
0

0DA IfA Nr. 8911

Static Analysis of
Actor Networks

Diploma Thesis

presented by

Ernesto Wandeler

ETH Zürich, Switzerland

Supervisors:

Dr. Jörn W. Janneck

EECS Department
University of California at Berkeley

Prof. Dr. Walter Schaufelberger

Automatic Control Laboratory

Swiss Federal Institute of Technology, Zurich

March 2003

janneck
UCB/ERL M03/7

University of California at Berkeley
Berkeley, CA 94720

0
0Acknowledgement

First of all I would like to express my most sincere thanks to Prof. Walter Schaufel-
berger, who supported me to the greatest extend in finding a research opportunity

abroad. I would also like to thank him for his support and very appreciated counsel-

ling during the last years of my studies.

I would like tho thank Prof. Edward A. Lee, for giving me the opportunity to

write this thesis in his research group.

Most of all I wish to thank Dr. Jörn W. Janneck who worked with me on a daily
basis throughout the project. Without his help, his experience and the many interest-

ing discussions we had, this thesis would not have reached it’s present state of comple-

tion. I could not wish for a better supervisor.

I am also very thankful to Dr. Marco A. A. Sanvido, who carefully proofread the

whole thesis and who pointed out many details.

Moreover I wish to thank Dr. Marcin Jurdzinski, Dr. H. John Reekie and Arin-
dam Chakrabarti for the very interesting and fruitful discussions on Counting Inter-

face Automata and their application.

Finally, my dearest thanks go to my parents and my brother for their love and

support during my studies.

I would like to thank the Elsa und Moritz von Kuffner-Stiftung for the financial sup-
port during the last years of my studies and the Karolus Fonds of ETH Zurich for the

financial support on this research stay abroad.

0
0Abstract

In this thesis we present a new interface theory based approach to static analysis of
actor systems. We first introduce a new interface theory, which is based on Interface

Automata [5] and which is capable of counting with natural numbers. Using this new

interface theory, we can capture both, the temporal aspects of an actor interface as well

as an actor’s token exchange rate. We will show, how to automatically extract this

information from actors written in the Cal Actor Language (CAL). We further present

a method to capture the interface information as well as the connection information
of dataflow system environments into an interface automaton. In our approach, this

automaton acts as glue between the actor automata of the system, and by successfully

composing all actor automata with it, we can prove interface compatibility of all actors

with the system environment. After successful composition, the composition automa-

ton will contain the complete token exchange information of the composite actor sys-

tem. We will extract this information into a Petri Net, which we then analyse to make
statements on boundedness, deadlock as well as on the existence of legal firing

sequences for the composite actor system.

vii
0
0Table of Contents

1 Introduction ..1

1.1 Motivation ...1

1.2 Contributions ...2

1.3 Overview ..2

1.4 Remarks ...4

1.4.1 List of Abbreviations ...4

1.4.2 Typographic Conventions ...4

1.4.3 Naming Conventions ..5

I Foundations 7

2 Component Based Design ..9

2.1 Hierarchical and Heterogeneous Modeling ...9

2.2 Actor Oriented Modeling ...10

2.3 Models of Computation ...10

3 Actor Based Modeling in Ptolemy II ..13

3.1 The Ptolemy Project ...13

3.2 Ptolemy Object Model ...13

3.3 Composite Actors ...14

3.4 Abstract Semantics ..15

3.4.1 Abstract Flow of Control ...16

3.4.2 Abstract Communication ..16

4 CAL – The Cal Actor Language ..19

4.1 Purpose and Goals of CAL ..19

4.2 A Simple Example of a CAL Actor ..20

4.3 An Introduction to the Syntax and Semantics of CAL ...22

4.3.1 Data Types and Data Structures ..22

4.3.2 Expressions and Statements ...22
4.3.3 The Structure of a CAL Actor ..22

viii
4.3.4 Parameter Declarations ...23

4.3.5 Port Declarations ..23

4.3.6 State Variables and Initialization ...23

4.3.7 Actions ..24

4.3.8 Action Matching ...25

4.3.9 Action Selector ..26

5 Calflow ...27

5.1 Purpose and Goals of Calflow ...27

5.2 An Introduction to the Syntax and Semantics of Calflow27

5.2.1 The Structure of a Calflow Actor ..28

5.2.2 Relations between Calflow and CAL ..28

5.2.3 Actions ..28

5.2.4 Action Matching ...31
5.3 A Simple Example of a Calflow Actor ...32

II Solution 35

6 Overview ...37

7 Counting Interface Automata ...41

7.1 Preview ...41

7.1.1 A Simple Example of Counting Interface Automata42

7.2 Definition ...43

7.2.1 Automaton ..44

7.2.2 Product ...46

7.2.3 Composition ...48

7.3 Extension ..49

8 Generating Counting Interface Automata ...51

8.1 Generating Actor Automata ..51

8.1.1 Transforming CAL into Calflow ..52

8.1.2 Scheduling Calflow ...52

8.1.3 Transforming Scheduled Calflow into CIA ...52

8.1.4 A Simple Example of an Actor CIA ...55
8.2 Generating MoC Automata ..57

8.2.1 Dataflow MoC ..57

8.2.2 Creating Actor Automata Sequences ...58

8.2.3 Counters and Connection Information ...60

8.2.4 Creating the MoC Automaton ..61

ix
8.2.5 A Simple Example of a MoC CIA ...61

8.3 Comments ..62

9 Composing Actor and MoC Automata ...65

9.1 General Structure of the Automata ...65

9.1.1 Structure of Actor Automata ...65

9.1.2 Structure of MoC Automata ...65

9.1.3 Structure of Product Automata ...66
9.2 Composition Strategy ...67

9.3 Composition Algorithm ...68

10 Analysis of Actor Models ...71

10.1 Extracting Token Exchange Information ..71

10.1.1 Generating Token Exchange Automata (TEA) ..71

10.1.2 Generating Token Exchange Petri Nets (TEPN)72
10.2 Analyzing Token Exchange Behavior ..74

10.2.1 Security ...74

10.2.2 Reversibility ..74

10.2.3 Liveliness ...75

III Case Studies 77

11 Case Studies ...79

11.1 Component Interface Compatibility ...79

11.1.1 An SDF Actor in a DDF Model of Computation79

11.1.2 An Illegal Actor in a DDF Model of Computation79

11.2 Analysis of Dataflow Actor Models ...82

11.2.1 An Actor Model with Incompatible Dataflow Rates82
11.2.2 An Actor Model with Feedback ...90

IV Conclusions 97

12 Conclusions ...99

12.1 Conclusions ..99

12.2 Outlook ..100

x

V Appendix 101

A Calflow ...103

A.1 Transforming CAL into Calflow ...103

A.1.1 Transforming Actions ...104

A.2 Action Scheduling ..107

A.2.1 A Simple Sequential Action Schedule ..107

A.3 A Complex Example of a Calflow Actor ...110

B Software ...113

B.1 Environment ..113

B.2 Implemented Transformations ...113

C Xchain – A Framework for XML Processing ..115

C.1 The Concept of Filter Based Processing in Xchain ..116

C.2 Xchains ...116

C.3 The Filter Context ..117

C.4 XchainML ..118

C.5 The Implemented Filter Context ..118

C.6 The Implemented Filters ..119

C.6.1 General Implementation Details ...119

C.6.2 Xchain Filter ...121

C.6.3 XchainRef Filter ..123

C.6.4 Branch Filter ...124

C.6.5 Parse Filter ..125

C.6.6 Out Filter ..127

C.6.7 XSL Filter ..129

C.6.8 Save Filter ...130

C.6.9 Load Filter ..131
C.6.10 Call Filter ..132

C.6.11 Message Filter ...136

C.7 The Xchain Command Line Tool ..137

D Aufgabenstellung (German) ..139

Bibliography ..143

0 Chapter1

1Introduction

1.1 Motivation

Component based design is an approach to software and system engineering, in which

new software designs are created by combining pre-existing software components. The

ability to check the compatibility of such components, and to detect errors in the

composition of components is thereby an important factor for software development

productivity and software quality.

Many modern programming languages which make extensive use of component

libraries, such as Java or C#, provide component interface compatibility checking on a

data type level. By checking whether the data types of arguments in a method call to a

component are compatible with the specified interface they ensure a certain level of

component compatibility.

Interface theories for component based design [6] take the interface compatibility
checking one step further by providing formalisms to specify component interfaces in

more detail. Interface Automata [5] is an interface theory, which defines a light-weight

formalism that can capture the temporal aspects of software component interfaces. In

particular, Interface Automata can capture both, input assumptions on the order in

which the methods of a component may be called, as well as output guarantees on the

order in which the component calls external methods.
In the Ptolemy project [1], which studies actor based modeling, simulation and

design of concurrent, real-time, embedded systems, efforts were made recently, to use

Interface Automata to capture the temporal aspects of actors, into what was called the

Behavioral Type of an actor [15].

Up to now, the interface automaton of actors and of components in general has

to be specified by hand and gets annotated to the source code for later interface com-
patibility checking, as for example in [3]. However, much of the information con-

tained in an interface automaton is already contained in the source code of a

component. Thus, having to specify the interface automaton by hand, introduces a

new source for errors into a system design.

2 Chapter 1
In this thesis, we present a solution for automatic extraction of interface informa-
tion from actors written in the Cal Actor Language (CAL), and we present a strategy,

how the extracted information can be used to analyse dataflow actor systems.

1.2 Contributions

We present a new interface theory, which we call Counting Interface Automata (CIA).

Counting Interface Automata are based on Interface Automata [5] and are capable of

counting with natural numbers. Using CIA, we can capture both, the temporal aspects

of an actor interface as well as its token exchange rates.

In order to automatically extract the CIA of a CAL actor, we first develop an

intermediate format for actors written in CAL, which we call Calflow. In Calflow the
internal data-dependencies of a CAL actor are resolved explicitly and an actor is repre-

sented as a set of execution steps in a dataflow graph.

We then present a set of mapping rules, which extract the interface information

of a Calflow actor into a CIA. Furthermore, we also present a method to create a CIA

of a dataflow system environment, which on one side represents the interface informa-

tion of the environment, and which on the other side acts as glue between the CIAs of
the actors in a system.

With the successful composition of the system environment CIA and all actor

CIAs, we can then prove interface compatibility on CIA level, for all actors and the

system. The successful composition leads to a new CIA, which contains the complete

token exchange information of the composite actor system.

We will show, how to represent the token exchange information of the composite
actor system as a Petri Net and we will then use Petri Net methods to make statements

on the existence of legal firing sequences, as well as on boundedness and deadlock of

the composite actor system.

1.3 Overview

The thesis is subdivided into five parts.

• The first part lays the foundations for the presented work. It describes CAL

and presents Calflow.

Introduction 3
• In the second part, Counting Interface Automata are defined. Techniques
and methods are presented to extract CIAs from actors and models and to

use the extracted automata for analysis of actor compositions.

• The third part presents a number of case studies, that show the usage of the

techniques and methods which were described in the second part.

• The fourth part contains conclusions and outlooks.

• In the Appendix some detailed information about Calflow is contained, fur-
thermore the implemented software is presented as well as Xchain, a soft-

ware framework for XML processing, which was developed in connection

with this thesis.

4 Chapter 1
1.4 Remarks

1.4.1 List of Abbreviations

1.4.2 Typographic Conventions

Code is represented monospaced, with keywords highlighted in monospaced boldface.

Semantic entities are set monospaced italics and comments that are not part of the

Table 1-1: List of abbreviations used in this thesis.

CAL Cal Actor Language

CIA Counting Interface Automaton

CSP Communicating Sequential Processes

CT Continuous Time

DDF Dynamic Dataflow

DE Discrete Events

DF Dataflow

DOM Document Object Model

MoC Model of Computation

MPA Model Product Automaton

PLU Property Look-Up

RT Run-Time

SDF Synchronous Dataflow

TEA Token Exchange Automaton

TEPN Token Exchange Petri Net

URI Uniform Resource Identifier

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language: Transformation

Introduction 5
code are written in normal italics. Pseudo-code is represented in italics, with keywords
highlighted in italics boldface.

Note, that both CAL and Calflow ignore line-breaks and whitespace.

1.4.3 Naming Conventions

Action names, as well as global counter variable names in CIA need to be globally

unique. We therefore build them by concatenating actor, port and command/variable

names according to the following patterns.

• ActorName:PortName:CommandName

• ActorName:PortName:VariableName.

6 Chapter 1

Part I

Foundations

0 Chapter2

2Component Based Design

Component based design is an approach to software and system engineering, in which
new software designs are created by combining pre-existing, reusable modules into a

model, which provides both glue between the components inside and new functional-

ity to the outside.

2.1 Hierarchical and Heterogeneous Modeling

Embedded systems are often heterogeneous in that they mix different technologies as

for example analog and digital electronics. Such systems are often modelled hierarchi-
cally, consisting of a number of sub-models, where each of the sub-models may behave

differently, to model a particular technology.

Fig. 2-1: A hierarchical and heterogeneous model.

Discrete Events

Finite State Machine

Continuous Time

Synchronous
Dataflow

10 Chapter 2
2.2 Actor Oriented Modeling

Actor oriented modelling is an approach to systems design, in which entities called

actors communicate with each other through ports and communication channels.

From the point of view of component based design, actors are the components in

actor oriented modelling.

The concept of actors was first introduced in [11] as a mean of modeling distrib-

uted knowledge-based algorithms and was also described in [4]. Actors have since then
become widely used, especially in embedded systems design, where actor-oriented

design is a natural match to the heterogeneous and concurrent nature of embedded

systems.

In the context of this work, an actor is a computational entity with a well defined

component interface. It has input ports, output ports, state and parameters. An actor

communicates with other actors by sending and receiving atomic pieces of data, called
tokens, through its ports, along unidirectional connections, called channels. Actors are

connected through channels, to form models.

When an actor is executed it is said to be fired and it may consume tokens from

its input ports, produce tokens on its output ports and update its internal state, based

on consumed tokens, its parameters and its former state.

2.3 Models of Computation

The syntactic structure of an actor-oriented design says little about the semantics of

the model. The semantics is largely orthogonal to the syntax, and is determined by a

model of computation (MoC). A MoC governs the interaction of components in a

model. For this, it defines operational rules for executing a model and it also defines

the nature of communication between components.

Below, an overview to some models of computation is given. In this thesis we

focus on dataflow MoCs, however to get a better feeling of what a MoC is, some other

common examples are also presented here.

• CSP – Communicating Sequential Processes: In communicating sequential

processes models, actors represent concurrently executing processes that

communicate by atomic, instantaneous actions called rendezvous1).

Rendezvous models are particularly interesting to model applications where

1) Also often called synchronous message passing.

Component Based Design 11
resource sharing is a key element, such as in client-server models, multitask-
ing or multiplexing of hardware resources.

• CT – Continuous Time: In continuous time models, the connections

between actors represent continuous-time signals and the actors typically

specify algebraic or differential equations between these signals. The job of
an execution environment is to find at every time step a fix-point that satis-

fies all relations in a system.

Continuous time models are usually used to represent the physical parts of

systems, which can be modeled using differential equations. In embedded

systems these could for example be any mechanical components or analog

circuits.

• DE – Discrete Events: In discrete event models, actors use timed events for

communication, and the connections between actors represent sets of events

placed on a time line. An event consists of a value and a time stamp.

Through the very much physical notion of time in discrete event models,
they are an excellent model for describing concurrent hardware. Discrete

event models are thus very popular for specifying digital hardware and also

for simulating telecommunication systems.

• DF – Dataflow: In dataflow models, actor computations are triggered by the
availability of input data. Connections between actors represent the flow of

data from a producer actor to a consumer actor and are typically buffered

with FIFO queues.

Dataflow models are especially useful to model data-driven processing as in

signal processing.

• SDF – Synchronous Dataflow: The synchronous dataflow model of compu-

tation [13] is a particularly restricted special case of dataflow, where all actors

in a model must have constant data consumption and production rates. This

leads to the extremely useful property that deadlock and buffer boundedness

are decidable and moreover, the scheduling of actor firings as well as the
buffer capacity for communication can be computed.

• DDF – Dynamic Dataflow: The dynamic dataflow model of computation

does not restrict the data consumption and production rates of actors, but

properties such as deadlock and boundedness are usually not statically decid-
able any more.

12 Chapter 2

0 Chapter3

3Actor Based Modeling in Ptolemy II

3.1 The Ptolemy Project

The Ptolemy project at UC Berkeley studies heterogeneous modelling, simulation,

and design of concurrent systems. The focus is on embedded systems, particularly

those that mix technologies, including for example analog and digital electronics,

hardware and software, and electronics and mechanical devices. The focus is also on

systems that are complex in the sense that they mix widely different operations, such
as signal processing, feedback control, sequential decision making, and user interfaces.

A major effort in the Ptolemy project is put in the construction of Ptolemy II, a

software system implemented in Java. Ptolemy II is a system-level design environment

that supports the modeling, simulation and design of component-based heteroge-

neous systems.

More information on the Ptolemy project can be found on the project web-page
[1], as well as in [8]. Detailed information on the Ptolemy II software can be found in

[7].

3.2 Ptolemy Object Model

Ptolemy II takes a component view of design, in which models are constructed as a set

of interacting components, called actors, and the channels of communication between

actors are implemented by so called receivers. The receivers themselves are contained in

IOPorts (input/output ports), which are in turn contained in actors, as shown in

Figure 3-1.

In this producer/consumer model of Ptolemy II, communicated data is encapsu-
lated in so called tokens. The producer actor can deposit tokens into a receiver, and the

consumer actor can extract tokens from its receiver.

14 Chapter 3
Actors in Ptolemy II are computational entities with a well defined component

interface, which communicate through ports and channels. They consume tokens

from their input ports and produce tokens on their output ports. Additionally they

may have state and parameters.

Aside from assuming a producer/consumer model, the abstract receiver of
Ptolemy II, which is defined in a Java interface, makes no further assumptions on the

communication process. It does, for example, not determine whether communication

between actors is synchronous or asynchronous, nor does it specify buffer capacities or

any other details of a receiver.

Instead, these properties are determined by concrete classes that implement the

receiver interface. Each of these concrete classes is part of a Ptolemy II domain, which
is a collection of classes that implement a particular model of computation. In each

Ptolemy II domain, the receiver implementation determines the communication pro-

tocol, and an object called the director, controls the execution of actors. From the

point of view of an actor, the director and the receiver form its execution environment

and implement the model of computation.

3.3 Composite Actors

In Ptolemy II, when a director is placed in an actor model, that actor model becomes

an opaque composite actor. To the outside environment, this composite actor is just

another actor with a well defined component interface. But inside, it is a composite,
executing under the semantics defined by the local director. This concept of composite

actors is a key elements for hierarchical modelling and design in Ptolemy II.

Figure 3-2 shows a simple example of a composite actor in Ptolemy II.

Fig. 3-1: The producer/consumer model in Ptolemy II.

Producer
Actor

Consumer
Actor

Receiver

IOPort

Actor Based Modeling in Ptolemy II 15
In actor models with composite actors, there has to be some coordination

between the execution on the outside and the execution on the inside of actors. This
coordination of possibly different models of computation is one of the main research

areas of the Ptolemy project and is defined by the abstract semantics of a system.

In Ptolemy II, the Executable and Receiver interfaces abstract the flow of control

and the communication semantics respectively. These two interfaces together, define a

suite of methods, the semantics of which are the abstract semantics of Ptolemy II.

3.4 Abstract Semantics

The abstract semantics of Ptolemy II abstracts how communication and flow of con-

trol work, and is what makes it possible to compose models hierarchically and hetero-

geneously [14]. It does this, by defining an intersection of interesting semantics to
represent common features of all models of computations.

Actors that obey the abstract semantics of Ptolemy II, can usually be used in

models with any MoC that also conforms to this abstract semantics. In Ptolemy II,

such actors are called domain polymorphic actors.

Fig. 3-2: A composite actor in Ptolemy II, which implements a simple communication channel with
gaussian noise.

Port

External Port

Atomic Actor

Parameter

Model

Director

Composite Actor

16 Chapter 3
3.4.1 Abstract Flow of Control

In the Ptolemy II abstract semantics, actors execute in three phases:

• initialization

• a sequence of iterations

• wrap-up.

An iteration is a sequence of operations that read input data, produce output

data, and update the state. An iteration of an actor is also often called its firing. In the
abstract syntax of Ptolemy II, the firing of an actor is again divided into three separate

phases, which is sometimes referred to as split phase firing. During one iteration, the

director which controls the actor makes:

• exactly one invocation of prefire,

• any number of invocations of fire,

• at most one invocation of postfire.

In the prefire method, an actor may determine, whether its conditions for firing

are satisfied or not. A typical condition for firing is for example the availability of

tokens on the input ports of the actor.

If the actor indicates to the director, that its preconditions are satisfied, the itera-
tion proceeds with one or more executions of fire, followed by exactly one invocation

of postfire. The fire method is the main point of execution and is generally responsible

for reading inputs and producing outputs, but it must not update the state of the

actor. Instead, updating the state of the actor is the responsibility of the postfire

method, which is invoked at the end of an iteration.

Interestingly to note is, that only the fire and postfire methods may consume
tokens, and only the fire method is supposed to produce tokens.

3.4.2 Abstract Communication

The abstract semantics of Ptolemy II provides a set of primitive communication oper-
ations, which allow an actor to query the state of communication channels and to

retrieve or send information from and to channels:

• get retrieves a data token via a port,

• put produces a data token via a port,

Actor Based Modeling in Ptolemy II 17
• hasToken(k) tests whether get can be successfully applied k times to a port,

• hasRoom(k) tests whether put can be successfully applied k times to a port.

These communication operations might be implemented differently, depending
on the MoC and the “mechanics” of communication defined by it. For example in a

SDF MoC, the channel is implemented as a fixed-sized FIFO buffer, while in a CT

MoC, the channel is a simple variable whose value is the value of a signal at the cur-

rent time. By only using the abstract communication operations, an actor is not

affected by how the underlying communication channel is implemented and is there-

fore domain-polymorphic from the communications point of view.

18 Chapter 3

0 Chapter4

4CAL – The Cal Actor Language

CAL is a textual language for writing actors, which was created as a part of the Ptolemy
II project at UC Berkeley. This chapter gives a short introduction into the CAL lan-

guage. More information on CAL can be found in [10], [9] and on the Caltrop project

web-page [2].

4.1 Purpose and Goals of CAL

CAL is a domain specific language for defining the functionality and behaviour of

actors. Its key goal is to make actor programming easier, by providing a concise high-

level description of an actor. This enables an actor programmer to express the informa-

tion and behavioural properties of an actor that are relevant to its usage, but that

would be only implicit in a description of the actor in a traditional programming lan-
guage such as C or Java.

Besides the above-mentioned goal, CAL is also designed to facilitate the auto-

matic extraction of actor properties needed, for example, to analyze actors and actor

compositions.

CAL is not intended to be a full-fledged programming language, but to be

embedded in a richer environment which provides the necessary infrastructure. The
language does not specify a strict semantics for all the constraints of an actor, such as

the type system, communication mechanisms or scheduling schemes, nor does it

define a syntax to define composite actors.

20 Chapter 4
4.2 A Simple Example of a CAL Actor

To get an impression of CAL let’s look at Example 4-1, which shows a Ramp actor

written in CAL. The Ramp actor creates a sequence of tokens, where the first token’s

value equals the parameter init and the value of each following token is increased by

the parameter step. Each time the Ramp actor gets a trigger-token on its input, it cre-

ates a new token on its output.

Example 4-1:

1: actor Ramp (Integer init=0, Integer step=1) Integer In ==> Integer Out:
2: Integer state := init;
3: Action_1:action In:[trigger] ==> Out:[out]
4: var Integer out = state;
5: do
6: state := state + step;
7: end
8: end
9: end

Actor Header

The first line of the Ramp actor is the actor header and defines the interface of the

actor to its environment. The actor header contains the actors name, parameters and

port definitions. Additionally the actor header could also specify a number of type

constraints, which is not shown here.

Let’s take a closer look to the actor header of the Ramp actor:

• The actor keyword starts the actor definition and is followed by the actor

name Ramp.

• Following the actors name, a pair of parentheses enclose the parameter decla-
rations of the actor. Each parameter declaration consists of a type, the

parameter name and a default value. The Ramp actor declares two parame-

ters, namely init and step.

• After the parameter declarations the last part of the action header is formed
by the port declarations. The arrow separates the input port declarations on

its left side from the output port declarations on its right side. Every port

declaration consists of a port type and a port name, where the port type

declares the type of the tokens arriving or leaving on the port. The Ramp
actor declares one input port In and one output port Out.

• A colon marks the end of the actor header and the beginning of the actor
body.

CAL - The Cal Actor Language 21
State Variable Declaration

Following the actor header, on line two, the state variable declarations of the actor are

defined. The values of the state variables are persistent between firings of the actor.

The Ramp actor has one state variable named state.

Action Definition

Starting on line three, the action of the Ramp actor is defined. In general, a CAL actor

may define any number of actions. Every action defines a separate action scope, which

may contain any number of action variable declarations and statements.

Let’s take a closer look to the action definition:

• The action keyword marks the beginning of the action definition and is pre-

ceded by an optional action tag, Action_1 in our example.

• Following the action tag is the port pattern of the action. The arrow separates

the action input patterns on its left side from the action output expressions

on its right side.

• The input patterns specify how many tokens the action consumes from each

input port and declare action variables to which the consumed tokens are

bound to. Optionally an input pattern may be preceded by a port tag to

identify the port it belongs to. In our example the action consumes one

token from the input port In and binds this token to a variable with name

trigger.

• The output expressions specify how many tokens the action produces and

what values the produced output tokens have. Like input patterns, an out-

put expression may optionally be preceded by a port tag. In our example the

action produces one token with the value out on the output port Out.

• Following the var keyword, an action may declare any number of action

variables that are visible inside the action scope during one firing.

• Starting with a do keyword, the action body is defined. It may contain any

number of statements that are executed each time the action is executed and

that may change the actor state. The action body in our example has one

statement on line six, which updates the state variable named state.

Everything up to the start of the action body is usually called the header of an

action.

22 Chapter 4
4.3 An Introduction to the Syntax and Semantics of CAL

4.3.1 Data Types and Data Structures

As mentioned earlier, CAL is almost totally agnostic with respect to the type system

used, and the type system is considered to be a part of the host environment, in which
CAL actors are embedded into.

Nevertheless, CAL defines a number of built-in types that are the types of objects

created as the result of special language constructions and it also defines a number of

data structures like sets, lists and maps.

For our use of CAL, the type system is irrelevant and is therefore not discussed in

more detail.

4.3.2 Expressions and Statements

Expressions in CAL are free of side-effects and strongly typed. CAL provides several

individual kinds of expressions, some of which are:

• Literals, such as 1, 1.414 or ‘hello world!’

• Identifiers, such as variable names, port names, etc.

• List, Set, Map comprehensions

• If-then-else expressions

• Closures, such as Lambda expressions or Proc expressions

Statements on the other side and may change the state of an actor. They are exe-
cuted sequentially, in the order in which they appear in the code. CAL provides several

individual kinds of statements, some of which are:

• Assignments, such as init=1

• Flow-Control-statements, such as If-then-else, While or Foreach.

• Call-statements

4.3.3 The Structure of a CAL Actor

Example 4-2 shows the skeleton of a CAL actor and introduces the names for the dif-

ferent grammatical elements of an actor. These are described in the following chapters.

CAL - The Cal Actor Language 23
Example 4-2:

1: actor actor_name (parameter_declarations)
input_port_declarations ==> output_port_declarations:

2: ...
3: state_variable_declarations
4: ...
5: initalization_statements
6: ...
7: action_tag:action input_patterns ==> output_expressions
8: guard guard_conditions
9: var action_variable_declarations
10: do
11: action_body
12: end
13: end
14: ...
15: action
16: ...
17: end
18: ...
19: selector
20: ...
21: end
22:end

4.3.4 Parameter Declarations

The parameter declarations define a number of parameters which can be set by the
host environment when initializing an actor. After initialization, the parameters are

constants within the actor scope. CAL allows to define a default value for every param-

eter.

4.3.5 Port Declarations

The port declarations define the number of input and output ports as well as their

names and types.

The type of a port specifies the type of the tokens consumed or produced on a

port and therefore also the type of the action variables that the tokens of a certain port

are bound to.

4.3.6 State Variables and Initialization

The state of an actor is stored between firings. The code associated with an action can

therefore use the state to influence the actions taken by future firings.
An actor may contain any number of state variable declarations, as well as a num-

ber of initialization statements that are executed when the actor is initialized.

24 Chapter 4
4.3.7 Actions

Actions define atomic pieces of computation, performed by an actor, usually in

response to some input from the environment. The definition of an action needs to
describe three things:

• the consumption of input tokens,

• the production of output tokens,

• the change of state of the actor.

In CAL the consumption of input tokens is specified with an actors input pat-

terns, the production of output tokens is specified with its output expressions and the

change of state is defined in its action body.

Input Patterns

Firing an action may consume some tokens form the input ports of the actor and pro-

duce tokens on its output ports. On the input side, input patterns are used to describe

the token consumption of a given action. An input pattern is said to match if enough

tokens are available on its input ports.

Besides defining the number of tokens that are consumed by an action from a
certain input port, the input patterns also introduce variables to which the values of

the consumed tokens are bound to.

CAL defines several formats for patterns, of which only one is introduced here:

• [t1, ..., tn] This pattern introduces n variables, which represent the first n
tokens available on the channel. The first token is bound to the variable t1,

the second to t2, and so on.

Input patterns may contain a so called repeat expression, which allows to dynami-

cally determine the number of tokens that are matched by a pattern.

Output Expressions

On the output side of an actor, the output expressions are used to compute the tokens

to be sent to the output ports. The general format of an output expression is very sim-
ilar to that of an input pattern, except that instead of a channel pattern, the output

expression contains a so called token expression that evaluates the tokens that are to be

sent.

Same as input patterns, output expressions may also apply on single channels or

multi channels and may contain repetition count.

CAL - The Cal Actor Language 25
Action Body

The action body is defined within a do-end construct and contains any number of

statements that are executed when an action is selected for firing. The statements in

the action body may change the actor state.

4.3.8 Action Matching

A significant part of the expressiveness of CAL comes form the way actions are chosen

for firing. An actor may consist of any number of action definitions of which it has to

select one when fired. The selected action is executed to consume input tokens, gener-
ate output tokens and to compute a new state for the actor.

An actor can only select an action that is said to be fireable. The parts of an action

definition that are considered to determine an actors fireability are the following:

• The action selector.

• The input patterns.

• The local variable declarations in the var-clause.

• The boolean expressions in the guard-clause.

The action selector, which is explained in more detail below, pre-selects a set of
actions that are active in the current state of the actor. Of the pre-selected actions,

every action is fireable that matches the input patterns and whose guard-clauses all

evaluate to true. If more than one action evaluates to be fireable in the current state,

CAL does not define which of the fireable actions is selected, instead it is up to the

environment to define how an actor has to behave in this situation.

The variables declared by the input patterns and those in the var-clause are all
declared in the same scope, namely the action scope, and may depend on each other in

complex ways. The only constraint is that they may not depend on each other in a cir-

cular fashion. The variable dependencies are as follows:

• Variables in input patterns depend on all free variables of any repeat expres-
sion.

• Variables in var-clauses depend on all free variables in their defining expres-

sions.

• guard-clauses depend on all free variables in their boolean expression.

26 Chapter 4
4.3.9 Action Selector

In CAL it is possible to constrain the set of actions which an actor is allowed to fire

depending of the history of fired actions. The selector-clause in CAL is used to define
the active actions in every state and identifies the actions via their action tag.

Currently CAL allows two interchangeable formats to define action selectors,

either an action selector may be written as a regular expression or as a finite state

machine.

Example 4-3: When the following actor is fired for the first time, only action s1 is active
and may be selected to be fired. For any following firing however, only the actions s2
and s3 are active and may be selected to be fired.

1: actor A1 () T in1, T in2, T in3 ==> T out1, T out2:
2: s1:action [a], [], [] ==> [d], [e] ... end
3: s2:action [], [b], [] ==> [], [e] ... end
4: s3:action [], [], [c] ==> [], [e] ... end
4: selector
5: s1(s2|s3)*;
8: end
9: end

Fig. 4-4: The finite state machine format of the selector-clause of the above example.

0 Chapter5

5Calflow

Calflow is an intermediate format for actors written in CAL, and was created as part of
this thesis. This chapter gives an introduction into Calflow. More information regard-

ing Calflow can be found in Appendix A.

5.1 Purpose and Goals of Calflow

Much of CAL’s expressiveness is based on its concept of action matching. While the

body of an action in CAL is defined in an imperative way, the action header, which

contains all the information needed for action matching, is rather declarative, and var-

iables declared and used during action matching may depend on each other in com-

plex ways.

In Calflow, these complex dependencies are explicitly resolved and actions are
represented as dataflow graphs with states that represent atomic execution steps of

actions.

Calflow seems to be an interesting intermediate format of CAL for a number of

applications, most notably probably for code generation, or more general for the exe-

cution refinement of CAL. Calflow proves also to be useful for a number of actor anal-

ysis problems.

5.2 An Introduction to the Syntax and Semantics of Calflow

The actions of a Calflow actor are usually represented as a set of data flow graphs, with

one graph for every action.

28 Chapter 5
5.2.1 The Structure of a Calflow Actor

Example 5-1 shows the skeleton of a Calflow actor and introduces the names for the

different grammatical elements of an actor. These are described in the following chap-
ters.

Example 5-1:

1: actor actor_name (parameter_declarations)
input_port_declarations ==> output_port_declarations:

2: ...
3: state_variable_declarations
4: ...
5: initalization_statements
6: ...
7: action_tag:action
8: step_tag:atomicstep step_type
9: atomicstep_body
10: end
11: ...
12: dependency dependency_type
13: dependency_declarations
14: end
15: ...
16: schedule
17: action_schedule
18: end
19: end
20: ...
21: action
22: ...
23: end
24: ...
25: selector
26: ...
27: end
28:end

5.2.2 Relations between Calflow and CAL

In Calflow, all parts of an actor definition except the definition of its actions, are

exactly the same as in CAL. Calflow also uses the same data types and data structures as
well as the same expressions and statements. The following chapter explains how

actions are defined in Calflow.

5.2.3 Actions

In Calflow, every action is defined as a dataflow graph, which consists of a set of

atomic steps, the states of the graph, and a set of transitions, the dependencies between

the atomic steps.

Calflow 29
Optionally an action may also contain a schedule, called action schedule, which
defines a partial or total order on all or some atomic steps of an action.

Atomic Steps

As mentioned above, atomic steps are the states of the dataflow graph that defines an
action in Calflow. We think of them as atomic execution steps of an action that, when

executed in a valid order, make up the complete execution of an action.

Each atomic step defines its own variable context for execution and may addition-

ally have the following interactions with the action context and the actor context:

• it may declare any number of variables in the action context,

• it may depend on any number of variables in the actor context and

• it may assign a new value to any assignable variable in actor context.

Calflow defines seven different types of atomic steps:

• In an InputGuard atomic step, an action checks whether the input pattern of

an input port matches the current availability of tokens on its channels. An

action must have one InputGuard atomic step for every Input atomic step.

• During an Input atomic step, an action reads the tokens of one input port as
specified by the input pattern of this port in CAL. An action must have one

Input atomic step for every input port whose input pattern in CAL is not

empty1).

• In a Decl atomic step, an action declares exactly one variable in the action
context. An action must have one Decl atomic step for every variable that is

declared in its var-clauses in CAL.

• In a Guard atomic step, an action evaluates exactly one boolean expression.

An action must have one Guard atomic step for every guard-clause it has in
CAL.

• In an OutputGuard atomic step, an action checks whether the channels of an

output port are ready to receive the number of tokens that are defined by the

output expression of an output port in CAL. An action must have one Out-
putGuard atomic step for every Output atomic step.

1) An action may or may not have (empty) Input atomic steps for input ports whose input patterns in CAL are
empty.

30 Chapter 5
• During an Output atomic step, an action produces the tokens on one output
port as specified by the output expression of this port in CAL. An action

must have one Output atomic step for every output port whose output

expression in CAL is not empty2).

• During a Stmt atomic step, an action executes exactly one statement of the
action body in CAL. An action must have one Stmt atomic step for every

statement that is contained in its action body in CAL.

Six of the seven types of atomic steps defined above can be categorized nicely by

their functionality inside an action execution:

• the InputGuard, OutputGuard and Guard atomic steps determine the fireabil-
ity of an action,

• the Input atomic steps handle the consumption of input tokens,

• the Output atomic steps handle the production of output tokens and

• the Stmt atomic steps handle the change of state of the actor.

Of a more general nature are Decl atomic steps, which may be needed to fulfill any

of the above mentioned functionalities.

Dependencies

Every action must define a set of dependencies between the atomic steps of the action.

The transitions in an action’s dataflow graph represent these dependencies.

In the syntax of Calflow, each dependency may be categorized into either being a

data dependency or a constraint dependency. Even though this categorization may be of
interest for some analysis, the semantics of all dependencies is the same, namely that

one atomic step depends in some way on the execution of the other atomic step.

As the name suggests, data dependencies exist between any two atomic steps of

which the second one depends in any way on data that is either declared or changed

by the first one. Additionally we introduce a data dependency between every Input-

Guard atomic step and the Input atomic step of the same input port, as well as
between every OutputGuard atomic step and the Output atomic step of the same out-

put port.

2) As with the Input atomic steps, an action may or may not have (empty) Output atomic steps for output ports
whose output expressions in CAL are empty.

Calflow 31
Constraint dependencies on the other hand are dependencies that are not neces-
sary from a dataflow point of view, but that are introduced by the environment to

obtain a desired behavior of an action execution. In CAL, an action can only be exe-

cuted when it is fireable, therefore any atomic step which is not side-effect-free to the

environment, namely Output and Stmt atomic steps3), should depend on all atomic

steps that are needed to determine the fireability of an action, namely InputGuard,

OutputGuard and Guard atomic steps.

Action Schedule

Every action of an actor may optionally contain an action schedule which defines a par-

tial or total order on all or some atomic steps of the action. To be a valid action sched-
ule the defined order must hold the dependency-relations of all atomic steps.

5.2.4 Action Matching

Action matching in Calflow works in the same way as in CAL. The action-selector pre-
selects a set of actions that are active in the current state of the actor. Of the pre-

selected actions, every action is evaluated on its fireability and if more than one action

evaluates to be fireable in the current state, Calflow does not define which of the firea-

ble actions is selected.

The difference between Calflow and CAL however is, that in Calflow we can see

very explicitly the amount of execution needed to evaluate an actions fireability. Every
action must execute all its InputGuard, OutputGuard and Guard atomic steps as well as

any atomic steps they depend on to evaluate its fireability.

3) It can be argued, that the Input atomic step, which consumes tokens, is also not side-effect-free to the environ-
ment. But the CAL semantics allows the action matching to be dependent on consumed tokens and therefore Cal-
flow should not introduce a constraint dependency between Input atomic steps and the atomic steps that
determine the fireability of an action. Furthermore it is often possible to work around the illegal consumption of
tokens before action matching, for example by pushing the token back or by internally buffering it. However, these
work-arounds are MoC dependent.

32 Chapter 5
5.3 A Simple Example of a Calflow Actor

In this chapter we will use the again the Ramp actor which we already introduced pre-

viously. Example 5-2 shows the Calflow code of the Ramp actor. The CAL code of the

same actor can be found in Example 4-1.

Example 5-2:

1: actor Ramp (Integer init=0, Integer step=1) Integer In ==> Integer Out:
2: Integer state := init;
3: A_1:action
4: s1:atomicstep InputGuard
5: -> s2;
6: end
7: s2:atomicstep Input
8: In:[trigger];
9: end
10: s3:atomicstep OutputGuard
11: -> s4;
12: end
13: s4:atomicstep Output
14: Out:[out];
15: end
16: s5:atomicstep Decl
17: out = state;
18: end
19: s6:atomicstep Stmt
20: state = state + step;
21: end
22: dependency Constraint
23: s1 -> s4;
24: s1 -> s6;
25: s3 -> s4;
26: s3 -> s6;
27: end
28: dependency Data
29: s1 -> s2;
30: s3 -> s4;
31: s5 -> s4;
32: end
33: end
34:end

Figure 5-1 shows the dataflow graph representation of the action in the Ramp

actor and Figure 5-2 shows the action with a total order on its action steps. Details on

the scheduling algorithm used to generate the action schedule in Figure 5-2 can be

found in Appendix A.

Calflow 33
Fig. 5-1: The dataflow graph representation of the action in the Ramp actor. The states are labelled ac-
cording to the atomic step they represent: InputGuard → hT, Input → In, Decl → Decl, OutputGuard
→ hR, Output → Out, Stmt → Stmt. The labelling of the InputGuard and the OutputGuard is mod-
elled after the Ptolemy II methods hasToken() and hasRoom(). The name of every state is assembled
from the action name, the port name if applicable and an identifying string.
In this particular example, hT corresponds to the atomic step s1, hR to s3, Decl to s5, In to s2, Stmt to
s6 and Out to s4.

Fig. 5-2: The atomic steps of the action in the Ramp actor with a total order, defined by an action
schedule.

34 Chapter 5

Part II

Solution

0 Chapter6

6Overview

This chapter gives an overview of the strategy for static analysis of actor systems,
which we present in this thesis.

Instead of analyzing actor systems directly, we use a light-weight formalism, based

on Interface Automata [5], to capture certain aspects of the actors and the system envi-

ronment, which are important for our analysis.

For this purpose, we introduce a new kind of interface automata, which we call

Counting Interface Automata (CIA). Counting Interface Automata are based on
Interface Automata and provide the capability of counting with natural numbers.

Using CIA, we can capture both, the interface description of an actor as well as

parts of its component description [6], in particular its token consumption and pro-

duction rates. Additionally, we strenghten its interface description by enabling it to

express not only temporal, but also quantitative aspects.

Figure 6-1 shows the relation of an actor model and its composition on the top
and the related interface automata on the bottom.

The transformation cMoC, is a program transformation from an actor system with

a particular model of computation into its composition [12]. This transformation

leads to a complete description of the composite actor system.

For the analysis of the actor system however, we suggest to build the composite

actor system in the interface automata domain. There, the transformation cMoC

becomes a transformation from an actor system framework to its interface

automaton. Since the interface automaton only captures certain aspects of the system,

it is in general easier to find than cMoC. And additionally, the transformation

 will probably be less expensive.

c̃MoC

c̃MoC

c̃MoC

38 Chapter 6
The presented analysis strategy leads to a process, which can be broken down into

three separate steps:

• generation of interface automata for the actors and the system,

• composition of the generated automata,

• analysis of the resulting composition automaton.

During the first step, we extract certain aspects of the interface description as well
as the component description of both, the actors and the environment in which the

actors are embedded in, and describe these extracted aspects using interface automata.

Then, in the second step, the successful composition of all obtained interface

automata ensures compatibility of all component interfaces and results in an automa-

Fig. 6-1: The relation of an actor system, its composition and interface automata.

A1
A3

A2

MoC

A3

MoC

A1 A2

IA3IA1 IA2 IAc

IAModel

Composite
Model

fff

cMoC

cMoC

f~

Overview 39
ton which captures the interface description of the composite actor as well as aspects
of its internal component description.

In the third step, we then use the internal component description of the resulting

automaton, to analyze a number of properties of the composite actor system, such as

boundedness, deadlock or existence of legal firing sequences.

In the next chapter, we first describe and define Counting Interface Automata. The
following three chapters then describe the three steps of the presented process.

40 Chapter 6

0 Chapter7

7Counting Interface Automata

7.1 Preview

Counting Interface Automata (CIA) are based on Interface Automata [5] and provide

the capability of counting with natural numbers. As other interface automata, CIAs

consist of states and transitions and are usually depicted by bubble-and-arc diagrams.

There are three different kinds of transitions in a CIA: input, output and internal

transitions. When modeling a software component, input transitions correspond to
the invocation of methods on the component, or the returning of method calls from

other components. Output transitions correspond to the invocation of methods on

other components, or the returning of method calls from the modeled component.

Internal transitions correspond to computations inside the component.

All transitions are labeled by actions, which are also divided into input, output

and internal actions, depending on the kind of transition they label.
As the name suggests, Counting Interface Automata have the ability to count

with natural numbers. To keep track of counted values, a CIA uses a set of so called

counter variables. The natural numbers in CIA may represent anything countable of

interest, as for example data tokens or discrete time. In these two cases, counter vari-

ables could represent the length of token queues or the current time. Sometimes we

want also to express a value, which might not be known at construction time, but
which is known to be constant. For these cases, CIA allows counter variables to be

symbolic constants.

Every transition may contain a guard, which expresses a condition on the counter

variable values, and which determines, whether the transition is enabled and can be

taken or not. Furthermore, a transition may contain a set of counter declarations and

counter assignments, which declare new counter variables or update their values
respectively when the transition is taken.

So-called quantities on input and output transitions are used to express quantita-

tive aspects of actions in a transition and may also be used to exchange counter values

between two CIAs during composition. When modeling a software component, a

42 Chapter 7
quantity could correspond to a countable argument of a method call, as for example a
number of data tokens that should be passed with a method call or an amount of time

that elapses during a method call. Quantities are particularly interesting during com-

position, where the equality of quantities is an additional constraint on synchronized

shared transitions. Usually, a quantity of a transition is a natural number or the value

of a counter variable.

There are however two special cases, namely so-called input declaration quanti-
ties and symbolic output declaration quantities. In a symbolic output declaration

quantity, the quantity becomes the value of a symbolic constant, which gets addition-

ally bound to a counter variable of the automaton. Input declaration quantities on the

other side are open and may take on any value during composition with another

automaton, this value then gets bound to a counter variable. In particular, on shared

synchronized transitions, where the quantity of the transition of one automaton is an
input declaration quantity, the value of the quantity of the output transition of the

other automaton is bound to the counter variable of the input declaration quantity.

This mechanism allows to exchange counter values between two automata during

composition.

A transition in a CIA may consist of a number of sub-transitions. All sub-transi-

tions of a transition must start at the same state but may end at different states. Every
sub-transition contains a predicate which determines whether the sub-transition can

be taken or not. If more than one predicate is true, then the choice among these sub-

transitions is non-deterministic.

The composition of two CIA is only defined, if their counter variables and the

sets of input actions and output actions respectively are disjoint. However, an input

action of one CIA may coincide with an output action of the other CIA. The two

automata will synchronize on such shared actions if either the quantities of both

actions are equal or the quantity of the input action is an input declaration quantity,

and they will asynchronously interleave all other actions.

7.1.1 A Simple Example of Counting Interface Automata

Figure 7-1 shows the CIA of a simple DDF director, which requires from its actors to

check for the availability of tokens prior to consuming any.

The director has a counter variable T, which represents the number of tokens that

are available in the buffer of the receiver.

State 0 is the initial state of the director. Before being ready to receive any input,
the director needs to execute some internal operations, which is expressed by a transi-

tion with an internal action step. In state 1, the director is ready to receive a method

Counting Interface Automata 43
call hasToken(n) from an actor, which is expressed by the input action hT. The transi-

tion has an input declaration quantity, which means that the calling actor can pass an

argument, namely its own quantity, which is then bound to the counter variable n. If

enough tokens are available in the receiver, the director returns true, which is

expressed by the output action hTT. Otherwise it returns false, which is expressed by

the output action hTF. If the director returned true, the actor may get exactly n tokens
from the receiver. This is expressed with the input action g, which has a fixed quantity,

namely the value of n. Finally, the director returns the tokens and goes back into its

initial state.

7.2 Definition

Counting interface automata provide an interface automaton with the ability to count

and to express quantitative aspects on transitions. In particular, counting interface

automata use a set C of counter variables to track counted values. The values of these

variables are elements of , where N0 is the set of all natural numbers

including zero, K is an infinite set of symbolic constants and represents an uninitial-
ized counter variable.

Before we can define counting interface automata, we need to define some related

elements.

Fig. 7-1: The CIA of a simple DDF director. Input, output and internal actions are labelled with “?”,
“!” and “;” respectively. Note that quantities equal 1 are usually not shown explicitly.

N0 K ⊥{ }∪ ∪
⊥

44 Chapter 7
Definition 1: (counter valuation) A counter valuation V over a set C of counter variables
is a function V: .

Definition 2: (counter operations) We define a set of different counter operations and
functions.

• A counter assignment CA is a counter operation defined as

, where ◊ is either

the increment, decrement or set operation.

We further define a function Asgn: , which maps a counter
valuation to a new counter valuation, by applying a set of counter assigne-

ments.

• A counter declaration CD is a counter operation defined as

.
We further define a function Decl: , which maps a counter

valuation to a new counter valuation, by applying a set of counter declara-

tions.

• An input quantity counter declaration CQI is a counter operation defined as
 and an output quantity counter

declaration CQO is defined as .

We further define a function DeclQ: with

, which maps a counter valuation to a new counter val-

uation, by applying a quantity counter declaration.

• A counter guard CG is a counter operation defined as

where ◊ is either <, ≤ , =, ≠, ≥ or > and ◊′ is the boolean AND operator.

We further define a function Grd: , which maps a

counter valuation into a boolean value, by applying a counter guard.

Definition 3: (choice predicates) The set of choice predicates P is defined as ,
where and is a set of boolean variables.

We are now ready to define counting interface automata.

7.2.1 Automaton

Definition 4: (counting interface automata) A counting interface automaton (CIA) is a

C N0 K ⊥{ }∪ ∪→

CA x y: x y, C∈◊{ } x n: x C n N0 K∪()∈,∈◊{ }∪=

2CA V V→()→

CD x:=y: x y, C∈{ } x:=n: x C n N0 K ⊥{ }∪ ∪()∈,∈{ }∪=

2CD V V→()→

CQI x:=n: x C n N0 K ⊥{ }∪ ∪()∈,∈{ }=

CQO x:=k : x C k K∈,∈{ }=

CQ V V→()→
CQ CQI CQO∪=

CG =

x y: x y, C∈◊{ } x n: x C n N0 K∪()∈,∈◊{ } CG ′ CG◊{ } CG¬{ }∪ ∪ ∪

CG V true false,{ }→()→

P 2
PC=

PC p LP∈{ } PC PC∧{ } PC¬{ }∪ ∪= LP

Counting Interface Automata 45
tuple consisting of the following compo-
nents.

• is a finite set of counters.

• is a finite set of states.

• is the initial state.

• is a finite set of actions, where are

mutually disjoint sets of input, output and internal actions.

• : maps each state of M to its state invariant.

• is a finite set of transitions, where

are mutually disjoint sets of input, output and internal transitions respec-

tively.

We can write each transition as a set

of sub-transitions , .

For each of these sub-transitions, s and si’ are the source and destination
states of the sub-transition and is an action, labeling the transition.

 is a quantity on the transition and is an element of a finite set of

quantities , where and

 are sets of input and output action quantities

respectively. Further, is a guard on the counter values that deter-

mines, whether a transition can be taken, is a set of counter decla-

rations and a set of counter assignments that are applied when the

transition is taken. Finally, is a predicate that determines, whether

the transition may choose si’ as destination state.

For any sub-transition relation, we may also write .

The guard of a transition is evaluated after applying any action

quantity declarations, but before applying counter declarations or counter
assignments.

Definition 5: (execution fragments) An execution fragment of a counting interface au-
tomaton M is an alternating sequence of states and sub-transitions

 such that for all .
An execution fragment is called unconditional, if it contains only output and internal

M CM SM sM
init AM InvM TM, , , , ,()=

CM

SM

sM
init SM∈

AM AM
I AM

O AM
H∪ ∪= AM

I AM
O AM

H, ,

InvM SM CG→

TM TM
I TM

O TM
H∪ ∪=

TM
I SM AM

I× QM
I× CGM× 2

CDM× 2
CAM× 2

PM SM××=

TM
O SM AM

O× QM
O× CGM× 2

CDM× 2
CAM× 2

PM SM××=

TM
H SM AM

H× ∅ C× GM× 2
CDM× 2

CAM× 2
PM SM××=

t s a q g D B PS, , , , , ,() TM∈=

τ i s a q g D B pi si', , , , , , ,() TM∈= 0 i PS<≤

a AM∈
q QM∈

QM QM
I QM

O∪= QM
I N0 CP CQI∪ ∪=

QM
O N0 K CP CQO∪ ∪ ∪=

g CGM∈
D 2CD∈

B 2CA∈
pi PM∈

s
τ i s'i→

g CGM∈

s0 τ 0 s1 τ 1 ... sn, , , , , si
τ isi 1+→ 0 i n<≤

46 Chapter 7
transitions and if for any transition, the conjunction of all choice predicates which re-
main if is removed, is not true. An execution fragment is called conditional other-
wise.

The execution of a conditional execution fragment can be avoided by either the

environment or the automaton, while the execution of an unconditional execution

fragment cannot be avoided.

Definition 6: (reachability) Given two states , we say that v is reachable from
u if there is an execution fragment whose first state is u, and whose last state is in v. The
state v is reachable in M if it is reachable from the initial state of M.

Definition 7: (execution paths) The unconditional execution path set of a state v,
is the set of all unconditional execution fragments through which v is reachable in M.
The conditional execution path set of a state v, is the set of all conditional ex-
ecution fragments through which v is reachable in M.

Definition 8: (counter context) The counter context Con is a function :
, which maps an execution path of a state v to a valuation of C. It does

so, by evaluating the counter valuation along the execution path, starting at the
initial state. For every sub-transition along the execution path, the counter val-
uation in is obtained as follows.

7.2.2 Product

Two CIAs M and N are composable if , and

.

Their shared actions are .

Definition 9: (product) For two composable CIAs M and N, the product is the
CIA that consists of the following components.

• .

• .

• .

τ i

u v, SM∈

sM
init

Ξ M
uc v()

Ξ M
cond v()

Con
Ξ M v() V CM()→

V C()
s

τ i s'i→
V C'() s'i

V C'() Asgn B Decl D DeclQ q V C(),(),(),()
Asgn B Decl D V C(),(),()




= if q CQ∈
if q CQ∉

AM
I AN

I∩ ∅= AM
O AN

O∩ ∅=

CM CN∩ ∅=

shared M N,() AM
I AN

O∩() AM
O AN

I∩()∪=

M N⊗

CM N⊗ CM CN∪=

SM N⊗ SM SN×=

sM N⊗
init sM

init sN
init×=

Counting Interface Automata 47
• ,
,

.

• , with

• , with

AM N⊗
I AM

I AN
I \ shared M N,()∪=

AM N⊗
O AM

O AN
O \ shared M N,()∪=

AM N⊗
H AM

H AN
H shared M N,()∪ ∪=

InvM N⊗ u v,() InvM u() InvN v() InvM N⊗
T u v,()∧∧=

InvM N⊗
T u v,()

InvM N⊗
Ta u v,() if qI CQI∉

InvM N⊗
Tb u v,() if qI CQI∈




=

InvM N⊗
Ta u v,() Λ gI¬ gO∧()¬ gI gO qI qO=()¬∧ ∧()¬∧()
u a qI gI DM BM PSM, , , , , ,() TM

I v a qO gO DN BN PSN, , , , , ,() TN
O∈∧∈()

u a qO gO DM BM PSM, , , , , ,() TM
O v a qI gI DN BN PSN, , , , , ,() TN

I∈∧∈()
∨(

)
a shared M N,()∈

∧

=

InvM N⊗
Tb u v,() Λ gI¬ gO∧()¬()
u a qI gI DM BM PSM, , , , , ,() TM

I v a qO gO DN BN PSN, , , , , ,() TN
O∈∧∈()

u a qO gO DM BM PSM, , , , , ,() TM
O v a qI gI DN BN PSN, , , , , ,() TN

I∈∧∈()
∨(

)
a shared M N,()∈

∧

=

TM N⊗ TM N⊗
M TM N⊗

N TM N⊗
MN∪ ∪=

TM N⊗
M u v,() a q g D B pi ui' v,(),(), , , , , ,()
u a q g D B pi ui',(), , , , , ,() TM∈ a shared M N,() v SN

0 i PSM<≤
,∈∧∉∧

{

}

=

TM N⊗
N u v,() a q g D B pi u vj',(),(), , , , , ,()
v a q g D B pj vj',(), , , , , ,() TN∈ a shared M N,() u SM

0 j PSN<≤
,∈∧∉∧

{

}

=

TM N⊗
MN

u v,() a ∅ gM gN DM DN BM BN pMi pNj∧ ui' vj',(),(),∪,∪,∧, , ,()
u a qM gM DM BM pMi ui',(), , , , , ,() TM∈
v a qN gN DN BN pNj vj',(), , , , , ,() TN∈

a shared M N,() 0 i PSM 0 j PSN<≤,<≤,∈

∧
∧

{

}

=

48 Chapter 7
The invariants of the product are the conjunction of the
invariants of both automata M and N and additional transition invariants

. The transition invariants make sure, that for any shared transitions

which are active in a state , either the guard of the output transition is

false or otherwise the guard of the input transition is true and the quantities match.

Definition 10:(error states) Given two composable CIAs M and N we define two types
of error states.

• Immediate error states: A state is an immediate error state, if

there is an action , such that there is an output sub-

transition labeled with the action for some state , but no input

sub-transition labeled with the action for all states , or such that

there is an output sub-transition labeled with the action for some
state , but no input sub-transition labeled with the action for

all states .

• Counter error states: A state is a counter error state, if for

any unconditional execution path or all conditional exe-
cution paths the state invariant with the

counter valuation evaluates to false.

7.2.3 Composition

Definition 11:(composition) The composition of two CIAs M and N is ob-
tained by restricting the input and choice behavior of to avoid all error states.

To restrict the input and choice behavior of , we remove all states in

, from which there exists an unconditional execution fragment to any error

state in .

Definition 12:(compatibility) Two CIAs M and N are compatible, if their composition
is not empty.

Note, that in general, the composition and thus the compatibility of two count-

ing interface automata is not decidable. But we will show in Chapter 9, that the CIAs

we use have certain properties, which make composition and compatibility decidable.

InvM N⊗ u v,() M N⊗

InvM N⊗
T u v,()

u v,() SM N⊗∈

u v,() SM N⊗∈
a shared M N,()∈

u τ u'→ a u'

v τ v'→ a v'

v τ v'→ a

v' u τ u'→ a

u'

u v,() SM N⊗∈
ξ Ξ M N⊗

uc u v,()∈
ξ Ξ M N⊗

cond u v,()∈ InvM N⊗ u v,()
Con ξ()

M N| |
M N⊗

M N⊗
SM N⊗

SM N⊗

Counting Interface Automata 49
7.3 Extension

We introduce an extension to Counting Interface Automata, which allows the formal

treatment of structural properties that occur when using CIA in the context of actors

and actor models as well as in the context of software components in general.

For this purpose, we first split the set of counters into two mutually disjoint sets

of so-called global counters and local counters, and further, we define a subset of states,

which we call reset states.
Together, the global and local counters as well as the reset states are important

when evaluating the counter valuation along an execution path, in order to obtain the

context of a state. For every sub-transition along an execution path, the counter valua-

tion in the end-state of the sub-transition is defined in Definition 8. We extend this

definition in a way, such that all local counter variables in the counter valuation of an

end-state get uninitialized, if this end-state is a reset state.

With this extension, we distinguish two sets of counters, the values of one set are

valid globally, while the values of the other set are only valid locally along the path

between two reset states.

When we build the product of two CIAs, only the product of two reset states will

again be a reset state. Thus, the product of a reset state with an ordinary state will be

an ordinary state. However, the transition which leads to such an ordinary state must
explicitly uninitialize all local counters which were previously uninitialized by the reset

state that is not existing anymore.

50 Chapter 7

0 Chapter8

8Generating Counting Interface Automata

This chapter describes how counting interface automata of actors in general and mod-
els with dataflow MoC are generated.

8.1 Generating Actor Automata

In Figure 6-1, the transformation of actors from an actor language into interface
automata is depicted as a function f. As mentioned earlier, we will use CAL as actor

language and CIA as interface automata. Thus the function f becomes a transforma-

tion from CAL to CIA.

As shown in Figure 8-1, the transformation from a CAL-actor into its CIA can be

broken down into three separate steps:

• transforming the CAL-actor into a Calflow-actor,

• adding an execution schedule to the Calflow-actor,

• transforming the scheduled Calflow-actor into its CIA.

The following chapters describe each of these three steps.

Fig. 8-1: Transformation steps to transform a CAL-actor into its CIA.

Calflow Calflow
(scheduled)

CAL CIA

52 Chapter 8
8.1.1 Transforming CAL into Calflow

The first step of transforming a CAL-actor into CIA, is to generate the previously

described intermediate format Calflow from its CAL code. The exact transformation is
described in Appendix A, since it is not of interest in this context.

8.1.2 Scheduling Calflow

After the transformation from CAL to Calflow, all actions in the Calflow actor will
have an empty action schedule. However, to transform Calflow into CIA we need a

sequential representation of CAL and therefore sequentially scheduled actions. For our

purpose, any valid action schedule can be used. The used scheduling algorithm is

described in detail in Appendix A.

8.1.3 Transforming Scheduled Calflow into CIA

The last step remaining, is to transform the scheduled Calflow-actor into its CIA. This

process can be broken down into several steps, which are described below.

Creating the Director Interface

The actor CIA has two ports as interface to the director:

• Director:f is an input port, used by the director to fire the actor.

• Director:fR is an output port, used by the actor to return the fire command

of the director.

Creating the Receiver Interfaces

For every input port of the actor, the actor CIA has five ports as interface to the related

receiver:

• Port:hT is an output port, used by the actor to query the receiver whether it

has a certain number of tokens in its buffer.

• Port:hTT is an input port, used by the receiver in return to a hT command if

enough tokens are available in its buffer.

• Port:hTF is an input port, used by the receiver in return to a hT command if

not enough tokens are available in its buffer.

Generating Counting Interface Automata 53
• Port:g is an output port, used by the actor to get a certain number of tokens
from the receiver.

• Port:t is an input port, used by the receiver in return to a get command.

For every output port of the actor, the actor CIA has also five ports as interface to

the receiver of the connected actor:

• Port:hR is an output port, used by the actor to query the receiver whether it

has enough room in its buffer for a certain number of tokens.

• Port:hRT is an input port, used by the receiver in return to a hR command if

enough room is available in its buffer.

• Port:hRF is an input port, used by the receiver in return to a hR command if

not enough room is available in its buffer.

• Port:p is an output port, used by the actor to put a certain number of tokens

into the receiver.

• Port:pR is an input port, used by the receiver in return to a put command.

Creating Action Automata Sequences

To create the CIA of the actor, we first create CIA sequences for every action. Creating

the CIA sequence of an action from its Calflow representation is a straightforward

task, in which each atomic step is first mapped into a small sequence of a CIA. These

small sequences are then assembled according to the Calflow action schedule. Finally,

to build the complete CIA sequence of the action, a director fire input transition is

added at its beginning and a fire return output transition at its end.

Figure 8-2 shows the mapping rules to map the atomic steps into CIA-sequences.

Creating the Actor Automaton

To create the CIA of the complete actor, we simply take the action selector of the Cal-

flow actor in its finite state machine format and replace its states with CIA reset states

and its transitions with the according CIA action sequences. If more than one transi-

tion leaves from the same state, we collect all director fire input transitions as sub-tran-

sitions into one transition with a true predicate on each sub-transition. This leads to a

non-deterministic choice of all director fire input transitions.
If the Calflow actor has no action selector, this equals to an action selector with

only one state and a cyclic transition for every action.

54 Chapter 8
Fig. 8-2: Mapping rules to map atomic steps into sequences of CIA. The octagonal states are so called
failure states. Their semantics is explained at the end of this chapter. The black dot in the guard mapping
represents a choice on the transition.

p

¬p

Generating Counting Interface Automata 55
8.1.4 A Simple Example of an Actor CIA

To understand how this works, let us analyse Example 8-1 and Example 8-2. They

both show a Split actor written in CAL. On each firing, the Split actor consumes one
token on its input port and forwards it to one of its two output ports. In Example 8-1,

the order in which the actor selects the output port to forward the token to is deter-

mined by its action selector, while in Example 8-2, the order is non-deterministic.

Example 8-1:

1: actor Split () T In ==> T Out1, T Out2:
2: A1:action [a] ==> [a],[] end
3: A2:action [a] ==> [],[a] end
4: selector
5: ([A1][A2])*;
6: end
7: end

Example 8-2:

1: actor Split () T In ==> T Out1, T Out2:
2: A1:action [a] ==> [a],[] end
3: A2:action [a] ==> [],[a] end
7: end

Figure 8-3 shows on its left side the unscheduled Calflow representation of the

actions and on its right side the scheduled actions which are used to generate the CIA

action sequences. Note, that no OutputGuard atomic steps are present in the Calflow
actions, assuming that the environment provides unbounded buffers.

Figure 8-4 and Figure 8-5 show the complete actor CIA for the deterministic and

the non-deterministic version of the Split actor respectively.

56 Chapter 8
Fig. 8-3: On the left side are the unscheduled data-flow representations of the two actions of the Split
actor. In both actions one of the output atomic steps is empty. On the right side are the scheduled ac-
tions. Note, the empty atomic steps are not scheduled by the scheduling algorithm.

Fig. 8-4: The CIA of the deterministic Split actor.

Generating Counting Interface Automata 57
8.2 Generating MoC Automata

In Figure 6-1, the transformation from the model connection information and the

MoC into interface automata is depicted as a function . As mentioned earlier, we

only generate various forms of dataflow MoC, the function therefore becomes a
function .

8.2.1 Dataflow MoC

In presented solution to create automata for dataflow models of computation leads to
two design choices.

The first design choice is on whether the model of computation guarantees, that

actions are only fired when enough tokens are available or not. If the model of compu-

tation gives this guarantee, then the actors are not required to check for tokens prior to

consuming them.

The second design choice is on whether the buffers in our model are unbounded
or not, and in the latter case whether the model of computation guarantees, that

actions are only fired when enough room is available for all produced tokens. If the

Fig. 8-5: The CIA of the non-deterministic Split actor.

c̃MoC

c̃MoC

c̃xDF

58 Chapter 8
buffers are bounded and the model of computation gives no guarantee on firing, then
the actors are required to check for room in the connected receivers prior to producing

tokens.

Additionally, a model of computation may have a partial or total order on the

actor firing of the actors in a model.

In Ptolemy II, the SDF domain does not require its actors to check for tokens nor

for room and it has a total order on the actor firing of all actors in a model.
On the other hand, for DDF models of computation, we will usually assume that

the receivers have unbounded size and that the model of computation cannot give any

guarantees on firing and has no fix order on the actor firing.

8.2.2 Creating Actor Automata Sequences

We start creating the CIA of a MoC by first separately creating CIA sequences to han-

dle every actor in the model.

The basic structure of each of these actor CIA sequences is always the same, and

starts with a CIA sequence to fire the actor, which leads to a state in which the actor is

active and may execute. From there leaves again a CIA sequence to return the fire
command.

We call the state in which the actor is active and may execute the actor execution

state. In this state, the MoC must be ready to receive commands from the actor in any

valid order. For this, a short transition sequence for every valid command leaves the

actor execution state and returns again to it in a cycle. The valid execution order of the

commands is then ensured with a set of temporary counters and guards on the com-

mand transitions.

The following sections describe in detail the steps needed to create an actor CIA

sequence.

Creating Counters

One counter is created for every input port of the actor, to represent the number of

tokens available in the receiver of this input port. This counter is usually named

Actor:Port:T.

Optionally, if the receivers have finite buffer lengths, an additional counter is cre-

ated for every input port of the actor, to represent the free space available in the
receiver of this input port. This counter is usually named Actor:Port:R.

Generating Counting Interface Automata 59
Creating the Director Interface

For every actor, the MoC CIA has two ports as interface to it. These ports are the same

as for the actor CIA in Chapter 8.1.3, but with opposite directions.

Creating Receiver Interfaces

For every input or output port of every actor, which is not connected to an external

port of the model, the MoC has five ports as interface to it. These ports are again the

same as for the actor CIA in Chapter 8.1.3, but again with opposite directions. For

ports that are connected to external ports of the model, the MoC does not provide an
interface1). These ports will become ports of the composite actor.

Creating the Firing Automaton Sequence

The firing automaton sequence starts with an internal transition, labelled step, which
signals the start of an action firing. This transition is followed by an output transition

on the director fire port, which leads to the action execution state. From there an

input transition on the fire return port ends the firing automaton sequence.

Creating Command Automata Sequences

For every input or output port of an actor a corresponding command automata

sequence is added to the execution state of the actor. Figure 8-6 shows the different

input and output automata sequences.

The left side of the figure shows three different input automata sequences. The

uppermost is used if the MoC does not require the actor to check for tokens nor for
room. The sequence in the middle is used if the MoC requires the actor to check for

tokens but not for room. And finally the sequence at the bottom is used if the MoC

requires the actor to check for tokens and for room.

The right side of the figure shows two different output automata sequences. The

sequence at the top is used, if the MoC does not require the actor to check for room.

The sequence at the bottom is used if the MoC requires the actor to check for room.

The output sequence does not depend on whether the MoC requires the actor to

check for tokens or not.

Note, how temporary counters and guards are used to ensure a valid execution

order in cases where the MoC requires it. If the MoC for example requires the actor to

check for tokens, a temporary counter, usually called Actor:Port:cT (cT is the abbrevia-

tion for “checked tokens”), is set with every has-token command of the actor. The

1) Note that in order to automatically generate the CIA, every port of an actor in a model may be connected to
either any number of ports of other actors in the model or to exactly one external port. We may however put iden-
tity-actors between ports and external ports, if a port needs to be connected to both an external port and ports of
other actors.

60 Chapter 8
guard on the get command then ensures, that only as many tokens may be consumed

as are set in this temporary counter. This ensures, that an actor cannot consume more

tokens than he checked for. The actor may however consume the checked number of

tokens in several separate get commands. The same technique is used if the MoC

requires the actor to check for room.

8.2.3 Counters and Connection Information

The connection information of the original network is preserved in the counter
assignments of the output automata sequences. During the put command on an out-

put port, the transition assigns a new value to all counters that represent receivers to

which the output port is connected to.

For example on the right side of Figure 8-6, the put command on the output port

Out of actor A1 updates the token and room counters of the input port In of actor A2.

Fig. 8-6: Input and output automata sequences. The state 0 of every sequence represents the actor ex-
ecution state. The sequences are shown for an actor named A1 with an input port In and an output port
Out, which is connected to an input port In of an actor A2.

Input Port Sequences Output Port Sequences

Generating Counting Interface Automata 61
8.2.4 Creating the MoC Automaton

We assume that an actor execution schedule is available in form of a finite state

machine, where the transitions represent actor firings. If no execution schedule is
available, this equals to a finite state machine with only one state and a cyclic transi-

tion for every actor firing.

To create the complete MoC automaton, we take the actor execution schedule

and replace its states with CIA rest states and its transitions with the according actor

automata sequences. If more than one transition leaves from the same state, we collect

all internal step transitions of the actor automata sequences into one transition with a
non-deterministic choice.

8.2.5 A Simple Example of a MoC CIA

Let’s look at a simple example of a MoC CIA. A simple actor model is shown in
Figure 8-7. The model consists of two actors, named A1 and A2, each with one input

port and one output port. Even though not visible in the figure, the input and output

ports of both actors are named In and Out respectively.

Figure 8-8 shows a MoC CIA for the actor model in Figure 8-7. The presented

automaton is a typical SDF MoC automaton, since it has a static firing schedule and

does not require its actors to check for tokens or for room.

Fig. 8-7: A simple actor model.

62 Chapter 8
8.3 Comments

Action Schedules

In Section 8.1.2 , we state that any valid action schedule can be used to schedule a

Calflow actor for dataflow MoCs. This comes from the asynchronous message passing

that is used in dataflow MoCs, which makes the order of communication acts unim-

portant. In particular, it does not matter whether a dataflow actor first reads a token

from one port and then from another or the other way around.
In MoCs with synchronous message passing, as for example CSP, the order of

communication acts however does matter and can in fact usually not be determined

statically. The complete CIA of an actor for such a MoC would consist of the set of all

legally scheduled CIAs.

Fig. 8-8: A SDF MoC automaton for the actor model in Figure 8-7.

Generating Counting Interface Automata 63
Failure States

To explain the importance of failure states, it is best to think of the CIA as a represen-

tation of a CAL actor execution. The information specified in the CAL code of an actor

corresponds thereby to the CIA we extract of it. In particular, like the CIA we extract,

the CAL code does not specify what an actor should do when it reaches a failure state
during its execution.

CAL does not specify this, because in general, the correct recovering from a failure

state depends on the MoC. For example think of an actor, which needs to consume a

token in order to be able to evaluate a guard. If the guard evaluates to false, the actor

consumed a token without being able to fire. In this case there are several strategies, on

what to do with the consumed token. In a dataflow MoC, the actor may buffer the
token internally and use it again when it is fired the next time, in a continuous time

MoC on the other hand, the actor should throw away the consumed token, since its

value won’t be valid anymore at its next firing. Thus, we can think of failure states as

place holders for MoC dependant code2).

Note, the implementation of failure states would also specify the order in which

action-matching is determined.

From now on, we ignore failure states and assume the existence of an imaginary

magic machine, which does the correct recovering in any case.

2) Lets take this idea one step further and lets assume that, for example, Ptolemy II would provide an interpreter to
interpret actors written in CAL. Prior to execute a CAL actor, the interpreter could determine the MoC of the sys-
tem in which the actor is placed, and could then refine its execution code of the actor, to get the correct, MoC
dependant behavior in case a failure state is reached. In such a system, the CAL actor itself would be completely
domain polymorphic.

64 Chapter 8

0 Chapter9

9Composing Actor and MoC Automata

The composition and compatibility of two arbitrary Counting Interface Automata is,
as we already noted in Chapter 7, not decidable in general. The bad news is, that the

composition of actor and MoC automata is also not decidable in general. We will

however show in this chapter, how we can exploit certain properties of the structures

of generated actor and MoC automata, to make the most important parts of the com-

position decidable. In fact, the composition and compatibility of the temporal and

quantitative aspects of all interfaces in a model will be decidable. The part which
remains not decidable, contains the internal token exchange information of the

model. In Chapter 10, we will show how to use Petri Nets to analyse the information

contained in this part.

9.1 General Structure of the Automata

9.1.1 Structure of Actor Automata

Figure 9-1 shows some examples of typical structures of generated actor automata. An
important structure property, shared by all generated actor automata, is that by con-

struction, all paths from one reset state to another are finite, i. e. there is never a loop

in the path between two reset states of any actor automaton. Furthermore it has to be

noted, that each of these paths between two reset states corresponds to one possible

firing of the actor.

9.1.2 Structure of MoC Automata

Figure 9-2 shows some examples of typical structures of generated MoC automata.

Generated MoC automata usually have loops and thus infinite paths between reset

states. A very important property of these loops on the paths between reset states is
however that all of them start with an input transition and can thus be controlled

66 Chapter 9
from outside. Additionally, as with actor automata and by construction, any path

between two reset states of a MoC automaton corresponds to one possible firing of an

actor.

9.1.3 Structure of Product Automata

When we build the product of all actor automata and the MoC automaton of a

model, we end up with a product automaton which consists of the product of the reset

states of all automata, interconnected by finite paths, which correspond to actor fir-

ings. In particular, it has to be noted that there are no loops in any path between two

reset states of the product.

Fig. 9-1: Typical structures of the generated actor automata. The dark states represent reset states.

Fig. 9-2: Typical structures of the generated MoC automata.

Composing Actor and MoC Automata 67
The reason for this structure comes from the above mentioned properties of the
structures of actor and MoC automata. The finiteness of paths between reset states in

actor automata and the fact that the loops in any corresponding path in the MoC

automaton start with input transitions, results in product paths which are again always

finite.

We call the product of all actor automata and the MoC automaton of a model the

model product automaton (MPA). Figure 9-3 shows some examples of typical struc-
tures of MPAs.

9.2 Composition Strategy

Unless all paths through a model product automaton have exactly the same global

counter assignments, which is the case for statically scheduled SDF models, the com-
position and compatibility of the model product automaton is not decidable in gen-

eral.

However, by ignoring the values of all global counters, the composition and com-

patibility of all paths between two reset states in the model product automaton is

decidable, and thus the compatibility of the temporal and quantitative aspects of the

interfaces of all actors and the MoC can be ensured.
By doing this, we will end up with a Counting Interface Automaton of the com-

posite model, in which the compatibility of the interfaces of all actors and the MoC is

Fig. 9-3: Typical structures of model product automata.

68 Chapter 9
ensured and in which the information of the internal token exchange rates is con-
tained in the global counter assignments along the paths between reset states.

9.3 Composition Algorithm

The special structure of model product automata, which was discussed above, leads to
the fact, that for every state in a path between two reset states, there is only a single

path between the path starting reset state and the state itself. Furthermore, since we

ignore the values of all global counters, i.e. we leave the global counter variables unini-

tialized, the context of every reset state contains only uninitialized counter variables.

This leads to the property that every state in the model product automaton has only

one fix context.

Exploiting this property allows us to use a relatively simple composition algo-

rithm, in which the product and the error states are created at the same time.

We use an algorithm, which recursively expands a product frontier until all reach-

able product states are analyzed. At every step, the algorithm picks one product state

from the frontier, analyses the transitions that can be taken from it, and expands it.

Finally, the product states that are reachable from the picked product state get added
to the frontier if they were not analyzed yet before.

When the transitions are analyzed, the algorithm ignores any guards, declarations

and assignments that contain global counter variables. The information of all declara-

tions and assignments is however still contained in the model product automaton and

the correct values of ignored guards is ensured by invariants that are added to the

states.

Algorithm

The following pseudo code describes the composition algorithm. In the code, any

function accesses the element of the transition 1). Additionally, we write
, if , i. e. when the transition starts in .

1) see Chapter 7 for a description of all elements of a transition.

x t() x t

t u∈ s t() u= u

Composing Actor and MoC Automata 69
start

;

;

while ()

pick a state ;

foreach ()

case (): copy();

case ():

case ():

case (with and):

copyShared();

otherwise: // ignore, this transition can never be activated

otherwise copy();

case ():

case ()

case (with and):

copyShared();

otherwise: () is an immediate error state

otherwise: copy();

endforeach

foreach ()

case (): copy();

case ():

case ():

// ignore, this transition can either never be activated

// or was already handled above

otherwise: copy();

case ():

case ()

case (with and):

// ignore, this transition was already handled above

otherwise: () is an immediate error state

otherwise: copy();

endforeach

case is an error state: ;

frontier sM
init sN

init×()=

product sM
init sN

init×()=

frontier ∅≠
u v,() frontier∈

tu u∈
tu TM

H∈ tu

tu TM
I∈

a tu() shared M N,()∈
tv TM

O∈∃ tv v∈ a tv() a tu()=

tu tv,

tu

tu TM
O∈

a tu() shared M N,()∈
tv TN

I∈∃ tv v∈ a tv() a tu()=

tu tv,
tu tv,

tu

tv v∈
tv TN

H∈ tv

tv TN
I∈

a tv() shared M N,()∈

tv

tv TN
O∈

a tv() shared M N,()∈
tu TM

I∈∃ tu u∈ a tv() a tu()=

tu tv,
tv

u v,() frontier frontier \ u v,()=

70 Chapter 9
otherwise:

;

;

endwhile

end

copy(t):

case :

copy the transition;

;

;

otherwise: // ignore

copyShared(tu, tv):

copy the shared transition;

case the transition invariant obtained from this shared transition is false:

() is a counter error state;

otherwise:

frontier frontier \ u v,()() newFrontier∪=

product product newProduct∪=

g t() false≠

newFrontier newFrontier S' t() \ S' t() product∩()()∪=

newProduct newProduct S' t()∪=

tu tv,

newFrontier newFrontier
S' tu() S' tv()× \ S' tu() S' tv()×() product∩()()

∪=

newProduct newProduct S' tu() S' tv()×()∪=

0 Chapter10

10Analysis of Actor Models

As we have seen in Chapter 9, a model product automaton (MPA) consists of a
number of reset states, interconnected by finite automata sequences, which corre-

spond to actor firings, and the assignments to global counter variables along these

sequences contain the internal token exchange information of the composite actor

model.

In this chapter, we will show how to extract this internal token exchange informa-

tion from a MPA, and how to represent it in a Petri Net. This will allow us, to fall
back to the well investigated methodologies for Petri Nets, to analyze our composite

actor model.

10.1 Extracting Token Exchange Information

10.1.1 Generating Token Exchange Automata (TEA)

To represent the token exchange information of a model product automaton, we first

generate an automaton which we call the token exchange automaton (TEA) of a
model. The states of this automaton are the reset states of the model product automa-

ton. The transitions correspond to the paths between the reset states of the model

product automaton and contain all assignments to global counter variables along these

paths. Additionally, they are labelled with the name of the actor they correspond to.

In the TEA, the states represent the states of the composite actor model and each

transition represents one possible actor firing, with the assignments on the transition
representing the token exchange rates.

Figure 10-1 shows the TEA of the actor model in Figure 10-2. The complete

explanation and analysis of this example can be found in Chapter 11.

72 Chapter 10
10.1.2 Generating Token Exchange Petri Nets (TEPN)

Petri Net is a formal and graphical language which is appropriate for modelling sys-
tems with concurrency. It was first formally defined 1962 in [16] by Carl A. Petri.

When we generate the Petri Net of a TEA, we logically divide it into a dataflow

part and a control part. Figure 10-3 shows the Petri Net of the TEA in Figure 10-2.

Fig. 10-1: The token exchange automaton of the model in Figure 10-2. The automaton is statefull,
since the Src actor in the model it is representing is statefull.

Fig. 10-2: A simple DDF actor model. Actor Src is a source actor which is on each firing producing
alternatingly one token on its upper and lower output port respectively. Actor A consumes one token
and produces one token on each firing. Actor B consumes one token and produces two tokens on each
firing. Actor Snk is a sink actor and consumes one token from each input port on each firing.

Analysis of Actor Models 73
The dataflow part of the generated Petri Net has one place for every global

counter variable of the token exchange automaton and the number of markers in each

of these places represent the values of the corresponding global counter variables1).

The control part of the generated Petri Net has one place for every state of the

token exchange automaton and one marker in the place which represents the initial

state. This marker is used to mark at each time the state in which the model currently

is.

There is one transition for every transition of the TEA, each of which represents

one possible actor firing in a particular model state of the composite actor model.
The flow relations between the control part of the Petri Net and the transitions

determine the fireability of actors in every state of the model. The flow relations

between the dataflow part and the transitions on the other hand represent the token

Fig. 10-3: The token exchange Petri Net of the token exchange automaton in Figure 10-2. The con-
trol part of the Petri Net is on the left side and the dataflow part on the right side of the figure. In between
are the transitions.

1) Remember that the global counter variables in our models and thus the number of markers in the Petri Net rep-
resent the number of tokens in the receiver queue of a channel.

s_0

s_1

A:In:T

Snk:In2:T

Snk:In1:T

B:In:T

0:Src

0:A

0:B

0:Snk

1:Src

1:A

1:B

1:Snk

2

2

74 Chapter 10
exchange information of every actor firing, where the weights of the flow relations cor-
respond to the number of tokens exchanged during each firing.

10.2 Analyzing Token Exchange Behavior

Petri Nets are a well established research area with a vast amount tools are available. In
this context however, we will only concentrate on three properties of Petri Nets, which

are of particular interest for the analysis of composite actor models.

• Security in the TEPN corresponds to the boundedness of receivers in the

actor model.

• Reversibility in the TEPN corresponds to the availability of a legal firing

sequence2) for the actor model.

• Liveliness in the TEPN corresponds to the liveliness of the actor model.

10.2.1 Security

The security of a Petri Net can be determined using the reachability tree analysis. In
the reachability tree, every insecure place will eventually become represented with a

infinity symbol . A Petri Net is secure, if its reachability tree does not contain such

an infinity symbol.

If the TEPN is secure, then the buffer lengths of all receivers in the actor model

are bounded.

10.2.2 Reversibility

For secure Petri Nets, reversibility can be determined again using the reachability tree

analysis. If the Petri Net is not secure, the existence of a transition invariant is a

required but not sufficient condition for the reversibility of the Petri Net.
The reversibility of the TEPN is a requirement for the existence of a legal firing

sequence. It is however not sufficient, since the TEPN ignores all action guards and

can thus decide to execute actions that would maybe not be executable under certain

conditions at runtime.

2) A legal firing sequence is a firing sequence, which can be executed infinitely, without leading to deadlock or
buffer overflow.

∞

Analysis of Actor Models 75
From the non-existence of a transition invariant however, we can conclude that
there exists for sure no legal firing sequence for the actor model.

10.2.3 Liveliness

For secure Petri Nets, liveliness can be determined using the reachability tree analysis.
The deadlock freeness of the TEPN is a requirement for the deadlock freeness of

the actor model. As with for the reversibility above, it is however not sufficient, again

because of the guards.

76 Chapter 10

Part III

Case Studies

0 Chapter11

11Case Studies

11.1 Component Interface Compatibility

11.1.1 An SDF Actor in a DDF Model of Computation

The automaton at the top of Figure 11-1 shows the CIA of a simple SDF actor, which
produces one token on its output port and consumes one token from its input port.

Since the shown actor is implemented for a SDF MoC, it does neither check for

tokens nor for room.

Just below is the CIA of a DDF MoC for the same actor. Since the DDF MoC

requires all its actors to check for tokens prior to consuming them, the interface of the

SDF actor should be incompatible with the one of the DDF MoC.
The product of the SDF actor with the DDF MoC, annotated with the context

of each state, is shown at the bottom of Figure 11-1. When the SDF actor tries to get

a token without prior checking, the guard on the corresponding input transition of

the MoC automaton will be false1) and the transition will therefore not be active. This

leads to the counter error state in 2:4 of the product.

After pruning out all states along the unconditional execution fragment which
leads to the error state, as well as after pruning out all unreachable states, the composi-

tion of the SDF actor and the MoC automaton will be empty, showing as expected

their interface incompatibility.

11.1.2 An Illegal Actor in a DDF Model of Computation

At the top Figure 11-2 is the CIA of a DDF actor, with only one input port. From the

automaton it can be seen, that the implementation of the actor is flawed, since it

checks for the availability of 4 tokens, but it consumes all in all 5 tokens.

1) Note, that Ramp:In:cT is a local variable and is therefore not ignored during composition. Since it is uninitial-
ized, its comparison with 1 is always false.

80 Chapter 11
In the product of the DDF actor with the DDF MoC, which is shown at the bot-

tom of Figure 11-2, it can be seen, that the consumption of the first two tokens by the
actor are compatible with the MoC automaton. But the consumption of another three

Fig. 11-1: A SDF actor automaton, a DDF MoC and their product. State 2:4 is a counter error state
in the automaton product. After pruning, the composition will be empty, which shows the interface in-
compatibility. Remember, internal transitions have no quantities, the string [n] is part of their name.

Context Context
n=1

Context
n=1

Context
n=1

Context
n=1

Context
n=1

ContextContext

!
false

Case Studies 81
tokens, of which the actor checked only two, leads to a counter error state in state 2:5
of the product.

After pruning, the composition of the actor automaton with the MoC automa-

ton will be empty, showing again interface incompatibility.

Fig. 11-2: A DDF actor automaton, a DDF MoC and their product. State 2:5 is a counter error state
in the automaton product. After pruning, the composition will be empty, which shows the interface in-
compatibility.

Context Context
cT=-1
n=3

Context
cT=-1
n=3

Context
cT=2
n=2

Context
cT=2
n=2

Context
cT=4
n=4

Context
n=4

Context

! false

82 Chapter 11
11.2 Analysis of Dataflow Actor Models

11.2.1 An Actor Model with Incompatible Dataflow Rates

In this case study, we will go through the complete process of CIA generation, compo-

sition and subsequent analysis of the actor model we already introduced in Chapter 10
and which is shown again in Figure 11-3.

The Actor Model

This simple actor model is composed of four different actors, each of which is

explained in one of the following sections.

Actor Src

This actor has no input ports and two output ports. It is a source in our model. Each

time it is fired, it produces alternatingly one token on either its upper or lower output

port. The CAL code of this actor is shown below. An action selector ensures the alter-

nating choice of the two actions.

1: actor Src () ==> T Out1, T Out2;
2: A1:action ==> [a], [] end
3: A2:action ==> [], [a] end
4: selector
5: ([A1][A2])*;
6: end
7: end

Fig. 11-3: The actor model.

Case Studies 83
Actor A

This actor has one input port and one output port. Each time it is fired, it consumes

one token from its input port and produces one token on its output port. In fact, this

actor is an identity actor.

1: actor A () T In ==> T Out;
2: A1:action [a] ==> [a] end
3: end

Actor B

This actor has also one input port and one output port. Each time it is fired, it con-

sumes one token from its input port and produces two tokens on its output port.

1: actor B () T In ==> T Out;
2: A1:action [a] ==> [a, a] end
3: end

Actor Snk

This actor has two input ports and no output port. It is a sink in our model. Each

time it is fired, it consumes one token from each of its two input ports.

1: actor Snk () T In1, T In2 ==> ;
2: A1:action [a], [b] ==> end
3: end

Step 1: Generating Actor Automata

Since none of the actors in the model have any data dependencies except a simple

input-output dependency, the Calflow representation of all of these actors is very sim-

ple and is omitted here. Figure 11-4 shows the actor automata of all four actors.

Note, that the actor automaton of the Snk actor has two states because of its actor

selector. Furthermore note, how the information of the production of two tokens is

contained in the put transition of actor B.

Step 2: Generating MoC Automata

Figure 11-5 shows a MoC automaton for the actor model. The automaton has four

global counter variables, each of which is representing the token queue length in one
of the four receivers in the model.

The MoC in this automaton does not give any firing guarantees an thus requires

all actors to check for tokens, prior to consumption. But it does not require the actors

to check for room. Furthermore it has no static firing schedule.

84 Chapter 11
Fig. 11-4: The CIA of all actors in the model.

Case Studies 85
Step 3: Generating Model Product Automata (MPA)

Figure 11-6 shows the model product automaton, which is the result of composing
iteratively every actor automaton with the MoC automaton of the model.

The MPA has two reset states, representing the state in which the Src actor of the

model is. In both reset states, the MoC may choose to fire any actor, and when firing

the Src actor, a state change occurs.

Note, when we can successfully generate the MPA, this proves the component

interface compatibility of all actors and the MoC in the model.

Fig. 11-5: The CIA of the MoC. State 2 is the actor execution state of the Src actor, state 8 the one
of actor A, state 14 the one of actor B, and state 20 the one of the Snk actor.

86 Chapter 11
Fig. 11-6: The MPA of the actor model. Note, that the states 22, 23 and 24 would be followed by
the same automaton sequences as the states 2, 3 and 4 respectively. For a better visibility, these additional
cycles are omitted in the figure.

Case Studies 87
Step 4: Generating Token Exchange Automata (TEA)

Figure 11-7 shows the token exchange automaton, which is obtained by extracting the

token exchange information of the MPA.

In the TEA the two states of the actor model are again visible. The transitions

between the two states correspond to the firing of the Src actor, while the firing of all
other actors does not lead to a state change.

Step 5: Generating Token Exchange Petri Nets (TEPN)

Figure 11-8 shows the token exchange Petri Net which is representing the token
exchange information of the TEA.

Step 6: Analysis of the Token Exchange Petri Net

Linear Algebra Analysis

For the linear algebra analysis, we represent the TEPN in its structural matrix. We

then calculate the transition invariant of the structural matrix. A is the structural

matrix of the TEPN and the transition invariant.

Fig. 11-7: The TEA of the actor model.

IT

88 Chapter 11
Reachability Tree Analysis

In general, any DDF model with source actors and without schedule will not be

secure. The source actor can be fired infinitely often, and thus the receiver buffers of
any actor port connected to the source actor will be unbounded. Since this unbound-

edness will often flood over big parts of the model, the reachability tree will usually

not show interesting information.

To overcome this problem, we introduce a virtual trigger signal to the model,

such that while building the reachability tree, the transition which corresponds to a

source actor, may only be fired when a trigger signal occurs. We then send a trigger

Fig. 11-8: The TEPN of the actor model.

s_0

s_1

A:In:T

Snk:In2:T

Snk:In1:T

B:In:T

0:Src

0:A

0:B

0:Snk

1:Src

1:A

1:B

1:Snk

2

2

A

1 1– 0 0 0 1– 0 0
0 0 1– 0 1 0 1– 0
0 1 0 1– 0 1 0 1–

0 0 2 1– 0 0 2 1–

1– 0 0 0 1 0 0 0

1 0 0 0 1– 0 0 0

=

IT 0=

Case Studies 89
signal each time when no other transitions than the source actor transition are active
in the TEPN. Moreover, we will only start analyzing the reachability tree after the ini-

tial trigger signal. We will call a reachability tree that was built under these constraints

a triggered reachability tree.

This strategy seems to work relatively fine for DDF models in which at most one

source action is enabled in every state of the model. At this moment, it is however not

clear, how this strategy could be extended to work with more than one sources.

Figure 11-9 shows the triggered reachability tree of the TEPN.

Fig. 11-9: The triggered reachability tree of the TEPN. Note that we start analyzing the tree only
after the initial trigger signal, thus the state (100000) is not included in the analysis of security.

1 0 0 0 0 0

1 0 0 0 0 1

1 0 0 0 1 2

1 0 0 1 1 0

0 1 0 0 1 0

0 1 1 0 0 0

1 0 0 1 1 ∞

0 1 0 0 1 ∞

0 1 1 0 0 ∞

trigger; 0:Src

1 0 0 0 1 ∞
0:B

trigger; 1:Src

1:A

trigger; 0:Src

0:Snk

0:B

trigger; 1:Src

1:A

trigger; 0:Src

(s_0 | s_1 | A:In:T | B:In:T | Snk:In1:T | Snk:In2:T)

1 0 0 0 0 ∞
0:Snk

90 Chapter 11
Discussion

From the non-existence of a non-zero transition invariant, we know that the TEPN is

not reversible and that therefore no legal firing sequence exists for the actor model.

From the triggered reachability tree, we can show that the receiver of port In2 of

the Snk actor is unbounded, and that the actor model has firing sequences without
deadlock.

An Improved Actor Model

From the obtained results, and from looking at the actor model, it is clear that actor B
introduces a problem to the actor model, by duplicating the token rate of its input

port.

To fix this problem, we replace actor B with a copy of actor A, such that both

paths between the source and the sink have the same token flow rate. Note, we could

also replace actor A with a copy of actor B.

is the structural matrix of the new TEPN and the transpose of a valid
transition invariant.

Figure 11-10 shows the triggered reachability tree of the improved actor model.

The existence of a non-zero transition invariant already fulfills a requirement for
the existence of a legal firing sequence. And from the triggered reachability tree, we

can see, that is a legal firing sequence that leads to no

deadlock and to boundedness of the system.

11.2.2 An Actor Model with Feedback

In this case study, we will analyse an actor model with feedback loops. We will jump

over the process of CIA generation and composition, and will start directly from the

TEA of the actor model. The CIA generation and composition however work exactly

the same as in the previous case study.

A′ IT
T′

A′

1 1– 0 0 0 1– 0 0
0 0 1– 0 1 0 1– 0
0 1 0 1– 0 1 0 1–

0 0 1 1– 0 0 1 1–

1– 0 0 0 1 0 0 0
1 0 0 0 1– 0 0 0

=

IT
T′ 1 0 1 1 1 1 0 0=

Src A Src B Snk→ → → →

Case Studies 91
The Actor Model

The actor model of this case study is shown in Figure 11-11 and is again composed of

four different actors, each of which is explained in the following sections.

Fig. 11-10: The triggered reachability tree of the improved actor model.

Fig. 11-11: The actor model with feedback.

1 0 0 0 1 1

1 0 0 1 1 0

0 1 0 0 1 0

0 1 1 0 0 0

trigger; 0:Src

0:B

trigger; 1:Src

1:A

0:Snk

(s_0 | s_1 | A:In:T | B:In:T | Snk:In1:T | Snk:In2:T)

1 0 0 0 0 0

92 Chapter 11
Actor Src

This is the same actor as in the previous case study.

Actor FA

This actor has two input ports and one output port. Each time it is fired, it consumes

one token from each of its input ports and produces one token on its output port.

1: actor A () T In1, T In2 ==> T Out;
2: A1:action [a, b] ==> [a] end
3: end

Actor FB

This actor is a copy of the same actor as FA.

Actor Mrg

This actor has two input ports and one output port. It implements a non-determinis-
tic merge function. Each time it is fired, it consumes one token from one of its two

input ports and produces one token on its output port.

1: actor Mrg () T In1, T In2 ==> ;
2: A1:action [a], [] ==> [a] end
2: A2:action [], [a] ==> [a] end
3: end

The Token Exchange Automata

Figure 11-12 shows the TEA of the actor model, which was obtained by extracting the

token exchange information of the model product automaton from the actor model.

Because of the statefull Src actor, the TEA has again two states.

Analysis of the Token Exchange Petri Net

Linear Algebra Analysis

A is the structural matrix and the transition invariant of the TEPN which repre-
sents the token exchange information of the above TEA.

IT

A

1 1– 0 0 0 0 1– 0 0 0
0 1– 0 1 1 0 1– 0 1 1
0 0 1– 0 0 1 0 1– 0 0
0 0 1– 1 1 0 0 1– 1 1

0 1 0 1– 0 0 1 0 1– 0
0 0 1 0 1– 0 0 1 0 1–

1– 0 0 0 0 1 0 0 0 0

1 0 0 0 0 1– 0 0 0 0

=

Case Studies 93
Reachability Tree Analysis

Figure 11-13 shows the triggered reachability tree of the TEPN. Note, that an initial

token must be present on the feedback loops.

Discussion

From the non-existence of a non-zero transition invariant, we know again, that no

legal firing sequence exists for the actor model.

From the triggered reachability tree, we can show that the receivers of port In2 of

both actors FA and FB are unbounded, and that the actor model has firing sequences

without deadlock.

Fig. 11-12: The TEA of the actor model.

IT 0=

94 Chapter 11
An Improved Actor Model

The unboundedness in the above model occurs from the merge actor, which consumes

only one token that was produced by either FA or FB, but produces one token for
both FA and FB.

To fix this problem, we replace the Mrg actor with another merge actor which

consumes a token from both input ports and produces one token on its output port.

In fact, this new actor is a copy of FA and FB.

Fig. 11-13: The triggered reachability tree of the TEPN.

1 0 0 1 0 1 0 0

1 0 0 1 0 1 0 1

1 0 0 1 1 2 0 0

0 1 0 1 0 2 0 0

0 1 0 0 0 1 1 0

0 1 1 1 0 1 0 0

0 1 0 ∞ 0 ∞ 1 0

0 1 1 ∞ 0 ∞ 0 0

1 0 0 2 0 2 0 0

trigger; 0:Src

0 1 0 ∞ 0 ∞ 0 0

1:MrgA

1:FA

trigger; 0:Src

0:MrgB

0:FB

trigger; 1:Src

1:MrgA

1:FA

trigger; 0:Src

(s_0 | s_1 | FA:In1:T | FA:In2:T | FB:In1:T | FB:In2:T | Mrg:In1:T | Mrg:In2:T)

1 0 0 ∞ 1 ∞ 0 0

trigger; 1:Src

1 0 0 ∞ 0 ∞ 0 1

0:FB

1 0 0 ∞ 0 ∞ 0 1

0:FB

1 0 0 ∞ 0 ∞ 0 0

0:MrgB

Case Studies 95
is the structural matrix of the new TEPN and the transpose of a valid
transition invariant.

Figure 11-14 shows the triggered reachability tree of the improved actor model.

From the triggered reachability tree, we can see, that

 is a legal firing sequence that leads to no deadlock and

to boundedness of the improved actor model.
The presented improved actor model fixes the problems of the original actor

model. However, theoretically it would have been sufficient to add the action of the

new merge actor as a third action to the original Mrg actor. With such a model we

Fig. 11-14: The triggered reachability tree of the improved actor model.

A′ IT
T′

A′

1 1– 0 0 0 1– 0 0
0 1– 0 1 0 1– 0 1
0 0 1– 0 1 0 1– 0
0 0 1– 1 0 0 1– 1
0 1 0 1– 0 1 0 1–

0 0 1 1– 0 0 1 1–

1– 0 0 0 1 0 0 0
1 0 0 0 1– 0 0 0

=

IT
T′ 1 0 1 1 1 1 0 0=

1 0 0 1 0 1 0 0

1 0 0 0 0 0 1 1

1 0 0 0 1 1 1 0

0 1 0 0 0 1 1 0

0 1 1 1 0 1 0 0

trigger; 0:Src

0:FB

trigger; 1:Src

1:FA

0:Mrg

(s_0 | s_1 | FA:In1:T | FA:In2:T | FB:In1:T | FB:In2:T | Mrg:In1:T | Mrg:In2:T)

Src FA Src FB Mrg→ → → →

96 Chapter 11
however reach the limits of the analysis with triggered reachability trees. To produce
enough tokens to fire the third action of the extended Mrg actor, we would need to fire

the Src actor in a state when the Mrg actor would still be fireable using one of the orig-

inal actions. This improved model however seems also to be problematic with other

strategies for DDF directors.

Part IV

Conclusions

0 Chapter12

12Conclusions

12.1 Conclusions

We proposed a new interface theory, Counting Interface Automata (CIA), which is

capable of counting with natural numbers. We used CIA to represent the interface

information of actors, and its counting capabilities allowed us to capture both, the

temporal aspects of the actor interface, as well as its token exchange rates. The cap-

tured information proved to be expressive enough for interesting analysis of actor sys-
tems based on the CIA of their actors and the MoC.

We then presented a solution for automatic extraction of CIAs from actors writ-

ten in CAL. For this task, we developed an intermediate format, called Calflow, from

which we actually extracted the CIAs.

Additionally to the automatic extraction of actor CIAs, we presented a method to

create a CIA, which represents the interface of a system environment for SDF and
DDF MoCs. The counting capabilities of CIA allowed us, to capture the actor con-

nection information of the system, such that the system environment CIA could be

used as glue between the CIAs of all its actors.

Since the actor CIAs and the system environment CIA could capture the token

exchange rates and the actor connection information respectively, they could together

capture the complete token exchange information of the system. We showed, that by
composing all CIAs we could get a single CIA, which contained exactly this token

exchange information of the composite system.

The token exchange information captured in this CIA could easily be trans-

formed into a Petri Net, which allowed us to fall back to the well investigated methods

for Petri Nets, to analyze the composite actor model.

100 Chapter 12
12.2 Outlook

The material presented in this thesis raises a number of topics that would be interest-

ing for further research.

For the future work on the presented material it would be interesting to define

automata generators for other MoC’s than DF. Some basic steps were already made

towards representing a DE MoC as a CIA. In this case, counter values were used to

represent both data tokens as well as discrete time units.

The presented automata generator for DDF creates a very basic controller, in

which in fact the complete actor firing strategy is left open. However, the ability of

automatically obtaining the token rates from all actors in a model, could lead towards

sophisticated DDF controllers, which would take this token rate information into

account when determining their firing strategy.

In the presented work, we always built closed actor systems, i.e. systems without
any external ports. In open systems with external ports, the model product automaton

(MPA) would capture the interface description of the composite actor. This would

allow us to generate the CIA of a composite actor by generating the MPA using the

CIAs of its atomic actors. For composite actors with an SDF MoC, this is a straight-

forward task and can already be done with the presented techniques. However, for

other MoCs it seems to be more difficult to obtain a reasonable CIA for the composite
actor. It would be interesting to investigate the problems that occur with other MoCs,

to obtain techniques that would enable us to generate composite actor CIAs for them.

Finally, Calflow seems to be an ideal intermediate format for code generation of

CAL actors. Its explicit representation as dataflow graph allows to easily generate exe-

cution schedules, which can be optimized towards different application areas. Further-

more, the concept of failure states could be interesting to formalize MoC dependant

implementations of CAL actors.

Part V

Appendix

0 AppendixA

1Calflow

A.1 Transforming CAL into Calflow

We can represent a CAL actor as tuple

consisting of the following components.

• T is a set of type parameters.

• DParam is a set of parameter declarations.

• DPort is a set of port declarations.

• DState is a set of state variable declarations.

• N is a set of invariants.

• SInit is a set of initialization statements.

• A is a set of actions.

• is an action selector.

We can also represent a Calflow actor as a tuple

consisting of the same component types as a CAL actor.

We can then transform a CAL actor into a Calflow actor by separately transform-

ing every component and by unifying them.

For all components except the actions, this transformation turns out to be a triv-
ial equality operation.

PCal T DParam DPort DState N SInit A ϕ, , , , , , ,()=

ϕ

PCalflow T' D'Param D'Port D'State N' S'Init A' ϕ', , , , , , ,()=

PCal PCalflow⇒() comp comp'⇒()
comp∀

∪ 
 
 

=

104 Appendix A
A.1.1 Transforming Actions

We can represent a Cal action as a tuple consisting of the fol-

lowing components.

• I is a set of input patterns.

• O is a set of output expressions.

• G is a set of guards.

• D is a set of variable declarations.

• S is a set of statements.

Further, we can represent a Calflow action as a tuple consisting
of the following components.

• is a set of atomic steps.

• is a set of dependencies.

• is an action schedule.

With , where , , ,

, , and are the mutual disjoint sets of input guard, input, output guard,

output, guard, decl and stmt atomic steps respectively. And , where

and are the sets of data dependencies and constraint dependencies respectively.

For every atomic step , the set contains all free variables of the

atomic step, the set contains all variables declared by the atomic step inside the
action context, and the set contains the subset of the assignable variables of the

actor context and the action context that are assigned to a new value by the atomic

step.

Furthermore, we define for every atomic step a

function , which returns the port tag of the port, the atomic step is related to,

and for every atomic step a function , which returns the lexical
position of the CAL statement the atomic step is related to, such that if a statement a
appears lexically before b in the CAL code of an actor, then .

The process of transforming an action from CAL to Calflow can now be broken down

into four steps:

• transform every component of A into one or more atomic steps of ,

A I O G D S, , , ,()=

A' Π ∆ τ, ,()=

Π

∆

τ

Π ΠIG ΠI ΠOG ΠO ΠG ΠD ΠS∪ ∪ ∪ ∪ ∪ ∪= ΠIG ΠI ΠOG

ΠO ΠG ΠD ΠS

∆ ∆D ∆C∪= ∆D

∆C

π Π∈ Vf π()
Vd π()

Va π()

π ΠIG ΠI ΠOG ΠO∪ ∪ ∪()∈
port π()

π ΠS∈ order π()

order πa() order πb()<

Π

Calflow 105
• analyze every atomic step to generate , and ,

• generate the set of dependencies between the atomic steps in ,

• create an empty action schedule .

Transforming CAL Action Components into Calflow Atomic Steps

All CAL action components are transformed according to the following rules:

• : every input pattern is transformed into one

input guard atomic step and one input atomic step.

• : every output pattern is transformed into one
output guard atomic step and one output atomic step.

• : every guard is transformed into one guard atomic step.

• : every variable declaration is transformed into one decl

atomic step.

• : every statement is transformed into one stmt atomic step.

Analyzing Atomic Steps

After transformation, all atomic steps are analysed and the following sets are created:

• , where contains all free variables

that occur outside of closures in any expression or statement of the atomic

step and contains the free variables that occur inside a closure in

any expression of the atomic step. The latter are called lazy variables1).

• contains all variables declared by the atomic step inside the action

context. Except for Input and Decl atomic steps, the set is always empty.

• contains the subset of the assignable variables of the action context

and the action that are assigned to a new value in any statement of the

atomic step. Except for Stmt atomic steps, the set is always empty.

1) A variable that occurs free inside a closure does not need to be declared when the closure is declared, but when
the closure is used for the first time. The closure declaration is said to depend lazy from the variable declaration. See
[9] for more details.

π Π∈ Vf π() Vd π() Va π()

∆ Π

τ

i I∈ π0 ΠIG∈ π1 ΠI∈,⇒

o O∈ π0 ΠOG∈ π1 ΠO∈,⇒

g G∈ π0 ΠG∈⇒

d D∈ π0 ΠD∈⇒

s S∈ π0 ΠS∈⇒

Vf π() Vfree π() Vlazy π()∪= Vfree π()

Vlazy π()

Vd π()

Va π()

106 Appendix A
Generating Dependencies

A dependency is a tuple and states that the atomic step

depends on the atomic step .

The non-lazy dependency set is the set of all tuples , for

which one of the following predicates is true:

•

•

•

•

•

•

•

Dependencies, for which one of the first six predicates are true, are called data

dependencies and dependencies, for which only the last predicate is true, are called con-

straint dependencies.
The lazy dependency set is the set of all tuples , for which

the following predicate is true:

•

Using the non-lazy and the lazy dependency set, the dependency set of the
Calfow action A’ is the union of and the transitive hull of in 2).

2) In the implementation of the transformation, a more complex algorithm is used to reduce the needed number of
dependencies.

δ ∆∈ πα πβ,() Π2∈ πβ

πα

∆nl πα πβ,() Π2∈

πα ΠIG∈ πβ ΠI port πα()∧∈∧ port πβ()=

πα ΠOG∈ πβ ΠO port πα()∧∈∧ port πβ()=

πα πβ, ΠIG ΠI ΠOG ΠO ΠG ΠD∪ ∪ ∪ ∪ ∪()∈ Vd πα() Vfree πβ()∩ ∅≠∧

πα ΠI ΠD,()∈ πβ ΠS∈ Vd πα() Vf πβ()∩ Vd πα() Va πβ()∩∪ ∅≠∧ ∧

πα πβ, ΠS∈
Va πα() Vf πβ()∩ Va πα() Va πβ()∩ Vf πα() Va πβ()∩∪ ∪ ∅≠
order πα() order πβ()<

∧
∧

πα ΠS∈ πβ ΠO Va πα() Vf πβ()∩ ∅≠∧∈∧

πα ΠIG ΠOG ΠG, ,()∈ πβ ΠO ΠS,()∈∧

∆lazy πα πβ,() Π2∈

πα πβ, ΠIG ΠI ΠOG ΠO ΠG ΠD∪ ∪ ∪ ∪ ∪()∈ Vd πα() Vlazy πβ()∩ ∅≠∧

∆
∆nl ∆lazy ∆nl

Calflow 107
A.2 Action Scheduling

Every action of a Calflow actor may optionally contain an action schedule, which

defines a partial or total order on all or some atomic steps of the action. Generating

such an action schedule will usually be one of the first steps of code generation, to

define the execution order of the atomic steps.

With adherence of the dependencies of an action and depending on the area of

interest, different action schedules may be generated which aim to optimize different
goals.

A.2.1 A Simple Sequential Action Schedule

A simple scheduler was implemented for this thesis, which generates a sequential
action schedule of the atomic steps in an action. Even though any valid action sched-

ule would have been fine for our purposes, the implemented action schedule tries to

generate a schedule which could also be used for real implementations.

The complexity of finding an optimal schedule is usually NP, therefore the pre-

sented scheduler uses a heuristics, which tries to optimize the declared goals as good as

possible. The scheduler could still be trimmed to generate in average better solutions,
however this was not the goal of this thesis.

Optimization Goals

In the following list, the optimization goals are presented with decreasing priority
from top to down. The presented schedule tries to optimize the following goals:

• as long as action matching is not finished, try to avoid consuming tokens as

long as possible,

• evaluate action matching as fast as possible,

• when action matching is finished, try to generate output tokens as fast as

possible,

• when all output tokens are generated, simply finish without priorities.

Algorithm

Lets define a function , which returns the shortest path

 from to , such that :

 and or if . If no path exists at all,

path πα πβ,()
p π0 π1 … πn, , ,()= π0 πα= πn πβ= i 0 n 1–,[]∈∀
πi πi 1+, Π∈ πi πi 1+,() ∆D∈ p πα()= πα πβ=

108 Appendix A
the function returns . We define the length of p as the number of atomic steps
in the path minus one, and as not applicable if p is empty.

Further, for every atomic step ,

• is the length of the shortest path to a guard

atomic step,

• equals the number of input atomic steps in the shortest path to a

guard atomic step,

• is the length of the shortest path to an out-

put atomic step,

• is the dependency set of and contains all dependencies

 with .

Using these definitions, we can describe the used algorithm:

Simple_Sequential_Scheduler {

;

while() {

, such that ;

, such that ;

, such that ;

, such that ;

, such that ;

if () {

pick ;

} else if () {

pick ;

} else {

pick ;

}

p ()=

π Π∈

dG π() min
πi ΠG∈

path π πi,()()=

iG π()

dO π() min
πi ΠO∈

path π πi,()()=

∆ π() π
πi π,() ∆∈ πi Π∈

ΠNS Π=

ΠNS ∅≠

ΠA ΠNS⊆ π ΠA∈∀ ∆ π()→ ∅=

ΠdG ΠA⊆ π ΠdG∈∀ dG π()→ 0≥

ΠdG∗ ΠdG⊆ π ΠdG∗∈∀ iG π()→ min
πj ΠdG∈∀

iG πj()()=

ΠdO ΠA⊆ π ΠdO∈∀ dO π()→ 0≥

ΠdO∗ ΠdO⊆ π ΠdO∗∈∀ dO π()→ min
πj ΠdO∈∀

dO πj()()=

ΠdG
∗ ∅≠

π' ΠdG∗∈

ΠdO
∗ ∅≠

π' ΠdO∗∈

π' ΠA∈

Calflow 109
schedule ;

;

;

}

}

π'

ΠNS ΠNS\π'=

π ΠNS∈∀ ∆ π()→ ∆ π()\π'=

110 Appendix A
A.3 A Complex Example of a Calflow Actor

All actor examples presented in this report have fairly simple data dependencies. This

chapter however, presents a CAL actor with very complex data dependencies. In fact,

this example was used as test case during the development of the CAL to Calflow

transformer.

Note, that the action in the presented actor does not perform any useful task.

actor TestActor (Integer param_1)
Integer input_1, Integer input_2, multi Integer input_3,
multi Integer input_4, Integer input_5 ==> Integer output_1 :

Integer state := param_1;
[Integer --> Integer] f

:= lambda (Integer a) --> Integer :
a

end;
[Integer, Integer, Integer --> Integer] g

:= lambda (Integer a, Integer b, Integer c) --> Integer :
a

end;
action

[in1], [in2] repeat funcA(in5a), [in3] at in1,
[in4] at x repeat funcB(in5a), [in5a,in5b]
==> [out] repeat funcA(in5a)
guard g(in1, in3, x), in1 != state;
var Integer out = state,

Integer x = in5 + 1,
Integer y = in1 + in3 + x,
[Integer --> Integer] funcA

:= lambda (Integer a) --> Integer :
funcA(y)

end,
[Integer --> Integer] funcB

:= lambda (Integer a) --> Integer :
funcA(y)

end;
do

state := state * (1 + in1) + in2;
end

end
end

Calflow 111
Fig. A-1: The dataflow graph representation of the action in the TestActor.

Fig. A-2: The atomic steps of the action in the TestActor with a total order, defined by the action
schedule presented in this chapter.

112 Appendix A

0 AppendixB

2Software

This appendix presents an overview of the software, which was developed during the
work on this thesis.

B.1 Environment

We use XML as file formats for Cal, Calflow, CIA and the description of models. All
file formats are defined in XML Schema [17]. The transformations are implemented

using XSLT [18], and Xchain is used as command line tool to manage and invoke

them.

B.2 Implemented Transformations

Figure B-1 shows the different file formats and the transformations available for each

format. The Ptolemy MoML file can be opened in Ptolemy II and provides a graphical

representation of Calflow actions or CIAs1). All transformations are invoked using the

following command:
java caltrop.Xchain <command> <sourcefiles>

Some more commands, which provide shortcuts to transform for example

CalML directly into CiaML, are available and are documented using the following

command:
java caltrop.Xchain -doc

1) The graphical representations do not contain any Ptolemy II semantics.

114 Appendix B
Additionally, the following command takes a ModelML file and creates the CIAs

of all actors, the CIA of the model, the MPA, the TEA and a Ptolemy MoML file for

graphical representation of all generated files:
java caltrop.cia.CreateModel <modelfile>

Fig. B-1: File formats and available transformation commands.

CalML

CalflowML

MoML

CiaML

ModelML

calflow2moml

model2cia

cia
2mo

ml

calflow2cia

cal2calflow

compose
mpa2tea

addSchedule

0 AppendixC

3Xchain –
A Framework for XML Processing

Xchain is a framework for XML processing which was developed for the Caltrop

project, as part of this thesis.
The Caltrop project makes extensive use of XSLT as a programming language to

implement complex program transformations, program compositions and code gener-

ation. To handle the complexity of these tasks it is often appropriate to split a task into

a number of smaller tasks, each one implemented as an own XSLT program which

generates an intermediate result. A complex transformation is then achieved by con-

secutive application of each of the smaller transformations.
By using this approach one ends up with a number of relatively small and there-

fore easy to understand and easy to maintain XSLT programs.

The problem then arises how to specify and maintain the chains of XSLT pro-

grams and how to apply them to a XML document in an simple, fast and user friendly

way.

The aim of the Xchain project is to provide a solution to the above mentioned
problems. Xchain even takes the approach one step further by not only providing a

solution to specify chains of XSLT programs, but by introducing a completely data-

flow based concept of XML processing with filters blocks. In Xchain every step of

XML processing, as for example parsing of a source document, serialization of a

DOM-tree or application of an XSLT transformation, is handled in an own filter

block and a complete workflow process is defined as a consecutive application of a
number of different filter blocks, specified as a filter chain. In this context, these filter

chains are called Xchains and give the name to the software package.

The Xchain package defines an XML Schema to specify filter chains and to con-

figure the filter blocks contained in a chain, it also defines and implements a Java API

for using Xchain in Java applications and furthermore it comes with a Java based com-

mand line tool for using Xchain manually.

116 Appendix C
C.1 The Concept of Filter Based Processing in Xchain

In Xchain every step of XML processing is done by applying an appropriate filter to an

XML document. More precisely a filter in Xchain works on the DOM representation

of an XML document. Figure C-1 shows a typical filter block. It takes a DOM tree as

input, executes and then returns a DOM tree on its output.

C.2 Xchains

To do something useful with an XML document, usually a chain of filters needs to be

applied to a document. Such a chain may itself be represented as a single filter and in

fact a filter type, named Xchain filter, is defined which simply contains such a chain of

other filters. When a Xchain filter is applied, it feeds its input into the first filter of its

internal filter chain, the result of this first filter is fed into the second filter, and so on

until all filters in the internal chain are applied. Finally, the result of the last internal

filter is returned as output of the Xchain filter.

Figure C-2 shows an example of a Xchain filter. The Xchain in this example

opens a XML document, applies a number of XSLT transformations to it, saves an

intermediate result and then applies some more XSLT transformations before it finally
saves the final result.

Detailed information about all the different filter types in this example and more

can be found in Chapter C.6.

Fig. C-1: A filter for DOM tree processing in Xchain.

Filter
Source DOM Tree Result DOM Tree

Xchain 117
C.3 The Filter Context

In the example mentioned above, the Parse filter parses a XML document to generate

a DOM-tree. The information needed to find the correct file to parse, i.e. the path-
name of the XML source file, may be given to the filter with its configuration data at

its creation time. However it would be more useful if the filter could access this infor-

mation at run-time. This would for example allow to apply the given Xchain filter to a

number of different XML source documents without creating a new instance of the

filter for each document.

For this purpose all filters in Xchain are embedded in a so called filter context.

The filter context possesses a number of properties and contains a set of Xchain filters.
Further the filter context provides methods for its embedded filters to access its prop-

erties and it provides a central place for the filters to store and read arbitrary variables.

Using the filter context in the above example, the path of the XML source docu-

ment could be contained in a property which the Parse filter would read each time it is

invoked. A user could then simply update this property each time before invoking the

Parse filter.

Fig. C-2: An example of a Xchain filter containing a filter chain.

Xchain

Parse XSLTa XSLTb XSLTc Out OutXSLTd

118 Appendix C
C.4 XchainML

XchainML is a XML format, defined in a XML Schema, which can be used to specify

Xchain filters and to define and configure the filter blocks contained in them.

Xchain is usually used together with a configuration file written in XchainML.

This configuration file is used by the filter context to set up all needed filter chains and

properties.

XML Schema (excerpt)

C.5 The Implemented Filter Context

Xchain v1.0 comes with one implemented filter context, namely Xchain.java. This

implementation can be used both as a stand alone command line tool as well as in

another Java program by creating an instance of it.

The implementation provides a number of different executeCommand() methods

which can be used to execute any named Xchain filter which is defined as top-level

element in the used XchainML configuration file.

Most of the times, Xchain is used to parse a source-file, apply a number of trans-

formations on it and save the result in a new file. To support this use-case, one of the

provided executeCommand() methods takes a source-file URI as an additional argu-
ment. The passed string in this argument is used to set up a number of properties

before actually invoking the specified Xchain filter. The Parse and Out filters in the

invoked Xchain filter may then read these properties to locate the source-file or to

generate the names of result files.

<xs:element name="project">
<xs:complexType>

<xs:sequence>
<xs:element name="property" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="name" type="xs:string"

use="required"/>
<xs:attribute name="value" type="xs:string"

use="optional"/>
</xs:complexType>

</xs:element>
<xs:element ref="xchain" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

Xchain 119
If, for example, the value of the passed source-file URI argument is “docs/exam-

ples/Test.calml.xml”, the following properties are set up by the filter context:

CURRENT_SOURCE_FILE_URI=docs/examples/Test.calml.xml

CURRENT_SOURCE_FILE_DIR=docs/examples

CURRENT_SOURCE_FILE_FULL_NAME=Test.calml.xml

CURRENT_SOURCE_FILE_NAME=Test

CURRENT_SOURCE_FILE_EXT=.calml.xml

C.6 The Implemented Filters

Xchain v1.0 comes with ten implemented filters. Table C-1 gives a short overview and

the following chapters provide detailed informations on each filter.

C.6.1 General Implementation Details

Some implementation details apply to all implemented filters and are described here.

Table C-1: An overview of all filters in Xchain v1.0

Name Short Description

Xchain Filter Defines and contains a chain of filters.

XchainRef Filter References to a named top-level Xchain filter.

Branch Filter Branches a filter chain.

Parse Filter Parses a source file.

Out Filter Serializes a DOM-tree and saves the result in a file.

XSL Filter Applies a XSLT transformation.

Save Filter Saves a DOM-tree in a variable of the filter context.

Load Filter Loads a DOM-tree from a variable of the filter context.

Call Filter Calls an external Java method.

Msg Filter Writes a message to the system standard output.

120 Appendix C
Configuration

XchainML configuration files are used to setup Xchain. In a configuration file, the

configuration data of every filter is contained in a single XML element. When a filter

is instantiated, this element is passed to a filter factory which, based on the tag name

of the element, finds the correct implementation class for the filter. The element is
then passed on to the appropriate constructor of the filter class which creates an

instance of the filter configured with the configuration data contained in the element.

A filter does not provide any accessor methods to change its configuration after

instanciation. The reason for this is that for many filter types, changing the configura-

tion after instanciation would lead to a low performance. Instead, the property resolv-

ing mechanism described below provides a way how filters may be implemented that
want to provide the possibility to change configuration. The difference to accessor

methods is that with the property resolving mechanism a filter may or may not pull

new configuration data from its filter context rather than the data being pushed into

it.

In the attribute tables, which are provided for every filter, the last column is titled

PLU, which stands for “Property Lookup”. If the value in this column is “Init”, this
means that the filter makes only a property lookup for the given attribute at instantia-

tion time. If on the other hand the value in this column is “RT”, this means that the

filter makes a property lookup for the given attribute at runtime on each invocation.

Execution Mode

Every filter has an attribute named “mode” with an arbitrary string value. Additionally

the filter context has one property which is also named “mode”.

When a filter is executed it first checks the value of its mode attribute. If the value

is not an empty string it looks up the mode property of the filter context and com-

pares it to the value of its own mode attribute. If the two values are not equal the filter

does not execute and simply returns the input it got without any change.

Different execution modes may be used for example for debugging, where a

number of Out filters with a mode attribute set to “debug” could be scattered along a

chain of XSL filters. When the mode property of the filter context is then set to

“debug”, these Out filters would produce a number of intermediate results for debug-

ging, while in normal execution mode they would simply do nothing.

Property Resolving

As mentioned above, filters may access the properties of the filter context. Filters may

for example change their configuration by accessing these properties or they may use
these properties to pass their values as parameters to an XSLT program.

Xchain 121
All filters allow their attributes to contain placeholders for properties which are
replaced with the value of the corresponding property in the filter context. All of these

placeholders are resolved at instantiation time and some get resolved each time the fil-

ter is invoked.

A property placeholder consists of the property name enclosed by curly brackets

and a leading dollar sign: ${propertyName}

For example consider the following attribute value:

"${modelName}_${directorName}.${fileType}.xml"

And suppose the filter context contains the following properties:
modelName=SourceActor

directorName=SDF

fileType=cia

Then the attribute value defined above would be resolved at runtime to:

"SourceActor_SDF.cia.xml"

C.6.2 Xchain Filter

The Xchain filter contains a filter chain which is fed with the input DOM-tree. The

result returned from the last filter in the filter chain is passed to the filter output.

Fig. C-3: Dataflow in a Xchain Filter.

Xchain Filter

Fa Fb Fc Fd

122 Appendix C
Attributes

Child Elements

XML Schema

Name Description PLU

name The name which can be used to identify the Xchain filter. Init

type The access type of the Xchain filter, either public or private. Init

mode The execution mode of the filter. RT

Name Description

<doc> This element may contain a short documentation of what the filter

does.

<#any_filter#> Any number of elements describing the filter chain contained in the

Xchain filter. The order of the filters in the chain equals the order of

the description elements.

<xs:element name="xchain">
<xs:complexType>

<xs:sequence maxOccurs="unbounded">
<xs:element name="doc" type="xs:string" minOccurs="0"/>
<xs:choice>

<xs:element ref="call" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="load" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="msg" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="out" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="parse" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="save" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="xchain" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="xchainref" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="xsl" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="branch" minOccurs="0"

maxOccurs="unbounded"/>
</xs:choice>

</xs:sequence>
<xs:attribute name="name" type="Identifier" use="optional"/>
<xs:attribute name="type" type="XchainType" use="optional"/>
<xs:attribute name="mode" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

Xchain 123
Example
<xchain name="ExampleXchain" type="public">

<doc>This is an example.</doc>
<msg>Transforming ${CURRENT_SOURCE_FILE_URI} ...</msg>
<parse href="${CURRENT_SOURCE_FILE_URI}"/>
<xsl href="xsl/XSLTa.xsl"/>
<xsl href="xsl/XSLTb.xsl"/>
<xsl href="xsl/XSLTc.xsl"/>
<out method="xml" indent="yes"

dir="."
filename="${CURRENT_SOURCE_FILE_NAME}"
fileext=".step1.xml"/>

<xsl href="xsl/XSLTd.xsl"/>
<out method="xml" indent="yes"

dir="."
filename="${CURRENT_SOURCE_FILE_NAME}"
fileext=".step2.xml"/>

</xchain>

C.6.3 XchainRef Filter

The XchainRef filter is used to reference to a named Xchain filter which is defined as
top-level element in a XchainML configuration file.

Attributes

Child Elements

none

XML Schema

Example
<xchainref name="ExampleXchain"/>

Name Description PLU

name The name of the Xchain filter which is referenced. Init

mode The execution mode of the filter. RT

<xs:element name="xchainref">
<xs:complexType>

<xs:attribute name="name" type="Identifier" use="required"/>
<xs:attribute name="mode" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

124 Appendix C
C.6.4 Branch Filter

The Branch filter provides a way to branch the processing flow of a filter chain. A

Branch Filter may contain any number of Xchain filters or Xchainref filters. When the

Branch filter is invoked, it applies each of its internal Xchain and Xchainref filters to

the input DOM-tree and finally returns the input DOM-tree without any change on

its output.

The outputs of all the internal Xchain and Xchainref filters get discarded and are

not accessible from anywhere. However usually each of the internal Xchain and

Xchainref filters would contain an Out filter at the end of their filter chain, which

would save the resulting DOM-tree in a document.

Attributes

Child Elements

Fig. C-4: Dataflow in a Branch Filter

Name Description PLU

mode The execution mode of the filter. RT

Name Description

<xchain> A definition of a new Xchain filter that should be branch to.

<xchainref> A reference to an existing Xchain filter that should be branched to.

Branch Filter

X
ch

ain

X
ch

ain

X
ch

ain

Xchain 125
XML Schema

Example
<branch>

<xchain>
<xchainref name="_FooXchain"/>
<out method="xml" indent="yes"

dir="."
filename="${CURRENT_SOURCE_FILE_NAME}"
fileext=".foo.xml"/>

</xchain>
<xchain>

<xchainref name="_BarXchain"/>
<out method="xml" indent="yes"

dir="."
filename="${CURRENT_SOURCE_FILE_NAME}"
fileext=".bar.xml"/>

</xchain>
</branch>

C.6.5 Parse Filter

The Parse filter parses a XML source document and generates a DOM-tree of it which

it then returns on its output. The DOM-tree arriving on the input is discarded.

<xs:element name="branch">
<xs:complexType>

<xs:sequence maxOccurs="unbounded">
<xs:element ref="xchain" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="xchainref" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="mode" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

Fig. C-5: Dataflow in a Parse Filter

Parse Filter

Parser

XML

126 Appendix C
Attributes

Child Elements

none

XML Schema

Example
<parse href="${CURRENT_SOURCE_FILE_URI}"

documentbuilder="com.icl.saxon.om.DocumentBuilderFactoryImpl"
namespaceAware="false" validate="false"/>

Name Description PLU

href The URI of the source document. RT

documentbuilder The Document Builder implementation that should be used for

parsing the document. If this attribute is not present, the

default value of the filter context, defined in a property named

defaultDocumentBuilderFactory, will be used.

Init

namespaceAware Specifies whether the parser should be name-space aware or

not.

Init

validate Specifies whether the parser should validate the document or

not.

Init

mode The execution mode of the filter. RT

<xs:element name="parse">
<xs:complexType>

<xs:attribute name="href" type="xs:string" use="required"/>
<xs:attribute name="documentbuilder"

type="xs:string" use="optional"/>
<xs:attribute name="namespaceAware"

type="xs:string" use="optional"/>
<xs:attribute name="validate" type="xs:string" use="optional"/>
<xs:attribute name="mode" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

Xchain 127
C.6.6 Out Filter

The Out filter serializes its input DOM-tree and saves it in a document. The input
DOM-tree is then returned at the output without any change.

The Out filter provides three attributes, namely dir, filename and fileext, to

specify the location where the document should be stored. At runtime the location

information is created by concatenating the values of the three attributes and by add-

ing a path separator between dir and filename. Therefore the value of the dir

attribute should not end with a path separator.

Attributes

Fig. C-6: Dataflow in a Out Filter

Name Description PLU

method The output mode that should be used to serialize the DOM-

tree.

Init

dir The path of the directory where the output document should

be stored. Both “/” and “\” are allowed as separators and get

automatically replaced by the system dependent separator at

runtime.

RT

filename The name of the output document. RT

fileext The file extension of the output document. RT

Out Filter

XML

Serializer

128 Appendix C
Child Elements

none

XML Schema

Example
<out method="xml" indent="yes"

dir="result/debug"
filename="${CURRENT_SOURCE_FILE_NAME}"
fileext=".debug1.xml"
mode="debug"/>

transformer The XSLT Transformer implementation that should be used to

serialize the DOM-tree. If this attribute is not present, the

default value of the filter context will be used.

Init

mode The execution mode of the filter RT

##any Any other attribute will be passed directly to the XSLT Trans-

former for configuration.

Init

<xs:element name="out">
<xs:complexType>

<xs:attribute name="method" type="xs:string" use="optional"/>
<xs:attribute name="dir" type="xs:string" use="required"/>
<xs:attribute name="filename" type="xs:string" use="required"/>
<xs:attribute name="fileext" type="xs:string" use="required"/>
<xs:attribute name="transfomer" type="xs:string" use="optional"/>
<xs:attribute name="mode" type="xs:string" use="optional"/>
<xs:anyAttribute namespace="##any"/>

</xs:complexType>
</xs:element>

Name Description PLU

Xchain 129
C.6.7 XSL Filter

The XSL filter applies a XSLT transformation to the input DOM-tree and returns the

result of the transformation on its output.

Attributes

Child Elements

Fig. C-7: Dataflow in a XSL Filter

Name Description PLU

href The URI of the source document containing the XSLT pro-

gram.

Init

transformer The XSLT Transformer implementation that should be used to

serialize the DOM-tree. If this attribute is not present, the

default value of the filter context, defined in a property named

defaultTransformerFactory, will be used.

Init

mode The execution mode of the filter RT

Name Description

<param> Defines parameters that should be passed to the XSLT program.

XSL Filter

XSLT

130 Appendix C
XML Schema

Example
<xsl href="xsl/foo.xsl"

transformer="com.icl.saxon.TransformerFactoryImpl">
<param name="param1" value="true"/>
<param name="param2" value="15"/>

</xsl>

C.6.8 Save Filter

The Save filter saves the input DOM-tree in a variable in the filter context. The saved
DOM-tree can later be loaded again from the filter context by using a Load filter.

<xs:element name="xsl">
<xs:complexType>

<xs:sequence>
<xs:element name="param" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="name"

type="xs:string" use="required"/>
<xs:attribute name="value"

type="xs:string" use="optional"/>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="href" type="xs:anyURI" use="required"/>
<xs:attribute name="transformer" type="xs:string" use="optional"/>
<xs:attribute name="mode" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

Fig. C-8: Dataflow in a Save Filter

Save Filter

Xchain 131
Attributes

Child Elements

none

XML Schema

Example
<save name="temp"/>

C.6.9 Load Filter

The Load filter loads a DOM-tree that was previously saved in a variable of the filter

context by a Save filter.

Name Description PLU

name The name of the variable in which the input DOM-tree will be

stored in the filter context.

RT

mode The execution mode of the filter RT

<xs:element name="save">
<xs:complexType>

<xs:attribute name="name" type="Identifier" use="required"/>
<xs:attribute name="mode" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

Fig. C-9: Dataflow in a Load Filter

Load Filter

132 Appendix C
Attributes

Child Elements

none

XML Schema

Example

<load name="temp"/>

C.6.10 Call Filter

The call filter is used to call an external Java method. It can invoke any static or non-

static method with a return type of either org.w3c.dom.Document, java.lang.String

or void.

If the invoked method is not static, the information in the <init> element is used

to create an instance of the class, otherwise the <init> element is ignored. The infor-

mation in the <method> element is then used to find the correct method and to check

Name Description PLU

name The name of the variable in the filter context that contains the

desired DOM-tree.

RT

mode The execution mode of the filter RT

<xs:element name="load">
<xs:complexType>

<xs:attribute name="name" type="Identifier" use="required"/>
<xs:attribute name="mode" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

Fig. C-10: Dataflow in a Call Filter

Call Filter

JAVA

Xchain 133
its return type. If the return type is org.w3c.dom.Document, the result of the method
call is directly passed on to the filter output. If the return type is java.lang.String,

the result of the method call is first parsed using the parser configuration given in the

<result> element, then the resulting DOM-tree is passed on to the filter output. And

finally, if the return type is void, the filter assumes that the method will write to the

system standard output and therefore reads the system standard output into a string

and parses it in the same way as it would do when the return type would be directly of
type java.lang.String.

In the <init> and <method> elements, the arguments of the constructor and the

method call can be specified. For this purpose both elements may contain any number

of <arg> child elements.

Every <arg> element has two attributes, namely type and value, which contain

the information to create an object of any class that provides a string constructor,
which is used as argument for the constructor or the method call.

Usually the value is interpreted as a java.lang.String and is used to invoke the

string constructor of the specified class to generate an instance of it. The following

three values however are interpreted in a special way by the filter:

It is also possible to generate arrays of objects as arguments. For this, the type

attribute must end with “[]” and the <arg> element can contain any number of

<elem> elements. An array of the specified type is then created and the information of

the <elem> elements is used to create the elements of the array as well as its length.

Attributes

Value Description

${NULL} This value is replaced with a Java null.

${FILTER_INPUT} This value is replace with the input DOM-tree of the fil-

ter.

${SERIALIZED_FILTER_INPUT} This value is replaced with a serialized version of the input

DOM-tree of the filter.

Name Description PLU

class The name Java class that should be called. RT

mode The execution mode of the filter RT

134 Appendix C
Child Elements

XML Schema

Name Description

<init> Contains information on how to instantiate an object of the needed

class if the called method is not static.

<method> Contains information on how to call the needed method.

<result> Contains information on how to parse the returned result of the

method if it is not a DOM-tree already.

<xs:element name="call">
<xs:complexType>

<xs:sequence>
<xs:element name="init" minOccurs="0">

[(see below)]
</xs:element>
<xs:element name="method">

[(see below)]
</xs:element>
<xs:element name="result" minOccurs="0">

[(see below)]
</xs:element>

</xs:sequence>
<xs:attribute name="class" type="xs:string" use="required"/>
<xs:attribute name="mode" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

<xs:element name="init" minOccurs="0">
<xs:complexType>

<xs:sequence>
<xs:element name="arg" minOccurs="0" maxOccurs="unbounded">

[(see below)]
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="method">
<xs:complexType>

<xs:sequence>
<xs:element name="arg" minOccurs="0" maxOccurs="unbounded">

[(see below)]
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

Xchain 135
Example
<call class="caltrop.xchain.FooClass">

<init>
<arg type="java.lang.Integer[]">

<elem value="2"/>
<elem value="2"/>
<elem value="1"/>

</arg>
</init>
<method name="bar">

<arg type="org.w3c.dom.Document" value="${FILTER_INPUT}"/>
<arg type="java.lang.String" value="empty"/>

</method>
</call>

<xs:element name="result" minOccurs="0">
<xs:complexType>

<xs:attribute name="documentbuilder" type="xs:string"
use="optional"/>

<xs:attribute name="namespaceAware" type="xs:string"
use="optional"/>

<xs:attribute name="validate" type="xs:string" use="optional"/>
</xs:complexType>

</xs:element>

<xs:element name="arg" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="elem" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="value" type="xs:string"

use="required"/>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

136 Appendix C
C.6.11 Message Filter

The Message filter is used to print a message to the standard system output. It directly

passes its input to its output without any change.

Attributes

Child Elements

none

XML Schema

Example
<msg>Step 1 completed...</msg>

Fig. C-11: Dataflow in a Msg Filter

Name Description PLU

mode The execution mode of the filter RT

<xs:element name="msg">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="mode" type="xs:string" use="optional"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>

Msg Filter

Xchain 137
C.7 The Xchain Command Line Tool

Xchain comes with a command line tool that can be used to execute filter chains

which are defined in an XchainML configuration file. When the command line tool is

executed, it looks in the current directory for a file named xchain.xml which contains

the filter configurations.

The following command is used to invoke Xchain:
java caltrop.Xchain <options> <command> <sourcefiles>

where <command> is the name of the public Xchain filter that should be executed,

<sourcefiles> are the files that the filter should be applied to and the available

<options> are:

-config <configfile> to specify a different configuration file than xchain.xml,

-D<name>=<value> to set a property,

-doc to print out the doc-information of all available public Xchain filters,

-help to print a help message.

A typical example of an Xchain invokation:
java caltrop.Xchain -DhT=true -DhR=false calml2cia *.calml.xml

138 Appendix C

0 AppendixD

4Aufgabenstellung (German)

140 Appendix D

 Institut für Automatik

DA 8, W Nr. 8911

Titel de

Autor

Besch
und
Aufgab

 haben
ung

r-
ren
von
 UC
he es

n,

lle eine
eigneter
ll

ation
 Auto-

n

l sowie

Zwisch den

ail an

Mündli nnt

Abgab

chriften

Betreu

S 2002/03 Ausgabe: 11.11.2002 IfA

Abgabe: 28.03.2003

r Diplomarbeit Statische Prüfung von Aktor Modellen

Ernesto Wandeler

reibung

enstellung

Im Ptolemy Projekt an der UC Berkeley werden die Modellierung, die
Simulation und das Design von nebenläufigen, heterogenen Echtzeit-
Systemen untersucht. Auf diesem Gebiet der eingebetteten Systeme
aktororientierte Ansätze in den letzten Jahren zunehmend an Bedeut
gewonnen.

Aktoren sind nebenläufige, parametrisierte Objekte, die zu einer Akto
Komposition zusammengestellt werden in welcher die einzelnen Akto
gemäss einem sogenannten Model of Computation durch Austausch
Daten-Token interagieren. Zur Beschreibung von Aktoren wird an der
Berkeley eine High-Level Aktorsprache namens CAL entwickelt, welc
erlaubt das Verhalten und die Funktionalität von Aktoren plattform-
unabhängig zu programmieren.

Das Ziel dieser Diplomarbeit besteht darin, Kompositionen von Aktore
welche in CAL definiert sind, auf ihre Gültigkeit zu überprüfen.

Bei der Lösung solcher Aufgabenstellungen spielen Automatenmode
wichtige Rolle. Dabei soll zuerst die abstrakte Aktorsprache CAL in ge
Weise erweitert werden. Danach soll ein geeignetes Automatenmode
entwickelt werden, welches Aspekte des Verhaltens von Aktoren in
geeigneter Weise beschreibt. Im nächsten Schritt soll eine Transform
hergeleitet werden welche aus einem CAL Aktor den entsprechenden
maten extrahiert. Anhand der Komposition der Automaten sollen dan
Aussagen über die Aktor-Komposition gemacht werden.

Die Arbeit besteht damit aus einem wesentlichen konzeptionellen Tei
auch aus der Implementierung der verschiedenen Konzepte.

enbericht Am 17.01.2003 ist ein kurzer Zwischenbericht (1-2 Seiten), der sowohl
Stand der Arbeit als auch das geplante Vorgehen beinhaltet, per e-m
<hagenow@aut.ee.ethz.ch> und an die Betreuer zu schicken.

che Präsentation Der Termin für die mündliche Präsentation am IfA wird frühzeitig beka
gegeben.

e des Berichtes Abgabe des Berichtes am Institut für Automatik, Sekretariat ETL I 23:
- 1 CD und
- 1 weisser, 1-seitiger Originalausdruck (nicht geheftet)

Für das Erstellen des Berichts verweisen wir auf Punkt 2 in den "Vors
über die Durchführung von Studien- und Diplomarbeiten".

ung Dr. Joern Janneck/UC Berkeley (Gruppe Prof. Edward Lee)
Prof. W. Schaufelberger

Introduction 141

Arbeitsplatz

UC Berkeley

F

achprofessor ETHZ

Prof. W. Schaufelberger, Institut für Automatik

142 Appendix D

0
0Bibliography

[1] The Ptolemy II Project. (http://ptolemy.eecs.berkeley.edu)

[2] The Caltrop Project. (http://www.gigascale.org/caltrop)

[3] Chic – Checker for Interface Compatibility (http://www-cad.eecs.berkeley.edu/
~tah/chic/)

[4] G. A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Sys-
tems. The MIT Press Series in Artificial Intelligence. MIT Press, Cambridge,
1986.

[5] L. de Alfaro and T. A. Henzinger. Interface Automata. In Proceedings of the
Ninth Annual Symposium on Foundations of Software Engineering. ACM Press,
2001.

[6] L. de Alfaro and T. A. Henzinger. Interface Theories for Component-Based
Design. In Proceedings of the First International Workshop on Embedded Software
(EMSOFT), 2001.

[7] S. S. Bhattacharyya, E. Cheong, J. Davies, M. Goel, B. Kienhuis, C. Hylands,
E. A. Lee, J. Liu, X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J.
Tsay, B. Vogel, W. Williams, Y. Xiong and H. Zheng. Ptolemy II Heterogeneous
Concurrent Modeling and Design in Java. Technical Memorandum UCB/ERL
M02/23, University of California, Berkeley, CA 94720, USA, August 2002.

[8] J. Davies, C. Hylands, J. Janneck, E. A. Lee, J. Liu, S. Neuendorffer, S. Sachs,
M. Stewart, K. Vissers, P. Whitaker and Y. Xiong. Overview of the Ptolemy
Project. Technical Memorandum UCB/ERL M01/11, University of California,
Berkeley, CA 94729, USA, March 2001.

[9] J. Eker and J. W. Janneck. Caltrop Language Report. Technical Memorandum
UCB/ERL, Electronics Research Lab, Departement of Electrical Engineering
and Computer Sciences, University of California at Berkeley, Berkeley, CA
94720, USA, 2002.

[10] J. Eker and J. W. Janneck. An Introduction to the Caltrop Actor Language. Techni-
cal Memorandum UCB/ERL, Electronics Research Lab, Departement of Elec-
trical Engineering and Computer Sciences, University of California at Berkeley,
Berkeley, CA 94720, USA, 2002.

[11] C. Hewitt. Viewing Control Structures as Patterns of Passing Messages. Journal
of Artificial Intellingece, 8(3):323-363, June 1977.

144
[12] J. W. Janneck. Actors and their Composition. Technical Memorandum UCB/
ERL, M02/37, University of California, Berkeley, CA 94720, USA, December
2002.

[13] E. A. Lee and D. Messerschmitt. Synchronous Data Flow. Proceedings of the
IEEE, pages 55-64, September 1987.

[14] E. A. Lee, S. Neuendorffer and M. J. Wirthlin. Actor-Oriented Design of
Embedded Hardware and Software Systems. Journal of Circuits, Systems and
Computers, November 2002.

[15] E. A. Lee and Y. Xiong. Behavioral Types for Component-Based Design. Technical
Memorandum UCB/ERL, M02/29, University of California, Berkeley, CA
94720, USA, September 2002.

[16] C. A. Petri. Kommunikation mit Automaten. Dissertation, Bonn, 1962.

[17] XML Schema. (http://www.w3.org/XML/Schema)

[18] XSLT. (http://www.w3.org/TR/xslt)

145

	Acknowledgement
	Abstract
	Table of Contents
	Introduction
	1.1� Motivation
	1.2� Contributions
	1.3� Overview
	1.4� Remarks
	1.4.1� List of Abbreviations
	1.4.2� Typographic Conventions
	1.4.3� Naming Conventions

	Part I Foundations
	Component Based Design
	2.1� Hierarchical and Heterogeneous Modeling
	2.2� Actor Oriented Modeling
	2.3� Models of Computation

	Actor Based Modeling in Ptolemy II
	3.1� The Ptolemy Project
	3.2� Ptolemy Object Model
	3.3� Composite Actors
	3.4� Abstract Semantics
	3.4.1� Abstract Flow of Control
	3.4.2� Abstract Communication

	Cal – The Cal Actor Language
	4.1� Purpose and Goals of Cal
	4.2� A Simple Example of a Cal Actor
	4.3� An Introduction to the Syntax and Semantics of Cal
	4.3.1� Data Types and Data Structures
	4.3.2� Expressions and Statements
	4.3.3� The Structure of a Cal Actor
	4.3.4� Parameter Declarations
	4.3.5� Port Declarations
	4.3.6� State Variables and Initialization
	4.3.7� Actions
	4.3.8� Action Matching
	4.3.9� Action Selector

	Calflow
	5.1� Purpose and Goals of Calflow
	5.2� An Introduction to the Syntax and Semantics of Calflow
	5.2.1� The Structure of a Calflow Actor
	5.2.2� Relations between Calflow and Cal
	5.2.3� Actions
	5.2.4� Action Matching

	5.3� A Simple Example of a Calflow Actor

	Part II Solution
	Overview
	Counting Interface Automata
	7.1� Preview
	7.1.1� A Simple Example of Counting Interface Automata

	7.2� Definition
	7.2.1� Automaton
	7.2.2� Product
	7.2.3� Composition

	7.3� Extension

	Generating Counting Interface Automata
	8.1� Generating Actor Automata
	8.1.1� Transforming Cal into Calflow
	8.1.2� Scheduling Calflow
	8.1.3� Transforming Scheduled Calflow into CIA
	8.1.4� A Simple Example of an Actor CIA

	8.2� Generating MoC Automata
	8.2.1� Dataflow MoC
	8.2.2� Creating Actor Automata Sequences
	8.2.3� Counters and Connection Information
	8.2.4� Creating the MoC Automaton
	8.2.5� A Simple Example of a MoC CIA

	8.3� Comments

	Composing Actor and MoC Automata
	9.1� General Structure of the Automata
	9.1.1� Structure of Actor Automata
	9.1.2� Structure of MoC Automata
	9.1.3� Structure of Product Automata

	9.2� Composition Strategy
	9.3� Composition Algorithm

	Analysis of Actor Models
	10.1� Extracting Token Exchange Information
	10.1.1� Generating Token Exchange Automata (TEA)
	10.1.2� Generating Token Exchange Petri Nets (TEPN)

	10.2� Analyzing Token Exchange Behavior
	10.2.1� Security
	10.2.2� Reversibility
	10.2.3� Liveliness

	Part III Case Studies
	Case Studies
	11.1� Component Interface Compatibility
	11.1.1� An SDF Actor in a DDF Model of Computation
	11.1.2� An Illegal Actor in a DDF Model of Computation

	11.2� Analysis of Dataflow Actor Models
	11.2.1� An Actor Model with Incompatible Dataflow Rates
	11.2.2� An Actor Model with Feedback

	Part IV Conclusions
	Conclusions
	12.1� Conclusions
	12.2� Outlook

	Part V Appendix
	Calflow
	A.1� Transforming Cal into Calflow
	A.1.1� Transforming Actions

	A.2� Action Scheduling
	A.2.1� A Simple Sequential Action Schedule

	A.3� A Complex Example of a Calflow Actor

	Software
	B.1� Environment
	B.2� Implemented Transformations

	Xchain – A Framework for XML Processing
	C.1� The Concept of Filter Based Processing in Xchain
	C.2� Xchains
	C.3� The Filter Context
	C.4� XchainML
	C.5� The Implemented Filter Context
	C.6� The Implemented Filters
	C.6.1� General Implementation Details
	C.6.2� Xchain Filter
	C.6.3� XchainRef Filter
	C.6.4� Branch Filter
	C.6.5� Parse Filter
	C.6.6� Out Filter
	C.6.7� XSL Filter
	C.6.8� Save Filter
	C.6.9� Load Filter
	C.6.10� Call Filter
	C.6.11� Message Filter

	C.7� The Xchain Command Line Tool

	Aufgabenstellung (German)
	Bibliography

