
VISUALSENSE: VISUAL
MODELING FOR WIRELESS AND
SENSOR NETWORK SYSTEMS

Authors1: Philip Baldwin
Sanjeev Kohli
Edward A. Lee
Xiaojun Liu
Yang Zhao

Contributors: C. T. Ee
Christopher Brooks
N. V. Krishnan
Stephen Neuendorffer
Charlie Zhong
Rachel Zhou

Version 5.02

July 15, 2005
UCB ERL Memorandum UCB/ERL M05/25
Earlier Version: UCB/ERL M04/8
This project is supported by the National Science Foundation (NSF award number CCR-00225610),
and Chess (the Center for Hybrid and Embedded Software Systems), which receives support from NSF
and the following companies: Agilent, General Motors, Hewlett-Packard, Honeywell, Infineon, and
Toyota.

1. With contributions from the entire Ptolemy II team.
2. The version number for VisualSense matches the version of Ptolemy II on which it is based.

Copyright (c) 2005 The Regents of the University of California.

 All rights reserved.

 Permission is hereby granted, without written agreement and without
 license or royalty fees, to use, copy, modify, and distribute the VisualSense
 software and its documentation for any purpose, provided that the above
 copyright notice and the following two paragraphs appear in all copies
 of the software.

 IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
 FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
 ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
 THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

 THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
 PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
 CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
 ENHANCEMENTS, OR MODIFICATIONS.
2 VisualSense

Contents
1. Introduction 5

1.1. Installation and Quick Start 5
2. Modeling Wireless Networks 6

2.1. Running a Pre-Built Model 7
2.2. Changing Parameters 8
2.3. Structure of a Pre-Built Model 8

2.3.1. Visual Representations (Icons) 9
2.3.2. Channels 11
2.3.3. Composite Actors 12

2.4. Controlling the Execution 13
2.5. Building a New Model 14
2.6. Using the Plot Actors 22

3. Modeling Capabilities 23
3.1. Discrete-Event Simulation 24
3.2. Channel Models 24
3.3. Wireless Node Models 24
3.4. Examples of Modeling Capabilities 25

3.4.1. Packet Structure 25
3.4.2. Packet Losses 25
3.4.3. Battery Power 25
3.4.4. Power Loss 25
3.4.5. Collisions 25
3.4.6. Transmit Antenna Gain 27

4. Software Architecture 32
4.1. Erasure Channel 34
4.2. Limited Range Channels 35
4.3. Transmit Properties 35
4.4. Antenna Gains and Terrain Models 36
4.5. Delay Channels 36

5. Framework Infrastructure 36
5.1. Hierarchy and Heterogeneity 37
5.2. Type System 37
5.3. Expressions 37

5.3.1. Expression Evaluator 37
5.3.2. Simple Arithmetic Expressions 38

Constants and Literals 38
Variables 40
Operators 40
Comments 42

5.3.3. Uses of Expressions 42
Parameters 42
String Parameters 42
A Wireless and Sensor Networks Visual Modeler 3

Port Parameters 43
Expression Actor 43
State Machines 45

5.4. Composite Data Types 45
5.4.1. Arrays 45
5.4.2. Matrices 47
5.4.3. Records 48

5.5. Invoking Methods in Expressions 50
5.6. Defining Functions in Expressions 51
5.7. Built-In Functions 53
5.8. Fixed Point Numbers 57

 Appendix A: Tables of Functions 59
A.1.Trigonometric Functions 59
A.2.Basic Mathematical Functions 60
A.3.Matrix, Array, and Record Functions. 62
A.4.Functions for Evaluating Expressions 63
A.5.Signal Processing Functions 64
A.6.I/O Functions and Other Miscellaneous Functions 66

 Appendix B: References 67
4 VisualSense

Introduction
1. Introduction
VisualSense is a modeling and simulation framework for wireless and sensor networks that builds

on and leverages Ptolemy II. Modeling of wireless networks requires sophisticated representation and
analysis of communication channels, sensors, ad-hoc networking protocols, localization strategies,
media access control protocols, energy consumption in sensor nodes, etc. This modeling framework is
designed to support a component-based construction of such models. It supports actor-oriented defini-
tion of network nodes, wireless communication channels, physical media such as acoustic channels,
and wired subsystems. The software architecture consists of a set of base classes for defining channels
and sensor nodes, a library of subclasses that provide certain specific channel models and node mod-
els, and an extensible visualization framework. Custom nodes can be defined by subclassing the base
classes and defining the behavior in Java or by creating composite models using any of several
Ptolemy II modeling environments. Custom channels can be defined by subclassing the WirelessChan-
nel base class and by attaching functionality defined in Ptolemy II models. It is intended to enable the
research community to share models of disjoint aspects of the sensor nets problem and to build models
that include sophisticated elements from several aspects.

In this document, we describe a specialization of the discrete-event domain of Ptolemy II support-
ing sensor nets modeling. We begin by explaining the basic components in this framework: the direc-
tor, the channel model and the sensor node model, and how to build sensor network models
graphically. We then progress to discuss the software architecture of VisualSense, and how to extend
the software for customized node models and channel models. This document provides a tutorial that
will enable the reader to construct elaborate sensor network models and to have confidence in the
results of a simulation of those models.

The intended audience for this document is an engineer or researcher who is interested in wireless
and sensor network systems and wishes to build models of such systems.

VisualSense is built on top of Ptolemy II, a framework supporting the construction of such
domain-specific tools. See http://ptolemy.eecs.berkeley.edu for information about Ptolemy II.

1.1 Installation and Quick Start

VisualSense can be quickly downloaded and run using Web Start1, a standard Windows installer,
or source code from the web site:

http://ptolemy.eecs.berkeley.edu/visualsense

Once you have done this, you can select VisualSense from the Ptolemy II entry in the Start menu (if
you are using a Windows system). VisualSense can also be invoked from the command line on all plat-
forms using the command:

vergil -visualsense

1. Web Start is a tool from Sun Microsystems that makes software installation and updates particularly simple. The
Web Start installation works best with Windows, but has also been tried under Solaris, Linux and Mac OS X.
The Web Start installation behaves almost exactly like a standalone installation; you can save models locally,
and you need not be connected to the net after the initial installation. The Web Start tool includes a Java Runtime
Environment (JRE), and the VisualSense Web Start installer checks that the proper version of the JRE is present.
A Wireless and Sensor Networks Visual Modeler 5

Modeling Wireless Networks
You should then see an initial welcome window that looks like the one in figure 1. Feel free to explore
the links in this window. To create a new model, invoke the New command in the File menu. But
before doing this, it is worth understanding how a model works.

2. Modeling Wireless Networks
In this section, we explain how to read, construct and execute models of wireless sensor networks.

We begin by examining a demonstration system that is accessible from the welcome window in figure
1, the wireless sound detection model. These demonstration systems are meant to illustrate capabili-
ties, not necessarily to serve as accurate or useful models of physical systems.

FIGURE 1. Initial welcome window for VisualSense.
6 VisualSense

Modeling Wireless Networks
2.1 Running a Pre-Built Model

The wireless sound detection model can be accessed by clicking on the link in the welcome win-
dow (figure 1), which results in the window shown in figure 2. This is a highly simplified (even naïve)
model of a sound localization system that uses a field of sensor nodes that detect a sound and report by
radio to a hub that triangulates the location of the sound. Figure 2 shows the elements of the model,
which include a WirelessDirector, which defines this as a wireless model, two channel models (a radio
channel model and a sound channel model), a number of annotations (text explaining the model) and
actors in the model. Each of these components plays a role in the model. The director mediates execu-
tion of the model. The channel models handle communication between the actors. The actors send and
receive signals via the channel.

The model is executable. Clicking on the red triangle in the toolbar results in the SoundSource
actor (represented by concentric transparent circles) beginning to move in a circular pattern, as indi-
cated by the blue arrow in figure 3. The SoundSource actor emits events via the SoundChannel channel
model. These events propagate with a time delay dependent on distance to the blue circular nodes.
When these nodes detect the sound, they emit a radio signal via the RadioChannel model and turn their
icons red to indicate visually that they have done so. The radio signals include a time stamp of the
detected sound event. The Triangulator actor in the center (shown with a green icon) receives these

FIGURE 2. The VisualSense representation of a wireless sound detection model.
A Wireless and Sensor Networks Visual Modeler 7

Modeling Wireless Networks
radio signals (if it is in range of the transmitter), and uses the time stamps to estimate the position of
the sound source. It then plots that position, resulting in the plot shown in figure 3.

2.2 Changing Parameters

The model has parameters that you can experiment with. The parameters of two components,
SoundSource and SoundChannel, are shown in figure 4. To obtain these parameter screens, you can
double click on the actor, or right click and select “Configure.” The SoundSource has a single parame-
ter, called soundRange. If you change the value from 300 (meters) to, say, 500, then the circular icon
for the actor increases in size, and re-running the model results in more of the trajectory of the sound
source being triangulated. In the SoundChannel parameters, you could set a non-zero value for the
lossProbability, in which case only some of the sound events will be detected. Setting the seed to a
non-zero value results in repeatable experiments, meaning that each execution will yield the same
sequence of random numbers (the type is a long, so the value should be an integer followed by the let-
ter “L”). Leaving the seed at the default “0L” yields a new experiment on each run.

2.3 Structure of a Pre-Built Model

Let us examine how the model in figure 2 is constructed.

FIGURE 3. Animation as the model executes. The SoundSource actor moves in a circle through a field of Sound-
Sensor actors. When these actors detect a sound, they transmit a radio signal to a Triangulator node, which estimates
and plots (at the upper right) the position of the sound source.
8 VisualSense

Modeling Wireless Networks
2.3.1 Visual Representations (Icons)

Consider first the SoundSource actor. First, consider how its visual representation (its “icon”)
changed when we changed the soundRange parameter. The definition of the icon can be viewed (and
edited) by right clicking on the icon and selecting “Edit Custom Icon.” Note that to select this actor,
you must place the mouse over one of the concentric circle outlines. The resulting window is shown in
figure 5. Note that only the center portion of the icon is visible. Click on Zoom Fit in the toolbar (as
shown in figure 5) to get the full image, as shown in figure 6. The navigation window at the lower left
can be used to move the view around (to “pan” the view). The library at the left can be used to add
items to the icon.

Consider the outer circle, which changed size when we changed the soundRange parameter. Dou-
ble clicking on it (or right clicking and selecting Configure) reveals the parameter window in figure 7.
Notice that the width and height parameters are given by expressions with values “soundRange*2”.
The expression language that can be used here is rich, and will be described below. For now, it is suffi-
cient to realize that arithmetic expressions that reference parameters of the actor or of the model can be
used to extensively customize the visual representation of an actor, making it depend on parameter val-
ues.

FIGURE 4. Parameters of the SoundSource actor (left) and SoundChannel channel model (right).

FIGURE 5. View resulting from selecting “Edit Custom Icon” after right clicking on the SoundSource in figure 2.

library of components

navigation area

toolbar

editing area

Zoom Fit
A Wireless and Sensor Networks Visual Modeler 9

Modeling Wireless Networks
For example, we could fill the outer circle with a translucent color where the degree of translu-
cency depends on the soundRange parameter, as shown in figure 8. In that figure, the color selector
(shown at the right) was used to select a red color, and the alpha value of the color, which is the fourth
element of the array defining the color, was manually set to “soundRange/1000.0”. The result is shown
in figure 9.

FIGURE 6. View resulting from clicking Zoom Fit in the toolbar of figure 5.

FIGURE 7. Parameters of the outer circle of the SoundSource actor icon in figure 5.

FIGURE 8. Setting the fill color of the outer circle of SoundRange to depend on its soundRange parameter.
10 VisualSense

Modeling Wireless Networks
Feel free to experiment with this icon by moving components, changing their colors, or adding
new components. You can add GIF or JPEG images defined in a file using the Image component, and
you can add lines, circles, polygons, or rectangles.

Note that as of this writing, the icon editor is fairly primitive. The interactors for the various shapes
are not customized, so defining a shape can be a tedious matter of defining the vertex points. Also, the
order in which items in the icon are drawn is the order in which they are created. Thus, the only mech-
anism currently to put an object in the foreground is to select it, delete it, and then re-add it. We expect
this editor to improve over time.

2.3.2 Channels

The model shown in figure 2 has two channel models, shown in figure 10 along with their param-
eters. You can see that the only difference between these two channels (besides their names) is the
value of the propagationSpeed parameter. For the RadioChannel, it is set to “Infinity,” whereas for the
SoundChannel, it is set to “340.0” (meters/second).

Note that both channels have a parameter called defaultProperties with value “{range=Infinity}.”
This expression defines a record with one field named “range” with value “Infinity.” The fields of the
defaultProperties parameter of a channel define the ways in which a particular transmission can be
individually customized. In this case, a particular transmission through either channel can optionally
specify a range. If it is not specified, then the default is used, which is Infinity, indicating that there is
no range limitation. A transmission will succeed in reaching the receiver no matter how far away the
receiver is.

FIGURE 9. Result of changing the color of the outer circle of SoundRange as shown in figure 8.
A Wireless and Sensor Networks Visual Modeler 11

Modeling Wireless Networks
2.3.3 Composite Actors

We have seen how to customize the visual representation of an actor. How can we define its behav-
ior? The SoundSource actor in figure 2 is actually a composite actor whose behavior is defined by a
Ptolemy II model. To find this definition, simply right click on the actor and select Look Inside. The
inside model is shown in figure 11.

The SoundSource composite shown in figure 11 has a DEDirector (a discrete event director),
which defines this model as a Ptolemy II discrete event model. DE models work well with wireless
models, so it is common to see DE models used to define wireless nodes. The soundRange parameter
is shown next to the DEDirector with its default value, 300. The model itself consists of two parts, an
upper part that sends a sound event, and a lower part that moves the icon.

Consider first the upper part. It has a Clock and a port named “soundPort,” as shown in figure 12.
The parameters of both the Clock and the port are obtained by double clicking on them (or right click-
ing and selecting Configure), and are also shown in the figure. Notice that the period of the Clock is set
to 2.0, and the values are set to {1}, an array with one element, the integer 1. This indicates that the

FIGURE 10. The channels of figure 2 and their parameters.

FIGURE 11. Result of looking inside the SoundSource actor in figure 2.
12 VisualSense

Modeling Wireless Networks
clock should produce a sound every two seconds. The value produced is simply the integer 1, which
has no particular meaning. Any value would have the same effect.

The soundPort component also has parameters, as shown in figure 12. The outsideChannel param-
eter is a string-valued parameter with value “SoundChannel.” This is the name of the channel that this
port will use for transmission, and must correspond with the name of the channel shown in figure 10.
The outsideTransmitProperties parameter has value “{range=soundRange}” which is a record with
one field named “range” with value given by the expression “soundRange,” which simply obtains the
value from the soundRange parameter of the composite actor. Notice that this will override the default
value of Infinity given for this field in figure 10. Thus, the soundRange parameter controls not just the
visual appearance of the icon, but also the range of transmission.

For the purposes of determining whether a receiver is in range, all of the demos included with
VisualSense use the location of the icon as a (two dimensional) representation of the location of the
node. The units are arbitrary, but in these models are taken to represent meters. A scale is shown at the
lower right of figure 2, indicated by a line of length “100,” which represents 100 meters.

Although these demos all use two-dimensional locations, the underlying software infrastructure
supports three dimensional locations. The visual editor, however, does not offer a mechanism for
directly defining those locations, so for illustration purposes, the demos constrain themselves to two-
dimensional locations.

2.4 Controlling the Execution

The WirelessDirector in figure 2 is the component that controls the execution of the model. As
with most components, it too has parameters. Its parameters are shown in figure 13. Notice that the

FIGURE 12. Portion of the composite in figure 11 that produces the sound event, with two parameter screens.

FIGURE 13. Parameters of the WirelessDirector of figure 2.
A Wireless and Sensor Networks Visual Modeler 13

Modeling Wireless Networks
stop time is set to “MaxDouble,” which is a very large number . This speci-
fies that the model should run forever.

Notice also that the synchronizeToRealTime parameter of the director is checked. This means that
when executing the model, the Clock actor that produces a sound every two seconds will not be
allowed to produce events at a faster rate than that in real time even if the model can execute faster.
This parameter is used to get realistic time scales when animating an execution. Usually, this parame-
ter should be checked for animated models. The other director parameters have to do with tuning the
performance of the discrete-event simulator. They are beyond the scope of this document.

2.5 Building a New Model

We now proceed to build a new wireless network model from scratch. In any VisualSense window,
select File→New→Graph Editor. This results in a window like that shown in figure 14. It contains a
WirelessDirector, but nothing else. Drag in a PowerLossChannel from the WirelessChannels library at
the left, as shown in figure 15.

Notice the parameters of this channel, which are also shown in figure 15. Notice that the default-
Properties parameter contains a record with two fields, {range = Infinity, power = Infinity}. This chan-
nel can be used to model variations in transmit power and also power loss as a function of distance. We
will construct a simple model that achieves communication if the receiver gets enough power, and
does not achieve communication otherwise.

Documentation for the PowerLossChannel actor (and any other actor) can be obtained by right
clicking on the actor and selecting Get Documentation. In this example, we get the screen shown in
figure 16, which shows automatically generated documentation for the Java class that defines this
channel. The top of this display shows the inheritance chain for the actor, which indicates that this
actor extends LimitedRangeChannel, which extends DelayChannel, which extends ErasureChannel,
which extends AtomicWirelessChannel. Each of these channels adds a small amount of functionality,
and source code for each one is provided as an illustration of how to define channel models. You can
view the source code by right clicking and selecting Look Inside (assuming you have installed the
source code module), which results in the screen shown in figure 17. In the case of both the source

1.7976931 10
308×

FIGURE 14. Window for constructing a new model, obtained from the menu File→New→GraphEditor.
14 VisualSense

Modeling Wireless Networks
code and the documentation, you have to scroll down some to get to the interesting part. For example,
this documentation explains the powerPropagationFactor parameter as follows:

FIGURE 15. New model populated with a channel.

FIGURE 16. Documentation window for the PowerLossChannel, obtained with right click, Get Documentation.
A Wireless and Sensor Networks Visual Modeler 15

Modeling Wireless Networks
“The power propagation is given as an expression that is evaluated and then multi-
plied by the power field of the transmit properties before delivery to the receiver.
For convenience, a variable named “distance” is available and equal to the distance
between the transmitter and the receiver when the power propagation formula is
evaluated. Thus, the expression can depend on this distance. The value of the
power field should be interpreted as power at the transmitter but power density at
the receiver. A receiver may multiply the power density with its efficiency and an
area (typically the antenna area). A receiver can then use the resulting power to
compare against a detectable threshold, or to determine signal-to-interference ratio,
for example.

The default value of powerPropagationFactor is

 1.0 / (4 * PI * distance * distance).

This assumes that the transmit power is uniformly distributed on a sphere of radius
distance. The result of multiplying this by a transmit power is a power density
(power per unit area). The receiver should multiply this power density by the area
of the sensor it uses to capture the energy (such as antenna area) and also an effi-
ciency factor which represents how effectively it captures the energy.

FIGURE 17. Source code for PowerLossChannel obtained by right clicking and selecting Look Inside.
16 VisualSense

Modeling Wireless Networks
The power field of the transmit properties can be supplied by the transmitter as a
record with a power field of type double. The default value provided by this chan-
nel is Infinity, which when multiplied by any positive constant will yield Infinity,
which presumably will be above any threshold. Thus, the default behavior is to
encounter no power loss and no limits to communication due to power.”

Hopefully, this makes it reasonably clear how to use these parameters. Let us build a model that
uses them.

Begin by dragging in two instances of WirelessComposite from the Actors→WirelessActors
library at the left. Rename them Transmitter and Receiver by right clicking on them and selecting Cus-
tomize Name, to get the result shown in figure 18. These components now need ports. To create these,
right click on each icon and select Configure Ports. Click on the Add button and create an output port
named output for the Transmitter, and an input port named input for the Receiver, as shown in figure
19. To specify that these ports use the PowerLossChannel, right click on each port and select Config-
ure, and specify the outsideChannel to be “PowerLossChannel” (this must match exactly the name of
the channel).

We start by populating the transmitter and receiver with simple models of the nodes. To do this,
look inside the transmitter, which yields the window shown in figure 20. Note that the output port is
(rather poorly) placed at the upper left. Move it to a more reasonable place, and connect to it an
instance of the PoissonClock actor from the Actors→Sources→TimedSources library to get the model
shown in figure 21. To make a connection, either click and drag from the output port of the Poisson-
Clock actor, or control-click and drag from output port of the Transmitter to the output port of the Pois-
sonClock actor.

The PoissonClock actor will produce events at random times, where the time between events is
obtained from an exponential random variable with mean given by the meanTime parameter of the
PoissonClock. The default value is 1.0, which is fine for our purposes. If you return to the top-level
window and double click on the WirelessDirector to set its synchronizeToRealTime parameter, then the
transmitter will produce events at an average rate of one per second.

FIGURE 18. Model populated with two instances of WirelessComposite renamed Transmitter and Receiver.
A Wireless and Sensor Networks Visual Modeler 17

Modeling Wireless Networks
Look inside the Receiver actor and build the model shown in figure 22. The Ramp actor is found in
the Actors library under Sources→SequenceSources, and the Display actor is found under Sinks→Ge-
nericSinks, as shown on the left in the figure. The model is now ready to execute. Clicking on the red
triangle in the toolbar will result in the display shown in figure 23. The Ramp produces a count of
arrivals. If you remembered to set the synchronizeToRealTime parameter of the WirelessDirector, then
the count numbers will appear at random times with an average interval of one second.

You may want to save your model using the File→Save menu command. Use the file extension
.xml (or .moml) to ensure that VisualSense will recognize this as a model file. Notice that the title bar
on the window now reflects the name of your model, which is the same as the name of the file.

Let us modify this model so that the power loss of the channel as a function of distance is
observed. To do this, find the GetProperties actor in the Actors→WirelessActors library, and replace

FIGURE 19. Model with ports added to the Transmitter and Receiver, and the dialog used to create the ports.

FIGURE 20. Inside the Transmitter.
18 VisualSense

Modeling Wireless Networks
the Ramp actor inside the Receiver as shown in figure 24. Running the model now results in the dis-
play shown in figure 25. Notice that the received power is always Infinity, which is not very useful.

FIGURE 21. Completed Transmitter.

FIGURE 22. Completed Receiver.

FIGURE 23. Display that results from running the model of figure 19.
A Wireless and Sensor Networks Visual Modeler 19

Modeling Wireless Networks
Indeed, the Transmitter has not specified a transmit power, and the PowerLossChannel has a default
power of Infinity, as shown in figure 15. The power loss introduced by the channel becomes irrelevant
because in this model, the transmit power is infinite, which when multiplied by any non-zero loss, still
yields infinite power.

To get a more reasonable model of power loss, set the transmit power by right clicking on the out-
put port of the Transmitter and setting the outsideTransmitProperties parameter to “{power = 1.0}” as
shown in figure 26. Re-running the model now results in a display like that shown in figure 27, where
the variability in power level was obtained by moving the Receiver towards and over the Transmitter
while the model was running.

FIGURE 24. Modified Receiver that displays the received properties.

FIGURE 25. Display that results from using the Receiver design of figure 24.

FIGURE 27. Display that results from using the transmit power set as shown in figure 26.
20 VisualSense

Modeling Wireless Networks
Notice in figure 27 that one of the displays shows a received power of Infinity. This occurred when
the Transmitter and Receiver were directly on top of one another. Recall from the documentation for
PowerLossChannel that the value of the power field in the received properties is a power density
(power per unit area), not an absolute power. Hence, indeed, if the receiver and transmitter occupy the
same physical space, and the transmitter is a point source, then the power density at the receiver is infi-
nite. Typically, a receiver model will multiply this power density by an effective antenna area and an
antenna efficiency to get an absolute received power level.

The received power density can be used to decide at the receiver whether transmission is successu-
ful. To do this, modify the Receiver model to get the structure shown in figure 28. The actors used here
are found as follows:
• RecordDisassembler: Actors→FlowControl→Aggregators

FIGURE 26. Setting the transmit power of the Transmitter.

FIGURE 28. Receiver model that discards received events where the power is below a threshold.
A Wireless and Sensor Networks Visual Modeler 21

Modeling Wireless Networks
• Expression: Actors→Math
• BooleanSwith: Actors→FlowControl→BooleanFlowControl
The RecordDisassembler actor extracts fields from a record. To use it, you must create output ports
that have the same name as the field, in this case, power. To use the Expression actor, you must create
input ports, using whatever names you like (“power” in figure 28), and then give an expression that
defines the output in terms of the inputs (“power > 1.0E-6” in figure 28). The output of this Expression
actor will be true if the received power is greater than , and false otherwise. That boolean
signal drives the control port of the BooleanSwitch, which sends its input to one of two output ports
depending on the value of the control input. In this case, we observe only the true output, which will be
the received power values that exceed .

Notice that in figure 28, some connections involve a small black diamond. This is the visual mech-
anism for routing a signal to multiple places. To create the diamond (which is called a vertex), you can
either control click on the background of the editor, or click on the black diamond in the toolbar. To
link wires to the vertex, hold the control key while clicking and dragging to draw the connection.

2.6 Using the Plot Actors

Often, it is more useful for a model to graph data rather than display it in textual form. Modify the
model of figure 28 as shown in figure 29, where the Display actor has been replaced by a TimedPlotter
from Actors→Sinks→TimedSinks. The result of a run is shown in figure 30, where the Receiver was
moved during the execution so it passed very close to the Transmitter.

This plot display can be improved considerably. In the plot window, click on the format button at
the upper right, as shown in figure 30, to get the window shown in figure 31. Setting the parameters as
indicated in that window results in the plot in figure 32, which is a more appealing rendition of the
data.

Notice that you can zoom into a region of the plot by simply clicking and dragging out the region
of interest. You can zoom out by clicking and dragging upwards or leftwards rather than downwards or
rightwards. You can zoom fit by clicking on the zoom fit button at the upper right.

1.0 10
6–×

1.0 10
6–×

FIGURE 29. Receiver that plots rather than displays textually the received power as a function of time.
22 VisualSense

Modeling Capabilities
3. Modeling Capabilities
VisualSense is an extension of the discrete-event modeler of Ptolemy II. It largely preserves the

discrete-event semantics, but changes the mechanism for connecting components so that explicit wires
are not required. In the models constructed in the previous section, wired and wireless models were
combined hierarchically. Indeed, all of Ptolemy II, which includes a very rich set of modeling mecha-
nisms, can be used to construct very elaborate models of sensor nodes and propagation effects.

In this section, we explain the discrete-event semantics briefly and discuss the channel model that
is used to decide connectivity in sensor nets and the hierarchical component model for each sensor
node. We then illustrate capabilities by discussing some of the examples that are provided as demos
with the system.

FIGURE 30. Plot showing the received power a function of time as the Receiver is moved close to the Transmitter.

format button

FIGURE 31. Dialog to set the plot format, filled in to yield the display shown in figure 32.

FIGURE 32. Plot display using the format shown in figure 31.
A Wireless and Sensor Networks Visual Modeler 23

Modeling Capabilities
3.1 Discrete-Event Simulation

The director plays a key role in Ptolemy II: it defines the semantics of a composite. It gives the
concurrency model and the communication mechanisms. In VisualSense, the director implements the
simulator. The WirelessDirector is an almost completely unmodified subclass of the pre-existing dis-
crete-event director (DEDirector) in Ptolemy II.

The discrete-event (DE) domain of Ptolemy II [10] provides execution semantics where interac-
tion between components is via events with time stamps. The time stamps are double-precision float-
ing point numbers, and a sophisticated calendar-queue scheduler is used to efficiently process events in
chronological order. DE has a formal semantics that ensures determinate execution of deterministic
models [12], although stochastic models for Monte Carlo simulation are also well supported. The pre-
cision in the semantics prevents the unexpected behavior that sometimes occurs due to modeling idio-
syncrasies in some modeling frameworks.

The DE domain in Ptolemy II supports models with dynamically changing interconnection topolo-
gies. Changes in connectivity are treated as mutations of the model structure. The software is carefully
architected to support multithreaded access to this mutation capability. Thus, one thread can be execut-
ing a simulation of the model while another changes the structure of the model, for example by adding,
deleting, or moving actors, or changing the connectivity between actors. The results are predictable
and consistent.

The most straightforward uses of the DE domain in Ptolemy II are similar to other discrete-event
modeling frameworks such as NS, Opnet, and VHDL. Components (which are called actors) have
ports, and the ports are interconnected to model the communication topology. Ptolemy II provides a
visual editor for constructing DE models as block diagrams. However, such block diagrams are a poor
representation of a sensor network, because the interconnection topology is highly variable.

VisualSense largely preserves DE semantics, but changes the mechanism for connecting compo-
nents. In particular, it removes the need for explicit connections between ports, and instead associates
ports with channels by name (e.g. “RadioChannel”). Connectivity can then be determined on the basis
of the physical locations of the components. The algorithm for determining connectivity is itself
encapsulated in a component as a channel model, and can be elaborated in the receiver models, and
hence can be developed by the model builder.

3.2 Channel Models

A channel model in VisualSense is itself an actor. When a transmitter produces an event on a wire-
less port that references the channel by name, the event is delivered to the channel for transformation.
The channel may alter the properties that are supplied by the transmitter, and may delay delivery of the
event to a receiver to model propagation delay. In VisualSense, the responsibility of the channel ends
there. Other components are used to model terrain effects, antenna gains, etc. Some of these are
described below.

3.3 Wireless Node Models

Sensor nodes themselves can be modeled in Java, or more interestingly, using more conventional
DE models (as block diagrams) or other Ptolemy II models (such as dataflow models, finite-state
machines or continuous-time models). For example, a sensor node with modal behavior can be defined
by sketching a finite-state machine and providing refinements to each of the states to define the behav-
ior of the node in that state. This can be used, for example, to model energy consumption as a function
24 VisualSense

Modeling Capabilities
of state. Sophisticated models of the coupling between energy consumption and media access control
protocols become possible.

3.4 Examples of Modeling Capabilities

Most of the modeling capabilities described here are illustrated in the quick tour, accessible from
the welcome window shown in figure 1.

3.4.1 Packet Structure

Ptolemy II includes a sophisticated type system that includes aggregate types like records. Above,
we showed how records can be used for transmit properties. They can also be used to construct packets
with arbitrary payloads. The mechanisms are identical. The RecordAssembler, RecordDisassembler,
and RecordUpdater actors in the Actors→FlowControl→Aggregators library can be used to assemble
and disassemble records.

The type system will check for compatibility in uses of records. Extracting a field and using it
incorrectly (e.g. using it as a boolean value when it is actually an integer) will yield a type check error
before the model is executed.

3.4.2 Packet Losses

The ErasureChannel model, which is a base class for most of the channel models, offers a parame-
ter lossProbability that can be used to model independent, identically distributed packet losses.

3.4.3 Battery Power

Since nodes in a wireless network can be defined by arbitrary Ptolemy models, it is easy to incor-
porate models of energy or power consumption. A simple example is given in the quick tour under
“Circular Range Channel,” shown in figure 34, where on the right you can see that the Transmitter uses
a PoissonClock to decrease the range of transmission at random times to model the transmission range
degradation over time as its battery is depleted. When this model executes, the size of the circular icon
representing the transmitter decreases as its range decreases.

3.4.4 Power Loss

The quick tour includes a model called “Power Loss Channel” that illustrates power variability at
the receiver as a function of distance. The top-level model, receiver implementation, and a plot result-
ing from its execution are shown in figure 33. The model uses the same principles as the tutorial exam-
ple described above.

3.4.5 Collisions

In the underlying discrete-event semantics of VisualSense, events occur instantaneously at a par-
ticular time. That is, they do not have a duration. To model collisions of messages that take time and
share a common channel, the model must explicitly include the message duration.

A simple example of such a model is shown in figure 35. In this model, two transmitters share the
same channel and transmit messages of fixed duration at random times. As the model executes, one of
the transmitters moves in a circular pattern, starting far from the receiver, coming close, then moving
away again. At the start, when it is far from the receiver, its messages get through to the receiver only
if the other transmitter does not transmit a message that overlaps in time. Whether the message from
the other transmitter gets through in the event of a collision depends on how far away the first transmit-
A Wireless and Sensor Networks Visual Modeler 25

Modeling Capabilities
ter is. If it is sufficiently far away, then the interfering power is not sufficient to prevent communica-
tion, so the message gets through. If it is closer, then the interfering power will be sufficient that
neither message gets through.

Two plots are shown in figure 35. The upper plot shows the messages that are transmitted (in red
and blue), giving a visual indication of when overlap occurs. The magnitude in the plot represents the
received power. For the transmitter that is stationary, the receiver power is constant. For the transmitter
that moves, the received power starts low, then rises to nearly equal the power of the stationary trans-
mitter, then drops again. The lower plot indicates whether messages are lost. In the figure, a total of
seven messages are lost, all but one of them from the mobile transmitter (shown in red, if you have a
color copy of this document).

The duration of a message in this model is represented by an extra field added to the transmit prop-
erties by the channel. The parameters of the channel are shown at the lower right in figure 35. Notice
that the defaultProperties parameter has value “{range=Infinity, power=Infinity, duration=1.0}”. The
duration field in this record represents the duration of a message. Individual transmitters can override
this by setting the outsideTransmitProperties parameters of their ports to give any desired duration.

The Receiver implementation is shown in figure 36. In this model, the value of the received signal
is a boolean with value false if the originator is the fixed transmitter and value true if the originator is
the mobile transmitter. The GetProperties actor is used to extract the received properties, which will
include the received power and the message duration. The power and duration fields of the properties

FIGURE 33. Model of power loss as a receiver moves into range and then close to a transmitter.
26 VisualSense

Modeling Capabilities
record are extracted by the RecordDisassembler actor and fed into the CollisionDetector actor, which
determines which of the messages are received and which are lost. The rest of the model is devoted to
constructing meaningful plots so that we get a visual rendition of the behavior.

The CollisionDetector actor is fairly sophisticated. Its documentation is shown in figure 37. This
actor assumes that the duration of messages is short relative to the rate at which the actors move. That
is, the received power (and whether a receiver is in range) is determined once, at the time the message
starts, and remains constant throughout the transmission.

FIGURE 34. Model where transmission range degrades over time as a battery is depleted.

FIGURE 36. Implementation of the Receiver in figure 35, which models and tracks collisions.
A Wireless and Sensor Networks Visual Modeler 27

Modeling Capabilities
3.4.6 Transmit Antenna Gain

A transmitter for a wireless channel may have a directional antenna. This introduces a significant
complication in modeling because, although the directionality is a local property of the transmitter, its
effect depends on the location of the receiver. We have seen above the use of transmit properties to
model propagation losses. Transmit properties are also used to model antenna gains. The transmitter
registers with the channel a property transformer, which is an actor that will modify the transmit prop-
erties for any particular transmission. Before the channel delivers an event to a receiver, it executes the
property transformer, informing it of the location of the transmitter and receiver, and permitting it to
modify the transmit properties.

An example of a model that includes a directional transmit antenna is shown in figure 38. This
model is visible in the quick tour under “Transmit Antenna Gain.” When this model executes, the
receiver moves in a circular pattern around the transmitter and measures and plots the received power.
The transmitter has an 8-element phased-array antenna with steering.

The design of the transmitter is quite sophisticated, as is shown in figure 39. It illustrates how the
full modeling power of Ptolemy II can be used in VisualSense. At the top left of the figure, the Trans-

FIGURE 35. Model of collisions of messages that take time.
28 VisualSense

Modeling Capabilities
FIGURE 37. Documentation for the CollisionDetector actor used in figure 36.

CollisionDetector: This actor models a typical physical layer front end of a wireless receiver. It models a
receiver where messages have a non-zero duration and messages can collide with one another, causing a
failure to receive. A message is provided to this actor at the time corresponding to the start of its transmis-
sion. Along with the message (an arbitrary token), the inputs must provide the duration of the message and
its power. The message spans an interval of time starting when it is provided to this actor and ending at that
time plus the duration. If another message overlaps with a given message and has sufficient power, then the
given message will be sent to the collided output. Otherwise it is sent to the received output. In both cases,
the message appears at the corresponding output at the time it is received plus the duration (i.e. the time at
which the message has been completed).

The inputs are:
• message: The message carried by each transmission.
• power: The power of the received signal at the location of this receiver.
• duration: The time duration of the transmission.
The power and duration are typically delivered by the channel in the “properties” field of the transmission.
The power is usually given as a power density (per unit area) so that a receiver can multiply it by its antenna
area to determine the received power. It is in a linear scale (vs. DB), typically with units such as watts per
square meter. The duration is a non-negative double, and the message is an arbitrary token.

The outputs are:
• received: The message received. This port produces an output only if the received power is sufficient

and there are no collisions. The output is produced at a time equal to the time this actor receives the
message plus the value received on the duration input.

• collided: The message discarded. This port produces an output only if the received message collides
with another message of sufficient power. The output is produced at a time equal to the time this actor
receives the message plus the value received on the duration input. The value of the output is the mes-
sage that cannot be received.

This actor is typically used with a channel that delivers a properties record token that contains power and
duration fields. These fields can be extracted by using a GetProperties actor followed by a RecordDisassem-
bler. The PowerLossChannel, for example, can be used. However, in order for the type constraints to be sat-
isfied, the PowerLossChannel's defaultProperties parameter must be augmented with a default value for the
duration. Each transmitter can override that default with its own message duration and transmit power.

Any message whose power (as specified at the power input) is less than the value of the powerThresh-
old parameter is ignored. It will not cause collisions and is not produced at the collided output. The power-
Threshold parameter thus specifies the power level at which the receiver simply fails to detect the signal. It
is given in a linear scale (vs. DB) with the same units as the power input. The default value is zero, i.e. by
default it won't ignore any received signal.

Any message whose power exceeds powerThreshold has the potential of being successfully received, of
failing to be received due to a collision, and of causing a collision. A message is successfully received if
throughout its duration, its power exceeds the sum of all other message powers by at least SNRThreshold-
InDB (which as the name suggests, is given in decibels, rather than in a linear scale, as is customary for
power ratios). Formally, let the message power for the i-th message be at time t. Before the message is
received and after its duration expires, this power is zero. The i-th message is successfully received if

(1)

for all t where , where P = 10^(SNRThresholdInDB/10), which is the signal to interference ratio in
a linear scale.

pi t()

pi t() P pj t()
j i≠
∑≥

pi t() 0>
A Wireless and Sensor Networks Visual Modeler 29

Modeling Capabilities
mitPropertyTransformer actor models the transmitter antenna. Its firing behavior is very simple: when
presented with an input token, it simply produces that same input token, unchanged, on the output port.
However, in addition to this firing behavior, this actor registers itself with the channel used by the port
that its output is connected to as a property transformer. When wireless communication occurs through
that output port to some receiver, the channel calls back the TransmitPropertyTransformer once for
each receiver, provides the location of the receiver, and executes the model contained by the Transmit-
PropertyTransformer actor.

The model contained by the TransmitPropertyTransformer actor is shown in figure 39. At the top
right is the top level of this model. It shows that when it is executed (on request by the channel, once
for each transmission), it is provided with three values, senderLocation, receiverLocation, and proper-
ties. The properties value is a record that in this case includes a power field that is to be modified by
the model to account for the antenna gain in the direction from the transmitter to the receiver. This
model calculates the angle of the transmission, calculates the antenna gain in that direction, and then
scales the power field of the properties record. Notice that this model has an SDFDirector rather than
the usual WirelessDirector or DEDirector used most commonly in VisualSense. This is because the
calculation of antenna gain is essentially a signal processing function, something that the SDFDirector
handles very well.

FIGURE 38. Model that includes a directional transmit antenna. As the model executes, the Receiver actor moves
in a circular pattern around the transmitter and measures and plots the received power.
30 VisualSense

Modeling Capabilities
The antenna gain is calculated using the model shown in the middle of figure 39. This model uses
two IterateOverArray actors (named “ArrayElements” and “Steering”) to model the antenna array ele-
ments and application of the steering vector. These actors are composite actors that execute their con-
tained models once for each element of an input array. These actors are examples of higher-order
components, and in this case enable the definition of a model where the number of antenna elements is
given by a parameter rather than hardwired into the diagram. The same mechanism can be used to
model the antenna gain pattern of the receiver.

FIGURE 39. Transmitter design for the model in figure 38, showing how a Ptolemy II model (in this case a syn-
chronous dataflow model) can be used to model transmission effects.
A Wireless and Sensor Networks Visual Modeler 31

Software Architecture
If there are multiple property transformers that are applicable to a particular transmission, then
they are executed in an arbitrary order, so the operations they perform on the properties must be com-
mutative. Typically, they select a field and multiply it by a constant.

4. Software Architecture
VisualSense is constructed by subclassing key classes in Ptolemy II. The extension to Ptolemy

consists of a few new Java classes and some XML files. The classes are designed to be subclassed by
model builders for customization, although non-trivial models can also be constructed without writing
any Java code. In the latter case, sensor network nodes are specified using block diagrams and finite
state machines.

The key classes in Ptolemy II (which define its meta model) are shown in figure 40. Executable
components implement the Actor interface, and can be either atomic or composite. Atomic actors are
defined in Java, while composite actors are assemblies of actors and relations. Each actor, whether
atomic or not, contains ports, which are linked in a composite actor via relations. A top-level model is
itself a composite actor, typically with no ports. Actors, ports and relations can all have attributes
(parameters). One of the attributes is a director. The director plays a key role in Ptolemy II: it defines
the semantics of a composite. It gives the concurrency model and the communication semantics. In
VisualSense, the director implements the simulator. The WirelessDirector is an almost completely
unmodified subclass of the pre-existing discrete-event director (DEDirector) in Ptolemy II.

The extensions that constitute VisualSense are shown in figure 40. A node in a wireless network is
an actor that can be a subclass of either TypedAtomicActor or TypedCompositeActor. The difference
between these is that for TypedAtomicActor, the behavior is defined in Java code, whereas for Typed-
CompositeActor, the behavior is defined by another Ptolemy II model, which is itself a composite of
actors.

Actors that communicate wirelessly have ports that are instances of WirelessIOPort. As with any
Ptolemy II port, the actor sends data by calling the send or broadcast method on the port. The send
method permits specification of a numerically indexed subchannel, whereas the broadcast method will
send to all subchannels.

In the case of WirelessIOPort, send and broadcast cannot determine the destination ports using
block-diagram-style connectivity because there is no such connectivity. Instead, they identify an
instance of WirelessChannel by name, and delegate to that instance to determine the destination(s) of
the messages. The instance is specified by setting the outsideChannel parameter of the port equal to the
name of the wireless channel (all actors at a given level of the hierarchy have unique names, a feature
provided by the base class).

The WirelessChannel interface and the AtomicWirelessChannel base class, shown in figure 40, are
designed for extensibility. They work together with WirelessIOPort, which uses the public method,
transmit, to send data. That method takes three arguments, a token1 to transmit, a source port, and a
token representing transmit properties (transmit power, for example, as discussed below).

1. A token in Ptolemy II is a wrapper for data. Ptolemy II provides a rich set of data types encapsulated as tokens,
including composite types such as arrays, matrices, and records (which have named fields). A sophisticated type
system ensures validity of data that is exchanged via tokens. A rich expression language, described below, per-
mits definition of tokens as expressions that can depend on parameters of actors or ports. Scoping rules limit the
visibility of parameters according to the hierarchy of the model, thus avoiding the pitfalls of using global vari-
ables. For details, see [8].
32 VisualSense

Software Architecture

e XML

an

Token)

uble})

e)

)
uble)

ort)

Port)

«Interface»
PropertyTransformer

oken
FIGURE 40. UML class diagram showing the key classes for wireless sensor network modeling. These classes plus som
files specifying configuration information and libraries constitute VisualSense.

TypedAtomicActor

AtomicWirelessChannel

+WirelessChannel(container : CompositeEntity, name : String)
#_distanceBetween(port1 : WirelessIOPort, port2 : WirelessIOPort) : double
#_isInRange(source : WirelessIOPort, destination : WirelessIOPort, properties : RecordToken) : boole
#_locationOf(port : WirelessIOPort) : double[]
#_receiversInRangeOf(port : WirelessIOPort, properties : RecordToken) : List of WirelessReceiver
#_transmitTo(token : Token, sender : WirelessIOPort, receiver : WirelessReceiver, properties : Record

+defaultProperties : Parameter (record)

WirelessIOPort

+WirelessIOPort(container : CompositeEntity, name : String)
+broadcast(data : Token)
+getInsideChannel() : WirelessIOChannel
+getOutsideChannel() : WirelessIOChannel
+getProperties(channelIndex : int) : Token
+getPropertiesInside(channelIndex : int) : Token
+send(channel : int, token : Token)
#_insideIsWireless() : boolean
#_outsideIsWireless() : boolean

+insideChannel : StringParameter
+insideTransmitProperties : Parameter
+outsideChannel : StringParameter
+outsideTransmitProperties : Parameter

TypedIOPort

+broadcast(token : Token)
+get(subchannel : int) : Token
+send(subchannel : int, token : Token)

delegate transmission

put tokens

delegate put and get LimitedRangeChannel

+defaultProperties : Parameter ({range=do

DelayChannel

+propagationSpeed : Parameter (doubl

PowerLossChannel

+efficiency : Parameter (double)
+powerLossFactor : Parameter (double
+defaultTransmitPower : Parameter (do

TypedCompositeActor

WirelessComposite

+newPort() : TypedIOPort

«Interface»
Actor

contained actors

contained ports

WirelessDirector

DEReceiver

+get() : Token
+put(token : Token)

creates

ErasureChannel

+lossProbability : Parameter (double)
+seed : Parameter (long)

DEDirector

WirelessReceiver

+WirelessReceiver()
+WirelessReceiver(container : IOPort)
+getProperties() : Token
+put(token : Token, properties : Token)

-_properties : Token

«Interface»
WirelessChannel

+getChannelPort() : ChannelPort
+listeningInputPorts() : List
+listeningOutputPorts() : List
+registerPropertyTransformer(transformer : PropertyTransformer, port : WirelessIOP
+sendingOutputPorts() : List
+sendingInputPorts() : List
+transmit(data : Token, source : WirelessIOPort, properties : RecordToken)
+unregisterPropertyTransformer(transfomer : PropertyTransformer, port : WirelessIO

+transformProperties(properties : RecordToken, source : WirelessIOPort, destination : WirelessIOPort) : RecordT

NodeModels

ChannelPort

1..1
A Wireless and Sensor Networks Visual Modeler 33

Software Architecture
AtomicWirelessChannel has a suite of protected methods, indicated in the UML diagram by the
leading pound sign (#); in the Ptolemy II coding style, protected methods have names that begin with
leading underscores(_). These provide simple default behavior, but are intended to be overridden in
subclasses to provide more sophisticated channel models. This is an example of the strategy design
pattern [6], where the code providing the large-scale behavior delegates to protected methods for
detailed behavior.

The default behavior of AtomicWirelessChannel is represented by the following pseudo code:
public void transmit(token, sender, properties) {

foreach receiver in range {
_transmitTo(token, sender, receiver, properties)

}
}

To determine which receivers are in range, it calls the protected method
_receiversInRange(), which by default returns all receivers contained by ports that refer to the
same channel name as that specified by the sender. The _transmitTo() method by default uses the
public transformProperties() method to modify the properties argument (see below) and
then put the token and the modified properties into the receiver. The transformProperties()
method applies any property transformers that are registered using the registerProper-
tyTransformer() method, but does nothing further. Thus, if there are no registered properties
transformers, the default AtomicWirelessChannel has no range limitations and introduces no transmis-
sion degradations. We can now show through a series of examples how subclassing makes it easy to
construct more detailed (and useful) channel models.

We illustrate the construction of model components such as channel models by subclassing with
examples.

4.1 Erasure Channel

Consider a channel that randomly drops data. This can be defined as follows:

public class ErasureChannel extends AtomicWirelessChannel {
... specify constructor ...
public Parameter lossProbability;
public Parameter seed;
private Random _random = new Random();
public void transmit(token, sender, properties) {

double experiment = _random.nextDouble();
if (experiment >= lossProbability.doubleValue()) {

super.transmit(token, sender, properties);
}

}
}

It is that simple. This channel adds to the base class a parameter called lossProbability. (The details of
constructing the channel and this parameter are not shown, see [8]). The Java class Random is used to
“throw the dice” to determine whether or not the transmission should actually occur.

Note that the above channel model might not be exactly what you want. In particular, it throws the
dice once, and uses the result to decide whether or not to transmit to all recipient ports that are in range.
34 VisualSense

Software Architecture
A better design might throw the dice once for each recipient port. We leave it as a (simple) exercise for
the reader to see how to modify the above code to accomplish this.

4.2 Limited Range Channels

The above channels have unlimited range, in that any input port that references the channel by
name is in range. This is because the default implementation of _isInRange() simply returns true. It
is easy for a subclass to change this behavior. Consider, for example, a channel model that uses a dis-
tance threshold:

public class LimitedRangeChannel extends ErasureChannel {
... specify constructor ...
public Parameter range;
protected boolean _isInRange(

source, destination, properties) {
double distance = _distanceBetween(source, destination);
if (distance <= range.doubleValue()) {

return true;
} else {

return false;
}

}
}

This class overrides the _isInRange() method to simply check the distance between the source
and the destination, returning true if the distance is below the specified range threshold. The
_isInRange() method uses the _locationOf() method, which by default returns the (two-dimen-
sional) location of the icon within the visual renditions of the model. Again, this yields a simplistic
model, but nonetheless one that could be useful. It would be easy to build a variant where location is in
three dimensional space and is specified by attributes attached to the sensor nodes. More sophisticated
models of range rely on the transmit properties concept, which we explain next.

4.3 Transmit Properties

In the previous section, the range of wireless communication is a property of the channel. How-
ever, in many cases, it depends on properties of the transmitting sensor node and of extraneous features
such as terrain. For example, a sensor node may have a power budget that depends on a battery model,
and the power it uses for transmission will affect the range.

The argument called properties plays a central role. This argument is used to specify (model-
dependent) information about a particular transmission. The properties argument is always a Record-
Token, which is a composite data type in Ptolemy II that has named fields of arbitrary type. The Atom-
icWirelessChannel base class provides a defaultProperties parameter that defines the fields that are
relevant for a particular channel.

A simple use of the properties field would be to specify the transmission range for a particular
transmission. Indeed, the LimitedRangeChannel subclass of AtomicWirelessChannel, has a default-
Properties value of “{range = Infinity}”. A user of this channel could change this to, for example,
“{range = 100.0}”, to represent that by default, transmissions have a range of 100 meters. An individ-
A Wireless and Sensor Networks Visual Modeler 35

Software Architecture
ual transmission can override this by setting the outsideTransmitProperties parameter of the sending
port.

This model, however, is still simplistic. Communication ranges are typically not simple distances.
More realistic models are supported by the PowerLossChannel subclass. This class has a parameter
powerPropagationFactor whose default value is the expression “1.0 / (4 * PI * distance * distance),”
which assumes that the transmit power is uniformly distributed on a sphere of radius distance. The
variable distance is a convenience variable provided in the scope in which this expression is evaluated.
The user of this model may replace this expression with any expression using the rich Ptolemy II
expression language, described below. The channel will then calculate the received power using the
specified powerPropagationFactor and provide the received power to the receiving node via the get-
Properties() method of its input ports. The receiving node can then determine whether the signal
has enough power to be received.

Much more sophisticated propagation models can be encapsulated and made available to the com-
munity as reusable components.

4.4 Antenna Gains and Terrain Models

Using the API as described so far, there appears to be no mechanism for implementing antenna
gains or terrain models. These depend on the signal path from the transmitter to the receiver. However,
close inspection reveals that the API is rich enough to accommodate these. In particular, the Wireless-
Channel interface has a key method, registerPropertyTransformer(), which can be used to
register any object that implements the TransformProperties interface (which includes any object that
implements WirelessChannel). An object that implements this interface is given the opportunity to
modify the transmit properties of any transmission (or it can selectively indicate an interest only in
transmissions coming from a particular port).

A transmit antenna model, for example, can be realized by an object that implements the Trans-
formProperties interface. In fact, we can use Ptolemy II infrastructure to provide an object that uses
another Ptolemy II model to implement the property transformation. Thus, the full suite of sophisti-
cated signal processing capabilities of Ptolemy II are at the disposal of the builder of the antenna
model.

The same goes for terrain models, although there is a caveat. Property transformers are required to
implement modifications of the properties record that are commutative. That is, if there are several
property transformers that can affect a particular transmission, the result of applying these transform-
ers needs to be the same regardless of the order in which they are applied. For simple terrain models
that apply only power loss, this will often be true. For some more sophisticated terrain models, how-
ever, it will not be true. Such models must be implemented as channels, subclassing for example the
PowerLossChannel.

4.5 Delay Channels

The DelayChannel subclass of ErasureChannel has a propagationSpeed parameter that the channel
uses to determine the delay between transmission and reception of a signal. In the DelayChannel class,
when the transmit() method is called, the channel calculates the delay to the specified location and
requests that the director re-invoke it after that delay has elapsed (by calling the fireAt() method of
the director, which places a request on the event queue). When it is reawakened, it delivers the mes-
sage to the receiver.
36 VisualSense

Framework Infrastructure
5. Framework Infrastructure
The Ptolemy II framework provides some useful infrastructure.

5.1 Hierarchy and Heterogeneity

Ptolemy II supports hierarchical mixing of distinct models of computation. An inside model and
its container model can have distinct directors. It is not uncommon for both directors to implement
similar semantics. However, it is possible to have much bigger differences. In order to support this, the
WirelessIOPort class in 40 can optionally specify both an insideChannel and an outsideChannel. If the
outside channel is specified, then wireless communication is used on the outside. If the inside channel
is specified, then wireless communication is used on the inside. Both can be used at the same time.

Another useful combination uses the continuous-time domain of Ptolemy II. This domain includes
a CTDirector with a sophisticated numerical solver for ordinary differential equations and extensive
support for hybrid systems modeling [2]. This can be used, for example, to construct sophisticated
models of the physical mobility of mobile sensor platforms.

5.2 Type System

Ptolemy II includes a sophisticated type system [19]. In this type system, actors, parameters, and
ports can all impose constraints on types, and a type resolution algorithm identifies the most specific
types that satisfy all the constraints. By default, the type system in Ptolemy II includes a type con-
straint for each connection in a block diagram. However, in wireless models, these connections do not
represent all the type constraints. In particular, every actor that sends data to a wireless channel
requires that every recipient from that channel be able to accept that data type. VisualSense imposes
this constraint in the WirelessChannel base class, so unless a particular model builder needs more
sophisticated constraints, the model builder does not need to specify particular data types in the model.
They will be inferred from the ultimate sources of the data and propagated throughout the model.

Note, however, that it would be unwise to explicitly model type constraints between every trans-
mitter and every receiver using a channel. If there are n such users, this would be n2 constraints, which
for large n could bog down type resolution. As shown in 40, a channel contains a single port, an
instance of ChannelPort. This is used to set up n type constraints, one to each user of the channel. This
simplifies type resolution and keeps the static analysis of the model tractable even for large models.

5.3 Expressions

In VisualSense, models specify computations by composing actors. Many computations, however,
are awkward to specify this way. A common situation is where we wish to evaluate a simple algebraic
expression, such as “sin(2π (x-1)).” It is possible to express this computation by composing actors in a
block diagram, but it is far more convenient to give it textually.

The expression language provides infrastructure for specifying algebraic expressions textually and
for evaluating them. The expression language is used to specify the values of parameters, guards and
actions in state machines, and for the calculation performed by the Expression actor. In fact, the
expression language is part of the generic infrastructure in Ptolemy II, upon which VisualSense is
built.

5.3.1 Expression Evaluator

Vergil provides an interactive expression evaluator, which is accessed through the File:New menu.
A Wireless and Sensor Networks Visual Modeler 37

Framework Infrastructure
This operates like an interactive command shell, and is shown in figure 5.1. It supports a command his-
tory. To access the previously entered expression, type the up arrow or Control-P. To go back, type the
down arrow or Control-N. The expression evaluator is useful for experimenting with expressions.

5.3.2 Simple Arithmetic Expressions

Constants and Literals. The simplest expression is a constant, which can be given either by the sym-
bolic name of the constant, or by a literal. By default, the symbolic names of constants supported are
PI, pi, E, e, true, false, i, j, NaN, Infinity, PositiveInfinity, NegativeInfinity, MaxUnsignedByte,
MinUnsignedByte, MaxInt, MinInt, MaxLong, MinLong, MaxDouble, MinDouble. For example,

PI/2.0

is a valid expression that refers to the symbolic name “PI” and the literal “2.0.” The constants i and j
are the imaginary number with value equal to the square root of −1. The constant NaN is “not a num-
ber,” which for example is the result of dividing 0.0/0.0. The constant Infinity is the result of dividing
1.0/0.0. The constants that start with “Max” and “Min” are the maximum and minimum values for
their corresponding types.

Numerical values without decimal points, such as “10” or “−3” are integers (type int). Numerical
values with decimal points, such as “10.0” or “3.14159” are of type double. Numerical values without
decimal points followed by the character “l” (el) or “L” are of type long. Unsigned integers followed
by “ub” or “UB” are of type unsignedByte, as in “5ub”. An unsignedByte has a value between 0 and
255; note that it not quite the same as the Java byte, which has a value between -128 and 127.

Numbers of type int, long, or unsignedByte can be specified in decimal, octal, or hexadecimal.
Numbers beginning with a leading “0” are octal numbers. Numbers beginning with a leading “0x” are
hexadecimal numbers. For example, “012” and “0xA” are both equal to the integer 10.

A complex is defined by appending an “i” or a “j” to a double for the imaginary part. This gives a
purely imaginary complex number which can then leverage the polymorphic operations in the Token

FIGURE 5.1. Expression evaluator, which is accessed through the File:New menu.
38 VisualSense

Framework Infrastructure
classes to create a general complex number. Thus “2 + 3i” will result in the expected complex num-
ber. You can optionally write this “2 + 3*i”.

Literal string constants are also supported. Anything between double quotes, “...”, is interpreted as
a string constant. The following built-in string-valued constants are defined:

The value of these variables is the value of the Java virtual machine property, such as user.home. The
properties user.dir and user.home are standard in Java. Their values are platform dependent; see the
documentation for the java.lang.System.getProperties() method for details. Note that user.dir and
user.home are usually not readable in unsigned applets, in which case, attempts to use these variables
in an expression will result in an exception. Vergil will display all the Java properties if you invoke
JVM Properties in the View menu of a Graph Editor.

The ptolemy.ptII.dir property is set automatically when VisualSense is started up. The constants()
utility function returns a record with all the globally defined constants. If you open the expression eval-
uator and invoke this function, you will see that its value is something like:

{CWD="C:\ptII\ptolemy\data\expr", E=2.718281828459,
HOME="C:\Documents and Settings\eal", Infinity=Infinity, MaxDou-
ble=1.7976931348623E308, MaxInt=2147483647,
MaxLong=9223372036854775807L, MaxUnsignedByte=255ub,
MinDouble=4.9E-324, MinInt=-2147483648,
MinLong=-9223372036854775808L, MinUnsignedByte=0ub, NaN=NaN,
NegativeInfinity=-Infinity, PI=3.1415926535898, PTII="c:\ptII",
PositiveInfinity=Infinity, boolean=false, complex=0.0 + 0.0i,
double=0.0, e=2.718281828459, false=false, fixedpoint=fix(0.0,2,1),
general=present, i=0.0 + 1.0i, int=0, j=0.0 + 1.0i, long=0L,
matrix=[], object=object(null), pi=3.1415926535898,
scalar=present, string="",true=true, unknown=present,
unsignedByte=0ub}

TABLE 3: String-valued constants defined in the expression language.

Variable name Meaning Property name Example under Windows

PTII The directory in which VisualSense is installed ptolemy.ptII.dir c:\tmp

HOME The user home directory user.home c:\Documents and Settings\you

CWD The current working directory user.dir c:\ptII
A Wireless and Sensor Networks Visual Modeler 39

Framework Infrastructure
Variables. Expressions can contain identifiers that are references to variables within the scope of the
expression. For example,

PI*x/2.0

is valid if “x” is a variable in scope. In the expression evaluator, the variables that are in scope include
the built-in constants plus any assignments that have been previously made. For example,

>> x = pi/2
1.5707963267949
>> sin(x)
1.0
>>

In the context of VisualSense models, the variables in scope include all parameters defined at the same
level of the hierarchy or higher. So for example, if an actor has a parameter named “x” with value 1.0,
then another parameter of the same actor can have an expression with value “PI*x/2.0”, which will
evaluate to π /2.

Consider a parameter P in actor X which is in turn contained by composite actor Y. The scope of an
expression for P includes all the parameters contained by X and Y, plus those of the container of Y, its
container, etc. That is, the scope includes any parameters defined above in the hierarchy.

You can add parameters to actors (composite or not) by right clicking on the actor, selecting “Con-
figure” and then clicking on “Add”, or by dragging in a parameter from the utilities library. Thus, you
can add variables to any scope, a capability that serves the same role as the “let” construct in many
functional programming languages.

Operators. The arithmetic operators are +, −, *, /, ^, and %. Most of these operators operate on most
data types, including arrays, records, and matrices. The ^ operator computes “to the power of” or expo-
nentiation where the exponent can only be an int or an unsignedByte.

The unsignedByte, int and long types can only represent integer numbers. Operations on these
types are integer operations, which can sometimes lead to unexpected results. For instance, 1/2 yields 0
if 1 and 2 are integers, whereas 1.0/2.0 yields 0.5. The exponentiation operator ‘^’ when used with
negative exponents can similarly yield unexpected results. For example, 2^−1 is 0 because the result is
computed as 1/(2^1).
40 VisualSense

Framework Infrastructure
The % operation is a modulo or remainder operation. The result is the remainder after division.
The sign of the result is the same as that of the dividend (the left argument). For example,

>> 3.0 % 2.0
1.0
>> -3.0 % 2.0
-1.0
>> -3.0 % -2.0
-1.0
>> 3.0 % -2.0
1.0

The magnitude of the result is always less than the magnitude of the divisor (the right argument). Note
that when this operator is used on doubles, the result is not the same as that produced by the remain-
der() function (see Table 6 on page 60). For instance,

>> remainder(-3.0, 2.0)
1.0

The remainder() function calculates the IEEE 754 standard remainder operation. It uses a rounding
division rather than a truncating division, and hence the sign can be positive or negative, depending on
complicated rules (see page 56). For example, counterintuitively,

>> remainder(3.0, 2.0)
-1.0

When an operator involves two distinct types, the expression language has to make a decision
about which type to use to implement the operation. If one of the two types can be converted without
loss into the other, then it will be. For instance, int can be converted losslessly to double, so 1.0/2 will
result in 2 being first converted to 2.0, so the result will be 0.5. Among the scalar types, unsignedByte
can be converted to anything else, int can be converted to double, and double can be converted to com-
plex. Note that long cannot be converted to double without loss, nor vice versa, so an expression like
2.0/2L yields the following error message:

Error evaluating expression "2.0/2L"
 in .Expression.evaluator
Because:
divide method not supported between ptolemy.data.DoubleToken '2.0' and
ptolemy.data.LongToken '2L' because the types are incomparable.

All scalar types have limited precision and magnitude. As a result of this, arithmetic operations are
subject to underflow and overflow.
• For double numbers, overflow results in the corresponding positive or negative infinity. Underflow

(i.e. the precision does not suffice to represent the result) will yield zero.
• For integer types and fixedpoint, overflow results in wraparound. For instance, while the value of

MaxInt is 2147483647, the expression MaxInt + 1 yields −2147483648. Similarly, while Max-
UnsignedByte has value 255ub, MaxUnsignedByte + 1ub has value 0ub. Note, however, that
A Wireless and Sensor Networks Visual Modeler 41

Framework Infrastructure
MaxUnsignedByte + 1 yields 256, which is an int, not an unsignedByte. This is because Max-
UnsignedByte can be losslessly converted to an int, so the addition is int addition, not unsigned-
Byte addition.

The bitwise operators are &, |, #, and ~. They operate on boolean, unsignedByte, int and long (but not
fixedpoint, double or complex). The operator & is bitwise AND, ~ is bitwise NOT, and | is bitwise OR,
and # is bitwise XOR (exclusive or, after MATLAB).

The relational operators are <, <=, >, >=, == and !=. They return type boolean. Note that these
relational operators check the values when possible, irrespective of type. So, for example,

1 == 1.0

returns true. If you wish to check for equality of both type and value, use the equals() method, as in

>> 1.equals(1.0)
false

Boolean-valued expressions can be used to give conditional values. The syntax for this is

boolean ? value1 : value2

If the boolean is true, the value of the expression is value1; otherwise, it is value2.
The logical boolean operators are &&, ||, !, & and |. They operate on type boolean and return type

boolean. The difference between logical && and logical & is that & evaluates all the operands regardless
of whether their value is now irrelevant. Similarly for logical || and |. This approach is borrowed
from Java. Thus, for example, the expression “false && x” will evaluate to false irrespective of
whether x is defined. On the other hand, “false & x” will throw an exception.

The << and >> operators performs arithmetic left and right shifts respectively. The >>> operator
performs a logical right shift, which does not preserve the sign. They operate on unsignedByte, int, and
long.

Comments. In expressions, anything inside /*...*/ is ignored, so you can insert comments.

5.3.3 Uses of Expressions

Parameters. The values of most parameters of actors can be given as expressions1. The variables in the
expression refer to other parameters that are in scope, which are those contained by the same container
or some container above in the hierarchy. They can also reference variables in a scope-extending
attribute, which includes variables defining units. Adding parameters to actors is straightforward, as
explained in the previous chapter.

String Parameters. Some parameters have values that are always strings of characters. Such parame-
ters support a simple string substitution mechanism where the value of the string can reference other

1. The exceptions are parameters that are strictly string parameters, in which case the value of
the parameter is the literal string, not the string interpreted as an expression, as for example
the function parameter of the TrigFunction actor, which can take on only “sin,” “cos,”
“tan”, “asin”, “acos”, and “atan” as values.
42 VisualSense

Framework Infrastructure
parameters in scope by name using the syntax $name, where name is the name of the parameter in
scope. For example, the StringCompare actor in figure 5.2 has as the value of firstString “The answer
is $PI”. This references the built-in constant PI. The value of secondString is “The answer is
3.1415926535898”. As shown in the figure, these two strings are deemed to be equal because $PI is
replaced with the value of PI.

Port Parameters. It is possible to define a parameter that is also a port. Such a PortParameter provides
a default value, which is specified like the value of any other parameter. When the corresponding port
receives data, however, the default value is overridden with the value provided at the port. Thus, this
object functions like a parameter and a port. The current value of the PortParameter is accessed like
that of any other parameter. Its current value will be either the default or the value most recently
received on the port.

A PortParameter might be contained by an atomic actor or a composite actor. To put one in a com-
posite actor, drag it into a model from the utilities library, as shown in figure 5.3. The resulting icon is
actually a combination of two icons, one representing the port, and the other representing the parame-
ter. These can be moved separately, but doing so might create confusion, so we recommend selecting
both by clicking and dragging over the pair and moving both together.

To be useful, a PortParameter has to be given a name (the default name, “portParameter,” is not
very compelling). To change the name, right click on the icon and select “Customize Name,” as shown
in figure 5.3. In the figure, the name is set to “noiseLevel.” Then set the default value by either double
clicking or selecting “Configure.” In the figure, the default value is set to 10.0.

An example of a library actor that uses a PortParameter is the Sinewave actor, which is found in
the sources library in Vergil. It is shown in figure 5.4. If you double click on this actor, you can set the
default values for frequency and phase. But both of these values can also be set by the corresponding
ports, which are shown with grey fill.

Expression Actor. The Expression actor is a particularly useful actor found in the math library. By
default, it has one output and no inputs, as shown in Figure 5.5(a). The first step in using it is to add
ports, as shown in (b) and (c), resulting in a new icon as shown in (d). Note: In (c) when you click on
Add, you will be prompted for a Name (pick one) and a Class. Leave the Class entry blank and click
OK. You then specify an expression using the port names, as shown in (e), resulting in the icon shown

FIGURE 5.2. String parameters are indicated in the parameter editor boxes by a light blue background. A
string parameter can include references to variables in scope with $name, where name is the name of the
variable. In this example, the built-in constant $PI is referenced by name in the first
A Wireless and Sensor Networks Visual Modeler 43

Framework Infrastructure
in (f).

FIGURE 5.3. A portParameter is both a port and a parameter. To use it in a composite actor, drag it into the
actor, change its name to something meaningful, and set its default value.

customize the name:

FIGURE 5.5. Illustration of the Expression actor.

(a)

(b)

(c)

(d)

(e) (f)
44 VisualSense

Framework Infrastructure
State Machines. Expressions give the guards for state transitions, as well as the values used in actions
that produce outputs and actions that set values of parameters in the refinements of destination states.
This mechanism was explained in the previous chapter.

5.4 Composite Data Types

5.4.1 Arrays

Arrays are specified with curly brackets, e.g., “{1, 2, 3}” is an array of int, while “{"x",
"y", "z"}” is an array of string. The types are denoted “{int}” and “{string}” respectively. An
array is an ordered list of tokens of any type, with the only constraint being that the elements all have

FIGURE 5.4. Sinewave actor, showing its port parameters, and their use at the lower level of the hierarchy.
A Wireless and Sensor Networks Visual Modeler 45

Framework Infrastructure
the same type. If an array is given with mixed types, the expression evaluator will attempt to losslessly
convert the elements to a common type. Thus, for example,

{1, 2.3}

has value with type {double}:

{1.0, 2.3}

The elements of the array can be given by expressions, as in the example “{2*pi, 3*pi}.”
Arrays can be nested; for example, “{{1, 2}, {3, 4, 5}}” is an array of arrays of integers. The
elements of an array can be accessed as follows:

>> {1.0, 2.3}(1)
2.3

which yields 2.3. Note that indexing begins at 0. Of course, if name is the name of a variable in scope
whose value is an array, then its elements may be accessed similarly, as shown in this example:

>> x = {1.0, 2.3}
{1.0, 2.3}
>> x(0)
1.0

Arithmetic operations on arrays are carried out element-by-element, as shown by the following
examples:

>> {1, 2}*{2, 2}
{2, 4}
>> {1, 2}+{2, 2}
{3, 4}
>> {1, 2}-{2, 2}
{-1, 0}
>> {1, 2}^2
{1, 4}
>> {1, 2}%{2, 2}
{1, 0}

An array can be checked for equality with another array as follows:

>> {1, 2}=={2, 2}
false
>> {1, 2}!={2, 2}
true

For other comparisons of arrays, use the compare() function (see Table 6 on page 60). As with scalars,
testing for equality using the == or != operators tests the values, independent of type. For example,
46 VisualSense

Framework Infrastructure
>> {1, 2}=={1.0, 2.0}
true

5.4.2 Matrices

In VisualSense, arrays are ordered sets of tokens. VisualSense also supports matrices, which are
more specialized than arrays. They contain only certain primitive types, currently boolean, complex,
double, fixedpoint, int, and long. Currently unsignedByte matrices are not supported. Matrices cannot
contain arbitrary tokens, so they cannot, for example, contain matrices. They are intended for data
intensive computations.

Matrices are specified with square brackets, using commas to separate row elements and semico-
lons to separate rows. E.g., “[1, 2, 3; 4, 5, 5+1]” gives a two by three integer matrix (2 rows and 3 col-
umns). Note that an array or matrix element can be given by an expression. A row vector can be given
as “[1, 2, 3]” and a column vector as “[1; 2; 3]”. Some MATLAB-style array constructors are sup-
ported. For example, “[1:2:9]” gives an array of odd numbers from 1 to 9, and is equivalent to “[1, 3, 5,
7, 9].” Similarly, “[1:2:9; 2:2:10]” is equivalent to “[1, 3, 5, 7, 9; 2, 4, 6, 8, 10].” In the syntax
“[p:q:r]”, p is the first element, q is the step between elements, and r is an upper bound on the last ele-
ment. That is, the matrix will not contain an element larger than r. If a matrix with mixed types is spec-
ified, then the elements will be converted to a common type, if possible. Thus, for example, “[1.0, 1]”
is equivalent to “[1.0, 1.0],” but “[1.0, 1L]” is illegal (because there is no common type to which both
elements can be converted losslessly).

Reference to elements of matrices have the form “matrix(n, m)” or “name(n, m)” where name is
the name of a matrix variable in scope, n is the row index, and m is the column index. Index numbers
start with zero, as in Java, not 1, as in MATLAB. For example,

>> [1, 2; 3, 4](0,0)
1
>> a = [1, 2; 3, 4]
[1, 2; 3, 4]
>> a(1,1)
4

Matrix multiplication works as expected. For example, as seen in the expression evaluator (see fig-
ure 5.1),

>> [1, 2; 3, 4]*[2, 2; 2, 2]
[6, 6; 14, 14]

Of course, if the dimensions of the matrix don’t match, then you will get an error message. To do ele-
mentwise multiplication, use the multipyElements() function (see Table 7 on page 62). Matrix addition
and subtraction are elementwise, as expected, but the division operator is not supported. Elementwise
division can be accomplished with the divideElements() function, and multiplication by a matrix
inverse can be accomplished using the inverse() function (see Table 7 on page 62). A matrix can be
A Wireless and Sensor Networks Visual Modeler 47

Framework Infrastructure
raised to an int or unsignedByte power, which is equivalent to multiplying it by itself some number of
times. For instance,

>> [3, 0; 0, 3]^3
[27, 0; 0, 27]

A matrix can also be multiplied or divided by a scalar, as follows:

>> [3, 0; 0, 3]*3
[9, 0; 0, 9]

A matrix can be added to a scalar. It can also be subtracted from a scalar, or have a scalar subtracted
from it. For instance,

>> 1-[3, 0; 0, 3]
[-2, 1; 1, -2]

A matrix can be checked for equality with another matrix as follows:

>> [3, 0; 0, 3]!=[3, 0; 0, 6]
true
>> [3, 0; 0, 3]==[3, 0; 0, 3]
true

For other comparisons of matrices, use the compare() function (see Table 6 on page 60). As with sca-
lars, testing for equality using the == or != operators tests the values, independent of type. For exam-
ple,

>> [1, 2]==[1.0, 2.0]
true

To get type-specific equality tests, use the equals() method, as in the following examples:

>> [1, 2].equals([1.0, 2.0])
false
>> [1.0, 2.0].equals([1.0, 2.0])
true
>>

5.4.3 Records

A record token is a composite type containing named fields, where each field has a value. The
value of each field can have a distinct type. Records are delimited by curly braces, with each field
given a name. For example, “{a=1, b="foo"}” is a record with two fields, named “a” and “b”, with
values 1 (an integer) and “foo” (a string), respectively. The value of a field can be an arbitrary expres-
sion, and records can be nested (a field of a record token may be a record token).
48 VisualSense

Framework Infrastructure
Fields may be accessed using the period operator. For example,

{a=1,b=2}.a

yields 1. You can optionally write this as if it were a method call:

{a=1,b=2}.a()

The arithmetic operators +, −, *, /, and % can be applied to records. If the records do not have identical
fields, then the operator is applied only to the fields that match, and the result contains only the fields
that match. Thus, for example,

{foodCost=40, hotelCost=100} + {foodCost=20, taxiCost=20}

yields the result

{foodCost=60}

You can think of an operation as a set intersection, where the operation specifies how to merge the val-
ues of the intersecting fields. You can also form an intersection without applying an operation. In this
case, using the intersect() function, you form a record that has only the common fields of two specified
records, with the values taken from the first record. For example,

>> intersect({a=1, c=2}, {a=3, b=4})
{a=1}

Records can be joined (think of a set union) without any operation being applied by using the
merge() function. This function takes two arguments, both of which are record tokens. If the two
record tokens have common fields, then the field value from the first record is used. For example,

merge({a=1, b=2}, {a=3, c=3})

yields the result {a=1, b=2, c=3}.
A Wireless and Sensor Networks Visual Modeler 49

Framework Infrastructure
Records can be compared, as in the following examples:

>> {a=1, b=2}!={a=1, b=2}
false
>> {a=1, b=2}!={a=1, c=2}
true

Note that two records are equal only if they have the same field labels and the values match. As with
scalars, the values match irrespective of type. For example:

>> {a=1, b=2}=={a=1.0, b=2.0+0.0i}
true

The order of the fields is irrelevant. Hence

>> {a=1, b=2}=={b=2, a=1}
true

Moreover, record fields are reported in alphabetical order, irrespective of the order in which they are
defined. For example,

>> {b=2, a=1}
{a=1, b=2}

To get type-specific equality tests, use the equals() method, as in the following examples:

>> {a=1, b=2}.equals({a=1.0, b=2.0+0.0i})
false
>> {a=1, b=2}.equals({b=2, a=1})
true
>>

5.5 Invoking Methods in Expressions

Every element and subexpression in an expression represents an instance of the Token class in
VisualSense (or more likely, a class derived from Token). The expression language supports invocation
of any method of a given token, as long as the arguments of the method are of type Token and the
return type is Token (or a class derived from Token, or something that the expression parser can easily
convert to a token, such as a string, double, int, etc.). The syntax for this is (token).methodName(args),
where methodName is the name of the method and args is a comma-separated set of arguments. Each
argument can itself be an expression. Note that the parentheses around the token are not required, but
might be useful for clarity. As an example, the ArrayToken and RecordToken classes have a length()
method, illustrated by the following examples:

{1, 2, 3}.length()
{a=1, b=2, c=3}.length()

each of which returns the integer 3.
50 VisualSense

Framework Infrastructure
The MatrixToken classes have three particularly useful methods, illustrated in the following exam-
ples:

[1, 2; 3, 4; 5, 6].getRowCount()

which returns 3, and

[1, 2; 3, 4; 5, 6].getColumnCount()

which returns 2, and

[1, 2; 3, 4; 5, 6].toArray()

which returns {1, 2, 3, 4, 5, 6}. The latter function can be particularly useful for creating arrays using
MATLAB-style syntax. For example, to obtain an array with the integers from 1 to 100, you can enter:

[1:1:100].toArray()

5.6 Defining Functions in Expressions

The expression language supports definition of functions. The syntax is:

function(arg1:Type, arg2:Type...)
 function body

where “function” is the keyword for defining a function. The type of an argument can be left unspeci-
fied, in which case the expression language will attempt to infer it. The function body gives an expres-
sion that defines the return value of the function. The return type is always inferred based on the
argument type and the expression. For example:

function(x:double) x*5.0

defines a function that takes a double argument, multiplies it by 5.0, and returns a double. The return
value of the above expression is the function itself. Thus, for example, the expression evaluator yields:

>> function(x:double) x*5.0
(function(x:double) (x*5.0))
>>

To apply the function to an argument, simply do

>> (function(x:double) x*5.0) (10.0)
50.0
>>
A Wireless and Sensor Networks Visual Modeler 51

Framework Infrastructure
Alternatively, in the expression evaluator, you can assign the function to a variable, and then use the
variable name to apply the function. For example,

>> f = function(x:double) x*5.0
(function(x:double) (x*5.0))
>> f(10)
50.0
>>

Functions can be passed as arguments to certain “higher-order functions” that have been defined
(see table Table 10 on page 66). For example, the iterate() function takes three arguments, a function,
an integer, and an initial value to which to apply the function. It applies the function first to the initial
value, then to the result of the application, then to that result, collecting the results into an array whose
length is given by the second argument. For example, to get an array whose values are multiples of 3,
try

>> iterate(function(x:int) x+3, 5, 0)
{0, 3, 6, 9, 12}

The function given as an argument simply adds three to its argument. The result is the specified initial
value (0) followed by the result of applying the function once to that initial value, then twice, then
three times, etc.

Another useful higher-order function is the map() function. This one takes a function and an array
as arguments, and simply applies the function to each element of the array to construct a result array.
For example,

>> map(function(x:int) x+3, {0, 2, 3})
{3, 5, 6}

A typical use of functions in a VisualSense model is to define a parameter in a model whose value
is a function. Suppose that the parameter named “f” has value “function(x:double) x*5.0”.
Then within the scope of that parameter, the expression “f(10.0)” will yield result 50.0.

Functions can also be passed along connections in a VisualSense model. Consider the model
shown in figure 5.6. In that example, the Const actor defines a function that simply squares the argu-

FIGURE 5.6. Example of a function being passed from one actor to another.
52 VisualSense

Framework Infrastructure
ment. Its output, therefore, is a token with type function. That token is fed to the “f” input of the
Expression actor. The expression uses this function by applying it to the token provided on the “y”
input. That token, in turn, is supplied by the Ramp actor, so the result is the curve shown in the plot on
the right.

A more elaborate use is shown in figure 5.7. In that example, the Const actor produces a function,
which is then used by the Expression actor to create new function, which is then used by Expression2
to perform a calculation. The calculation performed here adds the output of the Ramp to the square of
the output of the Ramp.

Functions can be recursive, as illustrated by the following (rather arcane) example:

>> fact = function(x:int,f:(function(x,f) int)) (x<1?1:x*f(x-1,f))
(function(x:int, f:function(a0:general, a1:general) int)
(x<1)?1:(x*f((x-1), f)))
>> factorial = function(x:int) fact(x,fact)
(function(x:int) (function(x:int, f:function(a0:general, a1:general)
int) (x<1)?1:(x*f((x-1), f)))(x, (function(x:int, f:function(a0:gen-
eral, a1:general) int) (x<1)?1:(x*f((x-1), f)))))
>> map(factorial, [1:1:5].toArray())
{1, 2, 6, 24, 120}
>>

The first expression defines a function named “fact” that takes a function as an argument, and if the
argument is greater than or equal to 1, uses that function recursively. The second expression defines a
new function “factorial” using “fact.” The final command applies the factorial function to an array to
compute factorials.

5.7 Built-In Functions

The expression language includes a set of functions, such as sin(), cos(), etc. The functions cur-
rently available are shown in the tables in the appendix, which also show the argument types and return

FIGURE 5.7. More elaborate example with functions passed between actors.
A Wireless and Sensor Networks Visual Modeler 53

Framework Infrastructure
types.
In most cases, a function that operates on scalar arguments can also operate on arrays and matrices.

Thus, for example, you can fill a row vector with a sine wave using an expression like

sin([0.0:PI/100:1.0])

Or you can construct an array as follows,

sin({0.0, 0.1, 0.2, 0.3})

Functions that operate on type double will also generally operate on int or unsignedByte, because these
can be losslessly converted to double, but not generally on long or complex.

Tables of available functions are shown in the appendix. For example, Table 5 on page 59 shows
trigonometric functions. Note that these operate on double or complex, and hence on int and unsigned-
Byte, which can be losslessly converted to double. The result will always be double. For example,

>> cos(0)
1.0

These functions will also operate on matrices and arrays, in addition to the scalar types shown in the
table, as illustrated above. The result will be a matrix or array of the same size as the argument, but
always containing elements of type double

Table 6 on page 60 shows other arithmetic functions beyond the trigonometric functions. As with
the trigonometric functions, those that indicate that they operate on double will also work on int and
unsignedByte, and unless they indicate otherwise, they will return whatever they return when the argu-
ment is double. Those functions in the table that take scalar arguments will also operate on matrices
and arrays. For example, since the table indicates that the max() function can take int, int as arguments,
then by implication, it can also take {int}, {int}. For example,

>> max({1, 2}, {2, 1})
{2, 2}

Notice that the table also indicates that max() can take {int} as an argument. E.g.

>> max({1, 2, 3})
3

In the former case, the function is applied pointwise to the two arguments. In the latter case, the
returned value is the maximum over all the contents of the single argument.

Table 7 shows functions that only work with matrices, arrays, or records (that is, there is no corre-
sponding scalar operation). Recall that most functions that operate on scalars will also operate on
arrays and matricesTable 8 shows utility functions for evaluating expressions given as strings or repre-
senting numbers as strings. Of these, the eval() function is the most flexible (see page 55).

A few of the functions have sufficiently subtle properties that they require further explanation.
That explanation is here.
54 VisualSense

Framework Infrastructure
eval() and traceEvaluation()

The built-in function eval() will evaluate a string as an expression in the expression language. For
example,

eval("[1.0, 2.0; 3.0, 4.0]")

will return a matrix of doubles. The following combination can be used to read parameters from a file:

eval(readFile("filename"))

where the filename can be relative to the current working directory (where VisualSense was started, as
reported by the property user.dir), the user’s home directory (as reported by the property user.home), or
the classpath, which includes the directory tree in which VisualSense is installed.

Note that if eval() is used in an Expression actor, then it will be impossible for the type system to
infer any more specific output type than general. If you need the output type to be more specific, then
you will need to cast the result of eval(). For example, to force it to type double:

>> cast(double, eval("pi/2"))
1.5707963267949

The traceEvaluation() function evaluates an expression given as a string, much like eval(), but instead
of reporting the result, reports exactly how the expression was evaluated. This can be used to debug
expressions, particularly when the expression language is extended by users.

random(), gaussian()

The functions random() and gaussian() shown in Table 6 on page 60 return one or more random
numbers. With the minimum number of arguments (zero or two, respectively), they return a single
number. With one additional argument, they return an array of the specified length. With a second
additional argument, they return a matrix with the specified number of rows and columns.

There is a key subtlety when using these functions in VisualSense. In particular, they are evaluated
only when the expression within which they appear is evaluated. The result of the expression may be
used repeatedly without re-evaluating the expression. Thus, for example, if the value parameter of the
Const actor is set to “random()”, then its output will be a random constant, i.e., it will not change on
each firing. The output will change, however, on successive runs of the model. In contrast, if this is
used in an Expression actor, then each firing triggers an evaluation of the expression, and consequently
will result in a new random number.

property()

The property() function accesses system properties by name. Some possibly useful system proper-
ties are:
• ptolemy.ptII.dir: The directory in which VisualSense is installed.
• ptolemy.ptII.dirAsURL: The directory in which VisualSense is installed, but represented as a

URL.
• user.dir: The current working directory, which is usually the directory in which the current execut-

able was started.
A Wireless and Sensor Networks Visual Modeler 55

Framework Infrastructure
remainder()

This function computes the remainder operation on two arguments as prescribed by the IEEE 754
standard, which is not the same as the modulo operation computed by the % operator. The result of
remainder(x, y) is , where is the integer closest to the exact value of . If two integers
are equally close, then is the integer that is even. This yields results that may be surprising, as indi-
cated by the following examples:

>> remainder(1,2)
1.0
>> remainder(3,2)
-1.0

Compare this to

>> 3%2
1

which is different in two ways. The result numerically different and is of type int, whereas remain-
der() always yields a result of type double. The remainder() function is implemented by the
java.lang.Math class, which calls it IEEEremainder(). The documentation for that class gives the
following special cases:
• If either argument is NaN, or the first argument is infinite, or the second argument is positive zero

or negative zero, then the result is NaN.
• If the first argument is finite and the second argument is infinite, then the result is the same as the

first argument.

DCT() and IDCT()

The DCT function can take one, two, or three arguments. In all three cases, the first argument is an
array of length and the DCT returns an

(1)

for from 0 to , where is the size of the specified array and is the size of the DCT. If only
one argument is given, then is set to equal the next power of two larger than . If a second argu-

x yn– n x/y
n

N 0>

Xk sk xn 2n 1+()k
π

2D
------- 

 cos

n 0=

N 1–

∑=

k D 1– N D
D N
56 VisualSense

Framework Infrastructure
ment is given, then its value is the order of the DCT, and the size of the DCT is . If a third argu-
ment is given, then it specifies the scaling factors according to the following table:

The default, if a third argument is not given, is “Normalized.”
The IDCT function is similar, and can also take one, two, or three arguments. The formula in this

case is

. (2)

5.8 Fixed Point Numbers

VisualSense includes a preliminary fixed point data type. We represent a fixed point value in the
expression language using the following format:

fix(value, totalBits, integerBits)

Thus, a fixed point value of 5.375 that uses 8 bit precision of which 4 bits are used to represent the
(signed) integer part can be represented as:

fix(5.375, 8, 4)

The value can also be a matrix of doubles. The values are rounded, yielding the nearest value repre-
sentable with the specified precision. If the value to represent is out of range, then it is saturated, mean-
ing that the maximum or minimum fixed point value is returned, depending on the sign of the specified
value. For example,

fix(5.375, 8, 3)

will yield 3.968758, the maximum value possible with the (8/3) precision.
In addition to the fix() function, the expression language offers a quantize() function. The argu-

ments are the same as those of the fix() function, but the return type is a DoubleToken or DoubleMa-

TABLE 4: Normalization options for the DCT function

Name Third argument Normalization

Normalized 0

Unnormalized 1

Orthonormal 2

2
order

sk

sk
1/ 2; k = 0

1 otherwise;



=

sk 1=

sk
1/ D; k = 0

2/D otherwise;






=

xn skXk 2n 1+()k
π

2D
------- 

 cos

k 0=

N 1–

∑=
A Wireless and Sensor Networks Visual Modeler 57

Framework Infrastructure
trixToken instead of a FixToken or FixMatrixToken. This function can therefore be used to quantize
double-precision values without ever explicitly working with the fixed-point representation.

To make the FixToken accessible within the expression language, the following functions are
available:
• To create a single FixPoint Token using the expression language:

fix(5.34, 10, 4)

This will create a FixToken. In this case, we try to fit the number 5.34 into a 10 bit representation
with 4 bits used in the integer part. This may lead to quantization errors. By default the round
quantizer is used.

• To create a Matrix with FixPoint values using the expression language:
fix([-.040609, -.001628, .17853], 10, 2)

This will create a FixMatrixToken with 1 row and 3 columns, in which each element is a FixPoint
value with precision(10/2). The resulting FixMatrixToken will try to fit each element of the given
double matrix into a 10 bit representation with 2 bits used for the integer part. By default the round
quantizer is used.

• To create a single DoubleToken, which is the quantized version of the double value given, using
the expression language:
quantize(5.34, 10, 4)

This will create a DoubleToken. The resulting DoubleToken contains the double value obtained by
fitting the number 5.34 into a 10 bit representation with 4 bits used in the integer part. This may
lead to quantization errors. By default the round quantizer is used.

• To create a Matrix with doubles quantized to a particular precision using the expression language:
quantize([-.040609, -.001628, .17853], 10, 2)

This will create a DoubleMatrixToken with 1 row and 3 columns. The elements of the token are
obtained by fitting the given matrix elements into a 10 bit representation with 2 bits used for the
integer part. Instead of being a fixed point value, the values are converted back to their double rep-
resentation and by default the round quantizer is used.
58 VisualSense

Framework Infrastructure
Appendix A: Tables of Functions

In this appendix, we tabulate the functions available in the expression language. Further explana-
tion of many of these functions is given in section section 5.7 above.

A.1 Trigonometric Functions

TABLE 5: Trigonometric functions.

function argument type(s) return type description

acos double in the range
[-1.0, 1.0] or
complex

double in the range
[0.0, pi] or NaN if out of range or
complex

arc cosine

complex case:

asin double in the range
[-1.0, 1.0] or
complex

double in the range
[-pi/2, pi/2] or NaN if out of range
or complex

arc sine

complex case:

atan double or
complex

double in the range [-pi/2, pi/2]
or complex

arc tangent

complex case:

atan2 double, double double in the range [-pi, pi] angle of a vector (note: the arguments are (y,x), not (x,y) as
one might expect).

acosh double greater than 1 or
complex

double or
complex

hyperbolic arc cosine, defined for both double and complex

case by:

asinh double or
complex

double or
complex

hyperbolic arc sine

complex case:

cos double or
complex

double in the range , or

complex

cosine

complex case:

cosh double or
complex

double or
complex

hyperbolic cosine, defined for double or complex by:

sin double or
complex

double or
complex

sine function

complex case:

sinh double or
complex

double or
complex

hyperbolic sine, defined for double or complex by:

tan double or
complex

double or
complex

tangent function, defined for double or complex by:

tanh double or
complex

double or
complex

hyperbolic tangent, defined for double or complex by:

acos z() i z isqrt 1 z2–()+()log–=

z()asin i iz sqrt 1 z2–()+()log–=

z()atan
i
2
--- i z–

i z+
---------- 
 log–=

z()acosh z sqrt z2 1–()+()log=

z()asinh z sqrt z
2

1+()+()log=

1 1,–[]
z()cos

iz()exp i– z()exp+()
2

--=

z()cosh
z()exp z–()exp+()

2
--=

z()sin
iz()exp i– z()exp–()

2i
---=

z()sinh
z()exp z–()exp–()

2
---=

z()tan
z()sin
z()cos

----------------=

z()tanh
z()sinh
z()cosh

-------------------=
A Wireless and Sensor Networks Visual Modeler 59

Framework Infrastructure
A.2 Basic Mathematical Functions

TABLE 6: Basic mathematical functions

function argument type(s) return type description

abs double or int or long or com-
plex

double or int or long
(complex returns double)

absolute value

complex case:

angle complex double in the range [-pi, pi] angle or argument of the complex number:

ceil double double ceiling function, which returns the smallest (closest to neg-
ative infinity) double value that is not less than the argu-
ment and is an integer.

compare double, double int compare two numbers, returning -1, 0, or 1 if the first argu-
ment is less than, equal to, or greater than the second.

conjugate complex complex complex conjugate

exp double or
complex

double in the range
[0.0, infinity] or complex

exponential function (e^argument)

complex case:

floor double double floor function, which is the largest (closest to positive
infinity) value not greater than the argument that is an inte-
ger.

gaussian double, double or
double, double, int, or
double, double, int, int

double or
{double} or
[double]

one or more Gaussian random variables with the specified
mean and standard deviation (see page 55).

imag complex double imaginary part

isInfinite double boolean return true if the argument is infinite

isNaN double boolean return true if the argument is “not a number”

log double or
complex

double or
complex

natural logarithm

complex case:

log10 double double log base 10

log2 double double log base 2

max double, double or
int, int or
long, long or
unsignedByte, unsignedByte or
{double} or
{int} or
{long} or
{unsignedByte}

double or
int or
long or
unsignedByte

maximum

min double, double or
int, int or
long, long or
unsignedByte, unsignedByte or
{double} or
{int} or
{long} or
{unsignedByte}

double or
int or
long or
unsignedByte

minimum

abs a ib+() z a
2

b
2

+= =

z∠

e
a ib+

e
a

b()cos i b()sin+()=

z()log abs z() iangle z()+()log=
60 VisualSense

Framework Infrastructure
neighborhood type, type, double boolean return true if the first argument is in the neighborhood of
the second, meaning that the distance is less than or equal
to the third argument. The first two arguments can be any
type for which such a distance is defined. For composite
types, arrays, records, and matrices, then return true if the
first two arguments have the same structure, and each cor-
responding element is in the neighborhood.

pow double, double or
complex, complex

double or
complex

first argument to the power of the second

random no arguments or
int or
int, int

double or
{double} or
[double]

one or more random numbers between 0.0 and 1.0 (see
page 55)

real complex double real part

remainder double, double double remainder after division, according to the IEEE 754 float-
ing-point standard (see page 56).

round double long round to the nearest long, choosing the next greater integer
when exactly in between, and throwing an exception if out
of range. If the argument is NaN, the result is 0L. If the
argument is out of range, the result is either MaxLong or
MinLong, depending on the sign.

roundToInt double int round to the nearest int, choosing the next greater integer
when exactly in between, and throwing an exception if out
of range. If the argument is NaN, the result is 0. If the argu-
ment is out of range, the result is either MaxInt or MinInt,
depending on the sign.

sgn double int -1 if the argument is negative, 1 otherwise

sqrt double or
complex

double or
complex

square root. If the argument is double with value less than
zero, then the result is NaN.

complex case:

toDegrees double double convert radians to degrees

toRadians double double convert degrees to radians

TABLE 6: Basic mathematical functions

function argument type(s) return type description

sqrt z() z
z∠

2
------ 
 cos i

z∠
2

------ 
 sin+ 

 =
A Wireless and Sensor Networks Visual Modeler 61

Framework Infrastructure
A.3 Matrix, Array, and Record Functions.

TABLE 7: Functions that take or return matrices, arrays, or records.

function argument type(s) return type description

arrayToMatrix {type}, int, int [type] Create a matrix from the specified array with the specified
number of rows and columns

conjugateTranspose [complex] [complex] Return the conjugate transpose of the specified matrix.

createSequence type, type, int {type} Create an array with values starting with the first argument,
incremented by the second argument, of length given by the
third argument.

crop [int], int, int, int, int or
[double], int, int, int, int or
[complex], int, int, int, int or
[long], int, int, int, int or

[int] or
[double] or
[complex] or
[long] or

Given a matrix of any type, return a submatrix starting at the
specified row and column with the specified number of rows
and columns.

determinant [double] or
[complex]

double or
complex

Return the determinant of the specified matrix.

diag {type} [type] Return a diagonal matrix with the values along the diagonal
given by the specified array.

divideElements [type], [type] [type] Return the element-by-element division of two matrices

hilbert int [double] Return a square Hilbert matrix, where .

A Hilbert matrix is nearly, but not quite singular.

identityMatrixComplex int [complex] Return an identity matrix with the specified dimension.

identityMatrixDouble int [double] Return an identity matrix with the specified dimension.

identityMatrixInt int [int] Return an identity matrix with the specified dimension.

identityMatrixLong int [long] Return an identity matrix with the specified dimension.

intersect record, record record Return a record that contains only fields that are present in
both arguments, where the value of the field is taken from the
first record.

inverse [double] or
[complex]

[double] or
[complex]

Return the inverse of the specified matrix, or throw an excep-
tion if it is singular.

matrixToArray [type] {type} Create an array containing the values in the matrix

merge record, record record Merge two records, giving priority to the first one when they
have matching record labels.

multiplyElements [type], [type] [type] Multiply elementwise the two specified matrices.

orthogonalizeColumns [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthogonal columns.

orthogonalizeRows [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthogonal rows.

orthonormalizeColumns [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthonormal columns.

orthonormalizeRows [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthonormal rows.

repeat int, type {type} Create an array by repeating the specified token the specified
number of times.

sum {type} or
[type]

type Sum the elements of the specified array or matrix. This throws
an exception if the elements do not support addition or if the
array is empty (an empty matrix will return zero).

trace [type] type Return the trace of the specified matrix.

Aij 1/ i j 1+ +()=
62 VisualSense

Framework Infrastructure
A.4 Functions for Evaluating Expressions

transpose [type] [type] Return the transpose of the specified matrix.

zeroMatrixComplex int, int [complex] Return a zero matrix with the specified number of rows and
columns.

zeroMatrixDouble int, int [double] Return a zero matrix with the specified number of rows and
columns.

zeroMatrixInt int, int [int] Return a zero matrix with the specified number of rows and
columns.

zeroMatrixLong int, int [long] Return a zero matrix with the specified number of rows and
columns.

TABLE 8: Utility functions for evaluating expressions

function argument type(s) return type description

eval string any type evaluate the specified expression (see page 55).

parseInt string or
string, int

int return an int read from a string, using the given radix if a sec-
ond argument is provided.

parseLong string or
string, int

int return a long read from a string, using the given radix if a sec-
ond argument is provided.

toBinaryString int or long string return a binary representation of the argument

toOctalString int or long string return an octal representation of the argument

toString double or
int or
int, int or
long or
long, int

string return a string representation of the argument, using the given
radix if a second argument is provided.

traceEvaluation string string evaluate the specified expression and report details on how it
was evaluated (see page 55).

TABLE 7: Functions that take or return matrices, arrays, or records.

function argument type(s) return type description
A Wireless and Sensor Networks Visual Modeler 63

Framework Infrastructure
A.5 Signal Processing Functions

TABLE 9: Functions performing signal processing operations

function argument type(s) return type description

convolve {double}, {double}
or
{complex}, {com-
plex}

{double} or
{complex}

Convolve two arrays and return an array whose length is sum
of the lengths of the two arguments minus one. Convolution of
two arrays is the same as polynomial multiplication.

DCT {double} or
{double}, int or
{double}, int, int

{double} Return the discrete cosine transform of the specified array,
using the specified (optional) length and normalization strat-
egy (see page 56).

downsample {double}, int or
{double}, int, int

{double} Return a new array with every -th element of the argument

array, where is the second argument. If a third argument is

given, then it must be between 0 and , and it specifies

an offset into the array (by giving the index of the first output).

FFT {double} or
{complex} or
{double}, int
{complex}, int

{complex} Return the fast Fourier transform of the specified array. If the

second argument is given with value , then the length of the

transform is . Otherwise, the length is the next power of

two greater than or equal to the length of the input array. If the
input length does not match this length, then input is padded
with zeros.

generateBartlettWindow int {double} Return a Bartlett (rectangular) window with the specified
length. The end points have value 0.0, and if the length is odd,
the center point has value 1.0. For length M + 1, the formula

is:

generateBlackmanWindow int {double} Return a Blackman window with the specified length. For
length M + 1, the formula is:

generateBlackmanHarrisWindow int {double} Return a Blackman-Harris window with the specified length.
For length M + 1, the formula is:

generateGaussianCurve double, double, int {double} Return a Gaussian curve with the specified standard deviation,
extent, and length. The extent is a multiple of the standard
deviation. For instance, to get 100 samples of a Gaussian
curve with standard deviation 1.0 out to four standard devia-
tions, use generateGaussianCurve(1.0, 4.0, 100).

generateHammingWindow int {double} Return a Hamming window with the specified length. For
length M + 1, the formula is:

generateHanningWindow int {double} Return a Hanning window with the specified length. For
length M + 1, the formula is:

n

n

n 1–

n

2
n

w n()
2

n
M
-----; if 0 n

M
2
-----≤ ≤

2 2
n
M
----- ; – if

M
2
----- n M≤ ≤









=

w n() 0.42 0.5 2πn/M()cos 0.08 4πn/M()cos+ +=

w n() 0.35875 0.48829 2πn/M()cos
0.14128 4πn/M()cos 0.01168 6πn/M()cos

+ +
+

=

w n() 0.54 0.46 2πn/M()cos–=

w n() 0.5 0.5 2πn/M()cos–=
64 VisualSense

Framework Infrastructure
generatePolynomialCurve {double}, double,
double, int

{double} Return samples of a curve specified by a polynomial. The first
argument is an array with the polynomial coefficients, begin-
ning with the constant term, the linear term, the squared term,
etc. The second argument is the value of the polynomial vari-
able at which to begin, and the third argument is the increment
on this variable for each successive sample. The final argu-
ment is the length of the returned array.

generateRaisedCosinePulse double, double, int {double} Return an array containing a symmetric raised-cosine pulse.
This pulse is widely used in communication systems, and is
called a “raised cosine pulse” because the magnitude its Fou-
rier transform has a shape that ranges from rectangular (if the
excess bandwidth is zero) to a cosine curved that has been
raised to be non-negative (for excess bandwidth of 1.0). The
elements of the returned array are samples of the function:

,

where x is the excess bandwidth (the first argument) and T is
the number of samples from the center of the pulse to the first
zero crossing (the second argument). The samples are taken
with a sampling interval of 1.0, and the returned array is sym-
metric and has a length equal to the third argument. With an
excessBandwidth of 0.0, this pulse is a sinc pulse.

generateRectangularWindow int {double} Return an array filled with 1.0 of the specified length. This is a
rectangular window.

IDCT {double} or
{double}, int or
{double}, int, int

{double} Return the inverse discrete cosine transform of the specified
array, using the specified (optional) length and normalization
strategy (see page 56).

IFFT {double} or
{complex} or
{double}, int
{complex}, int

{complex} Return the inverse fast Fourier transform of the specified

array. If the second argument is given with value , then the

length of the transform is . Otherwise, the length is the

next power of two greater than or equal to the length of the
input array. If the input length does not match this length, then
input is padded with zeros.

nextPowerOfTwo double int Return the next power of two larger than or equal to the argu-
ment.

poleZeroToFrequency {complex}, {com-
plex}, complex, int

{complex} Given an array of pole locations, an array of zero locations, a
gain term, and a size, return an array of the specified size rep-
resenting the frequency response specified by these poles,
zeros, and gain. This is calculated by walking around the unit
circle and forming the product of the distances to the zeros,
dividing by the product of the distances to the poles, and mul-
tiplying by the gain.

sinc double double Return the sinc function, , where special care is
taken to ensure that 1.0 is returned if the argument is 0.0.

TABLE 9: Functions performing signal processing operations

function argument type(s) return type description

h t() πt/T()sin
πt/T

----------------------- xπt/T()cos

1 2xt/T()2
–

------------------------------×=

n

2
n

x()/xsin
A Wireless and Sensor Networks Visual Modeler 65

Framework Infrastructure
A.6 I/O Functions and Other Miscellaneous Functions

toDecibels double double Return , where is the argument.

unwrap {double} {double} Modify the specified array to unwrap the angles. That is, if the
difference between successive values is greater than in
magnitude, then the second value is modified by multiples of

 until the difference is less than or equal to . In addition,
the first element is modified so that its difference from zero is
less than or equal to in magnitude.

upsample {double}, int {double} Return a new array that is the result of inserting zeroes
between each successive sample in the input array, where is
the second argument. The returned array has length ,
where L is the length of the argument array. It is required that

.

TABLE 10: Miscellaneous functions.

function argument type(s) return type description

cast type1, type2 type1 Return the second argument converted to the type of the first,
or throw an exception if the conversion is invalid.

constants none record Return a record identifying all the globally defined constants
in the expression language.

findFile string string Given a file name relative to the user directory, current direc-
tory, or classpath, return the absolute file name of the first
match, or return the name unchanged if no match is found.

freeMemory none long Return the approximate number of bytes available for future
memory allocation.

iterate function, int, type {type} Return an array that results from first applying the specified
function to the third argument, then applying it to the result of
that application, and repeating to get an array whose length is
given by the second argument.

map function, {type} {type} Return an array that results from applying the specified func-
tion to the elements of the specified array.

property string string Return a system property with the specified name from the
environment, or an empty string if there is none. Some useful
properties are java.version, ptolemy.ptII.dir,
ptolemy.ptII.dirAsURL, and user.dir.

readFile string string Get the string text in the specified file, or throw an exception if
the file cannot be found. The file can be absolute, or relative to
the current working directory (user.dir), the user’s home direc-
tory (user.home), or the classpath.

readResource string string Get the string text in the specified resource (which is a file
found relative to the classpath), or throw an exception if the
file cannot be found.

totalMemory none long Return the approximate number of bytes used by current
objects plus those available for future object allocation.

TABLE 9: Functions performing signal processing operations

function argument type(s) return type description

20 log10 z()× z

π

2π π

π
n 1–

n
nL

n 0>
66 VisualSense

Framework Infrastructure
Appendix B: References

[1] P. Baldwin, “Sensor Networks Modeling and Simulation in Ptolemy II,” Unnumbered Technical
Report, UC Berkeley, August 8, 2003.

[2] A. Cataldo, C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer and H. Zheng, “Hyvisual: A
Hybrid System Visual Modeler,” Technical Memorandum UCB/ERL M03/30, University of Cali-
fornia, Berkeley, July 17, 2003.

[3] C. T. Ee, N. V. Krishnan and S. Kohli, “Efficient Broadcasts in Sensor Networks,” Unpublished
Class Project Report, UC Berkeley, Berkeley, CA, May 12, 2003.

[4] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs and Y.
Xiong, “Taming Heterogeneity-the Ptolemy Approach,” Proceedings of the IEEE, 91(2), January,
2003.

[5] J. Elson, S. Bien, N. Busek, V. Bychkovskiy, A. Cerpa, D. Ganesan, L. Girod, B. Greenstein, T.
Schoellhammer, T. Stathopoulos and D. Estrin, “Emstar: An Environment for Developing Wire-
less Embedded Systems Software,” CENS Technical Report 0009, Center for Embedded Net-
worked Sensing, UCLA, March 24, 2003.

[6] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley, 1994.

[7] A. Girault, B. Lee and E. A. Lee, “Hierarchical Finite State Machines with Multiple Concurrency
Models,” IEEE Transactions On Computer-aided Design Of Integrated Circuits And Systems,
18(6), June 1999.

[8] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong and H. Zheng, “Heterogeneous
Concurrent Modeling and Design in Java: Volume 1: Introduction to Ptolemy II,” Technical
Memorandum UCB/ERL M03/27, University of California, Berkeley, CA USA 94720, July 16,
2003.

[9] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong and H. Zheng, “Heterogeneous
Concurrent Modeling and Design in Java: Volume 3: Ptolemy II Domains,” Technical Memoran-
dum UCB/ERL M03/29, University of California, Berkeley, CA USA 94720, July 16, 2003.

[10] T. J. Kwon and M. Geria, “Efficient Flooding with Passive Clustering (Pc) in Ad Hoc Networks,”
ACM SIGCOMM Computer Communication Review, 32(1), January, 2002.

[11] E. A. Lee, “Modeling Concurrent Real-Time Processes Using Discrete Events,” Annals of Soft-
ware Engineering 7: 25-45, March 4th 1998.

[12] M. Löbbers, D. Willkomm, A. Köpke, H. Karl, “Framework for Simulation of Mobility in
OMNeT++ (Mobility Framework),” February 09 2004, http://www.tkn.tu-berlin.de/research/
research_texte/framework.html.

[13] The CMU Monarch Project, “The CMU Monarch Project's Wireless and Mobility Extensions to
NS,” 1998 (see also http://www.monarch.cs.cmu.edu/)

[14] Ns-2, http://www.isi.edu/nsnam/ns, 2004.
A Wireless and Sensor Networks Visual Modeler 67

Framework Infrastructure
[15] OPNET Technologies, Inc., “OPNET Modeler,” http://opnet.com/products/modeler/home.html,
2004.

[16] S. Park, A. Savvides and M. B. Srivastava, “Sensorsim: A Simulation Framework for Sensor Net-
works,” 3rd ACM International Workshop on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, Boston, Massachusetts, United States, ACM Press, August 20, 2000 (see also
http://nesl.ee.ucla.edu/projects/sensorsim/).

[17] H.-Y. Tyan, “Design, Realization and Evaluation of a Component-Based Compositional Software
Architecture for Network Simulation,” Ph.D. Dissertation, Ohio State University, 2002. (see also
http://www.j-sim.org)

[18] A. Varga, “The Omnet++ Discrete Event Simulation System,” Proceedings of the European Sim-
ulation Multiconference (ESM'2001), Prague, Czech Republic, June 6-9, 2001 [see also http://
www.omnetpp.org/].

[19] Y. Xiong, “An Extensible Type System for Component-Based Design,” Technical Memorandum
UCB/ERL M02/13, University of California, Berkeley, CA 94720, May 1, 2002.
68 VisualSense

	VisualSENSE: Visual Modeling for wireless And sensor network systems
	Contents
	1. Introduction 5
	1.1. Installation and Quick Start 5

	2. Modeling Wireless Networks 6
	2.1. Running a Pre-Built Model 7
	2.2. Changing Parameters 8
	2.3. Structure of a Pre-Built Model 8
	2.3.1. Visual Representations (Icons) 9
	2.3.2. Channels 11
	2.3.3. Composite Actors 12

	2.4. Controlling the Execution 13
	2.5. Building a New Model 14
	2.6. Using the Plot Actors 22

	3. Modeling Capabilities 23
	3.1. Discrete-Event Simulation 24
	3.2. Channel Models 24
	3.3. Wireless Node Models 24
	3.4. Examples of Modeling Capabilities 25
	3.4.1. Packet Structure 25
	3.4.2. Packet Losses 25
	3.4.3. Battery Power 25
	3.4.4. Power Loss 25
	3.4.5. Collisions 25
	3.4.6. Transmit Antenna Gain 27

	4. Software Architecture 32
	4.1. Erasure Channel 34
	4.2. Limited Range Channels 35
	4.3. Transmit Properties 35
	4.4. Antenna Gains and Terrain Models 36
	4.5. Delay Channels 36

	5. Framework Infrastructure 36
	5.1. Hierarchy and Heterogeneity 37
	5.2. Type System 37
	5.3. Expressions 37
	5.3.1. Expression Evaluator 37
	5.3.2. Simple Arithmetic Expressions 38
	5.3.3. Uses of Expressions 42

	5.4. Composite Data Types 45
	5.4.1. Arrays 45
	5.4.2. Matrices 47
	5.4.3. Records 48

	5.5. Invoking Methods in Expressions 50
	5.6. Defining Functions in Expressions 51
	5.7. Built-In Functions 53
	5.8. Fixed Point Numbers 57

	1. Introduction
	1.1 Installation and Quick Start
	FIGURE 1. Initial welcome window for VisualSense.

	2. Modeling Wireless Networks
	2.1 Running a Pre-Built Model
	FIGURE 2. The VisualSense representation of a wireless sound detection model.
	FIGURE 3. Animation as the model executes. The SoundSource actor moves in a circle through a fiel...

	2.2 Changing Parameters
	FIGURE 4. Parameters of the SoundSource actor (left) and SoundChannel channel model (right).

	2.3 Structure of a Pre-Built Model
	2.3.1 Visual Representations (Icons)
	FIGURE 5. View resulting from selecting “Edit Custom Icon” after right clicking on the SoundSourc...
	FIGURE 6. View resulting from clicking Zoom Fit in the toolbar of figure 5.
	FIGURE 7. Parameters of the outer circle of the SoundSource actor icon in figure 5.
	FIGURE 8. Setting the fill color of the outer circle of SoundRange to depend on its soundRange pa...
	FIGURE 9. Result of changing the color of the outer circle of SoundRange as shown in figure 8.

	2.3.2 Channels
	FIGURE 10. The channels of figure 2 and their parameters.

	2.3.3 Composite Actors
	FIGURE 11. Result of looking inside the SoundSource actor in figure 2.
	FIGURE 12. Portion of the composite in figure 11 that produces the sound event, with two paramete...

	2.4 Controlling the Execution
	FIGURE 13. Parameters of the WirelessDirector of figure 2.

	2.5 Building a New Model
	FIGURE 14. Window for constructing a new model, obtained from the menu FileÆNewÆGraphEditor.
	FIGURE 15. New model populated with a channel.
	FIGURE 16. Documentation window for the PowerLossChannel, obtained with right click, Get Document...
	FIGURE 17. Source code for PowerLossChannel obtained by right clicking and selecting Look Inside.
	FIGURE 18. Model populated with two instances of WirelessComposite renamed Transmitter and Receiver.
	FIGURE 19. Model with ports added to the Transmitter and Receiver, and the dialog used to create ...
	FIGURE 20. Inside the Transmitter.
	FIGURE 21. Completed Transmitter.
	FIGURE 22. Completed Receiver.
	FIGURE 23. Display that results from running the model of figure 19.
	FIGURE 24. Modified Receiver that displays the received properties.
	FIGURE 25. Display that results from using the Receiver design of figure 24.
	FIGURE 26. Setting the transmit power of the Transmitter.
	FIGURE 27. Display that results from using the transmit power set as shown in figure 26.
	FIGURE 28. Receiver model that discards received events where the power is below a threshold.

	2.6 Using the Plot Actors
	FIGURE 29. Receiver that plots rather than displays textually the received power as a function of...
	FIGURE 30. Plot showing the received power a function of time as the Receiver is moved close to t...
	FIGURE 31. Dialog to set the plot format, filled in to yield the display shown in figure 32.
	FIGURE 32. Plot display using the format shown in figure 31.

	3. Modeling Capabilities
	3.1 Discrete-Event Simulation
	3.2 Channel Models
	3.3 Wireless Node Models
	3.4 Examples of Modeling Capabilities
	3.4.1 Packet Structure
	3.4.2 Packet Losses
	3.4.3 Battery Power
	FIGURE 33. Model of power loss as a receiver moves into range and then close to a transmitter.

	3.4.4 Power Loss
	FIGURE 34. Model where transmission range degrades over time as a battery is depleted.

	3.4.5 Collisions
	FIGURE 35. Model of collisions of messages that take time.
	FIGURE 36. Implementation of the Receiver in figure 35, which models and tracks collisions.
	FIGURE 37. Documentation for the CollisionDetector actor used in figure 36.

	3.4.6 Transmit Antenna Gain
	FIGURE 38. Model that includes a directional transmit antenna. As the model executes, the Receive...
	FIGURE 39. Transmitter design for the model in figure 38, showing how a Ptolemy II model (in this...

	4. Software Architecture
	FIGURE 40. UML class diagram showing the key classes for wireless sensor network modeling. These ...
	4.1 Erasure Channel
	4.2 Limited Range Channels
	4.3 Transmit Properties
	4.4 Antenna Gains and Terrain Models
	4.5 Delay Channels

	5. Framework Infrastructure
	5.1 Hierarchy and Heterogeneity
	5.2 Type System
	5.3 Expressions
	5.3.1 Expression Evaluator
	FIGURE 5.1. Expression evaluator, which is accessed through the File:New menu.

	5.3.2 Simple Arithmetic Expressions
	Constants and Literals
	TABLE 3: String-valued constants defined in the expression language.

	Variables
	Operators
	Comments

	5.3.3 Uses of Expressions
	Parameters
	String Parameters
	FIGURE 5.2. String parameters are indicated in the parameter editor boxes by a light blue backgro...

	Port Parameters
	FIGURE 5.3. A portParameter is both a port and a parameter. To use it in a composite actor, drag ...
	FIGURE 5.4. Sinewave actor, showing its port parameters, and their use at the lower level of the ...

	Expression Actor
	FIGURE 5.5. Illustration of the Expression actor.

	State Machines

	5.4 Composite Data Types
	5.4.1 Arrays
	5.4.2 Matrices
	5.4.3 Records

	5.5 Invoking Methods in Expressions
	5.6 Defining Functions in Expressions
	FIGURE 5.6. Example of a function being passed from one actor to another.
	FIGURE 5.7. More elaborate example with functions passed between actors.

	5.7 Built-In Functions
	(1)
	TABLE 4: Normalization options for the DCT function

	. (2)

	5.8 Fixed Point Numbers
	Appendix A: Tables of Functions
	A.1 Trigonometric Functions
	TABLE 5: Trigonometric functions.

	A.2 Basic Mathematical Functions
	TABLE 6: Basic mathematical functions

	A.3 Matrix, Array, and Record Functions.
	TABLE 7: Functions that take or return matrices, arrays, or records.

	A.4 Functions for Evaluating Expressions
	TABLE 8: Utility functions for evaluating expressions

	A.5 Signal Processing Functions
	TABLE 9: Functions performing signal processing operations

	A.6 I/O Functions and Other Miscellaneous Functions
	TABLE 10: Miscellaneous functions.

	Appendix B: References
	[1] P. Baldwin, “Sensor Networks Modeling and Simulation in Ptolemy II,” Unnumbered Technical Rep...
	[2] A. Cataldo, C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer and H. Zheng, “Hyvisual: A...
	[3] C. T. Ee, N. V. Krishnan and S. Kohli, “Efficient Broadcasts in Sensor Networks,” Unpublished...
	[4] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs and Y...
	[5] J. Elson, S. Bien, N. Busek, V. Bychkovskiy, A. Cerpa, D. Ganesan, L. Girod, B. Greenstein, T...
	[6] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable Object-...
	[7] A. Girault, B. Lee and E. A. Lee, “Hierarchical Finite State Machines with Multiple Concurren...
	[8] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong and H. Zheng, “Heterogeneous...
	[9] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong and H. Zheng, “Heterogeneous...
	[10] T. J. Kwon and M. Geria, “Efficient Flooding with Passive Clustering (Pc) in Ad Hoc Networks...
	[11] E. A. Lee, “Modeling Concurrent Real-Time Processes Using Discrete Events,” Annals of Softwa...
	[12] M. Löbbers, D. Willkomm, A. Köpke, H. Karl, “Framework for Simulation of Mobility in OMNeT++...
	[13] The CMU Monarch Project, “The CMU Monarch Project's Wireless and Mobility Extensions to NS,”...
	[14] Ns-2, http://www.isi.edu/nsnam/ns, 2004.
	[15] OPNET Technologies, Inc., “OPNET Modeler,” http://opnet.com/products/modeler/home.html, 2004.
	[16] S. Park, A. Savvides and M. B. Srivastava, “Sensorsim: A Simulation Framework for Sensor Net...
	[17] H.-Y. Tyan, “Design, Realization and Evaluation of a Component-Based Compositional Software ...
	[18] A. Varga, “The Omnet++ Discrete Event Simulation System,” Proceedings of the European Simula...
	[19] Y. Xiong, “An Extensible Type System for Component-Based Design,” Technical Memorandum UCB/E...

