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Introduction

1. Introduction

Visual Sense is a modeling and simulation framework for wireless and sensor networks that builds
on and leverages Ptolemy Il. Modeling of wireless networks requires sophisticated representation and
analysis of communication channels, sensors, ad-hoc networking protocols, localization strategies,
media access control protocols, energy consumption in sensor nodes, etc. This modeling framework is
designed to support a component-based construction of such models. It supports actor-oriented defini-
tion of network nodes, wireless communication channels, physical media such as acoustic channels,
and wired subsystems. The software architecture consists of a set of base classes for defining channels
and sensor nodes, alibrary of subclasses that provide certain specific channel models and node mod-
els, and an extensible visualization framework. Custom nodes can be defined by subclassing the base
classes and defining the behavior in Java or by creating composite models using any of severa
Ptolemy 11 modeling environments. Custom channels can be defined by subclassing the WirelessChan-
nel base class and by attaching functionality defined in Ptolemy 1l models. It is intended to enable the
research community to share models of disjoint aspects of the sensor nets problem and to build models
that include sophisticated elements from several aspects.

In this document, we describe a specialization of the discrete-event domain of Ptolemy Il support-
ing sensor nets modeling. We begin by explaining the basic components in this framework: the direc-
tor, the channel model and the sensor node model, and how to build sensor network models
graphically. We then progress to discuss the software architecture of Visual Sense, and how to extend
the software for customized node models and channel models. This document provides a tutorial that
will enable the reader to construct elaborate sensor network models and to have confidence in the
results of asimulation of those models.

The intended audience for this document is an engineer or researcher who isinterested in wireless
and sensor network systems and wishes to build models of such systems.

VisualSense is built on top of Ptolemy Il, a framework supporting the construction of such
domain-specific tools. See http://ptolemy.eecs.berkel ey.edu for information about Ptolemy I1.

1.1 Installation and Quick Start

Visual Sense can be quickly downloaded and run using Web Startl, a standard Windows installer,
or source code from the web site:

http://ptolemy.eecs.berkeley.edu/visualsense
Once you have done this, you can select VisualSense from the Ptolemy Il entry in the Start menu (if
you are using a Windows system). Visual Sense can a so be invoked from the command line on all plat-
forms using the command:

vergil -visualsense

1. Web Startisatool from Sun Microsystems that makes software install ation and updates particularly simple. The
Web Start installation works best with Windows, but has also been tried under Solaris, Linux and Mac OS X.
The Web Start installation behaves almost exactly like a standalone installation; you can save models locally,
and you need not be connected to the net after theinitial installation. The Web Start tool includes a Java Runtime
Environment (JRE), and the Visual Sense Web Start installer checks that the proper version of the JRE is present.
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Modeling Wireless Networks

You should then see an initial welcome window that looks like the one in figure 1. Feel free to explore
the links in this window. To create a new model, invoke the New command in the File menu. But
before doing this, it is worth understanding how a model works.

2. Modeling Wireless Networks

In this section, we explain how to read, construct and execute models of wireless sensor networks.
We begin by examining a demonstration system that is accessible from the welcome window in figure
1, the wireless sound detection model. These demonstration systems are meant to illustrate capabili-
ties, not necessarily to serve as accurate or useful models of physical systems.

ile:/C:/ptll{ptolemy/configs/visualsensefiniro. h |Z| |E| [zl
File Help

|

AV - . |
. VisualSense 5.0-beta - Modeling of Wireless
(o L l
v& .. Sensor Networks

‘\“‘ Visual editor and sivmulator foy wireless sensor network 5

et pSIers.

SN

# Documentation

# Copyright

* Authors

Ta start immediately by creating a wireless senzor networks model, zelect File,
L‘)) New, Graph Editor from the mem bar. Select Help from the Help menn for

[g
iy P
ﬂhjﬁb‘.“g . instructions on creating a model

Modeling of wireless sensor networks requires sophisticated modeling of communication channels, sensor channels, ad-hoc
networking protocols, localization strategies, media access control protocols, energy consumption in sensor nodes, etc. This
modeling framework 1= designed to support a component-baged construction of such models. It iz ntended to enable the
research corurmanity to share models of disjoint aspects of the sensor nets problem and to build models that include
sophisticated elements from several aspects.

Below are simple demonstrations of this modeler {zee also the complete st of dernos):

& Wirelese Sound Detection,
Thiz example models a sound localization problem. A single sound source moves through a figld of sound zensors. The
sound sensors detect the sound and cormminicate wia a radio channel to a sensor fusion component that localizes the
sound by triangulation.
# Small World,
Thiz example ustrates a phenomenon where ad hoe networkes achieve connectivity with fewer hops on average with a
networls that is less reliable but where ranges are larger than with a networl that is more reliable but ranges are shorter.
# Evader and Pursuer,
Thiz model shows an "evader” and a "pursuer” moving through a sensor networke. The "evader” emitz sounds that are
detected by the sensor nodes, and the sensor nodes relay information to the pursuer. Running the model shows the
evader moving at random and the pursuer seeldng to track it based on the information from the sensors. 3

]

FIGURE 1. Initial welcome window for Visual Sense.
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Modeling Wireless Networks

2.1 Running a Pre-Built Model

The wireless sound detection model can be accessed by clicking on the link in the welcome win-
dow (figure 1), which results in the window shown in figure 2. Thisisahighly simplified (even naive)
model of a sound localization system that uses a field of sensor nodes that detect a sound and report by
radio to a hub that triangulates the location of the sound. Figure 2 shows the e ements of the model,
which include a WirelessDirector, which defines this as a wireless model, two channel models (aradio
channel model and a sound channel model), a number of annotations (text explaining the model) and
actors in the model. Each of these components plays arolein the model. The director mediates execu-
tion of the model. The channel models handle communication between the actors. The actors send and
receive signals viathe channel.

The model is executable. Clicking on the red triangle in the toolbar results in the SoundSource
actor (represented by concentric transparent circles) beginning to move in a circular pattern, as indi-
cated by the blue arrow in figure 3. The SoundSource actor emits events viathe SoundChannel channel
model. These events propagate with a time delay dependent on distance to the blue circular nodes.
When these nodes detect the sound, they emit aradio signal viathe RadioChannel model and turn their
icons red to indicate visually that they have done so. The radio signals include a time stamp of the
detected sound event. The Triangulator actor in the center (shown with a green icon) receives these

[ | file:/C:/ptllfptolemy/domainsfwireles. . . ndDetection/WirelessSoundDetection. xml

File Wiew Edit Graph Debug Help

@/ @c|@|e- |3 b [11] @[ | 9[> [} [2] @]

|| Ltilties ) .

%I Directors L D e T RadioChannel SoundChannel

| | wirelessChannels

;l Actars

;l MoreLibraries .

T ey This example shows a SoundSource -
(concentric circles icon) moving through o "‘H\\
a field of sensors (SoundSensor
actors, with transluscent circle icons)
that detect the sound and communicate with
a Triangulator actor (overlapping ellipses

icon). The Triangulator performs sensor  /
fusion to triangulate the location o
the sound source. It genera

with estimated locatjorfs.

The SoundS#urce and Triangulator actors
are compgtites, while the SoundSensor

nodes ae defined in Java. In all \
casesy you can look inside to view
the igiplementation.

|
SoundSource composite \
{which moves) =

The sensors turn red when they detect
a sound. Upon detecting a sound, they
transmit the time at which they detect
he sound and their current location.

Authors: Philip Baldwin, Xiaojun Liu, and Edward A. Lee 100 meters

FIGURE 2. The Visual Sense representation of awireless sound detection model.
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Modeling Wireless Networks

radio signals (if it isin range of the transmitter), and uses the time stamps to estimate the position of
the sound source. It then plots that position, resulting in the plot shown in figure 3.

2.2 Changing Parameters

The model has parameters that you can experiment with. The parameters of two components,
SoundSource and SoundChannel, are shown in figure 4. To obtain these parameter screens, you can
double click on the actor, or right click and select “Configure.” The SoundSource has a single parame-
ter, called soundRange. If you change the value from 300 (meters) to, say, 500, then the circular icon
for the actor increases in size, and re-running the model results in more of the trgjectory of the sound
source being triangulated. In the SoundChannd parameters, you could set a non-zero value for the
lossProbability, in which case only some of the sound events will be detected. Setting the seed to a
non-zero value results in repeatable experiments, meaning that each execution will yield the same
sequence of random numbers (the type is along, so the value should be an integer followed by the let-
ter “L™). Leaving the seed at the default “OL” yields a new experiment on each run.

2.3 Structure of a Pre-Built Model

Let us examine how the model in figure 2 is constructed.

F8 .wirelessSoundDetection.WirelessTriangul... E|@|E\
File Edit Special Help

-] file:/C:Iptilfptolemy/domainsfwireles. . .ndDetection/WirelessSoundDetection.xml

File Wi Edt Graph  Deb Hel =

e L= I rapl ebug elp ’ 02 D t t d 5 d P -t- @EEE

etecte oun: esitions

| ac|@|a || b 11| |m 3|53 @ M0 Detected Sound Positions
|| Lilties ) ‘ oo
|| Directors RE e TR RadioChannel SoundChannel s 1
;]W\re\esschannels qat 4
| 1 &ctors :
| I MoreLibraries -1.8T 7

|1 user ibrary This example shows a SoundSource

{concentric circles icon) moving through — | §320T s |
a field of sensors (SoundSensor 2-2.5 r 7
actors, with transluscent circle icons) ank e
that detect the sound and communicate with ’

a Triangulator actor (overlapping ellipses -35T . |
icon). The Triangulator performs sensor _ant 1
fusion to triangulate the location of / sk . |

S50 * 4
L L I L L L L

L I L
0o 05 1.0 15 2.0, 30 35 40 45 50

nodes are defined in Java /In all
cases, you can look insidg to view
the implementation.

SoundSource composite
(which moves)

The sensors turn re§ when they detect SoundSensor actors
a sound. Upon detedfing a sound, they (instances of
transmit the time at which they detect GraphicalLocator)
the sound and their curtent location. e ___o

100 meters.

Authors: Philip Baldwin, Xiacjwn Liu, and Edward A. Lee

|execution finished.

FIGURE 3. Animation asthe model executes. The SoundSource actor movesin acircle through afield of Sound-
Sensor actors. When these actors detect a sound, they transmit aradio signal to a Triangulator node, which estimates
and plots (at the upper right) the position of the sound source.
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Modeling Wireless Networks

2.3.1 Visual Representations (Icons)

Consider first the SoundSource actor. First, consider how its visual representation (its “icon”)
changed when we changed the soundRange parameter. The definition of the icon can be viewed (and
edited) by right clicking on the icon and selecting “Edit Custom Icon.” Note that to select this actor,
you must place the mouse over one of the concentric circle outlines. The resulting window is shown in
figure 5. Note that only the center portion of the icon is visible. Click on Zoom Fit in the toolbar (as
shown in figure 5) to get the full image, as shown in figure 6. The navigation window at the lower left
can be used to move the view around (to “pan” the view). The library at the left can be used to add
itemsto theicon.

Consider the outer circle, which changed size when we changed the soundRange parameter. Dou-
ble clicking on it (or right clicking and selecting Configure) reveal s the parameter window in figure 7.
Notice that the width and height parameters are given by expressions with values “soundRange*2”.
The expression language that can be used hereisrich, and will be described below. For now, it is suffi-
cient to realize that arithmetic expressions that reference parameters of the actor or of the model can be
used to extensively customize the visual representation of an actor, making it depend on parameter val-
ues.

Edit parameters for SoundSource

@ soundRange: ‘300

Commit | Add | Remove | Preferences Help | sl

Edit parameters for, SoundChannel

@ defauttProperties: |{range = Infiinity }

lozzProbability: |D.D
seed: |DL
propagationSpeed: |34D_D

Conmmit | Add | Remove | Preferences| Help | Cancel

FIGURE 4. Parameters of the SoundSource actor (left) and SoundChannel channel model (right).

[ | file:/C: Iptll/ptolemy/domainsfwireles. . .ction/WirelessSoundDetection.xml#_icon

File Edit View Help
tool bar
Zoom Fit
L7 polygon
[ rectangle /\
library of components / < )\
navigation area editing area

FIGURE 5. View resulting from selecting “ Edit Custom Icon™ after right clicking on the SoundSource in figure 2.
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For example, we could fill the outer circle with a translucent color where the degree of translu-
cency depends on the soundRange parameter, as shown in figure 8. In that figure, the color selector
(shown at the right) was used to select a red color, and the alpha value of the color, which is the fourth
element of the array defining the color, was manually set to “soundRange/1000.0”. The result is shown
infigure 9.

5] filez/C:/ptllfptolemy/domainshwireles. . .ction/WirelessSoundDetection.xml#_icon
File Edit Wiew Help

o] e/ @|e|

A= annotation P —~—
) elipse .
inage £ S

line:
7 polygon S/

|:| rectanale

@

FIGURE 6. View resulting from clicking Zoom Fit in the toolbar of figure 5.

Edit parameters for circled Pg\
@ linesyidth [
ineColor: |{00‘00‘0.0,1.0} Choose ‘
wiclth |soundRange’-2
height. |soundRange*2
centered; o~
filColor: |mnE e
Carnrit Add ‘ Remave | Preferences ‘ Help | Cancel ‘

FIGURE 7. Parameters of the outer circle of the SoundSource actor icon in figure 5.

®

# Choose Color

| oss | e |

10

Reoent
I
Edit parameters for circle4. El
@ lingicith: 4 nl
lineColor: 00,00,00,10} Choose |
wicth: soundRange*2
height: soundRange®2 Freview:
centered: ~ a - W Sample Text Sample Text
fillalor. ‘(U.S,U.U,D.D‘soundRangehUUD oy Cho . u . Sanple Test Sempe Test|
Sample Text Sample Text
Commit add | memove | preferences | rel cancel | Cancel Reset

FIGURE 8. Setting the fill color of the outer circle of SoundRange to depend on its soundRange parameter.




Modeling Wireless Networks

Feel free to experiment with this icon by moving components, changing their colors, or adding
new components. You can add GIF or JPEG images defined in afile using the Image component, and
you can add lines, circles, polygons, or rectangles.

Note that as of thiswriting, theicon editor isfairly primitive. The interactors for the various shapes
are not customized, so defining a shape can be a tedious matter of defining the vertex points. Also, the
order in which itemsin theicon are drawn is the order in which they are created. Thus, the only mech-

anism currently to put an object in the foreground isto select it, delete it, and then re-add it. We expect
this editor to improve over time.

2.3.2 Channels

The model shown in figure 2 has two channel models, shown in figure 10 along with their param-
eters. You can see that the only difference between these two channels (besides their names) is the

value of the propagationSpeed parameter. For the RadioChannel, it is set to “Infinity,” whereas for the
SoundChannel, it is set to “340.0" (meters/second).

Note that both channels have a parameter called defaultProperties with value “{ range=Infinity}.”
This expression defines a record with one field named “range” with value “Infinity.” The fields of the
defaultProperties parameter of a channel define the ways in which a particular transmission can be
individually customized. In this case, a particular transmission through either channel can optionally
specify arange. If it is not specified, then the default is used, which is Infinity, indicating that there is

no range limitation. A transmission will succeed in reaching the receiver no matter how far away the
receiver is.

3 file:/C: Iptlifptolemy/domains/wireles. . .ndDetection/WirelessSoundDetection, xml

File View Edt Graph Debug Help

e/ @la (@[ p 11| @9 9]0 @

|| Utiities

|| Directors GEHIE eas [NEE RadioChannel SoundChannel

|| wirelessChannsls

|| Actors

|| MoreLibraries .

™ ) UserLibrary This example shows a SoundSource -
(concentric circles icon) moving through /,f-/ “'--\\
a field of sensors (SoundSensor -
actors, with transluscent circle icons)
that detect the sound and communicate with R

a Triangulator actor (overlapping ellipses
icon). The Triangulator performs sensor

fusion to triangulate the location of
the sound source. It generates-a
with estimated locations,

The SoundSource4nd Triangulator actors
are com positesAwhile the SoundSensor
nodes are defiied in Java. In all

cases, you gén look inside to view
the implerdentation.

SoundSource composite

(which moves) ..
The|sensors turn red when they detect SoundSensar gictars
asound. Upon detecting a sound, they

transmit the time at which they detect
the sdund and their current location.

100 meters

Authors: Rhilip Baldwin, Xiaojun Liu, and Edward A. Lee

|e><ecuhon finished.

FIGURE 9. Result of changing the color of the outer circle of SoundRange as shown in figure 8.
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2.3.3 Composite Actors

We have seen how to customize the visual representation of an actor. How can we define its behav-
ior? The SoundSource actor in figure 2 is actually a composite actor whose behavior is defined by a
Ptolemy Il model. To find this definition, simply right click on the actor and select Look Inside. The
inside model is shown in figure 11.

The SoundSource composite shown in figure 11 has a DEDirector (a discrete event director),
which defines this model as a Ptolemy |1 discrete event model. DE models work well with wireless
models, so it is common to see DE models used to define wireless nodes. The soundRange parameter
is shown next to the DEDirector with its default value, 300. The model itself consists of two parts, an
upper part that sends a sound event, and alower part that moves the icon.

Consider first the upper part. It has a Clock and a port named “soundPort,” as shown in figure 12.
The parameters of both the Clock and the port are obtained by double clicking on them (or right click-
ing and selecting Configure), and are also shown in the figure. Notice that the period of the Clock is set
to 2.0, and the values are set to {1}, an array with one element, the integer 1. This indicates that the

RadiaChannel SoundChannel

-x= @ —Z

Edit parameters for RadioChannel (%] Edit parameters for SoundChannel
defauttProperties: irange = Mfinny}l @ defauttProperties: irange = Mfinny}l
lossProbakilty: 00 lossProbability: 00
sesd: oL sesd: oL
propagationSpeed hnfinny propagationSpeed \340.0
Camit add | remove | preferences | meb | cancel | Camit add | Remove | preferences Help Cancel

FIGURE 10. The channds of figure 2 and their parameters.

L | file:/C: Iptll/ptolemy/domainsfwireles. . .WirelessSoundDetection.xml#SoundSource
File Wiew Edit Graph Debug Help

NEEBEIER

DE Director

e a:|@|a-|w| »

A Actars B
__IWirelessActors

] Sources

=4 Sinks

® soundRange: 300

P e J%&gcankds Every two seconds, send a sound.
v iscar
I '@'D‘Sp‘ay e soundOPort
i honitor'yalue
=] Recarder
i Wariahle
i XYPlotter
|l xevssope Every second, move the sound source.
3 __| TimedSinks
| SequenceSinks Clock2

Ramp

Expression Setvariable
[sin{x)*200 + 300, sin(y)*200 + 300]

_location

FIGURE 11. Result of looking inside the SoundSource actor in figure 2.

12 VisualSense



Modeling Wireless Networks

clock should produce a sound every two seconds. The value produced is simply the integer 1, which
has no particular meaning. Any value would have the same effect.

The soundPort component also has parameters, as shown in figure 12. The outsideChannel param-
eter is a string-valued parameter with value “ SoundChannel.” Thisis the name of the channdl that this
port will use for transmission, and must correspond with the name of the channel shown in figure 10.
The outsideTransmitProperties parameter has value “{range=soundRange}” which is a record with
one field named “range” with value given by the expression “soundRange,” which simply obtains the
value from the soundRange parameter of the composite actor. Notice that this will override the default
value of Infinity given for thisfield in figure 10. Thus, the soundRange parameter controls not just the
visual appearance of theicon, but also the range of transmission.

For the purposes of determining whether a receiver is in range, all of the demos included with
Visual Sense use the location of the icon as a (two dimensional) representation of the location of the
node. The units are arbitrary, but in these models are taken to represent meters. A scaleis shown at the
lower right of figure 2, indicated by aline of length “100,” which represents 100 meters.

Although these demos all use two-dimensional locations, the underlying software infrastructure
supports three dimensiona locations. The visual editor, however, does not offer a mechanism for
directly defining those locations, so for illustration purposes, the demos constrain themselves to two-
dimensional locations.

2.4 Controlling the Execution

The WirelessDirector in figure 2 is the component that controls the execution of the model. As
with most components, it too has parameters. Its parameters are shown in figure 13. Notice that the

Every two seconds, send a sound.
Clock

@ soundOPort

Edit parameters for Clock
Edit parameters for soundOPort

@ stopTime: oo
period: |2.D outsideChannel [soundchannel
offgets: |{D ay outside TransmitProperties: {range=soundRange }
waligs: |{1 ¥ insideChannel
RumberOfCycles: |_1 inzide TransmitProperties: |
Commit Add ‘ Remove |Preferen:es‘ Help | Cancel ‘ Commit Add | Remove ‘PreferﬂEES| Help ‘ Cancel |

FIGURE 12. Portion of the composite in figure 11 that produces the sound event, with two parameter screens.

Edit parameters for WirelessDirector E‘
@ startTime: |g 0
stopTime: [MaxDousle
stopihenQueuslsErmpty o
synchronizeToReslTime: &
isCRAdaptive: &
minBinCourt, [
hinCountFactor: |2
Commit add ‘ Rermove | Preferences ‘ Help Cancel

FIGURE 13. Parameters of the WirelessDirector of figure 2.
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stop timeis set to “MaxDouble,” which isavery large number  1.7976931 x 10°® . This Speci-
fies that the model should run forever.

Notice also that the synchronizeToReal Time parameter of the director is checked. This means that
when executing the model, the Clock actor that produces a sound every two seconds will not be
allowed to produce events at a faster rate than that in real time even if the model can execute faster.
This parameter is used to get realistic time scales when animating an execution. Usualy, this parame-
ter should be checked for animated models. The other director parameters have to do with tuning the
performance of the discrete-event simulator. They are beyond the scope of this document.

2.5 Building a New Model

We now proceed to build a new wirel ess network model from scratch. In any Visual Sense window,
select File—>New—Graph Editor. This results in awindow like that shown in figure 14. It contains a
WirelessDirector, but nothing else. Drag in a PowerLossChannel from the WirelessChannels library at
the left, as shown in figure 15.

Notice the parameters of this channel, which are also shown in figure 15. Notice that the default-
Properties parameter contains arecord with two fields, { range = Infinity, power = Infinity}. This chan-
nel can be used to model variations in transmit power and also power loss as a function of distance. We
will construct a simple modd that achieves communication if the receiver gets enough power, and
does not achieve communication otherwise.

Documentation for the PowerL ossChannel actor (and any other actor) can be obtained by right
clicking on the actor and selecting Get Documentation. In this example, we get the screen shown in
figure 16, which shows automatically generated documentation for the Java class that defines this
channel. The top of this display shows the inheritance chain for the actor, which indicates that this
actor extends LimitedRangeChannel, which extends DelayChannel, which extends ErasureChannel,
which extends AtomicWirelessChannel. Each of these channels adds a small amount of functionality,
and source code for each one is provided as an illustration of how to define channel models. You can
view the source code by right clicking and selecting Look Inside (assuming you have installed the
source code module), which results in the screen shown in figure 17. In the case of both the source

Fle View Edt Graph Debug Help

Qjac/@a || p | 1|O|®|m| 9ok [c] o
|| Utilities: Wireless Director
|| Directors
|| \wirelessChannels
| ) Actors:
|| MareLibraries
|| UserLibrary

Wireless Director

FIGURE 14. Window for constructing a new model, obtained from the menu File—New—>GraphEditor.
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code and the documentation, you have to scroll down some to get to the interesting part. For example,
this documentation explains the power PropagationFactor parameter as follows:

FA unnamed

File View Edit Graph Debug Help

@/ @[e |53 b (1| @[ % [#]> 15 |2 @
|| Ltilities Wireless Director

|\ Directors PowerlossChannel
_ i WirelessChanhels

- MomicWirelessChannel
- DelayChannel
- | imitedRangeChannel
" EragureChannel

-

|| Actors

|| MoreLibraries @ defaultProperties

| | UserLibrary los=Probability:
seed:
propagationSpesd:

poverPropagationFactor:

Commit Add

Wiiraless Direcior
PowerLossChannel

Edit parameters for PowerlLossChannel

Jirange = Infinity, power = Infinity

oo

[oL

fifinicy

[0 4 = Pr= sistance = istance)

Remove | preferences Help

Cancel

FIGURE 15. New model populated with a channel.

Iptllfdoc/codeDoc/ptolemy/domainshvireless/lib/PowerlossChannel. html
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Class PowerLossChannel
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|
+--ptolemy.kernel.util . Namedoby
|
+--ptolemy.kernel .Entity
|
+--ptolemy. kernel. ComponentEntity
|
+—-ptolemy. actor. AbomicAotor
1
+--ptolemy.actor. Typeddtomichetor
|

+--ptolewy.domains.wireless . kernel. AtomichirelessChannel

All Implemented Interfaces:
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+--ptolemy.domains.wireless.lib. TimitedRangeChan

+--ptolemy.domains.wireless.lik .PowerLossC
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i

FIGURE 16. Documentation window for the PowerL ossChannel, obtained with right click, Get Documentation.
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“The power propagation is given as an expression that is evaluated and then multi-
plied by the power field of the transmit properties before delivery to the receiver.
For convenience, a variable named “ distance” is available and equal to the distance
between the transmitter and the receiver when the power propagation formula is
evaluated. Thus, the expression can depend on this distance. The value of the
power field should be interpreted as power at the transmitter but power density at
the receiver. A receiver may multiply the power density with its efficiency and an
area (typically the antenna area). A receiver can then use the resulting power to
compare against a detectable threshold, or to determine signal-to-interference ratio,
for example.

The default value of powerPropagationFactor is
1.0/ (4* Pl * distance* distance).

This assumes that the transmit power is uniformly distributed on a sphere of radius
distance. The result of multiplying this by a transmit power is a power density
(power per unit area). The receiver should multiply this power density by the area
of the sensor it uses to capture the energy (such as antenna area) and also an effi-
ciency factor which represents how effectively it captures the energy.

'g file:/C:ptll/ptolemy/domainsiwireless/lib/Powerl ossChannel. java

File Help

/* A chanmel with a distance-dependent power loss. B

Copyright {c) 2004 The Regents of the University of California.

1411 rights reserved.

Permission is hershy granted, without written agreement and without
license or royalty fees, to use, copy, modify, and distribute this
sofrware and its documentation for any purpose, provided that the abowe
copyright notice and the following two paragraphs appear in all copies
of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIAELE TO ANV PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR COMNSEQUENTIAL DAMAGES
IARISING OUT OF THE USE OF THI® 30FTWARE AND ITS DOCUMENTATION, EVEN IF
THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

'THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LINITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER I% ON AN "A3 IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPFORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

PT_COPYRIGHT_VERSION_2
COPYRIGHTENDKEY

4
package ptolemy.domains.wireless.lib;

import ptolemy.data.DoubleToken;

import ptolemy.data.RecordToken:

inport praleny.data. ScalarToken;

import ptolemy.data.Token;

import ptolemy.data.expr.Parameter;

import ptolemy.data. type.BaseType;

import ptolemy.data. type.RecordType:

import ptolemy.data. type.Type;

import ptolemy.domains.wireless.kernel.WirelessIOPort:

inport ptolemy.kernsl.CompositeEntity; 4|

FIGURE 17. Source code for PowerL ossChannel obtained by right clicking and selecting Look Inside.
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The power field of the transmit properties can be supplied by the transmitter as a
record with a power field of type double. The default value provided by this chan-
nel is Infinity, which when multiplied by any positive constant will yield Infinity,
which presumably will be above any threshold. Thus, the default behavior is to
encounter no power loss and no limits to communication due to power.”

Hopefully, this makes it reasonably clear how to use these parameters. Let us build a model that
uses them.

Begin by dragging in two instances of WirelessComposite from the Actors—WirelessActors
library at the left. Rename them Transmitter and Receiver by right clicking on them and selecting Cus-
tomize Name, to get the result shown in figure 18. These components now need ports. To create these,
right click on each icon and select Configure Ports. Click on the Add button and create an output port
named output for the Transmitter, and an input port named input for the Receiver, as shown in figure
19. To specify that these ports use the PowerL ossChannel, right click on each port and select Config-
ure, and specify the outsideChannel to be “PowerLossChannel” (this must match exactly the name of
the channel).

We start by populating the transmitter and receiver with simple models of the nodes. To do this,
look inside the transmitter, which yields the window shown in figure 20. Note that the output port is
(rather poorly) placed at the upper left. Move it to a more reasonable place, and connect to it an
instance of the PoissonClock actor from the Actors— Sources— TimedSources library to get the model
shown in figure 21. To make a connection, either click and drag from the output port of the Poisson-
Clock actor, or control-click and drag from output port of the Transmitter to the output port of the Pois-
sonClock actor.

The PoissonClock actor will produce events at random times, where the time between events is
obtained from an exponential random variable with mean given by the meanTime parameter of the
PoissonClock. The default value is 1.0, which is fine for our purposes. If you return to the top-level
window and double click on the WirelessDirector to set its synchronizeToReal Time parameter, then the
transmitter will produce events at an average rate of one per second.

!@Unnamed E]Elgl
Fle Wew Edit Graph Debug Help
@

@
re

Wireless Director

@/a |z p 1| ©[%|m 9> ] ¢
5|

PowerLossChannel

Transmitter Receiver

......

FIGURE 18. Model populated with two instances of WirelessComposite renamed Transmitter and Receiver.
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Look inside the Receiver actor and build the model shown in figure 22. The Ramp actor isfound in
the Actors library under Sources— SequenceSources, and the Display actor is found under Sinks—Ge-
nericSinks, as shown on the left in the figure. The model is now ready to execute. Clicking on the red
triangle in the toolbar will result in the display shown in figure 23. The Ramp produces a count of
arrivals. If you remembered to set the synchronizeToReal Time parameter of the WirdessDirector, then
the count numbers will appear at random times with an average interval of one second.

You may want to save your model using the File—Save menu command. Use the file extension
xml (or .moml) to ensure that Visual Sense will recognize this as amodel file. Notice that the title bar
on the window now reflects the name of your model, which is the same as the name of thefile.

Let us modify this model so that the power loss of the channel as a function of distance is
observed. To do this, find the GetProperties actor in the Actors—WirelessActors library, and replace

HEE]

File View Edit Graph Debug Help

s/l b [0 @[ [ 5] ] o]
1 Actors ~|| ‘wireless Director
B _dwirelessActors
- [#=] caisionDetector

P GetProperties
@ GraphicalLocator J

PowerlossChannel

- [] Locator

[ riedeRandarizer Transmitter Receiver
== TetrainProperty

[ TrarsmitProperty Transh
ElTr\a
& I ite

: iposite
P wiredTowireless
b wirelessTovired

& Configure ports for Transmitter

_|Natwork
4 Marme Input | Owutput | Multiport Type Direction Showe Name Hicle: Urits
o fbulput T | F | T uknown DEFALT | r [T |
| =
Trasn it
Cotmmit | | Al | | Help ‘ Cancel |

FIGURE 19. Model with ports added to the Transmitter and Receiver, and the dialog used to create the ports.

lﬂ_ Unnamed#Transmitter

File View Edit Graph Debug Help

o E[a 5 b M 0]8 i [W[5 5[5/
| ] Lhilities DEDirector
| | Directors
| |WirelessChannels
| | Actors
| | MoreLibraries
| ] UserLibrary
output

DEDirector

FIGURE 20. Inside the Transmitter.
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the Ramp actor inside the Receiver as shown in figure 24. Running the model now resultsin the dis-
play shown in figure 25. Notice that the received power is aways Infinity, which is not very useful.

I‘H Unnamed# Transmitter

File View Edt Graph Debug Help

RN EIED
A actors »||  DEDirector

| Wirelassactors

=4 sources

GenericSources
TimedSources
B8 clock
CurrentTime
ck

TimedSinewave PoissonClock i
TriggeredClock

3 variableciock
[#-_ | SequenceSources
¥ | Sinks
# | Array
¥ | Conversions j

DEDieclor

PoissonClock

@ output

FIGURE 21. Completed Transmitter.

F8 Unnamed#Receiver
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= _4 SequenceSaurces
InteractiveShell
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- Pulse
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Sinewave =
“[E] SketchedSource
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FIGURE 22. Completed Receiver.
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FIGURE 23. Display that results from running the model of figure 19.
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Indeed, the Transmitter has not specified a transmit power, and the PowerL ossChannel has a default
power of Infinity, as shown in figure 15. The power loss introduced by the channel becomes irrelevant
because in this model, the transmit power is infinite, which when multiplied by any non-zero loss, still
yieldsinfinite power.

To get amore reasonable model of power loss, set the transmit power by right clicking on the out-
put port of the Transmitter and setting the outsideTransmitProperties parameter to “{ power = 1.0}" as
shown in figure 26. Re-running the model now results in a display like that shown in figure 27, where
the variability in power level was obtained by moving the Receiver towards and over the Transmitter
while the model was running.

'q; file:/C:fcvsimages/ptlldoc/doc/desipn/src/visualsense/Tutorial2. xml#Receiver

File View Edt Graph Debug Help

e @|a | b 1| @]9 m 9[> [20] @

A actors ~|| DEDIrector

-4 wirelessActors
+[=] CallisionDetectar
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- [B] nodeRandormizer

- == TerrainProperty input GelProperties Display

Lopd TransmitPropertyTransf

) WirelessComposite

P wiredTowireless

Lopq wirelessTowired
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DEDirector

o GelProperties. Display

*p¢—J

FIGURE 24. Modified Receiver that displays the received properties.
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FIGURE 25. Display that results from using the Receiver design of figure 24.
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File Help
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FIGURE 27. Display that results from using the transmit power set as shown in figure 26.
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Noticein figure 27 that one of the displays shows areceived power of Infinity. This occurred when
the Transmitter and Receiver were directly on top of one ancther. Recall from the documentation for
PowerL ossChannd that the value of the power field in the received properties is a power density
(power per unit area), not an absolute power. Hence, indeed, if the receiver and transmitter occupy the
same physical space, and the transmitter is a point source, then the power density at the receiver isinfi-
nite. Typically, areceiver model will multiply this power density by an effective antenna area and an

antenna efficiency to get an absolute received power level.

The received power density can be used to decide at the receiver whether transmission is successu-
ful. To do this, modify the Receiver model to get the structure shown in figure 28. The actors used here

arefound asfollows:
* RecordDisassembler: Actors—FowControl—Aggregators

lq; file:/C:fcvsimages/ptlldoc/doc/desipn/src/visualsense/Tutorial 2. xml
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FIGURE 26. Setting the transmit power of the Transmitter.
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FIGURE 28. Receiver model that discards received events where the power is below a threshold.
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» Expression: Actors—Math
* BooleanSwith: Actors—FlowControl— BooleanFl owControl

The RecordDisassembler actor extracts fields from a record. To use it, you must create output ports
that have the same name as the field, in this case, power. To use the Expression actor, you must create
input ports, using whatever names you like (“power” in figure 28), and then give an expression that
defines the output in terms of the inputs (“power > 1.0E-6" in figure 28). The output of this Expression
actor will be true if the received power is greater than 1.0 x 10_6, and false otherwise. That boolean
signal drives the control port of the BooleanSwitch, which sends its input to one of two output ports
depending on the value of the control input. In this case, we observe only the true output, which will be
the received power values that exceed 1.0 x 10°°.

Noticethat in figure 28, some connectionsinvolve a small black diamond. Thisisthe visual mech-
anism for routing a signal to multiple places. To create the diamond (which is called a vertex), you can
either control click on the background of the editor, or click on the black diamond in the toolbar. To
link wires to the vertex, hold the control key while clicking and dragging to draw the connection.

2.6 Using the Plot Actors

Often, it is more useful for amodel to graph data rather than display it in textual form. Modify the
model of figure 28 as shown in figure 29, where the Display actor has been replaced by a TimedPlotter
from Actors—Sinks—TimedSinks. The result of arun is shown in figure 30, where the Receiver was
moved during the execution so it passed very close to the Transmitter.

This plot display can be improved considerably. In the plot window, click on the format button at
the upper right, as shown in figure 30, to get the window shown in figure 31. Setting the parameters as
indicated in that window results in the plot in figure 32, which is a more appealing rendition of the
data.

Notice that you can zoom into aregion of the plot by simply clicking and dragging out the region
of interest. You can zoom out by clicking and dragging upwards or leftwards rather than downwards or
rightwards. You can zoom fit by clicking on the zoom fit button at the upper right.

5] file:/C:/cvsimages/ptlldoc/doc/design/srcivisualsensefTutoriald. xml#Receiver
File View Edit Graph Debug Help
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FIGURE 29. Receiver that plots rather than displays textually the received power as a function of time.
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3. Modeling Capabilities

Visual Sense is an extension of the discrete-event modeler of Ptolemy Il. It largely preserves the
discrete-event semantics, but changes the mechanism for connecting components so that explicit wires
are not required. In the models constructed in the previous section, wired and wireless models were
combined hierarchically. Indeed, all of Ptolemy II, which includes a very rich set of modeling mecha

nisms, can be used to construct very elaborate models of sensor nodes and propagation effects.

In this section, we explain the discrete-event semantics briefly and discuss the channel model that
is used to decide connectivity in sensor nets and the hierarchical component model for each sensor
node. We then illustrate capabilities by discussing some of the examples that are provided as demos

with the system.

'q_ .Tutorial4.Receiver. TimedPlotter
File Edit Special Help
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FIGURE 30. Plot showing the received power afunction of time as the Receiver is moved close to the Transmitter.
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FIGURE 31. Diaog to set the plot format, filled in to yield the display shown in figure 32.
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FIGURE 32. Plot display using the format shown in figure 31.
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3.1 Discrete-Event Simulation

The director plays a key role in Ptolemy 11 it defines the semantics of a composite. It gives the
concurrency model and the communication mechanisms. In Visual Sense, the director implements the
simulator. The WirelessDirector is an aimost completely unmodified subclass of the pre-existing dis-
crete-event director (DEDirector) in Ptolemy I1.

The discrete-event (DE) domain of Ptolemy Il [10] provides execution semantics where interac-
tion between components is via events with time stamps. The time stamps are double-precision float-
ing point numbers, and a sophisticated cal endar-queue scheduler is used to efficiently process eventsin
chronological order. DE has a formal semantics that ensures determinate execution of deterministic
models[12], athough stochastic models for Monte Carlo simulation are also well supported. The pre-
cision in the semantics prevents the unexpected behavior that sometimes occurs due to modeling idio-
syncrasies in some modeling frameworks.

The DE domain in Ptolemy Il supports models with dynamically changing interconnection topol o-
gies. Changes in connectivity are treated as mutations of the model structure. The software is carefully
architected to support multithreaded access to this mutation capability. Thus, one thread can be execut-
ing asimulation of the model while another changes the structure of the model, for example by adding,
deleting, or moving actors, or changing the connectivity between actors. The results are predictable
and consistent.

The most straightforward uses of the DE domain in Ptolemy |l are similar to other discrete-event
modeling frameworks such as NS, Opnet, and VHDL. Components (which are called actors) have
ports, and the ports are interconnected to modd the communication topology. Ptolemy |l provides a
visual editor for constructing DE models as block diagrams. However, such block diagrams are a poor
representation of a sensor network, because the interconnection topology is highly variable.

Visual Sense largely preserves DE semantics, but changes the mechanism for connecting compo-
nents. In particular, it removes the need for explicit connections between ports, and instead associates
ports with channels by name (e.g. “RadioChannel”). Connectivity can then be determined on the basis
of the physical locations of the components. The algorithm for determining connectivity is itself
encapsulated in a component as a channel model, and can be elaborated in the receiver models, and
hence can be devel oped by the model builder.

3.2 Channel Models

A channel model in Visual Senseisitself an actor. When atransmitter produces an event on awire-
less port that references the channel by name, the event is delivered to the channel for transformation.
The channel may alter the properties that are supplied by the transmitter, and may delay delivery of the
event to areceiver to model propagation delay. In Visual Sense, the responsibility of the channel ends
there. Other components are used to model terrain effects, antenna gains, etc. Some of these are
described below.

3.3 Wireless Node Models

Sensor nodes themselves can be modeled in Java, or more interestingly, using more conventional
DE models (as block diagrams) or other Ptolemy 1l models (such as dataflow models, finite-state
machines or continuous-time models). For example, a sensor node with modal behavior can be defined
by sketching a finite-state machine and providing refinements to each of the states to define the behav-
ior of the node in that state. This can be used, for example, to model energy consumption as a function
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of state. Sophisticated models of the coupling between energy consumption and media access control
protocols become possible.

3.4 Examples of Modeling Capabilities

Most of the modeling capabilities described here are illustrated in the quick tour, accessible from
the welcome window shown in figure 1.

3.4.1 Packet Structure

Ptolemy Il includes a sophisticated type system that includes aggregate types like records. Above,
we showed how records can be used for transmit properties. They can aso be used to construct packets
with arbitrary payloads. The mechanisms are identical. The RecordAssembler, RecordDisassembler,
and RecordUpdater actors in the Actors—FlowControl—Aggregators library can be used to assemble
and disassembl e records.

The type system will check for compatibility in uses of records. Extracting a field and using it
incorrectly (e.g. using it as a boolean value when it is actually an integer) will yield a type check error
before the model is executed.

3.4.2 Packet Losses

The ErasureChannel model, which is a base class for most of the channel moddls, offers a parame-
ter lossProbability that can be used to model independent, identically distributed packet losses.

3.4.3 Battery Power

Since nodes in a wireless network can be defined by arbitrary Ptolemy models, it is easy to incor-
porate models of energy or power consumption. A simple example is given in the quick tour under
“Circular Range Channel,” shown in figure 34, where on the right you can see that the Transmitter uses
a PoissonClock to decrease the range of transmission at random times to model the transmission range
degradation over time as its battery is depleted. When this model executes, the size of the circular icon
representing the transmitter decreases as its range decreases.

3.4.4 Power Loss

The quick tour includes a modd called “Power Loss Channel” that illustrates power variability at
the receiver as afunction of distance. The top-level model, receiver implementation, and a plot result-
ing from its execution are shown in figure 33. The model uses the same principles as the tutorial exam-
ple described above.

3.4.5 Collisions

In the underlying discrete-event semantics of Visual Sense, events occur instantaneoudy at a par-
ticular time. That is, they do not have a duration. To model collisions of messages that take time and
share a common channel, the model must explicitly include the message duration.

A simple example of such amodel is shown in figure 35. In this model, two transmitters share the
same channel and transmit messages of fixed duration at random times. As the model executes, one of
the transmitters moves in a circular pattern, starting far from the receiver, coming close, then moving
away again. At the start, when it is far from the receiver, its messages get through to the receiver only
if the other transmitter does not transmit a message that overlaps in time. Whether the message from
the other transmitter gets through in the event of a collision depends on how far away the first transmit-
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ter is. If it is sufficiently far away, then the interfering power is not sufficient to prevent communica

tion, so the message gets through. If it is closer, then the interfering power will be sufficient that
neither message gets through.

Two plots are shown in figure 35. The upper plot shows the messages that are transmitted (in red
and blue), giving avisual indication of when overlap occurs. The magnitude in the plot represents the
received power. For the transmitter that is stationary, the receiver power is constant. For the transmitter
that moves, the received power starts low, then rises to nearly equal the power of the stationary trans-
mitter, then drops again. The lower plot indicates whether messages are lost. In the figure, a total of

seven messages are lost, al but one of them from the mobile transmitter (shown in red, if you have a
color copy of this document).

The duration of amessage in this model is represented by an extra field added to the transmit prop-
erties by the channel. The parameters of the channd are shown at the lower right in figure 35. Notice
that the defaultProperties parameter has value “{ range=Infinity, power=Infinity, duration=1.0}". The
duration field in this record represents the duration of a message. Individual transmitters can override
this by setting the outsideTransmitProperties parameters of their portsto give any desired duration.

The Receiver implementation is shown in figure 36. In this modéd, the value of the received signal
is a boolean with value false if the originator is the fixed transmitter and value true if the originator is
the mobile transmitter. The GetProperties actor is used to extract the received properties, which will
include the received power and the message duration. The power and duration fields of the properties
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FIGURE 33. Model of power loss as a receiver moves into range and then close to a transmitter.
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record are extracted by the RecordDisassembler actor and fed into the CollisionDetector actor, which
determines which of the messages are received and which are lost. The rest of the modd is devoted to
constructing meaningful plots so that we get a visual rendition of the behavior.

The CollisionDetector actor is fairly sophisticated. Its documentation is shown in figure 37. This
actor assumes that the duration of messages is short relative to the rate at which the actors move. That
is, the received power (and whether areceiver isin range) is determined once, at the time the message
gtarts, and remains constant throughout the transmission.
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FIGURE 34. Model where transmission range degrades over time as a battery is depleted.
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FIGURE 36. Implementation of the Receiver in figure 35, which models and tracks collisions.
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3.4.6 Transmit Antenna Gain

A transmitter for a wireless channel may have a directional antenna. This introduces a significant
complication in modeling because, although the directionality is alocal property of the transmitter, its
effect depends on the location of the receiver. We have seen above the use of transmit properties to
model propagation losses. Transmit properties are also used to model antenna gains. The transmitter
registers with the channel a property transformer, which is an actor that will modify the transmit prop-
ertiesfor any particular transmission. Before the channel delivers an event to areceiver, it executes the
property transformer, informing it of the location of the transmitter and receiver, and permitting it to
modify the transmit properties.

An example of a model that includes a directional transmit antenna is shown in figure 38. This
model is visible in the quick tour under “Transmit Antenna Gain.” When this model executes, the
receiver movesin acircular pattern around the transmitter and measures and plots the received power.
The transmitter has an 8-element phased-array antennawith steering.

The design of the transmitter is quite sophisticated, asis shown in figure 39. It illustrates how the
full modeling power of Ptolemy |1 can be used in Visual Sense. At the top left of the figure, the Trans-
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CollisionDetector: This actor models a typical physical layer front end of a wireless receiver. It models a
receiver where messages have a non-zero duration and messages can collide with one another, causing a
failure to receive. A message is provided to this actor at the time corresponding to the start of its transmis-
sion. Along with the message (an arbitrary token), the inputs must provide the duration of the message and
its power. The message spans an interval of time starting when it is provided to this actor and ending at that
time plus the duration. If another message overlaps with a given message and has sufficient power, then the
given message will be sent to the collided output. Otherwise it is sent to the received output. In both cases,
the message appears at the corresponding output at the time it is received plus the duration (i.e. the time at
which the message has been completed).

Theinputs are:

* message: The message carried by each transmission.

« power: The power of the received signal at the location of this receiver.

*  duration: The time duration of the transmission.

The power and duration are typically delivered by the channel in the “properties’ field of the transmission.

The power is usually given as a power density (per unit area) so that areceiver can multiply it by its antenna

area to determine the received power. It isin alinear scale (vs. DB), typically with units such as watts per

sguare meter. The duration is a non-negative double, and the message is an arbitrary token.

The outputs are:

» received: The message received. This port produces an output only if the received power is sufficient
and there are no collisions. The output is produced at atime equal to the time this actor receivesthe
message plus the value received on the duration input.

« collided: The message discarded. This port produces an output only if the received message collides
with another message of sufficient power. The output is produced at atime equal to the time this actor
receives the message plus the value received on the duration input. The value of the output is the mes-
sage that cannot be received.

This actor is typically used with a channel that delivers a properties record token that contains power and

duration fields. These fields can be extracted by using a GetProperties actor followed by a RecordDisassem-

bler. The PowerL ossChannel, for example, can be used. However, in order for the type constraints to be sat-
isfied, the PowerL ossChannel's defaultProperties parameter must be augmented with a default value for the
duration. Each transmitter can override that default with its own message duration and transmit power.

Any message whose power (as specified at the power input) is less than the value of the power Thresh-
old parameter isignored. It will not cause collisions and is not produced at the collided output. The power-
Threshold parameter thus specifies the power level at which the receiver smply fails to detect the signal. It
isgivenin alinear scale (vs. DB) with the same units as the power input. The default value is zero, i.e. by
default it won't ignore any received signal.

Any message whose power exceeds power Threshold has the potential of being successfully received, of
failing to be received due to a collision, and of causing a collision. A message is successfully received if
throughout its duration, its power exceeds the sum of all other message powers by at least SNRThreshold-
InDB (which as the name suggests, is given in decibels, rather than in a linear scale, as is customary for
power ratios). Formally, |et the message power for the i-th message be p;(t) at timet. Before the messageis
received and after its duration expires, this power is zero. The i-th message is successfully received if

Pt 2Py pi(t) (1)
i#i
for all t where p;(t) > 0, where P = 10"(SNRThresholdInDB/10), which isthe signal to interferenceratio in
alinear scale.

FIGURE 37. Documentation for the CollisionDetector actor used in figure 36.
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mitProperty Transformer actor models the transmitter antenna. Its firing behavior is very simple: when
presented with an input token, it simply produces that same input token, unchanged, on the output port.
However, in addition to this firing behavior, this actor registers itself with the channel used by the port
that its output is connected to as a property transformer. When wirel ess communication occurs through
that output port to some receiver, the channel calls back the TransmitProperty Transformer once for
each receiver, provides the location of the receiver, and executes the model contained by the Transmit-
Property Transformer actor.

The model contained by the TransmitProperty Transformer actor is shown in figure 39. At the top
right is the top level of this model. It shows that when it is executed (on request by the channel, once
for each transmission), it is provided with three values, senderLocation, receiverLocation, and proper-
ties. The properties value is a record that in this case includes a power field that is to be modified by
the model to account for the antenna gain in the direction from the transmitter to the receiver. This
model calculates the angle of the transmission, calculates the antenna gain in that direction, and then
scales the power field of the properties record. Notice that this model has an SDFDirector rather than
the usual WirelessDirector or DEDirector used most commonly in VisualSense. This is because the
calculation of antennagain is essentially a signal processing function, something that the SDFDirector
handles very well.
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FIGURE 38. Model that includes a directional transmit antenna. Asthe model executes, the Receiver actor moves
in acircular pattern around the transmitter and measures and plots the received power.
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The antenna gain is calculated using the model shown in the middle of figure 39. This model uses
two lterateOverArray actors (named “ ArrayElements’ and “ Steering”) to model the antenna array ele-
ments and application of the steering vector. These actors are composite actors that execute their con-
tained models once for each element of an input array. These actors are examples of higher-order
components, and in this case enabl e the definition of a model where the number of antenna elementsis
given by a parameter rather than hardwired into the diagram. The same mechanism can be used to

model the antenna gain pattern of the receiver.
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FIGURE 39. Transmitter design for the model in figure 38, showing how a Ptolemy Il model (in this case a syn-
chronous dataflow model) can be used to model transmission effects.
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If there are multiple property transformers that are applicable to a particular transmission, then
they are executed in an arbitrary order, so the operations they perform on the properties must be com-
mutative. Typically, they select afield and multiply it by a constant.

4. Software Architecture

Visual Sense is constructed by subclassing key classes in Ptolemy 1I. The extension to Ptolemy
consists of afew new Java classes and some XML files. The classes are designed to be subclassed by
model builders for customization, athough non-trivial model s can aso be constructed without writing
any Java code. In the latter case, sensor network nodes are specified using block diagrams and finite
state machines.

The key classes in Ptolemy 1l (which define its meta model) are shown in figure 40. Executable
components implement the Actor interface, and can be either atomic or composite. Atomic actors are
defined in Java, while composite actors are assemblies of actors and relations. Each actor, whether
atomic or not, contains ports, which are linked in a composite actor via relations. A top-level model is
itself a composite actor, typically with no ports. Actors, ports and relations can all have attributes
(parameters). One of the attributes is a director. The director plays a key role in Ptolemy I1: it defines
the semantics of a composite. It gives the concurrency model and the communication semantics. In
Visual Sense, the director implements the simulator. The WirelessDirector is an aimost completely
unmodified subclass of the pre-existing discrete-event director (DEDirector) in Ptolemy 11.

The extensions that constitute Visual Sense are shown in figure 40. A node in awireless network is
an actor that can be a subclass of either TypedAtomicActor or TypedCompositeActor. The difference
between these is that for TypedAtomicActor, the behavior is defined in Java code, whereas for Typed-
CompositeActor, the behavior is defined by another Ptolemy 11 model, which is itself a composite of
actors.

Actors that communicate wirelessly have ports that are instances of WirelesslOPort. As with any
Ptolemy 11 port, the actor sends data by calling the send or broadcast method on the port. The send
method permits specification of anumerically indexed subchannel, whereas the broadcast method will
send to all subchannels.

In the case of WirelesslOPort, send and broadcast cannot determine the destination ports using
block-diagram-style connectivity because there is no such connectivity. Instead, they identify an
instance of WirelessChannel by name, and delegate to that instance to determine the destination(s) of
the messages. Theinstance is specified by setting the outsideChannel parameter of the port equal to the
name of the wireless channel (all actors at a given level of the hierarchy have unique names, afeature
provided by the base class).

The WirelessChannel interface and the AtomicWirelessChannel base class, shown in figure 40, are
designed for extensibility. They work together with WirelesslOPort, which uses the public method,
transmit, to send data. That method takes three arguments, a token?! to transmit, a source port, and a
token representing transmit properties (transmit power, for example, as discussed below).

1. Atokenin Ptolemy Il isawrapper for data. Ptolemy Il provides arich set of data types encapsul ated as tokens,
including composite types such as arrays, matrices, and records (which have named fields). A sophisticated type
system ensures validity of datathat is exchanged viatokens. A rich expression language, described below, per-
mits definition of tokens as expressions that can depend on parameters of actors or ports. Scoping rules limit the
visibility of parameters according to the hierarchy of the model, thus avoiding the pitfalls of using global vari-
ables. For details, see[8].
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FIGURE 40. UML class diagram showing the key classes for wireless sensor network modeling. These classes plus some XML
files specifying configuration information and libraries constitute Visual Sense.
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AtomicWirelessChannel has a suite of protected methods, indicated in the UML diagram by the
leading pound sign (#); in the Ptolemy Il coding style, protected methods have names that begin with
leading underscores( ). These provide simple default behavior, but are intended to be overridden in
subclasses to provide more sophisticated channel models. This is an example of the strategy design
pattern [6], where the code providing the large-scale behavior delegates to protected methods for
detailed behavior.

The default behavior of AtomicWirelessChannel is represented by the following pseudo code:

public void transmit (token, sender, properties) {
foreach receiver in range ({
_transmitTo (token, sender, receiver, properties)

}
}

To determine which receivers are in range, it cals the protected method
_receiversInRange (), which by default returns all receivers contained by ports that refer to the
same channel name as that specified by the sender. The transmitTo () method by default usesthe
public transformProperties () method to modify the properties argument (see below) and
then put the token and the modified properties into the receiver. The transformProperties ()
method applies any property transformers that are registered using the registerProper-
tyTransformer () method, but does nothing further. Thus, if there are no registered properties
transformers, the default AtomicWirelessChannel has no range limitations and introduces no transmis-
sion degradations. We can now show through a series of examples how subclassing makes it easy to
construct more detailed (and useful) channel models.

We illustrate the construction of model components such as channel models by subclassing with
examples.

4.1 Erasure Channel

Consider a channel that randomly drops data. This can be defined as follows:

public class ErasureChannel extends AtomicWirelessChannel
specify constructor ...
public Parameter lossProbability;
public Parameter seed;
private Random _random = new Random() ;
public void transmit (token, sender, properties) {
double experiment = random.nextDouble () ;
if (experiment >= lossProbability.doubleValue()) {
super.transmit (token, sender, properties);
}

}
}

It isthat smple. This channel adds to the base class a parameter called lossProbability. (The details of
constructing the channel and this parameter are not shown, see [8]). The Java class Random is used to
“throw the dice” to determine whether or not the transmission should actually occur.

Note that the above channel model might not be exactly what you want. In particular, it throws the
dice once, and uses the result to decide whether or not to transmit to all recipient portsthat are in range.

34 VisualSense



Software Architecture

A better design might throw the dice once for each recipient port. We leave it as a (simple) exercise for
the reader to see how to modify the above code to accomplish this.

4.2 Limited Range Channels

The above channels have unlimited range, in that any input port that references the channel by
name isin range. Thisis because the default implementation of _isInRange () sSimply returnstrue. It
is easy for a subclass to change this behavior. Consider, for example, a channel model that uses adis-
tance threshold:

public class LimitedRangeChannel extends ErasureChannel {
. specify constructor ...
public Parameter range;
protected boolean _isInRange (
source, destination, properties) ({

double distance = _distanceBetween (source, destination) ;
if (distance <= range.doubleValue()) ({

return true;
} else {

return false;

}
}

This class overridesthe _isInrRange () method to simply check the distance between the source
and the destination, returning true if the distance is below the specified range threshold. The
_isInRange () method usesthe locationOf () method, which by default returns the (two-dimen-
sional) location of the icon within the visua renditions of the model. Again, this yields a simplistic
model, but nonethel ess one that could be useful. It would be easy to build avariant where locationisin
three dimensional space and is specified by attributes attached to the sensor nodes. M ore sophisticated
models of range rely on the transmit properties concept, which we explain next.

4.3 Transmit Properties

In the previous section, the range of wireless communication is a property of the channel. How-
ever, in many cases, it depends on properties of the transmitting sensor node and of extraneous features
such as terrain. For example, a sensor node may have a power budget that depends on a battery model,
and the power it uses for transmission will affect the range.

The argument called properties plays a central role. This argument is used to specify (model-
dependent) information about a particular transmission. The properties argument is always a Record-
Token, which isacomposite data type in Ptolemy |l that has named fields of arbitrary type. The Atom-
icWirelessChannel base class provides a defaultProperties parameter that defines the fields that are
relevant for a particular channel.

A simple use of the properties field would be to specify the transmission range for a particular
transmission. Indeed, the LimitedRangeChannel subclass of AtomicWirelessChannel, has a default-
Properties value of “{range = Infinity}”. A user of this channel could change this to, for example,
“{range = 100.0}", to represent that by default, transmissions have arange of 100 meters. An individ-
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ual transmission can override this by setting the outsideTransmitProperties parameter of the sending
port.

This model, however, is still simplistic. Communication ranges are typically not simple distances.
More realistic models are supported by the PowerL ossChannel subclass. This class has a parameter
power PropagationFactor whose default value is the expression “1.0/ (4 * Pl * distance * distance),”
which assumes that the transmit power is uniformly distributed on a sphere of radius distance. The
variable distance is a convenience variable provided in the scope in which this expression is evaluated.
The user of this model may replace this expression with any expression using the rich Ptolemy 1|
expression language, described below. The channel will then calculate the received power using the
specified power PropagationFactor and provide the received power to the receiving node viathe get -
Properties () method of itsinput ports. The receiving node can then determine whether the signal
has enough power to be received.

Much more sophisticated propagation models can be encapsulated and made available to the com-
munity as reusable components.

4.4 Antenna Gains and Terrain Models

Using the API as described so far, there appears to be no mechanism for implementing antenna
gains or terrain models. These depend on the signal path from the transmitter to the receiver. However,
close inspection reveals that the API isrich enough to accommodate these. In particular, the Wireless-
Channd interface has a key method, registerPropertyTransformer (), which can be used to
register any object that implements the TransformProperties interface (which includes any object that
implements WirelessChannel). An object that implements this interface is given the opportunity to
modify the transmit properties of any transmission (or it can selectively indicate an interest only in
transmissions coming from a particular port).

A transmit antenna model, for example, can be realized by an object that implements the Trans-
formProperties interface. In fact, we can use Ptolemy Il infrastructure to provide an object that uses
another Ptolemy 1l model to implement the property transformation. Thus, the full suite of sophisti-
cated signal processing capabilities of Ptolemy Il are at the disposal of the builder of the antenna
model.

The same goes for terrain models, although there is a caveat. Property transformers are required to
implement modifications of the properties record that are commutative. That is, if there are several
property transformers that can affect a particular transmission, the result of applying these transform-
ers needs to be the same regardless of the order in which they are applied. For simple terrain models
that apply only power loss, this will often be true. For some more sophisticated terrain models, how-
ever, it will not be true. Such models must be implemented as channels, subclassing for example the
PowerL ossChannel.

4.5 Delay Channels

The DelayChannel subclass of ErasureChannel has a propagationSpeed parameter that the channel
uses to determine the delay between transmission and reception of asignal. In the DelayChannel class,
when the transmit () method is called, the channel calculates the delay to the specified location and
requests that the director re-invoke it after that delay has elapsed (by calling the fireat () method of
the director, which places a regquest on the event queue). When it is reawakened, it delivers the mes-
sage to the receiver.
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5. Framework Infrastructure

The Ptolemy |1 framework provides some useful infrastructure.

5.1 Hierarchy and Heterogeneity

Ptolemy 1l supports hierarchical mixing of distinct models of computation. An inside model and
its container model can have distinct directors. It is not uncommon for both directors to implement
similar semantics. However, it is possible to have much bigger differences. In order to support this, the
Wirelessl OPort class in 40 can optionally specify both an insideChannel and an outsideChannel. If the
outside channel is specified, then wireless communication is used on the outside. If the inside channel
is specified, then wireless communication is used on the inside. Both can be used at the same time.

Another useful combination uses the continuous-time domain of Ptolemy |1. This domain includes
a CTDirector with a sophisticated numerical solver for ordinary differential equations and extensive
support for hybrid systems modeling [2]. This can be used, for example, to construct sophisticated
models of the physical mobility of mobile sensor platforms.

5.2 Type System

Ptolemy Il includes a sophisticated type system [19]. In this type system, actors, parameters, and
ports can al impose constraints on types, and a type resolution algorithm identifies the most specific
types that satisfy al the congraints. By default, the type system in Ptolemy Il includes a type con-
straint for each connection in a block diagram. However, in wireless models, these connections do not
represent all the type constraints. In particular, every actor that sends data to a wireless channel
requires that every recipient from that channel be able to accept that data type. Visual Sense imposes
this constraint in the WirelessChannel base class, so unless a particular model builder needs more
sophisticated constraints, the model builder does not need to specify particular datatypesin the model.
They will be inferred from the ultimate sources of the data and propagated throughout the model.

Note, however, that it would be unwise to explicitly model type constraints between every trans-
mitter and every receiver using a channel. If there are n such users, thiswould be n? constrai nts, which
for large n could bog down type resolution. As shown in 40, a channel contains a single port, an
instance of ChannelPort. Thisis used to set up n type constraints, one to each user of the channel. This
simplifies type resolution and keeps the static analysis of the model tractable even for large models.

5.3 Expressions

In Visual Sense, models specify computations by composing actors. Many computations, however,
are awkward to specify thisway. A common situation is where we wish to evaluate a simple algebraic
expression, such as“sin(2r (x-1)).” It is possible to express this computation by composing actorsin a
block diagram, but it is far more convenient to give it textually.

The expression language provides infrastructure for specifying algebraic expressions textually and
for evaluating them. The expression language is used to specify the values of parameters, guards and
actions in state machines, and for the calculation performed by the Expression actor. In fact, the
expression language is part of the generic infrastructure in Ptolemy 1I, upon which VisualSense is
built.

5.3.1 Expression Evaluator

Vergil provides an interactive expression evaluator, which is accessed through the File:New menu.
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This operates like an interactive command shell, and is shown in figure 5.1. It supports acommand his-
tory. To access the previously entered expression, type the up arrow or Control-P. To go back, type the
down arrow or Control-N. The expression evaluator is useful for experimenting with expressions.

5.3.2 Simple Arithmetic Expressions

Constants and Literals. The simplest expression is a constant, which can be given either by the sym-
bolic name of the constant, or by a literal. By default, the symbolic names of constants supported are
Pl, pi, E, e true, fdse, i, j, NaN, Infinity, Positivelnfinity, Negativelnfinity, MaxUnsignedByte,
MinUnsignedByte, MaxInt, MinInt, MaxLong, MinLong, MaxDouble, MinDouble. For example,

PI/2.0

is avalid expression that refers to the symbolic name “PI” and the literal “2.0.” The constantsi and |
are the imaginary number with value equal to the square root of —1. The constant NaN is “not a num-
ber,” which for example is the result of dividing 0.0/0.0. The constant Infinity is the result of dividing
1.0/0.0. The constants that start with “Max” and “Min” are the maximum and minimum values for
their corresponding types.

Numerical values without decimal points, such as “10” or “—3" are integers (type int). Numerical
values with decimal points, such as“10.0" or “3.14159" are of type double. Numerical values without
decimal points followed by the character “I” (el) or “L” are of type long. Unsigned integers followed
by “ub” or “UB” are of type unsignedByte, as in “5ub”. An unsignedByte has a value between 0 and
255; note that it not quite the same as the Java byte, which has a value between -128 and 127.

Numbers of type int, long, or unsignedByte can be specified in decimal, octal, or hexadecimal.
Numbers beginning with aleading “0” are octal numbers. Numbers beginning with a leading “0x” are
hexadecimal numbers. For example, “012" and “0xA” are both equal to the integer 10.

A complex is defined by appending an “i” or a“j” to adouble for the imaginary part. Thisgives a
purely imaginary complex number which can then leverage the polymorphic operations in the Token

'q; Expression Evaluator
File  Help

Tk oSin(pi/fZ2) ~
1.0

B [l:1:10]

[, z, 3, 4, 5, 6, 7, &, 9, 10]

B» sin{(pi/l0)*[1:1:107)

[0.30901659943749, 0.58775852522925, 0.5090169943749, 0.9510565162952, 1.0, 0.9
B [1:1:107(0,2

3

b=

v
< >

|

FIGURE 5.1. Expression evaluator, which is accessed through the File:New menu.
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classes to create a general complex number. Thus“2 + 3i” will result in the expected complex num-
ber. You can optionally writethis“2 + 3*i”,

Literal string constants are also supported. Anything between double quotes, “...”, isinterpreted as
astring constant. The following built-in string-valued constants are defined:

TABLE 3: String-valued constants defined in the expression language.

Variable name Meaning Property name Example under Windows
PTII The directory in which Visua Senseisinstalled| ptolemy.ptll.dir c:\tmp
HOME The user home directory user.home c:\Documents and Settings\you
CWD The current working directory user.dir c:\ptll

The value of these variables is the value of the Java virtual machine property, such as user.home. The
properties user.dir and user.home are standard in Java. Their values are platform dependent; see the
documentation for the java.lang.System.getProperties() method for details. Note that user.dir and
user.home are usually not readable in unsigned applets, in which case, attempts to use these variables
in an expression will result in an exception. Vergil will display al the Java properties if you invoke
JVM Propertiesin the View menu of a Graph Editor.

The ptolemy.ptll.dir property is set automatically when Visual Sense is started up. The constants()
utility function returns arecord with all the globally defined constants. If you open the expression eval-
uator and invoke this function, you will see that its value is something like:

{cwDp="C:\ptII\ptolemy\data\expr", E=2.718281828459,
HOME="C:\Documents and Settings\eal", Infinity=Infinity, MaxDou-
ble=1.7976931348623E308, MaxInt=2147483647,
MaxLong=9223372036854775807L, MaxUnsignedByte=255ub,
MinDouble=4.9E-324, MinInt=-2147483648,
MinLong=-9223372036854775808L, MinUnsignedByte=0ub, NaN=NaN,
NegativeInfinity=-Infinity, PI=3.1415926535898, PTII="c:\ptII",
PositiveInfinity=Infinity, boolean=false, complex=0.0 + 0.01i,
double=0.0, e=2.718281828459, false=false, fixedpoint=£fix(0.0,2,1),
general=present, i=0.0 + 1.0i, int=0, j=0.0 + 1.0i, long=0L,
matrix=[], object=object (null), pi=3.1415926535898,
scalar=present, string="",true=true, unknown=present,
unsignedByte=0ub}
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Variables. Expressions can contain identifiers that are references to variables within the scope of the
expression. For example,

PI*x/2.0

isvalid if “x” isavariable in scope. In the expression evaluator, the variables that are in scope include
the built-in constants plus any assignments that have been previously made. For example,

>> X = pi/2
1.5707963267949
>> sin(x)

1.0

>>

In the context of Visual Sense models, the variablesin scope include all parameters defined at the same
level of the hierarchy or higher. So for example, if an actor has a parameter named “Xx” with value 1.0,
then another parameter of the same actor can have an expression with value “p1*x/2.0", which will
evaluate to it /2.

Consider aparameter P in actor X which isin turn contained by composite actor Y. The scope of an
expression for P includes all the parameters contained by X and Y, plus those of the container of Y, its
container, etc. That is, the scope includes any parameters defined above in the hierarchy.

You can add parameters to actors (composite or not) by right clicking on the actor, selecting “ Con-
figure” and then clicking on “Add”, or by dragging in a parameter from the utilities library. Thus, you
can add variables to any scope, a capability that serves the same role as the “let” construct in many
functional programming languages.

Operators. The arithmetic operators are +, —, *, /, *, and %. Most of these operators operate on most
datatypes, including arrays, records, and matrices. The ”* operator computes “to the power of” or expo-
nentiation where the exponent can only be an int or an unsignedByte.

The unsignedByte, int and long types can only represent integer numbers. Operations on these
types are integer operations, which can sometimes |ead to unexpected results. For instance, 1/2 yields 0
if 1 and 2 are integers, whereas 1.0/2.0 yields 0.5. The exponentiation operator ‘' when used with
negative exponents can similarly yield unexpected results. For example, 2°—1 is 0 because the result is
computed as 1/(2"\1).
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The % operation is a modulo or remainder operation. The result is the remainder after division.
The sign of the result is the same as that of the dividend (the left argument). For example,

>> 3.0 % 2.0
1.0

>> -3.0 % 2.0
-1.0

>> -3.0 % -2.0
-1.0

>> 3.0 % -2.0
1.0

The magnitude of the result is always less than the magnitude of the divisor (the right argument). Note
that when this operator is used on doubles, the result is not the same as that produced by the remain-
der() function (see Table 6 on page 60). For instance,

>> remainder(-3.0, 2.0)
1.0

The remainder() function calculates the IEEE 754 standard remainder operation. It uses a rounding
division rather than a truncating division, and hence the sign can be positive or negative, depending on
complicated rules (see page 56). For example, counterintuitively,

>> remainder (3.0, 2.0)
-1.0

When an operator involves two distinct types, the expression language has to make a decision
about which type to use to implement the operation. If one of the two types can be converted without
loss into the other, then it will be. For instance, int can be converted loss essly to double, so 1.0/2 will
result in 2 being first converted to 2.0, so the result will be 0.5. Among the scalar types, unsignedByte
can be converted to anything else, int can be converted to double, and double can be converted to com-
plex. Note that long cannot be converted to double without loss, nor vice versa, so an expression like
2.0/2L yiedsthe following error message:

Error evaluating expression "2.0/2L"
in .Expression.evaluator
Because:
divide method not supported between ptolemy.data.DoubleToken '2.0' and
ptolemy.data.LongToken '2L' because the types are incomparable.

All scalar types have limited precision and magnitude. As aresult of this, arithmetic operations are

subject to underflow and overflow.

»  For double numbers, overflow resultsin the corresponding positive or negativeinfinity. Underflow
(i.e. the precision does not suffice to represent the result) will yield zero.

» For integer types and fixedpoint, overflow results in wraparound. For instance, while the value of
MaxInt iS2147483647, the expression MaxInt + 1 Yields—2147483648. Similarly, while Max-
UnsignedByte hasvaue 255ub, MaxUnsignedByte + 1ub hasvaue Oub. Note, however, that
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MaxUnsignedByte + 1 yields256, whichisan int, not an unsignedByte. Thisis because Max-
UnsignedByte can belosslesdy converted to an int, so the addition is int addition, not unsigned-
Byte addition.
The bitwise operatorsare &, |, #, and ~. They operate on boolean, unsignedByte, int and long (but not
fixedpoint, double or complex). The operator & isbitwise AND, ~ isbitwise NOT, and | isbitwise OR,
and # isbitwise XOR (exclusive or, after MATLAB).
The relational operators are <, <=, >, >=, == and !=. They return type boolean. Note that these
relational operators check the values when possible, irrespective of type. So, for example,

1 ==1.0
returns true. If you wish to check for equality of both type and value, use the equals() method, asin

>> l.equals(1.0)
false

Boolean-valued expressions can be used to give conditional values. The syntax for thisis
boolean ? valuel : value2

If the boolean istrue, the value of the expression isvaluel; otherwise, itisvalue2.

Thelogical boolean operatorsare s, | |, !, & and |. They operate on type boolean and return type
boolean. The difference between logical && and logical & isthat & evaluates all the operands regardless
of whether their value is now irrelevant. Similarly for logical | | and |. This approach is borrowed
from Java. Thus, for example, the expression “false && x” will evaluate to false irrespective of
whether x is defined. On the other hand, “false & x” will throw an exception.

The << and >> operators performs arithmetic left and right shifts respectively. The >>> operator
performsalogical right shift, which does not preserve the sign. They operate on unsignedByte, int, and
long.

Comments. In expressions, anythinginside /. . . */ isignored, so you can insert comments.
5.3.3 Uses of Expressions

Parameters. The values of most parameters of actors can be given as expressions’. The variablesin the
expression refer to other parameters that are in scope, which are those contained by the same container
or some container above in the hierarchy. They can also reference variables in a scope-extending
attribute, which includes variables defining units. Adding parameters to actors is straightforward, as
explained in the previous chapter.

Sring Parameters. Some parameters have values that are aways strings of characters. Such parame-
ters support a simple string substitution mechanism where the value of the string can reference other

1. The exceptions are parameters that are strictly string parameters, in which case the value of
the parameter istheliteral string, not the string interpreted as an expression, as for example
the function parameter of the TrigFunction actor, which can take on only “sin,” “cos,

utan ,

”

asin”, “acos’, and “atan” as values.
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parameters in scope by name using the syntax $name, where name is the name of the parameter in
scope. For example, the StringCompare actor in figure 5.2 has as the value of firstSring “ The answer
is $PI”. This references the built-in constant Pl. The vaue of secondSring is “The answer is
3.1415926535898”. As shown in the figure, these two strings are deemed to be equal because $PI is
replaced with the value of PI.

Port Parameters. It is possible to define a parameter that is also a port. Such a PortParameter provides
adefault value, which is specified like the value of any other parameter. When the corresponding port
receives data, however, the default value is overridden with the value provided at the port. Thus, this
object functions like a parameter and a port. The current value of the PortParameter is accessed like
that of any other parameter. Its current value will be either the default or the value most recently
received on the port.

A PortParameter might be contained by an atomic actor or a composite actor. To put one in acom-
posite actor, drag it into a model from the utilities library, as shown in figure 5.3. The resulting icon is
actually a combination of two icons, one representing the port, and the other representing the parame-
ter. These can be moved separately, but doing so might create confusion, so we recommend selecting
both by clicking and dragging over the pair and moving both together.

To be useful, a PortParameter has to be given a name (the default name, “ portParameter,” is not
very compelling). To change the name, right click on the icon and select “ Customize Name,” as shown
in figure 5.3. In the figure, the name is set to “noiseLevel.” Then set the default value by either double
clicking or selecting “Configure.” In the figure, the default valueis set to 10.0.

An example of alibrary actor that uses a PortParameter is the Sinewave actor, which is found in
the sources library in Vergil. It is shown in figure 5.4. If you double click on this actor, you can set the
default values for frequency and phase. But both of these values can also be set by the corresponding
ports, which are shown with grey fill.

Expression Actor. The Expression actor is a particularly useful actor found in the math library. By
default, it has one output and no inputs, as shown in Figure 5.5(a). The first step in using it is to add
ports, as shown in (b) and (c), resulting in a new icon as shown in (d). Note: In (c) when you click on
Add, you will be prompted for a Name (pick one) and a Class. Leave the Class entry blank and click
OK. You then specify an expression using the port names, as shown in (€), resulting in the icon shown

SDF Director

StringCompare MonitorValue

g equals H true
‘ Edit parameters for, StringCompare.

@ function: quuals ﬂ
ignoreCase: (o
firstString [the answer s 371
nnnnn iString |The answer is 3.141 5926535303
firingsPerlterstion 1

Carnmit Add | Remave | Preferences | Help ‘ Cancel |

FIGURE 5.2. String parameters are indicated in the parameter editor boxes by alight blue background. A
string parameter can include references to variables in scope with $name, where name is the name of the
variable. In this example, the built-in constant $PI is referenced by namein the first
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Sate Machines. Expressions give the guards for state transitions, as well as the values used in actions
that produce outputs and actions that set values of parameters in the refinements of destination states.
This mechanism was explained in the previous chapter.

5.4 Composite Data Types

5.4.1 Arrays

Arrays are specified with curly brackets, e.g.,, “{1, 2, 3}” isan array of int, while “{"x",
"y, "zv}” isanarray of string. The types are denoted “ {int }” and “ {string}” respectively. An
array is an ordered list of tokens of any type, with the only constraint being that the elements all have

Sinewave

El:

kvl

=
Sinewave
N :
Do b * Customize Name
= Get Dacnrmentatinn :
Can Edit parameters for Sinewave x|
Liste
samplingFrequency.  |2000.0
Loal
frequency: 440,10
| phase: 0.0
Sinewave
= S}D Commit I Add | Remove | Edit Styles Cancel
=
— . Configure
Customize Name SDF Director
Get Documentation Generate a sine wave.

Configure Ports

Ligten to Actar [>>freque ney: 440.0 Ramp TrigFunction

L3> phase: 0.0 j; sin

output

Customize Mame

Get Documentation

Configure Parts

Edit parameters for Ramp x| |Listen to Actar
Set Breakpoints
@ firingCourtUirmit — [o] ook Inside
init: nhase

step: requency*2*PiisamplingFraguency 1

Commitl Add | Remave | EditStersl Cancel |

FIGURE 5.4. Sinewave actor, showing its port parameters, and their use at the lower level of the hierarchy.
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the sametype. If an array is given with mixed types, the expression evaluator will attempt to losslessly
convert the elements to a common type. Thus, for example,

{1, 2.3}
has value with type {double} :
{1.0, 2.3}
The dements of the array can be given by expressions, as in the example “ {2*pi, 3*pi}.”
Arrays can be nested; for example, “{{1, 2}, {3, 4, 5}}" isanarray of arrays of integers. The

elements of an array can be accessed as follows:

>> {1.0, 2.3}(1)
2.3

which yields 2.3. Note that indexing begins at 0. Of course, if name is the name of avariable in scope
whose value is an array, then its elements may be accessed similarly, as shown in this example:

>> x = {1.0, 2.3}
{1.0, 2.3}

>> x(0)

1.0

Arithmetic operations on arrays are carried out element-by-element, as shown by the following
examples:

>> {1, 2}*{2, 2}
{2, 4}

>> {1, 2}+{2, 2}
{3, 4}

>> {1, 2}-{2, 2}
{-1, o}

>> {1, 2}%2

{1, 4}

>> {1, 2}%{2, 2}
{1, o}

>> {1, 2}1={2, 2}
true

For other comparisons of arrays, use the compare() function (see Table 6 on page 60). Aswith scalars,
testing for equality using the == or ! = operators tests the values, independent of type. For example,
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>> {1, 2}=={1.0, 2.0}
true

5.4.2 Matrices

In VisualSense, arrays are ordered sets of tokens. Visual Sense also supports matrices, which are
more specialized than arrays. They contain only certain primitive types, currently boolean, complex,
double, fixedpoint, int, and long. Currently unsignedByte matrices are not supported. Matrices cannot
contain arbitrary tokens, so they cannot, for example, contain matrices. They are intended for data
intensive computations.

Matrices are specified with square brackets, using commas to separate row elements and semico-
lons to separate rows. E.g., “[1, 2, 3; 4, 5, 5+1]” gives atwo by three integer matrix (2 rows and 3 col-
umns). Note that an array or matrix element can be given by an expression. A row vector can be given
as “[1, 2, 3]” and a column vector as “[1; 2; 3]”. Some MATLAB-style array constructors are sup-
ported. For example, “[1:2:9]” givesan array of odd numbersfrom 1to 9, and isequivaent to “[1, 3, 5,
7, 9].” Similarly, “[1:2:9; 2:2:10]" is equivalent to “[1, 3, 5, 7, 9; 2, 4, 6, 8, 10].” In the syntax
“[p:g:r]”, pisthefirst element, g isthe step between elements, and r is an upper bound on the last ele-
ment. That is, the matrix will not contain an element larger thanr. If amatrix with mixed typesis spec-
ified, then the elements will be converted to a common type, if possible. Thus, for example, “[1.0, 1]”
isequivaent to “[1.0, 1.0],” but “[1.0, 1L]” isillegal (because there is no common type to which both
elements can be converted losslesdly).

Reference to elements of matrices have the form “matrix(n, m)” or “name(n, m)” where name is
the name of amatrix variable in scope, n is the row index, and mis the column index. Index numbers
start with zero, asin Java, not 1, asin MATLAB. For example,

Matrix multiplication works as expected. For example, as seen in the expression evaluator (seefig-
ureb5.1),

>> [1, 2; 3, 41*[2, 2; 2, 2]
[6, 6; 14, 14]

Of coursg, if the dimensions of the matrix don’t match, then you will get an error message. To do ele-
mentwise multiplication, use the multipyElements() function (see Table 7 on page 62). Matrix addition
and subtraction are elementwise, as expected, but the division operator is not supported. Elementwise
division can be accomplished with the divideElements() function, and multiplication by a matrix
inverse can be accomplished using the inverse() function (see Table 7 on page 62). A matrix can be
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raised to an int or unsignedByte power, which is equivalent to multiplying it by itself some number of
times. For instance,

>> [3, 0; 0, 3173
[27, 0; 0, 27]

A matrix can also be multiplied or divided by a scalar, asfollows:

>> [3, 0; 0, 31*3
A matrix can be added to a scalar. It can also be subtracted from a scalar, or have a scalar subtracted
from it. For instance,

>> 1-[3, 0; 0, 3]
[_21 1; 1/ _2]

A matrix can be checked for equality with another matrix as follows:

>> [3, 0; 0, 3]1!=[3, 0; 0, 6]
true
>> [3, 0; 0, 3]==[3, 0; 0, 3]
true

For other comparisons of matrices, use the compare() function (see Table 6 on page 60). As with sca-
lars, testing for equality using the == or ! = operators tests the values, independent of type. For exam-

ple,

>> [1, 2]==[1.0, 2.0]
true

To get type-specific equality tests, use the equals() method, as in the following examples:

>> [1, 2].equals([1.0, 2.0])
false

>> [1.0, 2.0].equals([1.0, 2.0])
true

>>

5.4.3 Records

A record token is a composite type containing named fields, where each field has a value. The
value of each field can have a distinct type. Records are delimited by curly braces, with each field
given aname. For example, “ {a=1, b="foo"}” isarecord with two fields, named “a”’ and “b”, with
values 1 (an integer) and “foo” (astring), respectively. The value of afield can be an arbitrary expres-
sion, and records can be nested (afield of arecord token may be a record token).
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Fields may be accessed using the period operator. For example,

{a=1,b=2}.a
yields 1. You can optionally write this asif it were amethod call:

{a=1,b=2}.a()
The arithmetic operators +, —, *, /, and % can be applied to records. If the records do not have identical
fields, then the operator is applied only to the fields that match, and the result contains only the fields
that match. Thus, for example,

{foodCost=40, hotelCost=100} + {foodCost=20, taxiCost=20}
yields the result

{foodCost=60}
You can think of an operation as a set intersection, where the operation specifies how to merge the val-
ues of the intersecting fields. You can also form an intersection without applying an operation. In this
case, using the intersect() function, you form arecord that has only the common fields of two specified

records, with the values taken from the first record. For example,

>> intersect ({a=1, c=2}, {a=3, b=4})
{a=1}

Records can be joined (think of a set union) without any operation being applied by using the
merge() function. This function takes two arguments, both of which are record tokens. If the two
record tokens have common fields, then the field value from the first record is used. For example,

merge ({a=1, b=2}, {a=3, c=3})

yieldstheresult {a=1, b=2, c=3}.
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Records can be compared, asin the following examples:

>> {a=1, b=2}!={a=1, b=2}
false
>> {a=1, b=2}!={a=1, c=2}
true

Note that two records are equal only if they have the same field labels and the values match. As with
scalars, the values match irrespective of type. For example:

>> {a=1, b=2}=={a=1.0, b=2.0+0.01}
true

The order of thefieldsisirrelevant. Hence

>> {a=1, b=2}=={b=2, a=1}
true

Moreover, record fields are reported in aphabetical order, irrespective of the order in which they are
defined. For example,

To get type-specific equality tests, use the equals() method, asin the following examples:

>> {a=1, b=2}.equals({a=1.0, b=2.0+0.01i})
false

>> {a=1, b=2}.equals({b=2, a=1})

true

>>

5.5 Invoking Methods in Expressions

Every element and subexpression in an expression represents an instance of the Token class in
Visual Sense (or more likely, a class derived from Token). The expression |anguage supports invocation
of any method of a given token, as long as the arguments of the method are of type Token and the
return typeis Token (or a class derived from Token, or something that the expression parser can easily
convert to atoken, such asastring, double, int, etc.). The syntax for thisis (token).methodName(args),
where methodName is the name of the method and args is a comma-separated set of arguments. Each
argument can itself be an expression. Note that the parentheses around the token are not required, but
might be useful for clarity. As an example, the ArrayToken and RecordToken classes have a length()
method, illustrated by the following examples:

{1, 2, 3}.length()
{a=1, b=2, c=3}.length()

each of which returnsthe integer 3.
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The MatrixToken classes have three particularly useful methods, illustrated in the following exam-
ples:

[1, 2; 3, 4; 5, 6].getRowCount ()

[1, 2; 3, 4; 5, 6].getColumnCount ()

[1, 2; 3, 4; 5, 6].toArray ()

which returns {1, 2, 3, 4, 5, 6}. The latter function can be particularly useful for creating arrays using
MATLAB-style syntax. For example, to obtain an array with the integers from 1 to 100, you can enter:

[1:1:100] .toArray ()

5.6 Defining Functions in Expressions

The expression language supports definition of functions. The syntax is:

function(argl:Type, arg2:Type...)
function body

where “function” is the keyword for defining a function. The type of an argument can be left unspeci-
fied, in which case the expression language will attempt to infer it. The function body gives an expres-
sion that defines the return value of the function. The return type is always inferred based on the
argument type and the expression. For example:

function (x:double) x*5.0

defines a function that takes a double argument, multiplies it by 5.0, and returns a double. The return
value of the above expression isthe function itself. Thus, for example, the expression evaluator yields:

>> function(x:double) x*5.0
(function (x:double) (x*5.0))
>>

To apply the function to an argument, simply do

>> (function(x:double) x*5.0) (10.0)
50.0
>>
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Alternatively, in the expression evaluator, you can assign the function to a variable, and then use the
variable name to apply the function. For example,

>> f = function(x:double) x*5.0
(function(x:double) (x*5.0))

>> £(10)

50.0

>>

Functions can be passed as arguments to certain “higher-order functions’ that have been defined
(see table Table 10 on page 66). For example, the iterate() function takes three arguments, a function,
an integer, and an initia value to which to apply the function. It applies the function first to the initial
value, then to the result of the application, then to that result, collecting the resultsinto an array whose
length is given by the second argument. For example, to get an array whose values are multiples of 3,

try

>> iterate (function(x:int) x+3, 5, 0)
{o, 3, 6, 9, 12}

The function given as an argument simply adds three to its argument. The result is the specified initial
value (0) followed by the result of applying the function once to that initial value, then twice, then
three times, etc.

Another useful higher-order function is the map() function. This one takes a function and an array

as arguments, and simply applies the function to each element of the array to construct a result array.
For example,

>> map (function(x:int) x+3, {0, 2, 3})
{3, 5, 6}

A typical use of functionsin aVisual Sense model is to define a parameter in a model whose value
is a function. Suppose that the parameter named “£” has value “function (x:double) x*5.0".
Then within the scope of that parameter, the expression “£ (10.0) " will yield result 50.0.

Functions can aso be passed along connections in a VisualSense model. Consider the model
shown in figure 5.6. In that example, the Const actor defines a function that simply squares the argu-

SDF Director =

SequencePlotter

sof

Const 60 [

[= function(xdouble) x2

a0

2010

FIGURE 5.6. Example of afunction being passed from one actor to another.
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ment. Its output, therefore, is a token with type function. That token is fed to the “f” input of the
Expression actor. The expression uses this function by applying it to the token provided on the “y”
input. That token, in turn, is supplied by the Ramp actor, so the result is the curve shown in the plot on
theright.

A more elaborate useis shown in figure 5.7. In that example, the Const actor produces a function,
which is then used by the Expression actor to create new function, which is then used by Expression2
to perform a calculation. The calculation performed here adds the output of the Ramp to the square of
the output of the Ramp.

Functions can be recursive, asillustrated by the following (rather arcane) example:

>> fact = function(x:int,f: (function(x,f) int)) (x<1?1l:x*f(x-1,f))
(function(x:int, f:function(al:general, al:general) int)
(x<1)?1: (x*f£((x-1), £)))

>> factorial = function(x:int) fact (x,fact)

(function(x:int) (function(x:int, f:function(alO:general, al:general)
int) (x<1)?1l:(x*f((x-1), £))) (x, (function(x:int, f:function(al:gen-
eral, al:general) int) (x<1)?1l:(x*f((x-1), £)))))

>> map (factorial, [1:1:5].toArray())

{1, 2, 6, 24, 120}

>>

The first expression defines a function named “fact” that takes a function as an argument, and if the
argument is greater than or equal to 1, uses that function recursively. The second expression defines a
new function “factorial” using “fact.” The final command applies the factorial function to an array to
compute factorials.

5.7 Built-In Functions

The expression language includes a set of functions, such as sin(), cos(), etc. The functions cur-
rently available are shown in the tables in the appendix, which a so show the argument types and return

Eﬂiﬁfﬁ?
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FIGURE 5.7. More elaborate example with functions passed between actors.
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types.
In most cases, afunction that operates on scalar arguments can a so operate on arrays and matrices.
Thus, for example, you can fill arow vector with a sine wave using an expression like

sin([0.0:PI/100:1.0])
Or you can construct an array as follows,
sin({0.0, 0.1, 0.2, 0.3})

Functions that operate on type double will also generally operate on int or unsignedByte, because these
can be losslessly converted to double, but not generally on long or complex.

Tables of available functions are shown in the appendix. For example, Table 5 on page 59 shows
trigonometric functions. Note that these operate on double or complex, and hence on int and unsigned-
Byte, which can be losslessly converted to double. The result will always be double. For example,

>> cos (0)
1.0

These functions will also operate on matrices and arrays, in addition to the scalar types shown in the
table, asillustrated above. The result will be a matrix or array of the same size as the argument, but
always containing el ements of type double

Table 6 on page 60 shows other arithmetic functions beyond the trigonometric functions. As with
the trigonometric functions, those that indicate that they operate on double will also work on int and
unsignedByte, and unless they indicate otherwise, they will return whatever they return when the argu-
ment is double. Those functions in the table that take scalar arguments will also operate on matrices
and arrays. For example, since the table indicates that the max() function can take int, int as arguments,
then by implication, it can also take{int}, {int}. For example,

Notice that the table also indicates that max() can take {int} asan argument. E.g.

>> max ({1, 2, 3})
3

In the former case, the function is applied pointwise to the two arguments. In the latter case, the
returned value is the maximum over all the contents of the single argument.

Table 7 shows functions that only work with matrices, arrays, or records (that is, there is no corre-
sponding scalar operation). Recall that most functions that operate on scalars will also operate on
arrays and matricesTable 8 shows utility functions for evaluating expressions given as strings or repre-
senting numbers as strings. Of these, the eval() function is the most flexible (see page 55).

A few of the functions have sufficiently subtle properties that they require further explanation.
That explanation is here.
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eval () and traceEvaluation ()

The built-in function eval() will evaluate a string as an expression in the expression language. For
example,

eval("[1.0, 2.0; 3.0, 4.01M™)
will return amatrix of doubles. The following combination can be used to read parameters from afile:
eval (readFile ("filename"))

where the filename can be relative to the current working directory (where Visual Sense was started, as
reported by the property user.dir), the user’s home directory (as reported by the property user.home), or
the classpath, which includes the directory tree in which VisualSense is installed.

Note that if eval() is used in an Expression actor, then it will be impossible for the type system to
infer any more specific output type than general. If you need the output type to be more specific, then
you will need to cast the result of eval(). For example, to force it to type double;

>> cast (double, eval ("pi/2"))
1.5707963267949

The traceEvaluation() function evaluates an expression given as a string, much like eval(), but instead
of reporting the result, reports exactly how the expression was evaluated. This can be used to debug
expressions, particularly when the expression language is extended by users.

random() , gaussian ()

The functions random() and gaussian() shown in Table 6 on page 60 return one or more random
numbers. With the minimum number of arguments (zero or two, respectively), they return a single
number. With one additional argument, they return an array of the specified length. With a second
additional argument, they return a matrix with the specified number of rows and columns.

Thereisakey subtlety when using these functionsin VisualSense. In particular, they are evaluated
only when the expression within which they appear is evaluated. The result of the expression may be
used repeatedly without re-evaluating the expression. Thus, for example, if the value parameter of the
Const actor is set to “random () ", then its output will be arandom constant, i.e., it will not change on
each firing. The output will change, however, on successive runs of the moddl. In contrast, if this is
used in an Expression actor, then each firing triggers an evaluation of the expression, and consequently
will result in anew random number.

property ()

The property() function accesses system properties by name. Some possibly useful system proper-
tiesare:

e ptolemy.ptll.dir: The directory in which VisualSenseisinstalled.

» ptolemy.ptll.dirAsURL: Thedirectory in which Visua Senseisinstalled, but represented as a
URL.

» user.dir: The current working directory, which is usually the directory in which the current execut-
able was started.
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remainder ()

This function computes the remainder operation on two arguments as prescribed by the |IEEE 754
standard, which is not the same as the modulo operation computed by the % operator. The result of
remainder (x, y) iSX—Yyn, where n istheinteger closest to the exact value of x/y. If two integers
are equally close, then n isthe integer that is even. Thisyields results that may be surprising, as indi-
cated by the following examples:

>> remainder (1, 2)
1.0

>> remainder (3,2)
-1.0

Compare thisto

>> 3%2

1
which is different in two ways. The result numerically different and is of type int, whereas remain-
der () always yields a result of type double. The remainder () function is implemented by the
javalang.Math class, which calls it IEEEremainder (). The documentation for that class gives the
following special cases:

» |If either argument is NaN, or the first argument isinfinite, or the second argument is positive zero
or negative zero, then the result is NaN.

« If thefirst argument is finite and the second argument is infinite, then the result is the same as the
first argument.

DCT () and IDCT ()

The DCT function can take one, two, or three arguments. In al three cases, the first argument is an
array of length N> 0 and the DCT returns an

N-1
Xe = S z xncos((Zn + 1)k§%) (1)
n=0

for k fromQOto D —1, where N isthe size of the specified array and D isthe size of the DCT. If only
one argument is given, then D is set to equal the next power of two larger than N. If a second argu-
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order

ment is given, then itsvalue is the order of the DCT, and the size of the DCT is 2 . If athird argu-

ment is given, then it specifies the scaling factors s, according to the following table:

TABLE 4: Normalization options for the DCT function

Name Third argument Normalization
Normalized 0 S = { 1/«/2; k=0
1; otherwise
Unnormalized 1 s =1
Orthonormal 2 S = 1/ A/B; k=0
~2/D; otherwise

The default, if athird argument is not given, is“Normalized.”

The IDCT function is similar, and can also take one, two, or three arguments. The formulain this
caseis

N-1
X = Y skxkcos((Zn " 1)k%) . @
k=0

5.8 Fixed Point Numbers

Visual Sense includes a preliminary fixed point data type. We represent a fixed point value in the
expression language using the following format:

fix(value, totalBits, integerBits)

Thus, a fixed point value of 5.375 that uses 8 bit precision of which 4 bits are used to represent the
(signed) integer part can be represented as:

fix(5.375, 8, 4)
The value can also be a matrix of doubles. The values are rounded, yielding the nearest value repre-
sentable with the specified precision. If the value to represent is out of range, then it is saturated, mean-
ing that the maximum or minimum fixed point value is returned, depending on the sign of the specified
value. For example,

fix(5.375, 8, 3)

will yield 3.968758, the maximum value possible with the (8/3) precision.

In addition to the fix() function, the expression language offers a quantize() function. The argu-
ments are the same as those of the fix() function, but the return type is a DoubleToken or DoubleMa-
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trixToken instead of a FixToken or FixMatrixToken. This function can therefore be used to quantize
double-precision values without ever explicitly working with the fixed-point representation.

To make the FixToken accessible within the expression language, the following functions are

available:

58

To create a single FixPoint Token using the expression language:
fix(5.34, 10, 4)

Thiswill create a FixToken. In this case, we try to fit the number 5.34 into a 10 bit representation
with 4 bits used in the integer part. This may lead to quantization errors. By default the round
guantizer is used.
To create a Matrix with FixPoint values using the expression language:

fix ([ -.040609, -.001628, .17853 1, 10, 2)

Thiswill create aFixMatrixToken with 1 row and 3 columns, in which each element is a FixPoint
value with precision(10/2). The resulting FixMatrixToken will try to fit each element of the given
double matrix into a 10 bit representation with 2 bits used for the integer part. By default the round
quantizer is used.

To create a single DoubleToken, which is the quantized version of the double value given, using
the expression language:
quantize(5.34, 10, 4)

Thiswill create aDoubleToken. The resulting DoubleToken contains the doubl e val ue obtained by
fitting the number 5.34 into a 10 bit representation with 4 bits used in the integer part. This may
lead to quantization errors. By default the round quantizer is used.

To create a Matrix with doubles quantized to a particular precision using the expression language:
quantize ([ -.040609, -.001628, .17853 1, 10, 2)

Thiswill create a DoubleMatrixToken with 1 row and 3 columns. The elements of the token are
obtained by fitting the given matrix elementsinto a 10 bit representation with 2 bits used for the
integer part. Instead of being afixed point value, the values are converted back to their double rep-
resentation and by default the round quantizer is used.
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Appendix A: Tables of Functions

In this appendix, we tabulate the functions available in the expression language. Further explana
tion of many of these functionsis given in section section 5.7 above.

A.1 Trigonometric Functions

TABLE 5: Trigonometric functions.

function argument type(s) return type description
acos doublein the range doublein the range arc cosine
[-1.0,1.0] or [0.0, pi] or NaN if out of range or complex case: acos(z) = —ilog(z +isqrt(1— 22))
complex complex
asin doublein the range doublein the range arcsine
[-1.0,1.0] or [-pi/2, pi/2] or NaN if out of range complex case: asin(z) = —ilog(iz + sqrt(1 —22))
complex or complex
atan double or doublein the range [-pi/2, pi/2] arc tangent
complex or complex i i—7
complex case: atan(z) = ——IOQ(.——Z)
2 i+
atan2 double, double double in the range [-pi, pi] angle of avector (note: the arguments are (y,X), not (x,y) as
one might expect).
acosh double greater than 1 or | double or hyperbolic arc cosine, defined for both double and complex
complex complex caseby: acosh(z) = log(z+ sart(z2—1))
asinh double or double or hyperbolic arc sine
complex complex .
P P complex case: asinh(z) = Iog(z+sqrt(22+l))
cos double or doublein therange [-1, 1], or cosine
complex i)+ iy
¥ complex complex case: C0S(Z) = (exp(iz) zeXp( 12))
cosh double or double or hyperbolic cosine, defined for double or complex by:
complex complex + _
P! p! cosh(z) = (exp(z) + exp(=2))
2
sin double or double or sine function
complex complex . iz) — —j
complex case: SiN(z) = (exp(i2) 2i€Xp( 12))
sinh double or double or hyperbolic sine, defined for double or complex by:
complex complex — _
P! p! sinh(z) = exp(z) — exp(=2))
2
tan double or double or tangent function, defined for double or complex by:
complex complex i
p! p! tan(z) = sin(z)
cos(2)
tanh double or double or hyperbolic tangent, defined for double or complex by:
complex complex i
p p tanh(z) = sinh(z)
cosh(z)
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A.2 Basic Mathematical Functions

TABLE 6: Basic mathematical functions

function argument type(s) return type description
abs double or int or long or com | double or int or long absolute value
plex (complex returns doubl€) )
complex case: abs(a+ib) = |7 = a’+b’
angle complex doubleintherange [-pi, Pill angle or argument of the complex number: £z
cell double double ceiling function, which returns the smallest (closest to neg-
ative infinity) double value that is not less than the argu-
ment and is an integer.
compare double, double int compare two numbers, returning -1, O, or 1 if the first argu-
ment isless than, equal to, or greater than the second.
conjugate complex complex complex conjugate
exp double or doublein the range exponential function (e*argument)
complex 0.0, infinity] or complex i .
P [ ] P complex case: e’ b - ea(Cos(b) +isin(b))
floor double double floor function, which is the largest (closest to positive
infinity) value not greater than the argument that is an inte-
ger.
gaussian double, double or double or one or more Gaussian random variables with the specified
double, double, int, or {double} or mean and standard deviation (see page 55).
double, double, int, int [double]
imag complex double imaginary part
isinfinite double boolean return true if the argument isinfinite
isNaN double boolean return true if the argument is “not a number”
log double or double or natural logarithm
complex complex complex case: 10g(z) = log(abs(z) + iangle(z))
log10 double double log base 10
log2 double double log base 2
max double, double or double or maximum
int, int or int or
long, long or long or
unsignedByte, unsignedByte or | unsignedByte
{double} or
{int} or
{long} or
{unsignedByte}
min double, double or double or minimum
int, int or int or
long, long or long or
unsignedByte, unsignedByte or | unsignedByte
{double} or
{int} or
{long} or
{unsignedByte}
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TABLE 6: Basic mathematical functions

function argument type(s) return type description
neighborhood type, type, double boolean return true if the first argument isin the neighborhood of
the second, meaning that the distance is less than or equal
to the third argument. The first two arguments can be any
type for which such a distance is defined. For composite
types, arrays, records, and matrices, then return true if the
first two arguments have the same structure, and each cor-
responding element is in the neighborhood.
pow double, double or double or first argument to the power of the second
complex, complex complex
random no arguments or double or one or more random numbers between 0.0 and 1.0 (see
int or {double} or page 55)
int, int [double]
real complex double real part
remainder double, double double remainder after division, according to the IEEE 754 float-
ing-point standard (see page 56).
round double long round to the nearest long, choosing the next greater integer
when exactly in between, and throwing an exception if out
of range. If the argument is NaN, theresult isOL. If the
argument is out of range, the result is either MaxLong or
MinLong, depending on the sign.
roundTolnt double int round to the nearest int, choosing the next greater integer
when exactly in between, and throwing an exception if out
of range. If the argument isNaN, theresult is 0. If the argu
ment is out of range, theresult is either MaxInt or Minint,
depending on the sign.
sgn double int -1if the argument is negative, 1 otherwise
sort double or double or square root. If the argument is double with value less than
complex complex zero, then the result is NaN.
complex case: sqrt(z) = JH(COS(%Z) +is n(%z))
toDegrees double double convert radians to degrees
toRadians double double convert degrees to radians
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A.3 Matrix, Array, and Record Functions.

TABLE 7: Functions that take or return matrices, arrays, or records.

function argument type(s) return type description
arrayToMatrix {type}, int, int [type] Create a matrix from the specified array with the specified
number of rows and columns
conjugateTranspose [complex] [complex] Return the conjugate transpose of the specified matrix.
createSequence type, type, int {type} Create an array with values starting with the first argument,
incremented by the second argument, of length given by the
third argument.
crop [int], int, int, int, int or [int] or Given amatrix of any type, return a submatrix starting at the
[doubl€], int, int, int, int or | [double] or specified row and column with the specified number of rows
[complex], int, int, int, int o [complex] or and columns.
[long], int, int, int, int or [long] or
determinant [double] or double or Return the determinant of the specified matrix.
[complex] complex
diag {type} [type] Return a diagonal matrix with the values along the diagonal
given by the specified array.
divideElements [typel, [type] [type] Return the element-by-element division of two matrices
hilbert int [double] Return asquare Hilbert matrix, where Ay = 1/(i +j+1).
A Hilbert matrix is nearly, but not quite singular.
identityMatrixComplex | int [complex] Return an identity matrix with the specified dimension.
identityMatrixDouble | int [double] Return an identity matrix with the specified dimension.
identityMatrixInt int [int] Return an identity matrix with the specified dimension.
identityMatrixL ong int [long] Return an identity matrix with the specified dimension.
intersect record, record record Return arecord that contains only fields that are present in
both arguments, where the value of the field is taken from the
first record.
inverse [double] or [double] or Return the inverse of the specified matrix, or throw an excep-
[complex] [complex] tionif it issingular.
matrixToArray [type] {type} Create an array containing the values in the matrix
merge record, record record Merge two records, giving priority to the first one when they
have matching record labels.
multiplyElements [type], [type] [type] Multiply elementwise the two specified matrices.
orthogonaizeColumns | [double] or [double] or Return a similar matrix with orthogonal columns.
[complex] [complex]
orthogonalizeRows [double] or [double] or Return a similar matrix with orthogonal rows.
[complex] [complex]
orthonormalizeColumns| [double] or [double] or Return a similar matrix with orthonormal columns.
[complex] [complex]
orthonormalizeRows [doubl€] or [double] or Return a similar matrix with orthonormal rows.
[complex] [complex]
repeat int, type {type} Create an array by repeating the specified token the specified
number of times.
sum {type} or type Sum the elements of the specified array or matrix. Thisthrows
[type] an exception if the elements do not support addition or if the
array is empty (an empty matrix will return zero).
trace [type] type Return the trace of the specified matrix.
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TABLE 7: Functions that take or return matrices, arrays, or records.

function argument type(s) return type description

transpose [type] [type] Return the transpose of the specified matrix.

zeroMatrixComplex int, int [complex] Return a zero matrix with the specified number of rows and
columns.

zeroMatrixDouble int, int [doubl€] Return a zero matrix with the specified number of rows and
columns.

zeroMatrixInt int, int [int] Return a zero matrix with the specified number of rows and
columns.

zeroMatrixLong int, int [long] Return a zero matrix with the specified number of rows and

columns.

A.4 Functions for Evaluating Expressions

TABLE 8: Utility functions for evaluating expressions

function argument type(s) return type description

eval string any type evaluate the specified expression (see page 55).

parselnt string or int return an int read from a string, using the given radix if a sec-
string, int ond argument is provided.

parseLong string or int return along read from a string, using the given radix if a sec-|
string, int ond argument is provided.

toBinaryString int or long string return a binary representation of the argument

toOctal String int or long string return an octal representation of the argument

toString double or string return a string representation of the argument, using the given
int or radix if asecond argument is provided.
int, int or
long or
long, int

traceEvaluation string string evaluate the specified expression and report details on how it

was evaluated (see page 55).
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A.5 Signal Processing Functions

TABLE 9: Functions performing signal processing operations

function argument type(s) return type description
convolve {double}, {double} | {double} or Convolve two arrays and return an array whose length is sum
or {complex} of thelengths of the two arguments minus one. Convolution of
{complex}, { com- two arraysis the same as polynomia multiplication.
plex}
DCT {double} or {double} Return the discrete cosine transform of the specified array,
{double}, int or using the specified (optional) length and normalization strat-
{double}, int, int egy (see page 56).
downsample {double}, int or {double} Return anew array with every n -th element of the argument
{double}, int, int . . .
array, where n isthe second argument. If athird argument is
given, then it must be between 0 and N — 1, and it specifies
an offset into the array (by giving the index of thefirst output),
FFT {double} or { complex} Return the fast Fourier transform of the specified array. If the
{ complex} or second argument is given with value n , then the length of the
{double}, int n
{complex}, int transformis 2 . Otherwise, the length is the next power of
two greater than or equal to thelength of theinput array. If the
input length does not match this length, then input is padded
with zeros.
generateBartlettWindow int {double} Return a Bartlett (rectangular) window with the specified
length. The end points have value 0.0, and if the length is odd,
the center point has value 1.0. For length M + 1, the formula
2%; if 0<n< %
is w(n) =
n M
2-2—; ifz<nsM
M 2
generateBlackmanWindow int {double} Return a Blackman window with the specified length. For
length M + 1, theformulais:
w(n) = 0.42 + 0.5cos(2rn/M) + 0.08cos(4rnn/M)
generateBlackmanHarrisWindow| int {double} Return a Blackman-Harris window with the specified length.
For length M + 1, theformulais:
w(n) = 0.35875 + 0.48829cos(2nn/M) +
0.14128cos(4nn/M) + 0.01168cos(6mn/M)
generateGaussianCurve double, double, int | {double} Return aGaussian curve with the specified standard deviation,
extent, and length. The extent isamultiple of the standard
deviation. For instance, to get 100 samples of a Gaussian
curve with standard deviation 1.0 out to four standard devia-
tions, use generateGaussianCurve(1.0, 4.0, 100).
generateHammingWindow int {double} Return a Hamming window with the specified length. For
length M + 1, theformulais:
w(n) = 0.54 —0.46cos(2rn/M)
generateHanningWindow int {double} Return a Hanning window with the specified length. For

length M + 1, the formulais:
w(n) = 0.5—-0.5cos(2nn/M)
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TABLE 9: Functions performing signal processing operations

function

argument type(s)

return type

description

generatePolynomial Curve

{double}, double,
double, int

{double}

Return samples of a curve specified by a polynomial. The first
argument is an array with the polynomial coefficients, begin-
ning with the constant term, the linear term, the squared term,
etc. The second argument is the value of the polynomial vari-
able at which to begin, and the third argument is the increment
on this variable for each successive sample. The final argu-
ment is the length of the returned array.

generateRaisedCosinePulse

double, double, int

{double}

Return an array containing a symmetric raised-cosine pulse.
Thispulseiswidely used in communication systems, and is
called a“raised cosine pulse”’ because the magnitude its Fou-
rier transform has a shape that ranges from rectangular (if the
excess bandwidth is zero) to a cosine curved that has been
raised to be non-negative (for excess bandwidth of 1.0). The
elements of the returned array are samples of the function:

h(t) = sin(wt/T) y cos(xmt/T) ,

T (oxtiT)?

where x is the excess bandwidth (the first argument) and T is
the number of samples from the center of the pulse to the first
zero crossing (the second argument). The samples are taken
with a sampling interval of 1.0, and the returned array is sym-

metric and has alength equal to the third argument. With an
excessBandwidth of 0.0, this pulseisasinc pulse.

generateRectangul arWindow

int

{double}

Return an array filled with 1.0 of the specified length. Thisisa
rectangular window.

IDCT

{double} or
{double}, int or
{double}, int, int

{double}

Return the inverse discrete cosine transform of the specified
array, using the specified (optional) length and normalization
strategy (see page 56).

IFFT

{double} or
{complex} or
{double}, int
{complex}, int

{complex}

Return the inverse fast Fourier transform of the specified
array. If the second argument is given with value n, then the

length of the transform is 2n . Otherwise, the length isthe
next power of two greater than or equal to the length of the
input array. If theinput length does not match thislength, then
input is padded with zeros.

nextPowerOf Two

double

int

Return the next power of two larger than or equal to the argu-
ment.

poleZeroToFrequency

{complex}, { com-
plex}, complex, int

{complex}

Given an array of polelocations, an array of zero locations, a
gain term, and a size, return an array of the specified size rep-
resenting the frequency response specified by these poles,
zeros, and gain. Thisis calculated by walking around the unit
circle and forming the product of the distances to the zeros,
dividing by the product of the distances to the poles, and mul-
tiplying by the gain.

sinc

double

double

Return the sinc function, sin(X)/X, where special careis
taken to ensure that 1.0 isreturned if the argument is 0.0.
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TABLE 9: Functions performing signal processing operations

function

argument type(s)

return type

description

toDecibels

double

double

Return 20 x 109,4(2) , where z isthe argument.

unwrap

{double}

{double}

Modify the specified array to unwrap the angles. That is, if the
difference between successive valuesis greater than 7 in
magnitude, then the second value is modified by multiples of
27 until the differenceislessthan or equal to 7 . In addition,
the first element is modified so that its difference from zerois
less than or equal to 7T in magnitude.

upsample

{double}, int

{double}

Return anew array that isthe result of inserting n— 1 zeroes
between each successive samplein theinput array, where n is
the second argument. The returned array has length nL ,
where L is the length of the argument array. It is required that
n>0.

A.6 1/0 Functions and Other Miscellaneous Functions

TABLE 10: Miscellaneous functions.

function

argument type(s)

return type

description

cast

typel, type2

typel

Return the second argument converted to the type of the first,
or throw an exception if the conversion isinvalid.

constants

none

record

Return arecord identifying al the globally defined constants
in the expression language.

findFile

string

string

Given afile name relative to the user directory, current direc-
tory, or classpath, return the absol ute file name of the first
match, or return the name unchanged if no match is found.

freeMemory

none

long

Return the approximate number of bytes available for future
memory allocation.

iterate

function, int, type

{type}

Return an array that results from first applying the specified
function to the third argument, then applying it to the result of
that application, and repeating to get an array whose length is
given by the second argument.

map

function, {type}

{type}

Return an array that results from applying the specified func-
tion to the elements of the specified array.

property

string

string

Return a system property with the specified name from the
environment, or an empty string if there is none. Some useful
properties are java.version, ptolemy.ptl|.dir,
ptolemy.ptll.dirASURL, and user.dir.

readFile

string

string

Get the string text in the specified file, or throw an exception if
thefile cannot be found. Thefile can be absolute, or relative to
the current working directory (user.dir), the user’s home direc-
tory (user.home), or the classpath.

readResource

string

string

Get the string text in the specified resource (which is afile
found relative to the classpath), or throw an exception if the
file cannot be found.

totalMemory

none

long

Return the approximate number of bytes used by current
objects plus those available for future object allocation.
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