group and a colon. For example,

<group name="a">
<entity name="b" class="classname">

<entity name="c" class="classname"/>
</entity>

</group>

The entity “b” will actually be named “a:b”. The entity “c” will not be affected by the group name. Its
full name, however, will be “a:b.c”.

If the namespace given is “auto” then the group tag has a particular special effect. Each element
contained immediately within the group that has a name will be assigned a new unique name within
the container based on the specified name. Hence, if the specified name is “foo”, but the container
already contains an object named “foo”, then a new object will be created with name “foo2” or “foo3”.
This feature of the group element seems rather bizarre, but it proves convenient when using MoML to
cut and paste. In order to paste a group of objects into a container, those objects have to be assigned
names that do not collide with names of objects already in the container. The following MoML will
have that effect:

<group name="auto">
<entity name="b" class="classname">

<entity name="c" class="classname"/>
</entity>

</group>

In this example, automatic naming is only applied to objects immediately contained by the group.
Thus, the entity with name “b” may in fact be created with name “b2” (if there is already a “b”), but the
entity with name “c” will have name “c”.

6.5  Parsing MoML
MoML is intended to be a generic modeling markup language, not one that is specialized to

Ptolemy II. As such, Ptolemy II may be viewed as a reference implementation of a MoML tool. In
Ptolemy II, MoML is supported primarily by the moml package.

The moml package contains the classes shown in figure 6.9 (see appendix A of chapter 1 for UML
syntax). The basis for the MoML parser is the parser distributed by Microstar. The parse() methods of
the MoMLParser class read MoML data and construct a Ptolemy II model. They return the top-level
model. The same parser can then be used to incrementally parse MoML segments to modify that
model. 

The EntityLibrary class takes particular advantage of MoML. This class extends CompositeEntity,
and is designed to contain a library of entities. But it is carefully designed to avoid instantiating those
entities until there is some request for them. Instead, it maintains a MoML representation of the library.
This allows for arbitrarily large libraries without the overhead of instantiating components in the
library that might not be needed.
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Incremental parsing is when a MoML parser is used to modify a pre-existing model (see section
6.4). A MoML parser that was used to create the pre-existing model can be used to modify it. If there is
no such parser, then it is necessary to call the setToplevel() method of MoMLParser to associate
the parser with the pre-existing model.

Incremental parsing should (usually) be done using a change request. A change request is an active
object that makes a modification to a Ptolemy model. They are queued with a composite entity con-
tainer by calling its requestChange() method. This ensures that the mutation is executed only when it is
safe to modify the structure of the model. The class MoMLChangeRequest (see figure 6.9) can be used
for this purpose. Simply create an instance of this class, providing the constructor with a string con-
taining the MoML code that specifies the change.

The exportMoML() methods of Ptolemy II objects can be used to produce a MoML file given a
model. Thus, MoML can be used as the persistent file format for Ptolemy II models

FIGURE 6.9.  Classes supporting MoML parsing in the moml package.

com.microstar.xml.HanderBase

+attribute(name : String, value : String, isSpecified : boolean)
+charData(data : char[], start : int, length : int)
+doctypeDecl(name : String, publicID : String, systemID : String)
+endDocument()
+endElement(name : String)
+endExternalEntity(systemID : String)
+error(message : String, systemID : String, line : int, column : int)
+ignorableWhitespace(data : char[], start : int, length : int)
+processingInstruction(target : String, data : String)
+resolveEntity(publicID : String, systemID : String)
+startDocument()
+startElement(name : String)
+startExternalEntity(systemID : String)

com.microstar.xml.XmlParser

ChangeRequest

+execute()

0..n1..1uses

MoMLChangeRequest

+MoMLChangeRequest(originator : Object, request : String)
+MoMLChangeRequest(originator : Object, context : NamedObj, request : String)
+MoMLChangeRequest(originator : Object, context : NamedObj, request : String, base : URL)
+getDeferredToParent(object : NamedObj) : NamedObj

-_base : URL
-_context : NamedObj
-_parser : MoMLParser
-_propagating : boolean

EntityLibrary

+EntityLibrary()
+EntityLibrary(workspace : Workspace)
+EntityLibrary(container : CompositeEntity, name : String)
+populate()

-_parser : MoMLParser

Configurable

CompositeEntity

0..n

1..1

uses

«Interface»
ErrorHandler

+enableErrorSkipping(enable : boolean)
+handleError(element : String, context : NamedObj, exception : Exception)

+CANCEL : int
+CONTINUE : int
+RETHROW : int

0..1

StreamErrorHandler

+StreamErrorHandler()
+StreamErrorHandler(out : OutputStream)

MoMLParser

+MoMLParser()
+MoMLParser(w : Workspace)
+MoMLParser(w : Workspace, loader : ClassLoader)
+getTopLevel() : NamedObj
+isModified() : boolean
+parse(base : URL, input : URL)
+parse(base : URL, input : InputStream) : NamedObj
+parse(base : URL, reader : Reader) : NamedObj
+parse(input : String) : NamedObj
+parse(base : URL, text : String)
+parseFile(filename : String)
+reset()
+searchForClass(name : String, source : String) : ComponentEntity
+setContext(context : NamedObj)
+setErrorHandler(handler : ErrorHandler)
+setModified(modified : boolean)
+setToplevel(toplevel : NamedObj)
#_currentExternalEntity() : String

+MoML_DTD_1 : String
-_base : URL
-_current : Object
-_currentElement : String
-_handler : ErrorHandler
-_manager : Manager
-_panel : Container
-_parser : XmlParser
-_toplevel : NamedObj
-_workspace : Workspace
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6.6  Exporting MoML
Almost any Ptolemy II object can export a MoML description of itself. The following methods of

NamedObj (and derived classes) are particularly useful:

exportMoML(): String
exportMoML(output: Writer)
exportMoML(output: Writer, depth: int)
exportMoML(output: Writer, depth: int, name: String)
_exportMoMLContents(output: Writer, depth: int)

Since any object derived from NamedObj can export MoML, MoML becomes an effective persistent
format for Ptolemy II models. Almost everything in Ptolemy II is derived from NamedObj. It is much
more compact than serializing the objects, and the description is much more durable (since serialized
objects are not guaranteed to load properly into future versions of the Java virtual machine).

There is one significant subtlety that occurs when an entity is instantiated from a class defined in
MoML. Consider the example:

<entity name="top" class="ptolemy.kernel.CompositeEntity">
    <class name="master" extends="ptolemy.kernel.ComponentEntity">
        <port name="p" class="ptolemy.kernel.ComponentPort"/>
    </class>
    <entity name="derived" class=".top.master"/>
</entity>

This model defines one class and one entity that instantiates that class. When we export MoML for this
top-level model, we get:

<entity name="top" class="ptolemy.kernel.CompositeEntity">
    <class name="master" extends="ptolemy.kernel.ComponentEntity">

 <port name="p" class="ptolemy.kernel.ComponentPort">
 </port>

    </class>
    <entity name="derived" class=".top.master">

</entity>
</entity>

Aside from some minor differences in syntax, this is identical to our specification above. In particular,
note that the entity “derived” does not describe its port “p” even though it certainly has such a port.
That port is implied because the entity instantiates the class “.top.master”.

Suppose that using incremental parsing we subsequently modify the model as follows:

<entity name=".top.derived">
    <port name="q" class="ptolemy.kernel.ComponentPort"/>
</entity>

That is, we add a port to the instantiated entity. Then the added port is exported when we export
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MoML. That is, we get:

<entity name="top" class="ptolemy.kernel.CompositeEntity">
    <class name="master" extends="ptolemy.kernel.ComponentEntity">

 <port name="p" class="ptolemy.kernel.ComponentPort">
 </port>

    </class>
    <entity name="derived" class=".top.master">

<port name="q" class="ptolemy.kernel.ComponentPort">
</port>

</entity>
</entity>

This is what we would expect. The entity is based on the specified class, but actually extends it with
additional features. Those features are persistent.

Properties are treated more simply. They are always described when MoML is exported, regardless
of whether they are defined in the class on which an entity is based. The reason for this is that proper-
ties are usually modified in instances, for example by giving them new values.

There is an additional subtlety. If a topology is modified by making direct kernel calls, then export-
MoML() will normally export the modified topology. However, if a derived component is modified by
direct kernel calls, then exportMoML() will fail to catch the changes. In fact, only if the changes are
made by evaluating MoML will the modifications be exported. This actually can prove to be conve-
nient. It means that if a model mutates during execution, and is later saved, that a user interface can
ensure that only the original model, before mutations, is saved.

6.7  Special Attributes
The moml package also includes a set of attribute classes that decorate the objects in a model with

MoML-specific information, as shown in figure 6.10. These classes are used to decorate a Ptolemy II
object with additional information that is relevant to a GUI or other user interface. For example, the
Location class is used to specify the location of visual rendition of a component in a visual editor. A
Vertex decorates a relation with one of several visual handles to which connections can be made. A
MoMLAttribute decorates an object with a property that can describe itself with arbitrary MoML.
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Appendix B: Example
Figures 6.11 and 6.12 show a simple Ptolemy II model in the SDF domain. Figure 6.13 shows the

execution window for this model. This model generates two sinusoidal waveforms and multiplies them
together. This appendix gives the complete MoML code. The MoML code is divided into two files.
The first of these defined a component, a sinewave generator. The second creates two instances of this
sinewave generator and multiplies their outputs. The code listings are (hopefully) self-explanatory.

B.1  Sinewave Generator
The Sinewave component is defined in the file $PTII/ptolemy/actor/lib/Sinewave.xml, which is

listed below. This file defines a MoML class, which can then be referenced by the class name
ptolemy.actor.lib.Sinewave. The Vergil rendition of this model is shown in figure 6.11.

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE class PUBLIC “-//UC Berkeley//DTD MoML 1//EN”
    “http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd”>
<class name=”Sinewave” extends=”ptolemy.actor.TypedCompositeActor”>
    <property name=”_createdBy” class=”ptolemy.kernel.attributes.VersionAttribute” value=”3.0-beta”>
    </property>
    <doc>This composite actor generates a sine wave.</doc>
    <property name=”samplingFrequency” class=”ptolemy.data.expr.Parameter” value=”8000.0”>
        <doc>The sampling frequency, in the same units as the frequency.</doc>
    </property>

FIGURE 6.10.  Attributes in the moml package.

Attribute

Vertex

+Vertex(container : Relation, name : String)
+addLinkedPort(port : Port)
+getLinkedVertex() : Vertex
+linkedPorts() : List
+removeLinkedPort(port : Port)
+setLinkedVertex(vertex : Vertex)
+Vertex(w : Workspace)

-_linked : Vertex
-_ports : List

Relation

MoMLAttribute

+MoMLAttribute(container : NamedObj, name : String)
+MoMLAttribute(w : Workspace)
+appendMoMLDescription(moml : String)
+writeMoMLDescription(output : Writer, depth : int)

-_momlDescription : List

Location

+Location(container : NamedObj, name : String)
+Location(w : Workspace)
+addValueListener(listener : ValueListener)
+getLocation() : double[]
+removeValueListener(listener : ValueListener)
+setLocation(location : double[])

-_location : double[]
-_valueListeners : List

Settable

+getExpression() : String
+setExpression(expression : String)

SingletonConfigurableAttribute

LibraryAttribute

+LibraryAttribute()
+LibraryAttribute(workspace : Workspace)
+LibraryAttribute(container : NamedObj, name : String)
+getLibrary() : CompositeEntity
+setLibrary(library : CompositeEntity)

CompositeEntity

SingletonAttribute

ParserAttribute

+ParserAttribute(container : NamedObj, name : String)
+getParser() : MoMLParser
+setParser(parser : MoMLParser)

Documentation

+consolidate(object : NamedObj) : String
+getValue() : String
+setValue(value : String)

-_value : String
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    <property name=”_vergilSize” class=”ptolemy.actor.gui.SizeAttribute” value=”[596, 450]”>
    </property>
    <property name=”_vergilLocation” class=”ptolemy.actor.gui.LocationAttribute” value=”[104, 102]”>
    </property>
    <property name=”annotation” class=”ptolemy.kernel.util.Attribute”>
        <property name=”_hideName” class=”ptolemy.kernel.util.SingletonAttribute”>
        </property>
        <property name=”_iconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAttribute”>
            <configure><svg><text x=”20” y=”20” style=”font-size:14; font-family:SansSerif; 
fill:blue”>Generate a sine wave.</text></svg></configure>
        </property>
        <property name=”_smallIconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAt-
tribute”>
            <configure>
      <svg>
        <text x=”20” style=”font-size:14; font-family:SansSerif; fill:blue” y=”20”>-A-</text>
      </svg>
    </configure>
        </property>
        <property name=”_controllerFactory” class=”ptolemy.vergil.basic.NodeControllerFactory”>
        </property>
        <property name=”_editorFactory” class=”ptolemy.vergil.toolbox.AnnotationEditorFactory”>
        </property>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”145.0, 25.0”>
        </property>
    </property>
    <property name=”SDF Director” class=”ptolemy.domains.sdf.kernel.SDFDirector”>
        <property name=”Scheduler” class=”ptolemy.domains.sdf.kernel.SDFScheduler”>
        </property>
        <property name=”allowDisconnectedGraphs” class=”ptolemy.data.expr.Parameter” value=”false”>
        </property>
        <property name=”iterations” class=”ptolemy.data.expr.Parameter” value=”0”>
        </property>
        <property name=”vectorizationFactor” class=”ptolemy.data.expr.Parameter” value=”1”>
        </property>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”70.0, 45.0”>

FIGURE 6.11.  Rendition of the Sinewave class in Vergil 1.0.
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        </property>
    </property>
    <property name=”frequency” class=”ptolemy.actor.parameters.PortParameter” value=”440.0”>
        <property name=”_hideName” class=”ptolemy.kernel.util.SingletonAttribute”>
        </property>
        <property name=”_iconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAttribute”>
            <configure>
      <svg>

<polyline points=”-15,-15, -3,-5, -16,5” style=”stroke:black”></polyline>
      </svg>
    </configure>
        </property>
        <property name=”_icon” class=”ptolemy.vergil.icon.ValueIcon”>
        </property>
        <property name=”_smallIconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAt-
tribute”>
            <configure>
      <svg>
        <text x=”20” style=”font-size:14; font-family:SansSerif; fill:green” y=”20”>-P-</text>
      </svg>
    </configure>
        </property>
        <property name=”_editorFactory” class=”ptolemy.vergil.toolbox.VisibleParameterEditorFactory”>
        </property>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”50.0, 95.0”>
        </property>
    </property>
    <property name=”phase” class=”ptolemy.actor.parameters.PortParameter” value=”0.0”>
        <property name=”_hideName” class=”ptolemy.kernel.util.SingletonAttribute”>
        </property>
        <property name=”_iconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAttribute”>
            <configure>
      <svg>

<polyline points=”-15,-15, -3,-5, -16,5” style=”stroke:black”></polyline>
      </svg>
    </configure>
        </property>
        <property name=”_icon” class=”ptolemy.vergil.icon.ValueIcon”>
        </property>
        <property name=”_smallIconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAt-
tribute”>
            <configure>
      <svg>
        <text x=”20” style=”font-size:14; font-family:SansSerif; fill:green” y=”20”>-P-</text>
      </svg>
    </configure>
        </property>
        <property name=”_editorFactory” class=”ptolemy.vergil.toolbox.VisibleParameterEditorFactory”>
        </property>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”50.0, 135.0”>
        </property>
    </property>
    <property name=”_windowProperties” class=”ptolemy.actor.gui.WindowPropertiesAttribute” 
value=”{bounds={108, 103, 811, 561}}”>
    </property>
    <port name=”frequency” class=”ptolemy.actor.parameters.ParameterPort”>
        <property name=”input”/>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”30.0, 90.0”>
        </property>
    </port>
    <port name=”phase” class=”ptolemy.actor.parameters.ParameterPort”>
        <property name=”input”/>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”30.0, 130.0”>
        </property>
    </port>
    <port name=”output” class=”ptolemy.actor.TypedIOPort”>
        <property name=”output”/>
        <doc>Sinusoidal waveform output.</doc>
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        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”515.0, 270.0”>
        </property>
    </port>
    <entity name=”Ramp” class=”ptolemy.actor.lib.Ramp”>
        <property name=”firingCountLimit” class=”ptolemy.data.expr.Parameter” value=”0”>
        </property>
        <property name=”init” class=”ptolemy.data.expr.Parameter” value=”0”>
        </property>
        <property name=”step” class=”ptolemy.actor.parameters.PortParameter” value=”frequency*2*PI/sam-
plingFrequency”>
        </property>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”100.0, 215.0”>
        </property>
        <port name=”output” class=”ptolemy.actor.TypedIOPort”>
            <property name=”output”/>
        </port>
        <port name=”trigger” class=”ptolemy.actor.TypedIOPort”>
            <property name=”input”/>
            <property name=”multiport”/>
        </port>
        <port name=”step” class=”ptolemy.actor.parameters.ParameterPort”>
            <property name=”input”/>
        </port>
    </entity>
    <entity name=”TrigFunction” class=”ptolemy.actor.lib.TrigFunction”>
        <property name=”function” class=”ptolemy.kernel.util.StringAttribute” value=”sin”>
            <property name=”style” class=”ptolemy.actor.gui.style.ChoiceStyle”>
                <property name=”acos” class=”ptolemy.kernel.util.StringAttribute” value=”acos”>
                </property>
                <property name=”asin” class=”ptolemy.kernel.util.StringAttribute” value=”asin”>
                </property>
                <property name=”atan” class=”ptolemy.kernel.util.StringAttribute” value=”atan”>
                </property>
                <property name=”cos” class=”ptolemy.kernel.util.StringAttribute” value=”cos”>
                </property>
                <property name=”sin” class=”ptolemy.kernel.util.StringAttribute” value=”sin”>
                </property>
                <property name=”tan” class=”ptolemy.kernel.util.StringAttribute” value=”tan”>
                </property>
            </property>
        </property>
        <property name=”_icon” class=”ptolemy.vergil.icon.AttributeValueIcon”>
            <property name=”attributeName” class=”ptolemy.kernel.util.StringAttribute” value=”function”>
            </property>
            <property name=”displayWidth” class=”ptolemy.data.expr.Parameter” value=”6”>
            </property>
        </property>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”375.0, 270.0”>
        </property>
        <port name=”input” class=”ptolemy.actor.TypedIOPort”>
            <property name=”input”/>
        </port>
        <port name=”output” class=”ptolemy.actor.TypedIOPort”>
            <property name=”output”/>
        </port>
    </entity>
    <entity name=”Const” class=”ptolemy.actor.lib.Const”>
        <property name=”value” class=”ptolemy.data.expr.Parameter” value=”phase”>
        </property>
        <doc>Create a constant sequence</doc>
        <property name=”_icon” class=”ptolemy.vergil.icon.BoxedValueIcon”>
            <property name=”attributeName” class=”ptolemy.kernel.util.StringAttribute” value=”value”>
            </property>
            <property name=”displayWidth” class=”ptolemy.data.expr.Parameter” value=”40”>
            </property>
        </property>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”100.0, 295.0”>
        </property>
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        <port name=”output” class=”ptolemy.actor.TypedIOPort”>
            <property name=”output”/>
        </port>
        <port name=”trigger” class=”ptolemy.actor.TypedIOPort”>
            <property name=”input”/>
            <property name=”multiport”/>
        </port>
    </entity>
    <entity name=”AddSubtract” class=”ptolemy.actor.lib.AddSubtract”>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”215.0, 270.0”>
        </property>
        <port name=”plus” class=”ptolemy.actor.TypedIOPort”>
            <property name=”input”/>
            <property name=”multiport”/>
        </port>
        <port name=”minus” class=”ptolemy.actor.TypedIOPort”>
            <property name=”input”/>
            <property name=”multiport”/>
        </port>
        <port name=”output” class=”ptolemy.actor.TypedIOPort”>
            <property name=”output”/>
        </port>
    </entity>
    <relation name=”relation3” class=”ptolemy.actor.TypedIORelation”>
        <vertex name=”vertex1” value=”445.0, 270.0”>
        </vertex>
    </relation>
    <relation name=”relation4” class=”ptolemy.actor.TypedIORelation”>
        <vertex name=”vertex1” value=”295.0, 270.0”>
        </vertex>
    </relation>
    <relation name=”relation” class=”ptolemy.actor.TypedIORelation”>
    </relation>
    <relation name=”relation2” class=”ptolemy.actor.TypedIORelation”>
    </relation>
    <link port=”output” relation=”relation3”/>
    <link port=”Ramp.output” relation=”relation”/>
    <link port=”TrigFunction.input” relation=”relation4”/>
    <link port=”TrigFunction.output” relation=”relation3”/>
    <link port=”Const.output” relation=”relation2”/>
    <link port=”AddSubtract.plus” relation=”relation”/>
    <link port=”AddSubtract.plus” relation=”relation2”/>
    <link port=”AddSubtract.output” relation=”relation4”/>
</class>

B.2  Modulation
The top-level is defined in the file $PTII/ptolemy/moml/demo/modulation.xml, which is listed

below. The Vergil rendition of this model is shown in figure 6.12, and its execution is shown in figure
6.13.
<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE entity PUBLIC “-//UC Berkeley//DTD MoML 1//EN”
    “http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd”>
<entity name=”modulation” class=”ptolemy.actor.TypedCompositeActor”>
    <property name=”_createdBy” class=”ptolemy.kernel.attributes.VersionAttribute” value=”3.0-beta”>
    </property>
    <doc>Multiply a low-frequency sine wave (the signal)
by a higher frequency one (the carrier).</doc>
    <property name=”frequency1” class=”ptolemy.data.expr.Parameter” value=”PI*0.2”>
        <doc>Frequency of the carrier</doc>
    </property>
    <property name=”frequency2” class=”ptolemy.data.expr.Parameter” value=”PI*0.02”>
        <doc>Frequency of the sinusoidal signal</doc>
    </property>
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    <property name=”director” class=”ptolemy.domains.sdf.kernel.SDFDirector”>
        <property name=”Scheduler” class=”ptolemy.domains.sdf.kernel.SDFScheduler”>
        </property>
        <property name=”allowDisconnectedGraphs” class=”ptolemy.data.expr.Parameter” value=”false”>
        </property>
        <property name=”iterations” class=”ptolemy.data.expr.Parameter” value=”100”>
            <doc>Number of iterations in an execution.</doc>
        </property>
        <property name=”vectorizationFactor” class=”ptolemy.data.expr.Parameter” value=”1”>
        </property>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”65.0, 35.0”>
        </property>
    </property>
    <property name=”_vergilSize” class=”ptolemy.actor.gui.SizeAttribute” value=”[430, 295]”>
    </property>
    <property name=”_vergilLocation” class=”ptolemy.actor.gui.LocationAttribute” value=”[175, 147]”>
    </property>
    <property name=”_windowProperties” class=”ptolemy.actor.gui.WindowPropertiesAttribute” 
value=”{bounds={153, 24, 645, 411}}”>
    </property>
    <entity name=”carrier” class=”ptolemy.actor.lib.Sinewave”>
        <property name=”_createdBy” class=”ptolemy.kernel.attributes.VersionAttribute” value=”2.1-devel-
2”>
        </property>

FIGURE 6.12.  Rendition of the modulation model in Vergil.
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        <property name=”samplingFrequency” class=”ptolemy.data.expr.Parameter” value=”2*PI”>
            <doc>The sampling frequency, in the same units as the frequency.</doc>
        </property>
        <property name=”_vergilSize” class=”ptolemy.actor.gui.SizeAttribute” value=”[600, 450]”>
        </property>
        <property name=”_vergilLocation” class=”ptolemy.actor.gui.LocationAttribute” value=”[104, 102]”>
        </property>
        <property name=”annotation” class=”ptolemy.kernel.util.Attribute”>
            <property name=”_hideName” class=”ptolemy.kernel.util.SingletonAttribute”>
            </property>
            <property name=”_iconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAttribute”>
                <configure><svg><text x=”20” y=”20” style=”font-size:14; font-family:SansSerif; 
fill:blue”>Generate a sine wave.</text></svg></configure>
            </property>
            <property name=”_smallIconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAt-
tribute”>
                <configure>
      <svg>
        <text x=”20” style=”font-size:14; font-family:SansSerif; fill:blue” y=”20”>-A-</text>
      </svg>
    </configure>
            </property>
            <property name=”_controllerFactory” class=”ptolemy.vergil.basic.NodeControllerFactory”>
            </property>
            <property name=”_editorFactory” class=”ptolemy.vergil.toolbox.AnnotationEditorFactory”>
            </property>
            <property name=”_location” class=”ptolemy.kernel.util.Location” value=”25.0, 20.0”>
            </property>
        </property>
        <property name=”SDF Director” class=”ptolemy.domains.sdf.kernel.SDFDirector”>
            <property name=”Scheduler” class=”ptolemy.domains.sdf.kernel.SDFScheduler”>
            </property>
            <property name=”allowDisconnectedGraphs” class=”ptolemy.data.expr.Parameter” value=”false”>
            </property>
            <property name=”iterations” class=”ptolemy.data.expr.Parameter” value=”0”>
            </property>
            <property name=”vectorizationFactor” class=”ptolemy.data.expr.Parameter” value=”1”>
            </property>
            <property name=”_location” class=”ptolemy.kernel.util.Location” value=”70.0, 45.0”>
            </property>
        </property>
        <property name=”frequency” class=”ptolemy.actor.parameters.PortParameter” value=”frequency1”>

FIGURE 6.13.  Execution window for the modulation model.
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            <property name=”_hideName” class=”ptolemy.kernel.util.SingletonAttribute”>
            </property>
            <property name=”_iconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAttribute”>
                <configure>
      <svg>

<polyline points=”-15,-15, -3,-5, -16,5” style=”stroke:black”></polyline>
      </svg>
    </configure>
            </property>
            <property name=”_icon” class=”ptolemy.vergil.icon.ValueIcon”>
            </property>
            <property name=”_smallIconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAt-
tribute”>
                <configure>
      <svg>
        <text x=”20” style=”font-size:14; font-family:SansSerif; fill:green” y=”20”>-P-</text>
      </svg>
    </configure>
            </property>
            <property name=”_editorFactory” class=”ptolemy.vergil.toolbox.VisibleParameterEditorFactory”>
            </property>
            <property name=”_location” class=”ptolemy.kernel.util.Location” value=”50.0, 95.0”>
            </property>
            <doc>The frequency of the sinusoid, in the same units as the sampling frequency.</doc>
        </property>
        <property name=”phase” class=”ptolemy.actor.parameters.PortParameter” value=”0.0”>
            <property name=”_hideName” class=”ptolemy.kernel.util.SingletonAttribute”>
            </property>
            <property name=”_iconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAttribute”>
                <configure>
      <svg>

<polyline points=”-15,-15, -3,-5, -16,5” style=”stroke:black”></polyline>
      </svg>
    </configure>
            </property>
            <property name=”_icon” class=”ptolemy.vergil.icon.ValueIcon”>
            </property>
            <property name=”_smallIconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAt-
tribute”>
                <configure>
      <svg>
        <text x=”20” style=”font-size:14; font-family:SansSerif; fill:green” y=”20”>-P-</text>
      </svg>
    </configure>
            </property>
            <property name=”_editorFactory” class=”ptolemy.vergil.toolbox.VisibleParameterEditorFactory”>
            </property>
            <property name=”_location” class=”ptolemy.kernel.util.Location” value=”50.0, 135.0”>
            </property>
            <doc>The phase, in radians.</doc>
        </property>
        <property name=”_windowProperties” class=”ptolemy.actor.gui.WindowPropertiesAttribute” 
value=”{bounds={108, 103, 811, 561}}”>
        </property>
        <doc>This composite actor generates a sine wave.</doc>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”120.0, 230.0”>
        </property>
    </entity>
    <entity name=”signal” class=”ptolemy.actor.lib.Sinewave”>
        <property name=”_createdBy” class=”ptolemy.kernel.attributes.VersionAttribute” value=”2.1-devel-
2”>
        </property>
        <property name=”samplingFrequency” class=”ptolemy.data.expr.Parameter” value=”2*PI”>
            <doc>The sampling frequency, in the same units as the frequency.</doc>
        </property>
        <property name=”_vergilSize” class=”ptolemy.actor.gui.SizeAttribute” value=”[600, 450]”>
        </property>
        <property name=”_vergilLocation” class=”ptolemy.actor.gui.LocationAttribute” value=”[104, 102]”>
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        </property>
        <property name=”annotation” class=”ptolemy.kernel.util.Attribute”>
            <property name=”_hideName” class=”ptolemy.kernel.util.SingletonAttribute”>
            </property>
            <property name=”_iconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAttribute”>
                <configure><svg><text x=”20” y=”20” style=”font-size:14; font-family:SansSerif; 
fill:blue”>Generate a sine wave.</text></svg></configure>
            </property>
            <property name=”_smallIconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAt-
tribute”>
                <configure>
      <svg>
        <text x=”20” style=”font-size:14; font-family:SansSerif; fill:blue” y=”20”>-A-</text>
      </svg>
    </configure>
            </property>
            <property name=”_controllerFactory” class=”ptolemy.vergil.basic.NodeControllerFactory”>
            </property>
            <property name=”_editorFactory” class=”ptolemy.vergil.toolbox.AnnotationEditorFactory”>
            </property>
            <property name=”_location” class=”ptolemy.kernel.util.Location” value=”25.0, 20.0”>
            </property>
        </property>
        <property name=”SDF Director” class=”ptolemy.domains.sdf.kernel.SDFDirector”>
            <property name=”Scheduler” class=”ptolemy.domains.sdf.kernel.SDFScheduler”>
            </property>
            <property name=”allowDisconnectedGraphs” class=”ptolemy.data.expr.Parameter” value=”false”>
            </property>
            <property name=”iterations” class=”ptolemy.data.expr.Parameter” value=”0”>
            </property>
            <property name=”vectorizationFactor” class=”ptolemy.data.expr.Parameter” value=”1”>
            </property>
            <property name=”_location” class=”ptolemy.kernel.util.Location” value=”70.0, 45.0”>
            </property>
        </property>
        <property name=”frequency” class=”ptolemy.actor.parameters.PortParameter” value=”frequency2”>
            <property name=”_hideName” class=”ptolemy.kernel.util.SingletonAttribute”>
            </property>
            <property name=”_iconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAttribute”>
                <configure>
      <svg>

<polyline points=”-15,-15, -3,-5, -16,5” style=”stroke:black”></polyline>
      </svg>
    </configure>
            </property>
            <property name=”_icon” class=”ptolemy.vergil.icon.ValueIcon”>
            </property>
            <property name=”_smallIconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAt-
tribute”>
                <configure>
      <svg>
        <text x=”20” style=”font-size:14; font-family:SansSerif; fill:green” y=”20”>-P-</text>
      </svg>
    </configure>
            </property>
            <property name=”_editorFactory” class=”ptolemy.vergil.toolbox.VisibleParameterEditorFactory”>
            </property>
            <property name=”_location” class=”ptolemy.kernel.util.Location” value=”50.0, 95.0”>
            </property>
            <doc>The frequency of the sinusoid, in the same units as the sampling frequency.</doc>
        </property>
        <property name=”phase” class=”ptolemy.actor.parameters.PortParameter” value=”0.0”>
            <property name=”_hideName” class=”ptolemy.kernel.util.SingletonAttribute”>
            </property>
            <property name=”_iconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAttribute”>
                <configure>
      <svg>

<polyline points=”-15,-15, -3,-5, -16,5” style=”stroke:black”></polyline>
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      </svg>
    </configure>
            </property>
            <property name=”_icon” class=”ptolemy.vergil.icon.ValueIcon”>
            </property>
            <property name=”_smallIconDescription” class=”ptolemy.kernel.util.SingletonConfigurableAt-
tribute”>
                <configure>
      <svg>
        <text x=”20” style=”font-size:14; font-family:SansSerif; fill:green” y=”20”>-P-</text>
      </svg>
    </configure>
            </property>
            <property name=”_editorFactory” class=”ptolemy.vergil.toolbox.VisibleParameterEditorFactory”>
            </property>
            <property name=”_location” class=”ptolemy.kernel.util.Location” value=”50.0, 135.0”>
            </property>
            <doc>The phase, in radians.</doc>
        </property>
        <property name=”_windowProperties” class=”ptolemy.actor.gui.WindowPropertiesAttribute” 
value=”{bounds={108, 103, 811, 561}}”>
        </property>
        <doc>This composite actor generates a sine wave.</doc>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”120.0, 95.0”>
        </property>
    </entity>
    <entity name=”mult” class=”ptolemy.actor.lib.MultiplyDivide”>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”260.0, 180.0”>
        </property>
        <port name=”multiply” class=”ptolemy.actor.TypedIOPort”>
            <property name=”input”/>
            <property name=”multiport”/>
        </port>
        <port name=”divide” class=”ptolemy.actor.TypedIOPort”>
            <property name=”input”/>
            <property name=”multiport”/>
        </port>
        <port name=”output” class=”ptolemy.actor.TypedIOPort”>
            <property name=”output”/>
        </port>
    </entity>
    <entity name=”display” class=”ptolemy.actor.lib.gui.SequencePlotter”>
        <property name=”fillOnWrapup” class=”ptolemy.data.expr.Parameter” value=”true”>
        </property>
        <property name=”legend” class=”ptolemy.kernel.util.StringAttribute”>
        </property>
        <property name=”_windowProperties” class=”ptolemy.actor.gui.WindowPropertiesAttribute”>
        </property>
        <property name=”_plotSize” class=”ptolemy.actor.gui.SizeAttribute”>
        </property>
        <property name=”startingDataset” class=”ptolemy.data.expr.Parameter” value=”0”>
        </property>
        <property name=”xInit” class=”ptolemy.data.expr.Parameter” value=”0.0”>
        </property>
        <property name=”xUnit” class=”ptolemy.data.expr.Parameter” value=”1.0”>
        </property>
        <property name=”_location” class=”ptolemy.kernel.util.Location” value=”385.0, 95.0”>
        </property>
        <port name=”input” class=”ptolemy.actor.TypedIOPort”>
            <property name=”input”/>
            <property name=”multiport”/>
        </port>
    </entity>
    <relation name=”r1” class=”ptolemy.actor.TypedIORelation”>
    </relation>
    <relation name=”r2” class=”ptolemy.actor.TypedIORelation”>
        <vertex name=”vertex0” value=”195.0, 95.0”>
        </vertex>
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    </relation>
    <relation name=”r3” class=”ptolemy.actor.TypedIORelation”>
    </relation>
    <link port=”carrier.output” relation=”r1”/>
    <link port=”signal.output” relation=”r2”/>
    <link port=”mult.multiply” relation=”r1”/>
    <link port=”mult.multiply” relation=”r2”/>
    <link port=”mult.output” relation=”r3”/>
    <link port=”display.input” relation=”r2”/>
    <link port=”display.input” relation=”r3”/>
</entity>
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7.1  Introduction
Ptolemy II models can be embedded in applets. In most cases, the MoMLApplet class can be used.

For the MoMLApplet class, the model is given by a MoML file, which can be created using Vergil.
The URL for the MoML file is given by the modelURL applet parameter in the HTML file.

Occasionally, however, it is useful to create an applet that exercises more control over the display
and user interaction, or constructs or manipulates Ptolemy II models in ways that cannot be done in
MoML. In such cases, the PtolemyApplet class can be useful. The MoMLApplet class is derived from
PtolemyApplet, as shown in figure 7.1 (see appendix A of chapter 1 for UML syntax). Developers may
either use PtolemyApplet directly or extend it to provide a more sophisticated user interface or a more
elaborate method for model construction or manipulation.

The PtolemyApplet class provides four applet parameters:
• background: The background color, typically given as a hex number of the form "#rrggbb" where 

rr gives the red component, gg gives the green component, and bb gives the blue component.
• controls: This gives a comma-separated list of any subset of the words "buttons", "topParameters", 

and "directorParameters" (case insensitive), or the word "none". If this parameter is not given, then 
it is equivalent to giving "buttons", and only the control buttons mentioned above will be dis-
played.  If the parameter is given, and its value is "none", then no controls are placed on the screen.  
If the word "topParameters" is included in the comma-separated list, then controls for the top-level 
parameters of the model are placed on the screen, below the buttons.  If the word "directorParame-
ters" is included, then controls for the director parameters are also included.

• modelClass: The fully qualified class name of a Java class that extends NamedObj.  This class 
defines the model. 

• orientation: This can have value "horizontal", "vertical", or "controls_only" (case insensitive).  If 
it is "vertical", then the controls are placed above the visual elements of the Placeable actors. This 
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is the default.  If it is "horizontal", then the controls are placed to the left of the visual elements.  If 
it is "controls_only" then no visual elements are placed.

The use of these applet parameters is explained in more detail below.

7.2  HTML Files Containing Applets
An applet is a Java class that can be referenced by an HTML file and accessed either locally or

over the web and run in a secure manner on the local machine in a web browser. Unfortunately, many
browsers available today are shipped with an earlier version of Java that does not provide features that
Ptolemy II requires. The work around is to use Sun’s Java Plug-In, which invokes the 1.4 version of
the Java Runtime Environment (JRE), instead of the default Java runtime that is shipped with the
browser. The Java Plug-in is installed when the JRE or the Java Development Kit (JDK) is installed.
Unfortunately, using the Java Plug-in makes the applet HTML more complex. There are two choices:

1. Use fairly complex JavaScript to determine which browser is running and then to properly select 
one of three different ways to invoke the Java Plug-in. This method works on the most different 
types of platforms and browsers. The JavaScript is so complex, that rather than reproduce it here, 
please see one of the demonstration html files such as $PTII/ptolemy/domains/sdf/demo/Butterfly/
Butterfly.htm. Sun provides a free tool called HTMLConverter that will automatically generate the 
html code, see the Java Plug-in home page at http://java.sun.com/products/plugin/.

FIGURE 7.1.  UML static structure diagram for PtolemyApplet, a convenience class for constructing applets. 
PtolemyApplet is in the ptolemy.actor.gui package.
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2. Use the much simpler <applet> ...</applet> tag to invoke the Java Plug-in. This method works on 
many platforms and browsers, but requires a more recent version of the Java Plug-in, and will not 
work under Netscape Communicator 4.x. However, all is not lost for Netscape Communicator 4.x 
users, since the appletviewer command that is included with the Java Developmen kit will dis-
play applets written using the simpler format.
For details about the above two choices, see http://java.sun.com/products/plugin/versions.html.
Sample HTML for the <applet> . . . </applet> style of custom applet is shown in figure 7.2. An

HTML file containing the segment shown in figure 7.2 can be found in $PTII/doc/tutorial/
TutorialApplet1.htm, where $PTII is the home directory of the Ptolemy II installation. Also in that
directory are a number of sample Java files for applets, each named TutorialAppletn.java, where n is
an integer starting with 1. These files contain a series of applet definitions, each with increasing
sophistication, that are discussed below. Each applet has a corresponding TutorialAppletn.htm file.

Since our example applets are in a directory $PTII/doc/tutorial, the codebase for the applet is “../..”
in figure 7.2, which is the directory $PTII. This permits the applets to refer to any class in the Ptolemy
II tree.

There are some parameters in the HTML in figure 7.2 that you may want to change. The width and
the height, for example, specify the amount of space on the screen that the browser gives to the applet. 

7.3  Defining a Model in a Java File
PtolemyApplet supports two techniques for instantiating models:

1. The model can be defined as a Java class that extends NamedObj, with the class name given by the 
modelClass applet parameter in the HTML file.

2. The model can be defined as a Java class that extends PtolemyApplet and overrides the protected 
method _createModel() to create the model, and optionally overrides the _createView() method to 
create the visual display for the model.

The first of these is simpler, so we begin by explaining this technique.

7.3.1  A Model Class as a Composite Actor
If the model is defined in a Java class that extends NamedObj, then we can use the modelClass

applet parameter to pass the class name to PtolemyApplet and invoke the PtolemyApplet code from
the applet. PtolemyApplet will then construct our model and provide the basic functionality we need. 

<APPLET
 code = "ptolemy/actor/gui/PtolemyApplet"
 codebase = "../.."
 width = "800"
 height = "300"
 >
 <PARAM NAME = "modelClass" VALUE = "doc.tutorial.TutorialApplet1" > \
No Java Plug-in support for applet, see
 <a href="http://java.sun.com/products/plugin/"><code>http://java.sun.com/products/plugin/</code></a>
</APPLET> 

FIGURE 7.2.  An HTML segment that invokes the Java 1.4 Plug-in under both most browser, except 
Netscape 4.x. This text can be found in $PTII/doc/tutorial/TutorialApplet1.htm.
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In figure 7.3 is a listing of an extremely simple applet that runs in the discrete-event (DE) domain.
The first line declares that the applet is in a package called “doc.tutorial,” which matches the directory
name relative to the codebase specified in the HTML file. In the next several lines, the applet imports
the following classes from Ptolemy II:
• TypedCompositeActor: Our model extends TypedCompositeActor, which itself eventually 

extends NamedObj. This is the typical top-level container class for models in most Ptolemy II 
domains.

• PtolemyApplet: This base class creates a top-level composite actor called _toplevel, a manager 
called _manager, and a workspace called _workspace (all protected members of the class, shown 
in figure 7.1). We will see shortly how to use these.

• Clock: This is an actor that generates a clock signal, which by default is a sequence of events 
placed one time unit apart and alternating in value between 1 and 0.

• TimedPlotter: This is an actor that plots functions of time.
• DEDirector: The discrete-event domain director that manages execution of the model.
• IllegalActionException: This exception thrown on an attempt to perform an action that 

would result in an inconsistent or contradictory data structure if it were allowed to complete.
• NameDuplicationException: This exception is thrown on an attempt to add a named object to 

a collection that requires unique names, and finding that there already is an object by that name in 
the collection.

• Workspace: An object for synchronization and version tracking of groups of objects.

Next, the construct:

FIGURE 7.3.  An extremely simple applet that runs in the DE domain. This text can be found in $PTII/tuto-
rial/TutorialApplet1.java.

package doc.tutorial;
import ptolemy.actor.TypedCompositeActor;
import ptolemy.actor.gui.PtolemyApplet;
import ptolemy.actor.lib.Clock;
import ptolemy.actor.lib.gui.TimedPlotter;
import ptolemy.domains.de.kernel.DEDirector;
import ptolemy.kernel.util.IllegalActionException;
import ptolemy.kernel.util.NameDuplicationException;
import ptolemy.kernel.util.Workspace;

public class TutorialApplet1 extends TypedCompositeActor {
    public TutorialApplet1(Workspace workspace)

throws IllegalActionException, NameDuplicationException {
super(workspace);

// Create the director.
DEDirector director = new DEDirector(this, "director");
setDirector(director);
director.stopTime.setExpression("10.0");

// Create two actors.
Clock clock = new Clock(this,"clock");
TimedPlotter plotter = new TimedPlotter(this,"plotter");

// Connect them.
connect(clock.output, plotter.input);

}
}
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public class TutorialApplet1 extends TypedCompositeActor {...}

defines a class called TutorialApplet1 that extends TypedCompositeActor. The new class provides a
constructor that takes one argument, the Workspace into which to place the model:

public TutorialApplet1(Workspace workspace)
    throws IllegalActionException, NameDuplicationException {...}

The body of the constructor first invokes the constructor in the base class with:

super(workspace);

It then creates a DE director.

DEDirector director = new DEDirector(this, "director");

The director implements the discrete-event model of computation, which controls when the component
actors are invoked and how they communicate. The next line tells the model to use the director:

setDirector(director);

The next line sets a director parameter that controls the duration of an execution of the model:

director.stopTime.setExpression("10.0");

If we don’t set the stop time, then the model will run forever, or until the user hits the stop button. The
next few lines create an instance of Clock and an instance of TimedPlotter, and connect them together:

// Create two actors.
Clock clock = new Clock(this,"clock");
TimedPlotter plotter = new TimedPlotter(this,"plotter");

// Connect them.
connect(clock.output, plotter.input);

The constructors for Clock and TimedPlotter take two arguments, the container (a composite actor),
and an arbitrary name (which must be unique within the container). This example uses the variable
this, which refers to the class we are creating, a TypedCompositeActor, as a container. The connec-
tion is accomplished by the connect() method of the composite actor, which takes two ports as argu-
ments. Instances of Clock have one output port, output, which is a public member, and instances of
TimedPlotter have one input port, input, which is also a public member.

7.3.2  Compiling
To compile this class definition, you must tell the Java compiler where to find the Ptolemy classes

by using the -classpath command line argument. For example, in bash or a similar shell, assuming the
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environment variable PTII is set to the location of the Ptolemy II installation:

bash-2.05b$ cd $PTII/doc/tutorial
bash-2.05b$ javac -classpath ../.. TutorialApplet1.java

(The part before the “$” is the prompt issued by bash). Java requires that classes are defined in files
that have the same name as the class. The Ptolemy II style convention is to extend this notion and have
HTML files have the same name as the model they use, so the HTML file that runs the model in
TutorialApplet1.java is named TutorialApplet1.htm.

You should now be able to run the applet with the command:

bash-2.05b$ appletviewer TutorialApplet1.htm

The result of running the applet is a new window which should look like that shown in figure 7.4. The
following applet parameters are useful to customize the display:
• controls: This gives a comma-separated list of any subset of the words "buttons", "topParameters", 

and "directorParameters" (case insensitive), or the word "none". If this parameter is not given, then 
it is equivalent to giving "buttons", and only the control buttons mentioned above will be dis-
played.  If the parameter is given, and its value is "none", then no controls are placed on the screen.  
If the word "topParameters" is included in the comma-separated list, then controls for the top-level 
parameters of the model are placed on the screen, below the buttons.  If the word "directorParame-
ters" is included, then controls for the director parameters are also included.

• orientation: This can have value "horizontal", "vertical", or "controls_only" (case insensitive).  If 
it is "vertical", then the controls are placed above the visual elements of the Placeable actors. This 
is the default.  If it is "horizontal", then the controls are placed to the left of the visual elements.  If 
it is "controls_only" then no visual elements are placed.

FIGURE 7.4.  Result of running the (all too simple) applet of figure 7.3.
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For example, if the HTML includes the following lines within the APPLET element:

<PARAM NAME="controls" VALUE="buttons, directorParameters">
<PARAM NAME="orientation" VALUE="horizontal">

then the result of execution looks like figure 7.5. The layout is now horizontal, with the controls to the
left of the displays instead of on top, and the director parameters have been made available to the
applet user.

7.3.3  Executing the Model in an Application
A model created as above can also be executed as an application, in addition to running it as a

mode. Any class that extends CompositeActor, the base class for TypedCompositeActor, can be exe-
cuted using the CompositeActorApplication class, shown in figure 7.6. The command is simply:

bash-2.05b$ cd $PTII/doc/tutorial
bash-2.05b$ java -classpath ../.. \

ptolemy.actor.gui.CompositeActorApplication \
-class doc.tutorial.TutorialApplet1

The result will look like figure 7.5. This ability to use the same class definition in both an applet and an
application is convenient.

7.3.4  Extending PtolemyApplet
Another way to use PtolemyApplet is to define the model as a Java class that extends it and over-

rides the protected method _createModel() to create a model and optionally overrides the
_createView() protected method to create a custom display. Extending PtolemyApplet gives the devel-
oper the opportunity to control the look and feel of the applet in as much detail as necessary, including
creating completely customized displays and controls.

In figure 7.7 we define the same applet by extending PtolemyApplet instead of extending Typed-

FIGURE 7.5.  Result of the model as an application.
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CompositeActor. This class overrides the _createView() method, which takes a Workspace as an argu-
ment and returns a NamedObj. Note that since we are no longer extending TypedCompositeActor, we
need to instantiate a TypedCompositeActor named toplevel and use it where we used “this” in the pre-
vious example. Otherwise, the code is very similar to that in figure 7.3.

FIGURE 7.6.  Any class that extends CompositeActor can be executed using the CompositeActorAppli-
cation class.

CompositeActorApplication

+ComponentActorApplication()
+main(args : String[])
+processArgs(args : String[])
+report(ex : Exception)
+report(message : String)
+report(message : String, ex : Exception)
+startRun(model : CompositeActor)
+stopRun(model : CompositeActor)
+waitForFinish()
#_parseArg(arg : String) : boolean
#_parseArgs(args : String[])
#_usage() : String

#_commandFlags : String[]
#_commandOptions : String[][]
#_commandTemplate : String
#_openCount : int
#_models : List
#_test : boolean

CompositeActor

1..n

FIGURE 7.7.  A simple applet that extends PtolemyApplet instead of extending TypedCompositeActor. This 
text can be found in $PTII/doc/tutorial/TutorialApplet2.java.

package doc.tutorial;
import ptolemy.actor.TypedCompositeActor;
import ptolemy.actor.gui.PtolemyApplet;
import ptolemy.actor.lib.Clock;
import ptolemy.actor.lib.gui.TimedPlotter;
import ptolemy.domains.de.kernel.DEDirector;
import ptolemy.kernel.util.NamedObj;
import ptolemy.kernel.util.Workspace;

public class TutorialApplet2 extends PtolemyApplet {
    public NamedObj _createModel(Workspace workspace) 

throws Exception {
        TypedCompositeActor toplevel = new TypedCompositeActor(workspace);

// Create the director.
DEDirector director = new DEDirector(toplevel, "director");
director.stopTime.setExpression("10.0");

// Create two actors.
Clock clock = new Clock(toplevel,"clock");
TimedPlotter plotter = new TimedPlotter(toplevel,"plotter");

// Connect them.
toplevel.connect(clock.output, plotter.input);
return toplevel;

    }
}
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We can improve this applet by giving the user more specialized control over its execution.

7.3.5  Using Model Parameters
Typically, a model has a set of parameters that you wish for the user to be able to control in the

applet. Suppose for example that in the above applet you wish for the user to be able to control the stop
time of the director and the period of the clock actor. You can modify the Java code in figure 7.3 as
shown in figure 7.8. This code uses the Parameter class to define two top-level parameters. The follow-
ing lines create the top-level parameters:

Parameter stopTime = new Parameter(this, "stopTime");
Parameter clockPeriod = new Parameter(this, "clockPeriod");

The default values of these two parameters are set by the following lines:

FIGURE 7.8.  Code that adds model parameters control to the applet. This code can be found in $PTII/doc/
tutorial/TutorialApplet3.java.

package doc.tutorial;
import ptolemy.actor.TypedCompositeActor;
import ptolemy.actor.gui.PtolemyApplet;
import ptolemy.actor.lib.Clock;
import ptolemy.actor.lib.gui.TimedPlotter;
import ptolemy.data.expr.Parameter;
import ptolemy.domains.de.kernel.DEDirector;
import ptolemy.kernel.util.IllegalActionException;
import ptolemy.kernel.util.NameDuplicationException;
import ptolemy.kernel.util.Workspace;

public class TutorialApplet3 extends TypedCompositeActor {
    public TutorialApplet3(Workspace workspace)

throws IllegalActionException, NameDuplicationException {
super(workspace);

// Create model parameters
Parameter stopTime = new Parameter(this, "stopTime");
Parameter clockPeriod = new Parameter(this, "clockPeriod");

// Give the model parameters default values.
stopTime.setExpression("10.0");
clockPeriod.setExpression("2.0");

// Create the director
DEDirector director = new DEDirector(this, "director");
setDirector(director);

// Create two actors.
Clock clock = new Clock(this,"clock");
TimedPlotter plotter = new TimedPlotter(this,"plotter");

// Set the user controlled parameters.
director.stopTime.setExpression("stopTime");
clock.period.setExpression("clockPeriod");

// Connect the actors.
connect(clock.output, plotter.input);

    }
}
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stopTime.setExpression("10.0");
clockPeriod.setExpression("2.0");

Finally, the values of the director and Clock actor parameters are coupled to these top-level parameters
by the lines

director.stopTime.setExpression("stopTime");
clock.period.setExpression("clockPeriod");

The expressions being set here can be much more elaborate. The expression language is documented in
the Data Package chapter. Here, the expressions each contain a single variable reference, referring to
the top-level parameters by name.

In order for the top-level parameters to appear in the controls of an applet, we must configure the
HTML file as shown in figure 7.9. The line

<PARAM NAME="controls" VALUE="buttons, topParameters">

accomplish the objective. The result of invoking the appletviewer on the HTML file in figure 7.9 is
shown in figure 7.10.

7.3.6  Adding Custom Actors
The intent of Ptolemy II is to have a reasonably rich set of actors in the actor libraries. However, it

is anticipated that model builders will often need to define their own, custom actors. This is relatively
easy to do, as discussed in the Designing Actors chapter. By convention, when a specialized actor is
created for a particular applet or application, we store that actor in the same directory with the applet or
application, rather than in the actor libraries. The actor libraries are for generic, reusable actors.

7.3.7  Using Jar Files
A jar file is a Java Archive File that contains multiple .class files. Applets that are being down-

loaded over the net will start up more quickly if all the relevant Java .class files are collected together
into one or more jar files. This dramatically reduces the number of HTTP transactions. 

Models in the Ptolemy II demo directories typically use three separate jar files:

FIGURE 7.9.  The HTML that displays model parameters for the applet user to control. This file can be 
found in $PTII/doc/tutorial/TutorialApplet3.htm

<APPLET
 code = "ptolemy/actor/gui/PtolemyApplet"
 codebase = "../.."
 width = "800"
 height = "300"
 >
 <PARAM NAME = "modelClass" VALUE = "doc.tutorial.TutorialApplet3" > \
 <PARAM NAME = "controls" VALUE = "buttons, topParameters" > \
 <PARAM NAME = "orientation" VALUE = "horizontal" > \

No Java Plug-in support for applet, see
 <a href="http://java.sun.com/products/plugin/"><code>http://java.sun.com/products/plugin/</code></a>
</APPLET> 
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• ptolemy/ptsupport.jar — A jar file containing classes from ptolemy.kernel, ptolemy.actor and 
other packages, see $PTII/ptolemy/makefile for a complete list;

• ptolemy/domains/domain/domain.jar — A domain specific jar file such as de.jar, where domain is 
replaced by a domain name;

• ptolemy/domains/domain/demo/Demo/Demo.jar — A model-specific jar file. Models with sophis-
ticated GUIs that use Listeners can result in multiple .class files per .java file, so having a jar file 
can help download speeds.

The third jar file is not needed if the model resides in a single .class file. To use jar files, you must
modify the HTML shown in figure 7.2 to read as shown in figure 7.11.

An important downside of using jar files is that during Java development, one must regenerate the
jar files each time a Java file is recompiled. If you are developing an applet, you may want to avoid
using jar files, or only include jar files that are from packages that are not actively being developed.

FIGURE 7.10.  Result of running the applet of figure 7.8 with horizontal layout, and including the top-level 
parameters.

<APPLET
 code = "ptolemy/actor/gui/PtolemyApplet"
 codebase = "../.."
 width = "800"
 height = "300"
 archive="ptolemy/ptsupport.jar, ptolemy/domains/de/de.jar"
>

 <PARAM NAME = "modelClass" VALUE = "doc.tutorial.TutorialApplet3" >
 <PARAM NAME = "controls" VALUE = "buttons, topParameters" >
 <PARAM NAME = "orientation" VALUE = "horizontal" >
No Java Plug-in support for applet, see
 <a href="http://java.sun.com/products/plugin/"><code>http://java.sun.com/products/plugin/</code></a>
</APPLET> 

FIGURE 7.11.  An HTML segment that modifies that of figure 7.2 to use jar files. This text can be found in 
$PTII/doc/tutorial/tutorialApplet4.htm.
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How Jar files are built. To know which jar files in the Ptolemy II tree you might need for your applet,
you need to know how the jar files are constructed. The short story is that every package has a jar file
that includes subpackages. Since the package structure mirrors the directory structure, it is easy to
peruse the Ptolemy II tree (rooted at $PTII) and look for jar files. There are a few exceptions; for exam-
ple, domain jar files, such as de.jar, do not include the demos, even though the demos are in a subpack-
age of the domain package.

The longer story is that the make install rule in Ptolemy II makefiles builds various jar files
that contain the Ptolemy II .class files. In general, make install builds a jar file in each directory that
contains more than one .class file. If a directory contains subdirectories that in turn contain jar files,
then the subdirectory jar files are expanded and included in the upper level jar file. For example, the
$PTII/ptolemy/kernel/makefile contains:

# Used to build jar files
PTPACKAGE = ptolemy.kernel
PTDIST = $(PTPACKAGE)$(PTVERSION)
PTCLASSJAR =
# Include the .class files from these jars in PTCLASSALLJAR
PTCLASSALLJARS = \

util/util.jar
PTCLASSALLJAR = kernel.jar

In this case make install will build a jar file called kernel.jar that contains all the .class files in
the current directory and the contents of $PTII/ptolemy/kernel/util/util.jar.

7.3.8  Hints for Developing Applets
When developing applets, you may find it easier to test using appletviewer instead of invoking a

full browser.

Other hints may be found in $PTII/doc/coding/applets.htm
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Glossary
abstract syntax ..................A conceptual data organization. cf. concrete syntax.
action methods ..................The methods initialize(), prefire(), fire(), postfire(), and wrapup() in 

the Executable interface.
actor ...................................An executable entity. This was called a block in Ptolemy Classic.
anytype...............................The Ptolemy Classic name for undeclared type.
applet..................................A Java program that is downloaded from a web server by a browser 

and executed in the client’s computer (usually within a plug-in for the 
browser). An applet has restricted access to local resources for secu-
rity reasons. cf. application.

application .........................A Java program that is executed as an ordinary program on a host 
computer. Unlike an applet, an application can have full access to 
local resources such as the file system. cf. applet.

atomic actor.......................A primitive actor. That is, one that is not a composite actor. This was 
called a star in Ptolemy Classic.

attribute .............................A named property associated with a named object in Ptolemy II. Also, 
in XML, a modifier to an element.

block ...................................The Ptolemy Classic name for an actor.
browser ..............................A program that renders HTML and accesses the worldwide web using 

the HTTP protocol.
channel ...............................A path from an output port to an input port (via relations) that can 

transport a single stream of tokens.
clustered graph .................A graph with hierarchy. Ptolemy II topologies are clustered graphs.
code generation .................Translation of a model into efficient, standalone software for execu-

tion autonomously from the design environment. Code generation was 
a major emphasis of Ptolemy Classic.

composite actor .................An actor that is internally composed of other actors and relations. This 
was called a galaxy in Ptolemy Classic.

concrete syntax..................A persistent representation of a data organization. cf. abstract syntax.
connection..........................A path from one port to another via relations and possibly transparent 

ports. A connection consists of one or more relations and two or more 
links.

container ............................An object that logically owns another. A Ptolemy II object can have at 
most one container.

dangling relation ...............A relation with only input ports or only output ports linked to it.
data polymorphism...........Ability to operate with more than one token type.
deep traversals ..................Traversals of a clustered graph that see through transparent cluster 

boundaries (transparent composite entities and ports).
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disconnected port ............. A port with no relation linked to it.
director .............................. An object that controls the execution of a model or an opaque com-

posite entity according to some model of computation.
domain ............................... An implementation of a model of computation in Ptolemy II and 

Ptolemy Classic.
domain polymorphism ..... Ability to operate under more than one model of computation.
element .............................. In XML, a portion of a document consisting of a begin tag, a body, 

and an end tag.
entity .................................. A node in a Ptolemy II clustered graph. Also, in XML, a named text 

segment.
event................................... In the DE domain, an event is a token with a time stamp.
execution............................ One invocation of initialize(), followed by any number of iterations, 

followed by one invocation of wrapup().
executive director ............. From the perspective of an actor inside an opaque composite actor, the 

director of the container of the opaque composite actor.
galaxy................................. The Ptolemy Classic name for a composite actor.
immutable property ......... A property of an object that is set up when the object is constructed 

and that cannot be changed during the lifetime of the object.
iteration ............................. One invocation of prefire(), followed by any number of invocations of 

fire(), followed by one invocation of postfire().
link ..................................... An association between a port and a relation.
manager............................. The top-level controller for the execution of a model.
model ................................. A complete Ptolemy II application. This was called a universe in 

Ptolemy Classic.
model of computation ...... The rules that govern the interaction, communication, and control 

flow of a set of components.
MoML................................ Modeling markup language, an XML dialect for specifying compo-

nent-based designs such those in Ptolemy II.
multiport ........................... A port that can send or receive tokens over more than one channel.
opaque ............................... For a composite entity or a port, an attribute that indicates that the 

inside should not be visible from the outside. That is, deep traversals 
of the topology do not see through an opaque boundary.

opaque composite actor ... A composite actor with a local director. Such an actor appears to the 
outside domain to be atomic, but internally is composed of an inter-
connection of other actors. This was called a wormhole in Ptolemy 
Classic.

package.............................. A collection of classes that forms a logical unit and occupies one 
directory in the source code tree.

parameter.......................... An attribute with a value. This was called a state in Ptolemy Classic.
particle............................... The Ptolemy Classic name for a token.
port .................................... A named interface of an entity to which connections be made.
Ptolemy Classic................. A C++ software system for construction of concurrent models and 

implementation through code generation.
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Ptolemy II ..........................A Java software system for construction and execution of concurrent 
models.

Ptolemy Project .................A research project at Berkeley that investigates modeling, simulation, 
and design of concurrent, networked, embedded systems.

relation ...............................An object representing an interconnection between entities.
resolved type......................A type for a port that is consistent with the type constraints of the 

actor and any port it is connected to. It is the result of type resolution.
servlet .................................A Java program that is executed on a web server and that produces 

results viewed remotely on a web browser.
star......................................The Ptolemy Classic name for an atomic actor.
state ....................................The Ptolemy Classic name for a parameter.
subpackage ........................A package that is logically related to a parent package and occupies a 

subdirectory within the parent package in the source code tree.
tag ....................................... In XML, a portion of markup having the syntax <tagname>.
token...................................A unit of data that is communicated by actors. This was called a parti-

cle in Ptolemy Classic.
topology..............................The structure of interconnections between entities (via relations) in a 

Ptolemy II model. See clustered graph.
transparent ........................For an entity or port, not opaque. That is, deep traversals of the topol-

ogy pass right through its boundaries.
transparent composite actor

A composite actor with no local director.
transparent port................The port of a transparent composite entity. Deep traversals of the 

topology see right through such a port.
type constraints .................The declared constraints on the token types that an actor can work 

with.
type resolution ...................The process of reconciling type constraints prior to running a model.
undeclared type .................Capable of working with any type of token. This was called anytype in 

Ptolemy Classic.
universe..............................The Ptolemy Classic name for a model.
width of a port...................The sum of the widths of the relations linked to it, or zero if there are 

none.
width of a relation .............The number of channels supported by the relation.
wormhole ...........................The Ptolemy Classic name for an opaque composite actor.
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Index
- in UML 30

Symbols
# in UML 30
&quot 160
*charts 12
+ in UML 30
@exception 151
@param 151
_attachText() method 144
_createModel() method of PtolemyApplet 201
_createView() method of PtolemyApplet 201
_manager member 198
_toplevel member 198
_workspace member 198

A
abs function 96
absolute type constraint 129
AbsoluteValue actor 111
abstract class 32
abstract semantics 17, 18, 20, 21
abstract syntax 6, 17, 18, 19, 20, 27, 156, 215
abstraction 157
Accumulator actor 111
acos 112
acos function 95
acosh function 95
action 16
action methods 135, 215
actions 62
actions in state machines 71
actor 215
Actor interface 21
actor libraries 21, 204
actor library 42
actor package 17, 104
actor.gui package 24, 196
actor.gui.style package 24
actor.lib package 17, 21, 104, 130
actor.lib.comm package 21
actor.lib.conversions package 21
actor.lib.gui package 21, 109
actor.lib.hoc package 21
actor.lib.io package 22

actor.lib.jai package 22
actor.lib.javasound packages 22
actor.lib.jmf package 22, 24
actor.lib.jxta package 24
actor.lib.logic package 24
actor.lib.net package 24
actor.parameters package 17
actor.process package 19
actor.sched package 19
actor.util package 19
actor-oriented design 5
actors 9, 125
Add Refinement 66
adding parameters 74
AddSubtract actor 46, 48, 111, 122, 123
ADL 7
ADS 5
advanced imaging API 22
aggregation UML notation 32
analog circuits 10
analog electronics 4
AND 75
angle function 96
annotation 53
anytype 215
anytype particle 27
applet 154, 215
applets 153
appletviewer command 200
application 201, 215
applications 153
arc 156
architecture 7
architecture description languages 7
architecture design language 7
archive 204
arithmetic operators in expressions 74
ArrayAppend actor 117
ArrayElement actor 117
ArrayExtract actor 117
ArrayLength actor 117
ArrayMaximum actor 117
ArrayMinimum actor 117
arrays in expressions 78
arrayToMatrix function 98
ArrayToSequence actor 117
asin 112
asin function 95
asinh function 95
assignments 74
associations 32



asynchronous message passing 12
atan 112
atan function 95
atan2 function 95
atomic actions 10
atomic actor 215
AtomicActor class 21
attribute 215
attributeChanged() method 141

NamedObj class 132
Poisson actor 133

attributes 20, 30
attributes in XML 160
audio 24
audio files 117
audio library 117
AudioCapture actor 118
AudioPlayer actor 118
AudioReader actor 118
AudioWriter actor 118
auto naming 179
Autocorrelation actor 120
Average actor 112, 135, 137, 138, 139

B
background applet parameter 195
BarGraph actor 110
Bartlett (rectangular) window 100
base class 31
BaseType class 167
BasicUnits units system 93
BDF 13
Bernoulli 139
Bernoulli actor 113, 137
bin directory 153
BitsToInt actor 116
bitwise operators in expressions 75
Blackman window 100
Blackman-Tukey algorithm 120
block 215
block diagram 15
block diagrams 17
block-and-arrow diagrams 9
body of an element in XML 160
boolean dataflow 13
BooleanMultiplexor actor 114
BooleanSelect actor 114
BooleanSwitch actor 114
BooleanToAnything actor 115
bouncing ball 60
boundedness 13

browser 154, 215, 217
bubble-and-arc diagrams 9
BusAssembler actor 113
BusDisassembler actor 113

C
C 5
C++ 5
calculus of communicating systems 10
calendar queue 11, 19
CartesianToComplex actor 116
CartesianToPolar actor 116
cast function 102
CCS 10
CD audio 117
CDATA 164
ceil 116
ceil function 96
CGSUnitBase units system 94
change request 180
channel 215
channel model 50
channels 45, 126
chaotic behavior 38
Chop actor 114
class attribute in MoML 161
class diagrams 30
class element 169
class names 34, 147
classpath 199
Clock actor 59, 107
Clock class 198
clone() method

Object class 134
Scale actor 134

cloning actors 133
clustered graph 215
clustered graphs 19, 27, 156
code duplication 125
code generation 19, 215
coding conventions 145
coin flips 113
Color class 145
comments 147
comments in expressions 76
communicating sequential processes 9, 10, 21
communications library 118
Commutator actor 113
Comparator actor 115
compare function 80, 82, 96
compile-time exception 148



compiling applets 199
complex constant 51
complex numbers 19
complex numbers in expressions 72
ComplexToCartesian actor 116
ComplexToPolar actor 116
component interactions 7
component-based design 103, 125
ComponentEntity class 21
ComponentPort class 21
ComponentRelation class 21
components 5
Composite Actor 49
composite actor 50, 215
composite actors 37, 48
Composite design pattern 32
composite entity 19
CompositeActor class 21, 201
CompositeActorApplication class 202
CompositeEntity class 21, 162, 179
concrete class 32
concrete syntax 156, 215
concurrency 5
concurrent design 24
concurrent finite state machines 12
configure element 163
Configure Ports 50
conjugate function 96
conjugateTranspose function 98
connection 156, 215
connections

making in Vergil 50
Const actor 42, 107
constants

expression language 72
constants function 102
constants() utility function 73
constraints on parameter values 132
constructive models 4
constructors

in UML 30
container 215
containment 32
context menu 49
continuous time modeling 10
ContinuousClock actor 107, 120
ContinuousSinewave actor 108, 120
continuous-time domain 59
continuous-time library 120
continuous-time modeling 21
control button 45

control key 50
controls applet parameter 195, 200
conversion of types 75
conversions library 115
ConvolutionalCoder actor 118
copernicus package 19
CORBA 28, 153
core packages 17, 18
cos 112
cos function 95
cosh function 95
createSequence function 98
crop function 98
CSP 9, 10
CSP domain 124
CT 10, 59
CT domain 104, 120
CTCompositeActor 120
CTPeriodicSampler actor 121
curly braces 52
current time 105
CurrentTime actor 57, 107
cut and paste 179
CWD variable 73

D
dangling relation 215
data model 17, 18, 19
data package 19
data polymorphism 103, 122, 125, 215
data types 46
data.expr package 19
data.type package 19
DatagramReader actor 111
DatagramWriter actor 111
DB actor 119
DCT function 90, 100
DDE 11
DDF 13
DE 10, 57
DE domain 124
deadlock 13, 56
DEDirector class 198
deep traversals 215
delay 122
delay lines 114
DelayLine actor 118
deleteEntity element 176
deletePorts element 177
deleteProperty element 177
deleteRelations element 177



delta functions 10
delta time 11
derived class 31
DeScrambler actor 118
design 4
design patterns 27
determinacy 12
determinant function 98
diag function 98
DifferentialSystem actor 121
digital communication systems 118
digital electronics 4
digital hardware 10
Dirac delta functions 10
directed graphs 156
director 21, 42, 54, 216
Director class 21
director element 172
director library 42
Discard actor 110
disconnected port 216
discrete-event domain 10, 57
discrete-event library 121
discrete-event modeling 21
DiscreteRandomSource actor 108, 113
discrete-time domain 11
Display actor 42, 110
distributed discrete-event domain 11
distributed models 11
Distributor actor 113
Diva 24, 145
divideElements function 81, 98
doc element 165, 177
DOCTYPE keyword in XML 154, 158, 161, 162,
169, 171
document type definition 158
documentation for actors 106
domain 54, 216
domain packages 17
domain polymorphic 17, 21
domain polymorphism 104, 124, 125, 216
domain specific library 59
domain-polymorphism 27
domains 17, 24
domains package 21
Dome 28
DotProduct actor 112
double 72
double constant 51
DoubleToFix actor 116
DownSample actor 118

downsample function 100
DT 11
DTD 158
dynamic dataflow 13

E
E 72
e 72
EDIF 156
ElectronicUnitBase 94
element 216
element in XML 160
embedded systems 4
empty elements in XML 160
entities 9, 19, 156
entity 216
Entity class 20
entity element 161
entity in XML 160
EntityLibrary class 179
Equals actor 115
eval function 89, 99
event 10, 216
EventButton actor 122
EventFilter actor 122
events 57
EventSource actor 121
exception 46
exceptions 44, 148
exclusive or 75
Executable interface 21, 143
executable model 21
executable models 4
executing a model 201
execution 216
executive director 216
exp function 96
exponentiation 74
exporting MoML 181
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