Precision Timed (PRET) Computation in Cyber-Physical Systems

Edward A. Lee (UC Berkeley) and
Stephen A. Edwards (Columbia University) *

Updated Position Paper for the National Workshop on
High Confidence Software Platforms for Cyber-Physical Systems:
Research Needs and Roadmap
November 30 - December 1, 2006, Alexandria, Virginia

Date of Update: January 8, 2007

Cyber-Physical Systems (CPS) are integrations of com-
putation with physical processes. Embedded computers and
networks monitor and control the physical processes, usually
with feedback loops where physical processes affect com-
putations and vice versa. In the physical world, the passage
of time is inexorable and concurrency is intrinsic. Neither
of these properties is present in today’s computing and net-
working abstractions. As a consequence, these abstractions
require some fundamental rethinking.

It is tempting to believe that the CPS problems can be
solved by overlaying higher-level abstractions on top of ex-
isting computing technology. Indeed, it would be a scary
prospect to suggest that much of the foundation of existing
technology is flawed and must be rebuilt. How could this
possibly result in a practical research program that will see
results in our lifetime?

In this position paper, we make a case that core computing
abstractions must be and can be effectively and practically
rebuilt. The objective is to enable a new generation of cyber-
physical systems where computation and physical processes
are tightly intertwined. This requires re-introducing prop-
erties that were deliberately and systematically abstracted
away in the 20-th century view of computation. We ap-
proach the problem bottom-up. We must first rebuild the
computational engines, and then build revised higher level
abstractions on top of these.

1 The Problem

In 1980, Patterson and Ditzel [12] did not invent reduced
instruction set computers (RISC). Earlier computers all had
reduced instruction sets. Instead, they argued that trends in
computer architecture had gotten off the sweet spot, and that
by dropping back a few years and forking a new version of
architectures, leveraging what had been learned, they could
get better computers by employing simpler instruction sets.

*Lee received support this work from NSF award number CNS-
0647591. Edwards is supported by the NSF, Intel, Altera, the SRC, and
NYSTAR.

It is again time for a change in direction in computer archi-
tecture. Architectures currently strive for superior average-
case performance that regrettably ignores predictability and
repeatability of timing properties. “Correct” execution of the
SPECint benchmark suite has nothing to do with how long it
takes to perform any particular action. C says nothing about
timing, so timing is not considered part of correctness. Ar-
chitectures have developed deep pipelines with speculative
execution and dynamic dispatch. Memory architectures have
developed multi-level caches and TLBs. The performance
criterion is simple: faster (on average) is better.

The biggest consequences have been in embedded com-
puting. Avionics offers an extreme example: in “fly by
wire” aircraft, where software interprets pilot commands and
transports them to actuators through networks, certification
of the software is extremely expensive. Regrettably, it is not
the software that is certified but the entire system. If a man-
ufacturer expects to produce a plane for 50 years, it needs
a 50-year stockpile of fly-by-wire components that are all
made from the same mask set on the same production line.
Even a slight change or “improvement” might affect timing
and require the software to be re-certified. For good reason,
the FAA does not trust software.

Figure 1 illustrates schematically some of the abstraction
layers on which we depend when designing embedded sys-
tems. In this three-dimensional Venn diagram, each box rep-
resents a set. For example, at the bottom, we have the set of
all microprocessors. An element of this set, e.g. the Intel
P4-M 1.6GHz, is a particular microprocessor. Above that,
we have the set of all x86 programs, each which can run
on that microprocessor. This set is defined precisely (unlike
the previous set, which is hard to define precisely) by the
definition of the x86 instruction set architecture (ISA). Any
program written using that instruction set is a member of the
set. For example, a particular implementation a Java virtual
machine is a member of the set. Associated with that mem-
ber is another set, the set of all JVM byte-code programs.
Each of these programs is (typically) synthesized by a com-



actor-oriented
models .
performance -
models Posix Linux processes
threads
N/ task-level models

SystemC
programs

C++ programs

synthesizable
VHDL programs

VLTl S s Java programs

&
Q'

{

Java byte code programs

programs

standard
cell
designs

FPGA configurations

\

executables

P4-M 1.6GHz

ASICchips

microprocessors

silicon chips

Figure 1: Abstraction layers in computing.

piler from a Java program, which is a member of the set of all
syntactically valid Java programs. Again, this set is defined
precisely by the Java syntax.

Each of these sets provides an abstraction layer that is in-
tended to isolate a designer (the person or program that se-
lects elements of the set) from the details below. Many of
the best innovations in computing have come from careful
and innovative construction and definition of these sets.

However, in the case of our poor aircraft manufacturer,
nearly every abstraction has failed. The instruction-set archi-
tecture, meant to hide hardware implementation details from
the software, has failed because the user of the ISA cares
about timing properties that the ISA does not guarantee. The
programming language, which hides details of the ISA from
the program logic, has failed because no widely used pro-
gramming language expresses timing properties. Timing is
merely an accident of the implementation. A real-time op-
erating system hides details of the programs from the con-
current orchestration, yet this fails because the timing may
affect the orchestration. The RTOS provides no guarantees.
The network hides details of electrical or optical signaling
from systems, but standard networks provide no timing guar-
antees, and hence again fail to provide an appropriate ab-
straction. The aircraft manufacturer is stuck with a system
design (not just implementation) in silicon and wires.

All embedded systems designers face less extreme ver-
sions of this problem. “Upgrading” a microprocessor in an
engine control unit for a car requires thorough re-testing of
the system. Even “bug fixes” in the software can be ex-
tremely risky, since they can change timing behavior and
produce effects that were never seen in testing.

The design of an abstraction layer involves many choices,
and computer scientists have chosen to hide timing prop-
erties of physical realizations from all higher abstractions.
Wirth [13] says “It is prudent to extend the conceptual
framework of sequential programming as little as possible
and, in particular, to avoid the notion of execution time.” In
the context of embedded systems, however, computations in-
teract directly with the physical world, where time cannot be
abstracted away. But even general-purpose computing suf-
fers from these choices. Since timing is neither specified in
programs nor enforced by execution platforms, a program’s
timing properties are not repeatable. Buggy concurrent soft-
ware often has timing-dependent behavior; small changes in
the timing of one part of a program can affect seemingly un-
related parts.

Designers have traditionally covered these failures by
finding worst case execution time (WCET) bounds and us-
ing real-time operating systems (RTOS’s) with predictable
scheduling policies. But these require substantial margins
for reliability, and ultimately reliability is (weakly) deter-
mined by bench testing of the complete implementation.
Moreover, WCET has become an increasingly problem-
atic fiction as processor architectures develop ever more
elaborate techniques for dealing stochastically with deep
pipelines, memory hierarchy, and parallelism.

Modern processor architectures render WCET virtually
unknowable; even simple problems demand heroic efforts.
For example, Ferdinand et al. [5] determine the WCET of
astonishingly simple avionics code from Airbus running on
a Motorola ColdFire 5307, a pipelined CPU with a unified
code and data cache. Despite the software consisting of
a fixed set of non-interacting tasks containing only simple
control structures, their solution requires detailed modeling
of the seven-stage pipeline and its precise interaction with
the cache, generating a large integer linear programming
problem. The technique successfully computes WCET, but
only with many caveats that are increasingly rare in soft-
ware. Fundamentally, the ISA of the processor has failed to
provide an adequate abstraction.

Timing behavior in RTOS’s is coarse and becomes in-
creasingly uncontrollable as the complexity of the sys-
tem increases, €.g., by adding inter-process communication.
Locks, priority inversion, interrupts and similar issues break
the formalisms, forcing designers to rely on bench testing,
which is nearly impotent at flushing out subtle timing bugs.
Worse, these techniques produce brittle systems in which
small changes can cause big failures. And as embedded sys-
tems become networked, the problems mount.

Synchronous digital hardware—the technology on which
most computers are built—can deliver astonishingly precise,
repeatable timing behavior, thanks in part to considerable
efforts on the part of hardware designers and design tool
builders. Software abstractions, however, lose several orders
of magnitude in timing precision. Compare the nanosecond-
scale precision with which hardware can raise an interrupt



request to the imprecision with which a user-level software
thread sees the effects (perhaps milliseconds).

Commercial RTOS’s market predictable timing, but mod-
ern processors have rendered such numbers only vague
bounds. Real-time software developers have long demanded
predictable timing; processor architectures no longer deliver.

2 The Solution

It is time for a new era of processors whose temporal behav-
ior is as easily controlled as their logical function. We call
them precision timed (PRET) machines. Our basic argument
is that real-time systems, in which temporal behavior is as
important as logical function, are an important and growing
application; processor architecture needs to follow suit.

This is an enormous problem, but it is easy to start making
progress. The problem is challenging because it spans nearly
all abstraction layers in computing, including programming
languages, virtual memory, memory hierarchy, pipelining
techniques, power management, /O, DRAM design, bus ar-
chitectures, memory management, just-in-time (JIT) compi-
lation, multitasking (threads and processes), task scheduling,
software component technologies, and networking.

Our first step is to develop FPGA-targeted PRET cores
suitable for high-reliability embedded applications. Sub-
stantial progress can be made in months; the revolution may
take decades. Our ultimate goal is networked real-time soft-
ware that delivers the reliability and timing precision of syn-
chronous digital hardware with the simplicity of software.

Timing precision is easy to achieve if you are willing to
forgo performance; the engineering challenge in PRET ma-
chines is to deliver both. While we cannot abandon struc-
tures such as caches and pipelines and 40 years of progress in
programming languages, compilers, operating systems, and
networking, many will have to be re-thought.

Fortunately, there is much work on which to build. ISAs
can be extended with instructions that deliver precise tim-
ing with low overhead [7]. Scratchpad memories can be
used in place of caches [1]. Deep pipelines with pipeline
interleaving can deliver precise timing [10]. Memory man-
agement pause times can be bounded [2]. Programming
languages can be extended with timed semantics [6]. Ap-
propriately chosen concurrency models can be tamed with
static analysis [3]. Software components can be made in-
trinsically concurrent and timed [11]. Networks can pro-
vide high-precision time synchronization [8]. Schedulability
analysis can provide admission control, delivering run-time
adaptability without timing imprecision [4].

Our vision of a mature PRET machine incorporates most
of these techniques. At the ISA level, it provides cycle-
accurate timers, a predictable memory hierarchy based
on scratchpad memories, and an interleaved pipeline that
provides predictable hardware-efficient concurrency. It
will be programmed in a C-like language that includes
user-specified timing constraints and concurrency, probably
through a coordination language, perhaps with synchronous
semantics. Both compile- and run-time checks will en-

sure the program meets timing constraints, similar to array
bounds checking. A PRET operating system will resemble
an RTOS, but its scheduling policies will provide guarantees
and admission control. Such a processor will communicate
through a network able to provide timing guarantees, proba-
bly leveraging time synchronization.

Many open challenges remain. How do we achieve high-
precision I/O (classical interrupts destroy all temporal pre-
dictability)? How do we manage disk systems, DRAM be-
havior, and virtual memory? How do we scale to deep sub
micron without losing the precision of synchronous digital
logic (see http://www.tauworkshop.com)? How do we adapt
operating systems to provide timing guarantees? How do we
handle exceptions? How do we handle variable clock rates
(essential power management)? How do we get precise tim-
ing in networking? How do we evolve the many fledgling
research results into mainstream software engineering?

PRET machines are essential for embedded systems, but
are also valuable for general-purpose systems. In concurrent
software, non-repeatable behavior is a major obstacle to re-
liability [9]. PRET machines would improve reliability of
concurrent software through repeatable concurrent behavior.

Patterson and Ditzel’s [12] plea for RISC machines was
simultaneously heeded and ignored. Architectural complex-
ity continued to grow unabated, but at least architects began
to analyze where it would have the most benefit. It forced
architects to evaluate the benefits of their elaborations rela-
tive to the costs. A similar change is needed with respect to
techniques that blithely ignore predictable timing.

References

[1] O. Avissar, R. Barua, and D. Stewart. An optimal memory allocation
scheme for scratch-pad-based embedded systems. Trans. on Embed-
ded Computing Sys., 1(1):6-26, 2002.

[2] D. E Bacon, P. Cheng, and V. Rajan. The Metronome: A simpler
approach to garbage collection in real-time systems. In Workshop
on Java Technologies for Real-Time and Embedded Systems, Catania,
Sicily, 2003.

[3] G. Berry. The effectiveness of synchronous languages for the devel-
opment of safety-critical systems. White paper, Esterel Technologies,
2003. Overview of SCADE/Lustre.

[4] E. Bini and G. C. Buttazzo. Schedulability analysis of periodic fixed
priority systems. IEEE Transactions on Computers, 53(11):1462—
1473, 2004.

[5] C.Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm. Reliable and precise WCET
determination for a real-life processor. In EMSOFT, volume 2211 of
LNCS, pages 469-485, North Lake Tahoe, California, 2001. Springer.

[6] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-
triggered language for embedded programming. In EMSOFT 2001,
volume LNCS 2211, Tahoe City, CA, 2001. Springer-Verlag.

[71 N.J. H. Ip and S. A. Edwards. A processor extension for cycle-
accurate real-time software. In IFIP International Conference on
Embedded and Ubiquitous Computing (EUC), volume LNCS 4096,
pages 449-458, Seoul, Korea, 2006. Springer.

[8] S.Johannessen. Time synchronization in a local area network. /[EEE
Control Systems Magazine, pages 61-69, 2004.

[9] E. A.Lee. The problem with threads. Computer, 39(5):33-42, 2006.

[10] E. A. Lee and D. G. Messerschmitt. Pipeline interleaved pro-
grammable dsps: Architecture. IEEE Trans. on Acoustics, Speech,
and Signal Processing, ASSP-35(9), 1987.



[11]

[12]

[13]

E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-oriented design
of embedded hardware and software systems. Journal of Circuits,
Systems, and Computers, 12(3):231-260, 2003.

D. A. Patterson and D. R. Ditzel. The case for the reduced instruction
set computer. ACM SIGARCH Computer Architecture News, 8(6):25—
33, 1980.

N. Wirth. Toward a discipline of real-time programming. Communi-
cations of the ACM, 20(8):577-583, 1977.



