
Are new languages necessary for multicore?

Edward A. Lee
Robert S. Pepper Distinguished Professor and Chair of EECS

EECS Department
University of California at Berkeley

Berkeley, CA 94720, U.S.A.
eal@eecs.berkeley.edu

Position Statement for Panel
2007 International Symposium on Code Generation and Optimization (CGO)

March 11-14, 2007, San Jose, California

February 28, 2007

It is widely acknowledged that concurrent programming is difficult. Yet multicore architec-
tures make concurrent programming essential. If we understand why concurrent programming is so
difficult, we have a better chance of solving the problem. Sutter and Larus observe [17]

“humans are quickly overwhelmed by concurrency and find it much more difficult to
reason about concurrent than sequential code. Even careful people miss possible inter-
leavings among even simple collections of partially ordered operations.”

Yet humans are actually quite adept at reasoning about concurrent systems. The physical world is
highly concurrent, and our very survival depends on our ability to reason about concurrent physical
dynamics. The problem is that we have chosen concurrent abstractions that do not even vaguely
resemble the concurrency of the physical world. We have become so used to these computational
abstractions that we have lost track of the fact that they are not immutable. I argue that the difficulty
of concurrent programming is a consequence of the abstractions, and that if we are are willing to let
go of those abstractions, then the problem will be fixable.

New abstractions for computing would seem to imply a need for new programming languages.
However, this is not necessarily the case. I will argue that concurrency models can operate at
the level of component architectures rather than programming languages. Indeed, if we augment
object-oriented component models with intrinsic concurrency, very attractive programming models
emerge. The models leverage existing languages and imperative reasoning about algorithms, and
introduce concurrency via coordination of components rather than through modifications in the
languages.

In general-purpose software engineering practice, one approach to concurrent programming
dominates all others, namely, threads. Threads are sequential processes that share memory. They
represent a key concurrency model supported by modern computers, programming languages, and
operating systems. Many general-purpose parallel architectures in use today are direct hardware
realizations of the thread abstraction.

1



Some applications can very effectively use threads. So-called “embarrassingly parallel” ap-
plications (for example, applications that essentially spawn multiple independent processes such
as build tools, like PVM gmake, or web servers). Because of the independence of these applica-
tions, programming is relatively easy, and the abstraction being used is more like processes than
threads (where memory is not shared). Where such applications do share data, they do so through
database abstractions, which manage concurrency through such mechanisms as transactions. How-
ever, client-side applications are not so simple.

Of course, threads are not the only possibility for concurrent programming. In scientific com-
puting, where performance requirements have long demanded concurrent programming, data par-
allel language extensions and message passing libraries (like PVM [8], MPI [14], and OpenMP1)
dominate over threads for concurrent programming. In fact, computer architectures intended for
scientific computing often differ significantly from so-called “general purpose” architectures. They
commonly support vectors and streams in hardware, for example. However, even in this domain,
concurrent programs remain tedious to write. C and FORTRAN dominate, despite a long history of
much better data parallel languages.

In distributed computing, threads are often not a practical abstraction because creating the illu-
sion of shared memory is often too costly. Even so, we have gone to considerable lengths to create
distributed computing mechanisms that emulate multithreaded programming. CORBA and .NET,
for example, are rooted in distributed object-oriented techniques, where software components inter-
act with proxies that behave as if they were local objects with shared memory. Object-orientation’s
data abstraction limits the extent to which the illusion of shared memory needs to be preserved, so
such techniques prove reasonably cost effective. They make distributed programming look much
like multithreaded programming.

I have argued in [12] that nontrivial multithreaded programs are incomprehensible. The root
of the problem is their wildly nondeterministic behavior due to arbitrary interleaving of atomic
actions. I will argue that we must (and can) build concurrent models of computation that are far more
deterministic, and that we must judiciously and carefully introduce nondeterminism only where
needed. Threads take the opposite approach. They make programs absurdly nondeterministic, and
rely on programming style to constrain that nondeterminism to achieve deterministic aims.

There are, of course, successful methods that greatly improve the usability of threads. Object-
oriented design, for example, limits the visibility of data in software architectures, thereby limiting
the effects of arbitrary interleaving. Transactions, which give programmers control over the granu-
larity of atomic actions, also help enormously. Concurrent design patters, like MapReduce [6], and
libraries of concurrent data structures, like those in Java 5.0 and STAPL [2], also help enormously.
Language extensions can also help considerably, as for example in Split-C [5], Cilk [4], and Guava
[3]. These language changes prune away considerable nondeterminacy without sacrificing much
performance. More aggressive innovations, like promises2 or futures [9] offer significantly different
programming models, and may in fact catch on. Formal checkers, as for example in Blast [10] and
the Intel thread checker3, can help considerably by revealing program behaviors that are difficult for
a human to spot. Less formal techniques, such as performance debuggers like Valgrind4, can also
help in a similar way, making it easier for programmers to sort through the vast nondeterminacy of

1See http://www.openmp.org
2See http://www.erights.org/
3See http://developer.intel.com/software/products/threading/tcwin
4See http://valgrind.org/

2



program behaviors.
While all of these techniques hold promise, I argue here for a different approach. I believe

that the problem can be addressed by simply focusing on component architectures. Component
architecture have become dominated by a particular view of object-oriented design as realized in
C++, C#, and Java. This view is intrinsically imperative, where interactions between components
are via call-return semantics, and threads and concurrency are not directly part of the component
model. What flows through components is sequential control. An alternative model, where data
flows through components (rather than control), has been called “actor-oriented” [13, 11, 1]. Such
models can take many forms. Unix pipes offer an early form of actor-oriented design, and in fact
were a very common concurrent programming model before threads emerged into the programmer’s
vernacular.

While actor-oriented design can be accomplished with new programming languages that replace
imperative models, this is probably neither advisable nor necessary. I believe that the right answer is
coordination languages. Coordination languages may introduce new syntax, but that syntax serves
purposes that are orthogonal to those of established programming languages. Whereas a general-
purpose concurrent language has to include syntax for mundane operations such as arithmetic ex-
pressions, a coordination language need not specify anything more than coordination. Given this,
the syntax can be noticeably distinct. Coordination languages have been around for some time [15],
and have failed to take root. One reason for this that their acceptance amounts to capitulation on
one key front: homogeneity. A prevailing undercurrent in programming languages research is that
any worthy programming language must be general purpose. It must be, at a minimum, sufficiently
expressive to express its own compiler. And then, adherents to the language are viewed as traitors
if they succumb to the use of another language. Language wars are religious wars, and few of these
religions are polytheistic.

A key development, however, has broken the ice. UML, which is properly viewed as a family of
languages, each with a visual syntax, is routinely combined with C++ and Java. Programmers are
starting to get used to using more than one language, where complementary features are provided
by the disjoint languages. There are many challenges on this path. Designing good coordination
languages is no easier than designing good general-purpose languages, and is full of pitfalls. And
of course, coordination languages need to develop scalability and modularity features analogous to
those in established languages. This can be done. Our own Ptolemy II [7], for example, provides a
sophisticated, modern type system at the coordination language level [18], and offers a preliminary
form of inheritance and polymorphism that is adapted from object-oriented techniques [13]. A
huge opportunity exists in adapting the concept of higher-order functions from functional languages
to coordination languages to offer constructs like MapReduce at the coordination language level.
Some very promising early work in this direction is given by Reekie [16].

Concurrency in software is difficult. However, much of this difficulty is a consequence of the
abstractions for concurrency that we have chosen to use. The dominant one in use today for general-
purpose computing is threads. But non-trivial multi-threaded programs are incomprehensible to
humans. It is true that the programming model can be improved through the use of design pat-
terns, better granularity of atomicity (e.g. transactions), improved languages, and formal methods.
However, these techniques merely chip away at the unnecessarily enormous nondeterminism of the
threading model. The model remains intrinsically intractable.

If we expect concurrent programming to be mainstream, and if we demand reliability and pre-
dictability from programs, then we must discard threads as a programming model. Concurrent

3



programming models can be constructed that are much more predictable and understandable than
threads. Threads must be relegated to the engine room of computing, to be suffered only by expert
technology providers.

1 Acknowledgements

I would like to acknowledge thought-provoking comments and suggestions from Joe Buck (Synop-
sys), Mike Burrows (Google), Stephen Edwards (Columbia), Jim Larus (Microsoft), and Sandeep
Shukla (Virginia Tech).

References
[1] G. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. The MIT Press Series

in Artificial Intelligence. MIT Press, Cambridge, MA, 1986.
[2] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, and L. Rauchwerger.

STAPL: An adaptive, generic parallel C++ library. In Wkshp. on Lang. and Comp. for Par. Comp.
(LCPC), pages 193–208, Cumberland Falls, Kentucky, 2001.

[3] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java without data races. In ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications, volume 35
of ACM SIGPLAN Notices, pages 382–400, 2000.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk: an
efficient multithreaded runtime system. In ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming (PPoPP), ACM SIGPLAN Notices, 1995.

[5] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. v. Eicken, and K. Yelick.
Parallel programming in Split-C. In Supercomputing, Portland, OR, 1993.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In Sixth Sympo-
sium on Operating System Design and Implementation (OSDI), San Francisco, CA, 2004.

[7] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity—the Ptolemy approach. Proceedings of the IEEE, 91(2), 2003.

[8] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam. PVM: Parallel Virtual
Machine — A Users Guide and Tutorial for Network Parallel Computing. MIT Press, Cambridge, MA,
1994.

[9] J. Henry G. Baker and C. Hewitt. The incremental garbage collection of processes. In Proceedings
of the Symposium on AI and Programming Languages, volume 12 of ACM SIGPLAN Notices, pages
55–59, 1977.

[10] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular abstraction refinement. In
15th International Conference on Computer-Aided Verification (CAV), volume 2725 of Lecture Notes
in Computer Science, pages 262–274. Springer-Verlag, 2003.

[11] C. Hewitt. Viewing control structures as patterns of passing messages. Journal of Artifical Intelligence,
8(3):323363, 1977.

[12] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.
[13] E. A. Lee and S. Neuendorffer. Classes and subclasses in actor-oriented design. In Conference on

Formal Methods and Models for Codesign (MEMOCODE), San Diego, CA, USA, 2004.
[14] Message Passing Interface Forum. MPI2: A message passing interface standard. International Journal

of High Performance Computing Applications, 12(1-2):1–299, 1998.
[15] G. Papadopoulos and F. Arbab. Coordination models and languages. In M. Zelkowitz, editor, Advances

in Computers - The Engineering of Large Systems, volume 46, pages 329–400. Academic Press, 1998.
[16] H. J. Reekie. Toward effective programming for parallel digital signal processing. Ph.D. Thesis Re-

search Report 92.1, University of Technology, Sydney, 1992.

4



[17] H. Sutter and J. Larus. Software and the concurrency revolution. ACM Queue, 3(7), 2005.
[18] Y. Xiong. An extensible type system for component-based design. Ph.D. Thesis Technical Memoran-

dum UCB/ERL M02/13, University of California, Berkeley, CA 94720, May 1 2002.

5


