
Classes and Subclasses in Actor-Oriented Design

Extended Abstract

Edward Lee and Stephen Neuendorffer
EECS Department

University of California at Berkeley
Berkeley, CA 94720, U.S.A.

Abstract

Actor-oriented languages provide a component compo-
sition methodology that emphasizes concurrency. The in-
terfaces to actors are parameters and ports (vs. members
and methods in object-oriented languages). Actors inter-
act with one another through their ports via a messaging
schema that can follow any of several concurrent seman-
tics (vs. procedure calls, with prevail in OO languages).
Domain-specific actor-oriented languages and frameworks
are common (e.g. Simulink, LabVIEW, and many others).
However, they lack many of the modularity and abstraction
mechanisms that programmers have become accustomed to
in OO languages, such as classes, inheritance, interfaces,
and polymorphism. This extended abstract shows the form
that such mechanisms might take in AO languages. A pro-
totype of these mechanisms realized in Ptolemy II is de-
scribed.

1 Introduction

Actor-oriented languages and frameworks are growing in
popularity, particularly for embedded software and domain-
specific design. It is conceivable that actor-oriented lan-
guages could eventually have as much impact in computing
as object-oriented languages have had. It has the potential
to deliver similar scaling and productivity gains, on top of
those that have been delivered by OO languages. It can co-
exist with and complement OO languages, but offers better
mechanisms for managing concurrency and real time that

This research is part of the Ptolemy project, which is supported by
the National Science Foundation (NSF award number CCR-00225610),
the Defense Advanced Research Projects Agency (DARPA), and Chess
(the Center for Hybrid and Embedded Software Systems), which receives
support from the State of California MICRO program, and the following
companies: Daimler-Chrysler, Hitachi, Honeywell, Toyota and Wind River
Systems.

extend well beyond those built into OO languages. As a
consequence, AO languages are well-suited to embedded
software and distributed real-time systems.

Actor-oriented design has been around since at least
1966, when Bert Sutherland used one of the first acknowl-
edged object-oriented frameworks (Sketchpad [26]), cre-
ated by his brother Ivan Sutherland, to build the first actor-
oriented programming language (which had a visual syntax)
[27]. Today, actor-oriented languages and frameworks often
have visual syntaxes (e.g. Simulink and LabVIEW), and are
frequently built on top of object-oriented languages in order
to leverage their modularity mechanisms [5].

AO languages, like OO languages, are about modular-
ity of software. In AO design, components are concurrent
objects that communicate via messaging, as opposed to ab-
stract data structures that interact via procedure calls. Al-
though AO languages frequently inherit the OO modularity
mechanisms of the languages on which they are built [5],
these mechanisms have largely not been adapted to operate
at the level of AO design. We will show that many (if not all)
of the innovations of OO design, including concepts such as
the separation of interface from implementation, strong typ-
ing of interfaces, subtyping, classes, and inheritance, can
be adapted to operate at the level of AO design. We de-
scribe preliminary implementations of these mechanisms in
Ptolemy II and illustrate the mechanisms with a simple ex-
ample.

2 Actor-Oriented Design

Actor-oriented design is a component methodology that
has proven effective for domain-specific modeling. Com-
ponents that we callactorsexecute and communicate with
other actors in amodel, as illustrated in figure 1. Actors
have a well defined component interface. This interface ab-
stracts the internal state and behavior of an actor, and re-
stricts how an actor interacts with its environment. The

eal
Invited paper: Conference on Formal Methods and Models for Codesign
 (MEMOCODE) June 22-25, 2004



� � � � � � � � � � � � �	� � � � 


� � 
 � � � � �

� � � 

� � 
 � �

� � � 


� � � � � � � � � � � �

� � � 
 � � � 
 � � �

��� � � �

Figure 1. Illustration of an actor-oriented
model (above) and its hierarchical abstraction
(below).

interface includesports that represent points of communi-
cation for an actor, andparameterswhich are used to con-
figure the operation of an actor. Often, parameter values
are part of thea priori configuration of an actor and do not
change when a model is executed. The configuration of a
model also contains explicit communicationchannelsthat
pass data from one port to another. The use of channels
to mediate communication implies that actors interact only
with the channels that they are connected to and not directly
with other actors.

Like actors, which have a well-defined external interface,
a model may also define an external interface, which we
call its hierarchical abstraction. This interface consists of
external portsandexternal parameters, which are distinct
from the ports and parameters of the individual actors in the
model. The external ports of a model can be connected by
channels to other external ports of the model or to the ports
of actors that compose the model. External parameters of a
model can be used to determine the values of the parameters
of actors inside the model. A model, therefore, is an actor.

Taken together, the concepts of models, actors, ports,
parameters and channels describe theabstract syntaxof
actor-oriented design. This syntax can be represented con-
cretely in several ways, such as graphically, as in figure 1,
in XML [20], or in a program designed to a specific object-
oriented API. Ptolemy II [10] offers all three alternatives.

2.1 Models of Computation

It is important to realize that the syntactic structure of an
actor-oriented language says little about the semantics. The
semantics is largely orthogonal to the syntax, and is deter-
mined by amodel of computation. The model of compu-
tation might give operational rules for executing a model.
These rules determine when actors perform internal com-
putation, update their internal state, and perform external
communication. The model of computation also defines the
nature of communication between components.

Examples of models of computation that have been used
in AO languages include the continuous-time semantics of
Simulink (from The MathWorks), the dataflow semantics
of LabVIEW (from National Instruments), and the discrete-
event semantics of OPNET Modeler (from OPNET Tech-
nologies). These models of computation form thede-
sign patterns of component interaction, in the same sense
that Gamma,et al. describe design patterns in OO lan-
guages [13]. Many such systems have visual syntaxes and
are often viewed more as modeling tools than as program-
ming languages; in this extended abstract, we consider these
software systems to be editors, interpreters, and compilers
for actor-oriented programming languages, and indeed they
are increasingly often used in this way, to develop embed-
ded software for example.

The techniques described in this extended abstract apply
broadly to AO design, independent of the model of compu-
tation. We have tested them in the Ptolemy II framework
with continuous-time, discrete-event, dataflow, and process
network semantics, and several more experimental models
of computation. They work in all of these because they op-
erate at the level of the abstract syntax, not at the level of
the concurrent semantics.

3 Related Work

3.1 Software Components

Prevailing software component architectures such as
CORBA, DCOM, and Java Beans, are deeply rooted in
the procedural semantics of the dominant object-oriented
languages C++ and Java. In such procedural seman-
tics, concurrency is managed using threads, monitors and
semaphores, a notoriously difficult approach. Conventions
that ensure deadlock avoidance, such as acquisition of locks
in a fixed order (see for example [19]), are not supported
by the languages (nothing about a method signature de-
clares what locks it will acquire, for instance). As a conse-
quence, these conventions are difficult to apply in practice,
and seemingly innocent changes to code can create disas-
trous failures such as deadlock.



As a result, it is difficult to treat objects in object-
oriented languages as components since they suffer from
fragile composition. The interaction between two compo-
nents can be broken by simply adding more components
to the system. Higher-level patterns, such as the CORBA
event service, are codified only through object-oriented
API, and usage patterns for these APIs are expressed only
informally in documentation. The communication mecha-
nism for components becomes an integral part of a compo-
nent design, making them difficult to reuse.

In actor-oriented abstractions, low-level implementation
mechanisms of threads and semaphores do not even rise to
consciousness, forming instead the “assembly-level” mech-
anisms used to deliver much more sophisticated models
of computation. Moreover, actor-oriented abstractions can
embrace time and concurrency, and therefore match much
better the modeling of embedded systems, which are intrin-
sically concurrent.

3.2 Actor-Oriented Design

Our notion of AO modeling is related to the work of
Gul Agha and others. The termactor was introduced in
the 1970’s by Carl Hewitt of MIT to describe the concept
of autonomous reasoning agents [15]. The term evolved
through the work of Agha and others to describe a formal-
ized model of concurrency [1, 2, 3, 4]. Agha’s actors each
have an independent thread of control and communicate via
asynchronous message passing. We are further developing
the term to embrace a larger family of models of concur-
rency that are often more constrained than general message
passing. Our actors are still conceptually concurrent, but
unlike Agha’s actors, they need not have their own thread of
control. Moreover, although communication is still through
some form of message passing, it need not be strictly asyn-
chronous. The term “actor” has also been used since the
mid 1970s to describe components in dataflow models of
computation [8].

A number of more recent efforts adopt an actor-oriented
approach. ROOM (Real-time Object-Oriented Model-
ing [24]) from Rational Software (now IBM) extends OO
components with ports and concurrent semantics and has
influenced the development of “Capsules” in UML-RT
and “Composite Structures” in UML-2.∗ Port-based ob-
jects [25], I/O automata [22] and hybrid I/O automata [21],
Moses [12], Polis and Metropolis [14], Ptolemy [5] and
Ptolemy II [10] all emphasize actor orientation. Languages
for designing actors are a current research topic; for exam-
ple StreamIT [28], which calls actors “filters,” and Cal [9]
are languages for designing hardware and software compo-
nents that interact with dataflow semantics.

∗UML had already claimed the term “actors” in use-case diagrams, and
hence could not use the term for these concurrent objects.

3.3 Prototypes and Classes in Actor-Oriented
Languages

This paper is about extending actor-oriented design tech-
niques with modularity mechanisms like those in OO lan-
guages. A number of interesting experiments in this direc-
tion have been performed by others. The GME system from
Vanderbilt [17] has been extended to support actor-oriented
prototypes [18]. This work is the closest that we have found
to what is described in this paper, and we will have more to
say about it below.

Some older projects also extend actor-oriented models
with modularity methods. CodeSign [11], from ETH builds
in an OO notion of classes into a design environment based
on time Petri nets. Concurrent ML [23], with its syn-
chronous message passing between threads built in a func-
tional style with continuations, can also be viewed as an
actor-oriented framework, and has well-developed modu-
larity mechanisms. In real-time object-oriented modeling
(ROOM) [24], ports have protocol roles that are abstract
classes defining behavior that the port implements. Each
of these mechanisms, however, is tightly bound to a par-
ticular concurrent semantics. This paper is about defin-
ing modularity mechanisms for a broad spectrum of actor-
oriented semantics. It accomplishes this by defining these
mechanisms at the level of the abstract syntax. Our hope is
that the next generation of domain-specific frameworks be-
yond Simulink and LabVIEW will inherit these modularity
mechanisms, and that because these mechanisms are inde-
pendent of the concurrent semantics, designers will become
familiar with them and be able to apply them in a wide va-
riety of domain-specific scenarios.

4 Example

We begin with a simple example, shown in figure 2.
The model at the top left contains a class definition la-
beled “NoisySinewave” and an instance of that class labeled
“InstanceOfNoisySinewave.” The class definition icon is
outlined in light blue to distinguish it visually from an in-
stance. The NoisySinewave class is defined hierarchically
by the model on the lower left. It is a subclass of Sinewave,
which is the model at the right. NoisySinewave inherits
actors, ports, and parameters from Sinewave. The inher-
ited components are outlined with a dashed pink line, in-
dicating visually that they are inherited components. The
NoisySinewave class extends the Sinewave class by adding
some additional actors, connections, and ports. These addi-
tions do not have the dashed pink outline.

The model in figure 2, when executed, produces two sig-
nal traces, as shown in the plot at the lower right. One is a
simple sine wave and the other is a noisy sine wave. The
simple sine wave is generated by the InstanceOfSinewave



instance

instance

subclass

Sinewave

Figure 2. A simple example of the use of classes in Ptolemy II.

actor, which is an instance of Sinewave, and the noisy
sine wave is generated by the InstanceOfNoisySinewave ac-
tor, which is an instance of NoisySinewave, a subclass of
Sinewave.

In building this mechanism in Ptolemy II, we had to
make a number of decisions that amount to language de-
sign decisions. The mechanism we have settled on is the
one we explain and attempt to defend in this paper. We ex-
plain this mechanism informally first, and then in the next
section give a precise definition. The precise definition is
required to fully grasp the subtleties of inner classes.

First, in Ptolemy II, amodelis a set of actors, ports, at-
tributes, and connections. A model can be viewed as a pro-
gram with a visual syntax. Each of the grey boxes in figure
2 is a model. A special attribute called adirectordefines the
semantics of the model. Each of the models in figure 2 has
a director, indicated by the green box at the upper left in the
model. For our purposes here, the director is irrelevant, and

can be viewed as any other attribute. The visual annotations
in the models are also attributes.

In Ptolemy II, any model can be either a class or an in-
stance. A class serves as a prototype for instances. Our
mechanism, therefore, is closely related to prototype-based
languages (see chapter 3 of [6], for example), but with a
twist. In order to ensure that the class mechanism operates
entirely at the abstract syntax level, classes in Ptolemy II
are purely syntactic objects and play no role in the execu-
tion of a model. They are not visible to the director, which
provides the execution engine. As consequence, Ptolemy II
does not permit the ports of a class to be connected to other
ports.

A class may be defined in its own file (in which case
we call it a top-level class) or as a component in a model.
The Sinewave class in figure 2 is a top-level class, while
NoisySinewave is not. When a class is defined within a
model, its definition is in scope at the same level of the



cA

T

cB iA iB

Figure 3. A model T containing four objects,
the classes cA and cB and their instances iA
and iB.

hierarchy where it is defined and at all levels below that.
This is the same scoping rule that applies to attributes in the
Ptolemy II expression language (see [16]). Thus, for exam-
ple, the model at the upper left in figure 2 contains both the
class definition NoisySinewave and the instance Instance-
OfNoisySinewave.

A subclass inherits the structure of its base class. Specif-
ically, as we will define formally below, every object (actor,
attribute, port or connection) contained by the base class
has a corresponding object in the subclass. We refer to
this as thederivation invariant. The pink dashed outlines
in figure 2 surround such “corresponding objects.” They
provide a visual indication that those objects cannot be re-
moved, since doing so would violate the derivation invari-
ant. However, the subclass can contain new objects and can
also change (override) the values of attributes that carry val-
ues (we generally refer to attributes that carry values aspa-
rameters).

Since a model can contain class definitions, and a model
can itself be a class definition, we haveinner classes. This is
a significant departure from the prototype mechanism given
in [18], where it is (correctly) pointed out that such inner
classes create significant complications. In particular, as we
will explain below, they create a specialized form of multi-
ple inheritance. Although this is a significant complication,
we believe that it is sufficiently disciplined and expressive
to be justified.

5 Formal Structure

Figure 3 shows a hierarchy where a top-level model
namedT contains four objects, the classescA andcB and
their instancesiA and iB. The containment relation is in-
dicated by the solid lines, andparent relation is indicated
by the dashed lines. By “parent” we mean either subclass-
ing or instantiation. Thus,cB is a subclass ofcA, while
iB is an instance ofcB. The boxes in the figures indicate
classes, while the unboxed elements are instances. We re-
quire that objects that share the same container must have
unique names, and an individual object within a hierarchy
may be referenced by itsfull name, which is a dotted name

showing the containment. Thus, figure 3 contains five ob-
jects with full names.T, .T.cA, .T.cB, .T.iA , and.T.iB.

5.1 Derivable Objects

Let D be the set ofderivableobjects. These include ac-
tors, models (which are actors), attributes and ports. The
container relationis a partial function

c : D → D

wherec(x) = y means thatx is contained byy. Since this
relation is a partial function, a derivable object can have
at most one container. Whenc(x) = y we can also write
(x, y) ∈ c.

Let S be the set of all names. Thenaming functionis

n : D → S

where we require that ifc(x) = c(y), thenn(x) 6= n(y).
The full name of an object is a sequence of names, a mem-
ber of the setS∗.

Let c+ be the transitive closure of the container rela-
tion. That is,(x, y) ∈ c+ if (x, y) ∈ c or (c(x), y) ∈ c+.
We disallow circular containment, so if(x, y) ∈ c+ then
(y, x) /∈ c+ (that is, c+ is anti-symmetric). Sincec+ is
also irreflexive ((x, x) /∈ c+) and transitive ((x, y) ∈ c+

and(y, z) ∈ c+ ⇒ (x, z) ∈ c+), then(D, c+) is a strict
partially ordered set (strict poset).

Theparentrelation is a partial function

p : D → D

wherep(x) = y means that eitherx is a subclass ofy or
x is an instance ofy. In either case, we refer toy as the
parentandx as thechild. Since this is a partial function, a
derivable object may have at most one parent. This would
seem to rule out multiple inheritance, but as we will see,
inner classes provide a limited form of multiple inheritance.
Whenp(x) = y we can also write(x, y) ∈ p.

Letp+ be the transitive closure of the parent relation, just
as withc+. Again, we disallow circular parent relations, so
(D, p+) is a strict poset.

(D, c+) and(D, p+) are each strict posets. We impose
a key additional constraint, which is that if(x, y) ∈ c+

then (x, y) /∈ p+ and (y, x) /∈ p+. That is, if x is
contained directly or indirectly byy, then it cannot be a
child of y, directly or indirectly, nor cany be its child, di-
rectly or indirectly. Correspondingly, if(x, y) ∈ p+ then
(x, y) /∈ c+ and(y, x) /∈ c+. Following Davis [7], we refer
to (D, c+, p+) as adoubly nested diposet.

For the example in figure 3,(.T.cA, T) ∈ c and
(.T.iB, .T.cB) ∈ p. Moreover,(.T.iB, .T.cA) ∈ p+.



5.2 Derived Relation

The key to our notion of inner classes is thederived re-
lation d ∈ D × D defined as follows. The pair(x, y) ∈ d
if either (x, y) ∈ p+ or n(x) = n(y) and(c(x), c(y)) ∈ d.
That is,x is derived fromy if either of the following is true:

1. x is a child ofy (directly or indirectly) or

2. x andy have the same name and the container ofx is
derived from the container ofy.

5.3 Derivation Invariant

We can now state thederivation invariantformally. If
(x, y) ∈ d, then for allz wherec(z) = y, there exists a
z′ wherec(z′) = x and n(z) = n(z′). That is, if x is
derived fromy, then for everyz contained byy there is a
correspondingz′ contained byx with the same name. It is
now trivial to see that(z′, z) ∈ d. The consequence is thatx
is derived fromy, thenx has the same containment structure
asy, in the sense that it contains objects “corresponding to”
those iny. That is, it “inherits” the structure ofy. A similar
invariant can be defined for connections between ports, but
we leave that as an exercise.

So far, this correspondence involves little more than mir-
roring the hierarchy structure with objects that have the
same names. In practice, we will constrain these objects to
have more than the same names. In Ptolemy II, for example,
these objects must be instances of the same Java class. That
is, if x is derived fromy, thenx must be an instance of the
same class (or a derived class) thaty is an instance of. This
binds the AO design structure to the OO design structure in
very useful ways.

5.4 Dynamic Structure

We assume that the structure of a model can change dur-
ing execution of the model. That is, new instances can be
created, new subclasses can be defined, and new classes can
be defined. Each of these changes will represent a change
to the key relationsc andp. We assume that such changes
are atomic and sequential, and that after every change, the
derivation invariant remains true. It is, of course, a chal-
lenge in the design of the Ptolemy II software to ensure that
this is true, particularly since the software system is intrin-
sically highly concurrent.

5.5 Subclassing

We can use the derived relation to cleanly define overrid-
ing, which allows for AO subclassing. In particular, ifx is
derived fromy, the derivation invariant does not preventx

from containingadditionalobjects that have no correspond-
ing object iny. The NoisySinewave subclass in figure 2
contains just such additional objects.

Certain objects in a model havevalues. For example,
parameters of an actor have values. Let thevaluationbe a
function

v : D → V

whereV is a set of values that includes a special element
meaning “undefined” or “has no value.” We will assume
that v can also change during execution of the model, but
as with the changes toc andp, the changes are atomic and
sequential. A key issue is to determine whether(x, y) ∈ d
implies thatv(x) = v(y). This question relates to inher-
itance, but is somewhat more complicated than the struc-
tural inheritance described above. In particular, a subclass
may override the value of an object, and that override may
shadow further derived objects. It is precisely this compli-
cation that lead the authors of [18] to disallow inner classes.
We have taken a more aggressive stand, which is to allow
subclasses and to give a clean semantics to overriding. This
stand is somewhat speculative, in that we are not sure that
it will yield practical design value. But it certainly enriches
the model, and makes it much more modular, since classes
can locally contain locally used class definitions.

Thedepthrelation is a partial function

h : D ×D → N

whereN = {1, 2, . . .} is the set of natural numbers and

h(x, y) =





1 if (x, y) ∈ p+

1 + h(c(x), c(y)) if (x, y) /∈ p+ and(x, y) ∈ d
undefined otherwise

The depth function tells us how far up the hierarchy the
parent-child relationship is that induces a given derived re-
lation. We will use to determine whether or not a change to
a value should propagate to a particular derived object.

Let overridebe a partial function

r : D → N0,

whereN0 = {0, 1, 2, . . .} = N ∪ {0}. The definition of
r changes as the functionv changes. In particular, initially,
r is undefined for allx ∈ D. When a value is set forx,
the value may propagate to derived objects. We will use
r to track whether a value was set directly or via propaga-
tion, and if it was via propagation, then at what level of the
hierarchy is the parent-child relation that induces the prop-
agation. Specifically, we definer(x) = 0 if its value is set
directly. We definer(x) = h(x, y) if its value is set due to
propagation fromy.

We can now determine whether a change to the value
of y should propagate tox. If (x, y) /∈ d, then it should



not. If (x, y) ∈ d but r(x) is undefined, then it should,
so thatv(x) = v(y). If (x, y) ∈ d but r(x) = 0, then it
should not, becausex has been previously set directly. If
(x, y) ∈ d buth(x, y) ≥ r(x), then it should, becausex has
been previously set, but the propagation occurred further
down in the hierarchy than the current one.† If propagation
occurs, then together with the change in inv(x), we must
definer(x) = h(x, y).

6 Conclusion

We have argued that actor-oriented design can bene-
fit from abstraction and modularity mechanisms similar to
what has been developed in object-oriented languages. We
have given a preliminary formalism that provides a struc-
ture for classes and inheritance. There are a number of
issues that have been left out, but that amount to fairly
obvious extensions. For example, our mechanism permits
subclasses to have additional ports, but does it make sense
for a subclass to have additionalinput ports? If this is al-
lowed, then a subclass cannot be viewed as an instance of
the base class because required inputs will not be provided.
A co/contravariance similar to type systems in procedural
languages is required. A similar issue applies to the types
of parameters and ports, which have not been discussed. Fi-
nally, once mechanisms like this have been defined, it be-
comes possible to establish a clear separation between in-
terfaces and implementations.

References

[1] G. Agha. ACTORS: A Model of Concurrent Computation
in Distributed Systems. The MIT Press Series in Artificial
Intelligence. MIT Press, Cambridge, MA, 1986.

[2] G. Agha. Concurrent object-oriented programming.Com-
munications of the ACM, 33(9):125–140, 1990.

[3] G. Agha, S. Frolund, W. Kim, R. Panwar, A. Patterson, and
D. Sturman. Abstraction and modularity mechanisms for
concurrent computing.IEEE Parallel and Distributed Tech-
nology: Systems and Applications, 1(2):3–14, 1993.

[4] G. Agha, I. A. Mason, S. F.Smith, and C. L. Talcott. A foun-
dation for actor computation.Journal of Functional Pro-
gramming, 7(1):1–72, 1997.

[5] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt.
Ptolemy: A framework for simulating and prototyping het-
erogeneous systems.Int. Journal of Computer Simula-
tion, special issue on “Simulation Software Development”,
4:155–182, 1994.

[6] I. Craig. The Interpretation of Object-Oriented Program-
ming Languages. Springer-Verlag, 2001.

†It is language design issue what the direction of this inequality should
be. We have (tentatively) chosen this direction because it seems that prop-
agations that are more global should take precedence over ones that are
more local, but either choice is arguable.

[7] J. Davis II. Order and Containment in Concurrent System
Design. Ph.d. thesis, UC Berkeley, 2000.

[8] J. B. Dennis. First version data flow procedure language.
Technical Report MAC TM61, MIT Laboratory for Com-
puter Science, 1974.

[9] J. Eker and J. W. Janneck. Cal language report: Specifica-
tion of the CAL actor language. Technical Report Technical
Memorandum No. UCB/ERL M03/48, University of Cali-
fornia, Berkeley, CA, December 1 2003.

[10] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Lud-
vig, S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity—the Ptolemy approach.Proceedings of the
IEEE, 91(2), 2003.

[11] R. Esser.An Object Oriented Petri Net Approach to Embed-
ded System Design. Ph.d. thesis, ETH, 1996.

[12] R. Esser and J. W. Janneck. A framework for defin-
ing domain-specific visual languages. InWorkshop on
Domain Specific Visual Languages, in conjunction with
ACM Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications OOPSLA-2001, Tampa
Bay, Florida, USA, 2001.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[14] G. Goessler and A. Sangiovanni-Vincentelli. Compositional
modeling in Metropolis. InSecond International Workshop
on Embedded Software (EMSOFT), Grenoble, France, 2002.
Springer-Verlag.

[15] C. Hewitt. Viewing control structures as patterns of pass-
ing messages.Journal of Artifical Intelligence, 8(3):323363,
1977.

[16] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer,
Y. Xiong, and H. Zheng. Heterogeneous concurrent mod-
eling and design in java. Technical Report Technical Mem-
orandum UCB/ERL M03/27, University of California, July
16, 2003 2003.

[17] G. Karsai. A configurable visual programming environment:
A tool for domain-specific programming.IEEE Computer,
pages 36–44, 1995.

[18] G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J. Szti-
panovits. Type hierarchies and composition in modeling and
meta-modeling languages.IEEE Transactions on Control
System Technology, to appear, 2003.

[19] D. Lea. Concurrent Programming in Java: Design Princi-
ples and Patterns. Addison-Wesley, Reading MA, 1997.

[20] E. A. Lee and S. Neuendorffer. MoML - a modeling markup
language in XML. Technical Report UCB/ERL M00/12, UC
Berkeley, March 14 2000.

[21] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hy-
brid I/O automata. In R. Alur, T. Henzinger, and E. Sontag,
editors,Hybrid Systems III, volume LNCS 1066, pages 496–
510. Springer-Verlag, 1996.

[22] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[23] J. H. Reppy. CML: A higher-order concurrent language.
SIGPLAN Notices, 26(6):293–305, 1991.

[24] B. Selic, G. Gullekson, and P. Ward.Real-Time Object-
Oriented Modeling. John Wiley and Sons, New York, NY,
1994.



[25] D. B. Stewart, R. Volpe, and P. Khosla. Design of dynami-
cally reconfigurable real-time software using port-based ob-
jects. IEEE Trans. on Software Engineering, 23(12):759–
776, 1997.

[26] I. E. Sutherland. Sketchpad - a man-machine graphical com-
munication system. Technical Report 296, MIT Lincoln
Laboratory, January 1963.

[27] W. R. Sutherland.The On-Line Graphical Specificatoin of
Computer Procedures. Ph.d. thesis, MIT, 1966.

[28] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt:
A language for streaming applications. In11th International
Conference on Compiler Construction, volume LNCS 2304,
Grenoble, France, 2002. Springer-Verlag.




