Proc. of 21st IFAC World Congress,

Berlin,

Germany, July 12-17, 2020.

Opportunities for Industrial Control

Martin Witte* Martin A. Sehr ** Ines Ugalde **
Joerg Neidig* Mehrdad Niknami *** Stephan Hoeme *
Edward A. Lee ***

* Siemens AG, Nuremberg, Germany.
** Siemens Corporation, Berkeley, CA 94704, USA.
“** Department of Electrical Engineering and Computer Sciences, UC
Berkeley, Berkeley, CA 94720-1770, USA.

Abstract: Programmable Logic Controllers are an established platform used throughout
industrial automation, but rather poorly understood among researchers in the control systems
community. This paper gives an overview of the state of the practice in industrial control
systems while presenting a critical analysis of the dominant programming styles used in
today’s automation systems. We describe the patterns standardized loosely in IEC 61131-3
and, where there are ambiguities in the standard, realized in concrete vendor implementations.
Ultimately, we suggest directions for further research towards enabling increasingly complex
industrial control applications subject to the novel requirements of Industry 4.0 settings without
compromising the safety and reliability guaranteed by the current industrial automation stack.

Keywords: Industrial Control Systems, Programmable Logic Controllers, Automation,

Industry 4.0, Flexible Manufacturing Systems.

1. INTRODUCTION

While Industry 4.0, digitalization, and the Internet of
Things all promise increased use of general-purpose soft-
ware and networks in industrial applications, there are
significant risks. In such applications, safety, reliability,
security, and efficiency are even more important than in
many information technology and home automation appli-
cations. Programmable Logic Controllers (PLCs) provide
an ecosystem of relatively simple software logic, robust
and ruggedized hardware, networks with controllable real-
time behaviors, and extensive availability of interoperable
components such as sensors and actuators. As such, PLCs
are an established platform for factory automation and
industrial process design governed by the IEC 61131 stan-
dard, International Electrotechnical Commission (2017).
The characteristics of this platform include programming
style (Part 3 of the standard), networking style (Part 5),
and physical interconnects (Part 2), each enabling compo-
sition of components in complex automation systems with
predictable behavior. No comparably robust and reliable
ecosystem has yet emerged using general-purpose operat-
ing systems and networks with embedded software.

Today’s PLC ecosystem, however, is suffering growing
pains as the complexity of automation systems increases,
integration with Internet and wireless services becomes
essential, and integration of learning, vision and speech
recognition are demanded by end-users. We argue in this
article that PLCs as a platform have the potential to grow
into such capabilities without compromising their existing
advantages. To see how to do that, we discuss essential
features of the current platform, identify weaknesses that
form barriers, and propose a list of directions for possible
improvements. We believe that the suggested adaptations

will maintain the benefits of today’s PLC designs, par-
ticularly safety and reliability, while enabling continued
widespread application amid growing requirements.

Where simple systems can be designed, prototyped, and
tested in their intended deployment context to iterate
designs, such design iterations are problematic in indus-
trial automation, where testing low-confidence designs is
not an option, and systems are often complex composi-
tions of many components. As a consequence, growing
in complexity and evolving existing designs will require
more reliance on formal platform properties as well as vir-
tual prototyping, where simulation and verification replace
prototype-and-test. It will be important, therefore, when
evolving the PLC platform, to not just increase flexibility
and generality, but also to enforce constraints ensuring
predictable, analyzable, and reliable behavior.

In this article, we examine the current state of the prac-
tice in PLC-based industrial automation systems, focus-
ing on the essential properties of PLCs that make them
robust and reliable. Ultimately, we identify strengths and
weaknesses of today’s approaches and suggest paths for
improvement towards future automation platforms. Our
intention with this paper is not to address in detail the var-
ious possible solutions to these points, but rather to raise
awareness of issues to be addressed in development of the
next generation of PLCs to enable continued widespread
use throughout industrial automation. We hope to encour-
age further work on the rich set of topics identified below
through the control and automation communities.

2. PROGRAMMABLE LOGIC CONTROLLERS

The programming model for PLCs, which is loosely defined
by the standard TEC 61131-3, International Electrotechni-

cal Commission (2017), is the heart of their character, so it
is worth reviewing here. We propose here extensions of the
standard and also adaptations that, while not modifying
the standard, suggest using particular patterns of design
among the many possibilities allowed by the standard. !

Compared to general embedded control systems, PLCs
provide a more structured and constrained framework for
design, with specific support for vetted, commonly-used
design patterns. They can be programmed in a number of
languages at different abstraction levels, such as:

e Structured Text (imperative, based on PASCAL);

e Instruction Lists (akin to assembly language);

e Ladder Diagrams (based on ladder logic, a notation
used for hardwired relay circuits);

e Function Block Diagram (a graphical language);

o Sequential Function Charts (graphical).

We next define three major components of a PLC-based
design: computational components, consisting of software
to be executed; data, sections of memory with particular
roles; and devices, providing data to the computations or
use data provided by the computations.

2.1 Computational Components

Tasks: Tasks are blocks of computation that are executed
in response to CPU events and often invoked on a periodic
basis via timer interrupts. There is always a main task
that executes in an infinite loop and may be preempted
by other, higher priority tasks. Every task has a notion of
a single, finite execution called cycle, and cycles of a task
may be executed repeatedly.

The main task may also be assigned a minimum cycle
time T, in which case, if it finishes a cycle before time
T has elapsed since the cycle began, then the next cycle
is delayed until T" has elapsed and the resulting CPU idle
time may be used for purposes such as communication,
which generally is handled outside the user program. For
illustration, Figure 1 depicts the main cycle with minimum
cycle time being preempted by a higher priority task. If the
main task is not assigned a minimum cycle time, then it
executes as fast as possible (AFAP), in that each cycle
begins as soon as the previous cycle has ended. Note that
only the lowest-priority tasks on any single PLC can use
this AFAP style because such a task will block execution
of any other tasks of lower priority.

Besides the main, minimum-priority task, cyclic and non-
cyclic tasks within the user program can be defined that
will be invoked according to criteria such as:

1) at specified times of day;
) after time delays from trigger functions have passed;
) at specified frequencies and phases from start-up;
) triggered by hardware interrupts, e.g. via I/O;
) triggered by network devices;
(6) isochronous interrupts, triggered by network events.

(
(2
(3
(4
(5
6

A number of other conditions may trigger task activation,
including error or fault conditions, system reset, and

1 We do not address IEC 61499, an event-driven extension that has
not gained significant industry usage. For a broader view on software
engineering in industrial automation, see e.g. Vyatkin (2013).

Minimum Cycle Time

A4

Cycle Time of Main Task !

Write I/O
Image Output

Read I/O

Main Task
Image Input

Main Task ‘

Read I/O Image
Partition Input

Write 1/0 Image
Partition Output

Interrupting Task

Fig. 1. Main task with minimum cycle time interrupted by
a higher priority task; I/O image partition associated
with interrupting task is updated accordingly; Main
I/0 image update prior to execution of main task.

software events on other processors. Moreover, alarms can
occur as a result of unforeseen or erroneous conditions.
By default, an alarm causes the PLC to halt execution of
its cyclic control tasks and, as with traditional languages
such as C++, Python, or Java, code can be provided to
catch and handle the alarm. Once a cycle in a task is
started, it runs to completion, but not necessarily without
temporary preemption by another higher priority task.
All tasks executing on a PLC have distinct priorities and
no task executes unless all other higher-priority tasks on
the same PLC are stalled between cycles. Note that this
property makes it more difficult to leverage the parallelism
of multiple cores in a multicore CPU.

There are a number of significant ambiguities about the
timing of task execution that do not appear to be well
addressed in the IEC standard nor well-defined in software
documentation of commercial products. For example, if
external events occur at the same time, the order in which
they are received from the network is not recorded, making
the response nondeterministic. Moreover, in general, sen-
sor values are not timestamped upon being measured, sent,
or received, making it difficult to know the staleness of
observed quantities. Such ambiguities need to be addressed
in order to be able to create and verify that PLC software
is behaving correctly and reliably.

Functions: As with traditional programming languages,
the building blocks of code are functions of various forms,
divided into ones with or without variables retained be-
tween consecutive executions. A cycle of a task is typically
specified by functions, which may in turn call others. Be-
tween cycles, the inputs and outputs of functions are stored
in a section of memory called the I/O image table, as we
discuss in more detail below. Ideally, a function executes
atomically in that its inputs do not change during its
execution, its outputs are not visible until its computation
is complete, and it has no interaction with other functions
or I/O devices except through its inputs and outputs.

In current PLC programming environments, however, it
is possible to circumvent this idealized pattern because
process memory and data may be read and written by
more than one function. Moreover, functions may preempt
one another and execute concurrently, although typically
not in parallel, and undisciplined sharing of memory can
lead to nondeterminism and unexpected behaviors. Un-
fortunately, such undisciplined use of shared memory is
common in practice. As the complexity of PLC appli-
cations increases, it may become beneficial to enforce a
disciplined use of memory to guarantee the idealized model

of atomic, deterministic execution. As long as the under-
lying language is deterministic and the above constraints
for idealized execution are met, then each cycle will be
deterministic. Given a set of input values, it defines exactly
a set of output values and a new state for its memory.

2.2 1/0 Image Table and Program Data

By default, interaction between PLCs and other devices
is through the memory system rather than by directly
connecting external devices to the PLC microprocessor.
Sensors write into the I/O image table, the PLC computes
and writes results to the I/O image table, and when the
PLC is done, the outputs are transferred to actuators. In
more recent PLC models, I/O image tables may also be
partitioned, as in the example shown in Figure 1.

In the simplest configuration, there is a single task working
on an I/0O image table, and, prior to each cycle of this main
task, the image is updated with sensor data. Only after
the cycle of the main task has completed and before the
next cycle begins are the results of the PLC computation
transferred. This strategy means that input values used by
the PLC computation are stable during the entire cycle
and that outputs produced by the PLC will be transferred
all at once to actuators once computation is finished.

In more elaborate configurations, the I/O image table
may be divided into subimages associated with distinct
tasks. Each subimage is updated with input data prior
to execution of that task, and outputs are transferred
upon task completion. If the relative alignment in time of
cycles in different tasks is not well defined, then neither
are order and timing of the transfer of commands to
actuators, indicating a possible source of nondeterminism.
Additionally, there are no constraints preventing a task
from reading or writing to the process subimage of a
different task in current frameworks. This means that for
that task, the I/O image table it is working with may not
be stable during the execution of a cycle, and that the
I/O image table data could change whenever the task is
preempted, which could lead to unexpected results.

In many PLC models, functions may also use other por-
tions of system memory, called e.g. data blocks for Siemens
PLCs in Berger (2006). Ideally, these data blocks store
variables for use only within a single functions. In practice,
however, they are also used for communication between
functions. If the order of execution of functions in distinct
tasks is not well defined, this may provide another source
of inadvertent nondeterminism.

2.8 Network Communication

From a PLC programmer’s point of view, the network
is invisible, typically abstracted away by peripheral de-
vices. While this helps focusing on the programming of
the individual components, one aspect of communication
whose abstraction is generally leaky is its timing behavior.
Communication occurs either regularly or irregularly, and
can be categorized by timing patterns as follows:

e Periodic (synchronized): Components communi-
cate periodically based on a common global clock,
eliminating synchronization overhead at operation.

e Periodic (drifting): Components communicate pe-
riodically, but in accordance to local clocks which
are initially and/or periodically synchronized to a
global clock. In this case, local clocks may naturally
drift from the reference clock, requiring explicit clock-
synchronization logic when interfacing components.

e Quasi-periodic with time-varying periods: Com-
munication occurs periodically with respect to a ref-
erence clock, but the periods are allowed to vary in
response to control signals or other system conditions.

e Sporadic: Communication is irregular, triggered by
occurrence of external events, for instance ones cap-
tured by light barriers or temperature sensors.

Functions typically see network messages as inputs through
the I/O image table, but reasoning about collective behav-
ior of functions scattered on a network and communicating
using these patterns can be difficult. Even the simplest
pattern, synchronized periodic, may not be synchronized
with the execution of functions. For example, functions
within the lowest-priority task using the AFAP policy
exhibit unpredictable timing relative to periodic network
communication. This may result in messages being missed
or processed more than once.

Various components and interconnections of a control
system may have their own clocks interfacing with each
others’ clock domains. Clocks that are synchronized may
be synchronized to periods that are multiples of each other,
and phase shifts can be introduced to compensate for
message delays. The normal synchronization of PLCs is
periodic (drifting), but it is possible to synchronize the
network completely in IRT mode, so that all communica-
tion loops are running in sync. The relationships between
these clocks and the resulting timing behaviors, however,
can be difficult to understand.

A question that will become more important as systems
switch to Time-Sensitive Networks (TSNs) is the relation-
ship between the timing of isochronous actions, triggered
by the network, and the timing of periodic tasks, triggered
by timer interrupts based on a local clock. Even in the
absence of TSN, it is already common to set up a master
clock on a local-area network so that periodic events on
multiple PLCs are at least frequency-locked, if not phase-
locked.? However, delays along network communication
channels can create significant jitter that is difficult to
predict. In particular, for example, the time delay between
the arrival time of a packet and the time at which it is
loaded into the I/O image table is not tracked, which can
be problematic as these delays can be long.

3. OPPORTUNITIES

Industrial automation is an understandably conservative
business; disruptions to production lines can be costly
and significant safety risks have to be managed. At the
same time, market, cost, and competitive pressures de-
mand innovation. Complexity and demand for customiz-
ability of products within product lines keep increasing
in a competitive market. Machinery on the factory floor

2 “Frequency locked” means that if two periodic tasks A and B with
the same period execute on two different PLCs, then the difference
between the number cycles that A has executed and the number of
cycles that B has executed remains bounded at all times.

increasingly needs to be connected to networks in order
to leverage improvements in condition-based maintenance,
energy optimization, lean supply-chain management, and
coordination across departments. To respond to these
pressures, facilities must evolve, but they must do so
in a minimally disruptive way: new equipment must be
deployed with minimal disruption to existing production,
and new configurations and interoperability of legacy and
new equipment must be tested prior to deployment.

These requirements demand important changes to PLCs:
they must operate safely in open networking environments;
they must be testable in virtual prototypes; and the
behavior of their software must be more independent
of the hardware so that new hardware can be deployed
without disrupting existing functions. We believe that
these requirements call for some crucial changes to the
computational models that form the core of PLC design.

3.1 Timing Requirements

Specifically, future PLC designs must rely less on priority-
based cyclic execution models whose timing depends on
unrelated tasks running on the PLC or elsewhere in the
network. Instead, PLC designs should specify timing be-
haviors, such as deadlines, and hardware and operating
system infrastructure should ensure that the behavior is as
specified. This implies less reliance on priorities because,
given only priorities, the actual behavior of one compo-
nent depends on other, unrelated components. Instead
of priorities, software components should specify timing
requirements and the compilers and operating systems
should ensure that these timing requirements are met.

A clean model of time would make PLC-based designs
more testable and more faithful to virtual prototypes.
Ideally, timing should be a logical property of programs
as well as a physical property of their implementation.
The notion of logical synchrony, for example, can be used
even on physically asynchronous systems, as discussed by
Sha et al. (2009). Two events are logically synchronous if
no external observer can see that one event has occurred
and the other has not. Implementing logical synchrony
does not require that events actually occur simultaneously.
Instead, such synchrony can be realized by controlling
what observers can see, enabling periodic actions that are
coordinated in a predictable, repeatable and testable way.

We further observe that making a commitment to deter-
minism can improve testability and safety of systems. For
example, it is common among control engineers to always
want to use the most recent measurements from sensors.
In complex systems, however, a component may combine
recent data from one sensor with stale data from another,
thereby building an inconsistent view of the physical sys-
tem state. Timestamping data can help, particularly if
timestamps are interpreted as a logical property of pro-
grams. An execution environment that ensures that every
software component sees messages only in timestamp order
can go a long way towards making behaviors both more
understandable and predictable.

Physical time is easy to define for a single PLC imple-
mented on a microprocessor with a single real-time clock;
for such a system, physical time is simply the time revealed

by that real-time clock. For a multi-PLC system, however,
physical time is harder to define precisely, so we must
not rely on it to give semantics to the system. To achieve
deterministic computation on such a distributed system,
the implementation will have to coordinate physical time
measurements across the system, using, for example, clock
synchronization protocols as in Eidson (2006). No clock
synchronization mechanism is perfect, but if there is a
known bound on the discrepancy between clocks, then it is
possible to enforce a consistent logical notion of time across
a distributed system, as shown by Eidson et al. (2012).

Another requirement is a common logical time origin,
by which we mean that all tasks are launched logically
simultaneously at the beginning of the execution of the
application. Hence, two periodic tasks A and B that have
the same period P have logically simultaneous cycles,
although the actual order of execution of their cycles
will depend on their priorities (if they are executing on
the same CPU) or on scheduling (if they are executing
parallel). To maintain logical simultaneity, all that is
required is that any observer that has seen n executions of
A has also seen n executions of B.3

On a single CPU, a notion of logical synchrony of periodic
tasks is relatively easy to maintain. We can ensure that
during execution, the number of cycles completed by A
does not differ by more than one from the number of cycles
completed by B. Moreover, all tasks with lower priorities
than both A and B or higher priorities than both A and
B can never observe any difference in the number of cycles
of A and B that have been executed. In this sense, A and
B are logically simultaneous. A task with priority between
those of A and B will always observe a difference of exactly
one between the number of invocations of A and B. If
A and B have the same priority, then the order of their
execution can be determined by data precedences, if one
uses data computed by the other, or can be arbitrary, if
there is no interaction between them.

Maintaining such logical synchrony in a multicore or dis-
tributed system implementation is more challenging, but
realizable leveraging synchronized clocks as in Eidson et al.
(2012). Global logical synchrony may be, on the other
hand, excessively restrictive for some applications. For
such applications, we could introduce logical clock do-
mains, as done by Jerad and Lee (2018). Logical clock
domains can provide islands of synchrony where interac-
tions across the islands are asynchronous.

3.2 Deterministic Execution & Parallelism

The designs should also be more deterministic, by which
we mean that the response to a given set of input con-
ditions should be defined by the software and be unique.
Specifically, a response should not depend on how clocks
are drifting with respect to one another nor on detailed
execution times of software on the PLC. Determinism
improves testability: defining a single correct response to a
set of input conditions means that those input conditions
can be used to test the system and help enable virtual
prototyping. For the same reasons, these changes also
make programs more independent of deployment hard-
ware; if the hardware on which the software executes is

3 This can be relaxed by fixed-point semantics, Cataldo et al. (2005).

updated, system behavior will be unaltered provided the
new hardware can deliver correctly the specified timing.

Most PLCs today are realized by software on commercial
off-the-shelf microprocessors. Today, most microprocessors
have multiple cores, something that traditional PLC pro-
gramming models do not easily accommodate. Our sugges-
tions of revising the programming model to address timing
specifications and determinism would also allow ensuring
any revised programming model is able to effectively and
safely exploit multiple cores, requiring better mechanisms
for software components to interact. Using shared variables
in memory, for example, can work well when execution of
functions is atomic and mutually exclusive, but if functions
are executed in parallel on multiple cores, the behavior
may be affected by uncontrolled low-level timing effects.
Message-passing communication mechanisms, among oth-
ers, can mitigate this risk, preserving determinism while
allowing for parallel execution.

3.3 Fvent Handling

The current cyclic execution semantics and common 1/0
image table of a PLC can, by means of their simplic-
ity, also create issues for event-based control problems:
PLCs forget the event order in a cycle, potentially causing
unnecessary network traffic and processing time on the
PLC. With intelligent field devices, cyclic processing in
non-synchronized networks can create even more delays
resulting from cycle shifts peripheral to PLCs, while syn-
chronized cycles can decrease the network throughput. In-
deed, many functions start with a has-something-changed
code fragment before processing their logics, conceptually
recreating an event-based system in an ad-hoc manner
via polling. Excessive polling, however, can overload the
network, preventing the ability to use the network for other
purposes. Consider for example a sensor detecting an event
that requires reaction by the software within 7 seconds,
so that a periodic task with period no longer than 7
seconds must be deployed and communication between the
sensor and the PLC must occur periodically with period
no larger than 7. If said event is rare, then polling incurs
considerable overhead in network traffic and CPU usage.

Events, especially rare ones, could be handled better by
an event-based rather than a polling-based programming
model. Indeed, an event-based style was attempted in
TEC 61499, but the programming model proposed in this
standard proved to be nondeterministic and too com-
plicated to gain wide adoption in industry, as discussed
e.g. by Cengic et al. (2006). We believe that alterna-
tive event-based programming models should be explored,
particularly those that can be combined with traditional
periodic task execution. An example is PTIDES, Eidson
et al. (2012), which is based on a discrete-event (DE)
model of computation, where communication between
components occurs via timestamped messages. DE models
have been shown to be deterministic, even in distributed
settings. Moreover, they generalize synchronous-reactive
models as in Lee and Zheng (2007); Benveniste and Berry
(1991), which excel at periodic task execution. Event-
based scheduling should become intrinsically supported by
peripherals and should be performed at a granular level.

3.4 Network Access € Communication

Assuming time-sensitive networking (TSN) gains traction
in industry (see e.g. Wollschlaeger et al. (2017)), additional
opportunities present themselves: high precision synchro-
nized clocks could enable better coordination of sepa-
rate PLCs; time-slotted, reservation-based network traffic
could improve determinism; time-sensitive traffic shaping
could improve safety. This would expand on existing in-
dustrial Ethernet protocols such as PROFINET, which
already provide a level of deterministic message delivery.

If the programming model of PLCs is to change, a number
of other improvements should be considered. For exam-
ple, sandboxing, private memories, and temporal isola-
tion could make programs more composable and even
allow execution of unverified code. Another opportunity is
to introduce state-of-the-art authentication, authorization
and encryption infrastructure, a prerequisite to opening
networks to outside traffic (see Kim and Lee (2017)). In
addition, messages and sensor data could be timestamped
to regulate the order of message delivery as in Eidson
et al. (2012). To support situations where shared data is
required, infrastructure for private memory and local com-
munication, such as via pipes or message-passing, could be
provided to make sharing data in memory safer.

3.5 Virtual Prototyping

A virtual prototype is a software model to be used for
simulation or analysis. Virtual prototyping has proven very
effective in VLSI design, where physical prototypes are
costly. In industrial automation, however, effective virtual
prototyping has proven elusive, although recent efforts
have made progress on this front. One key challenge is that
while the behavior of physical machinery is timing depen-
dent, the timing behavior of software is difficult to control.
Hence, a simulation model may need to include excessive
low-level detail about the implementation, rendering anal-
ysis intractable and simulation slow or impossible.

Lee and Sirjan (2018) distinguish what they call scien-
tific models, which are intended to reflect the behavior
of preexisting systems, from what they call engineering
models, which are intended to specify the behavior of a
system to be built. They point out that it is important
to recognize whether a model is to be used in a scientific
or an engineering way. An engineering model can serve as
a specification, a detailing of requirements that a physical
realization must satisfy. If the engineering model is built
so that its requirements can be met in a cost effective
way, then it can be used to validate a design before any
physical prototype is constructed. In VLSI design, a VHDL
or Verilog program is an engineering model of a chip and
almost all verification and validation tasks can be carried
out on the model without constructing physical hardware.
The challenge we pose here is to make engineering models
of industrial automation systems as effective.

A scientific model of a factory automation system, in
contrast, needs to model the timing of software execution
in great detail if that timing causes significant effects on
the physical plant. For example, timing actions running
AFAP will depend on every detail of the microprocessor
implementing the PLC, its pipeline, memory architecture

and I/O system. Alternatively, a minimum-priority task
with a minimum cycle time can be effectively modeled at
much higher level. Its interactions with the physical plant
can even be made deterministic under certain assumptions.

First, we must assume that execution time never exceeds
the minimum cycle time. This may be guaranteed using
execution time analysis, even though such analysis can
be challenging in practice and may involve unrealistic
assumptions (see Wilhelm et al. (2008)). A alternative
approach may be to implement PLCs on top of PRET
machines, which are discussed by Zimmer et al. (2014).

Second, we must delay actuation based on results of a cycle
until the minimum cycle time has elapsed. Such delayed
actuation is anathema to many automation engineers, who
are guided by the mantra that low delay in feedback con-
trol loops is always preferable. However, delayed actuation
can eliminate timing jitter in actuators, which could reduce
wear on physical components and make behavior more
repeatable. Moreover, in a safety-critical system, we have
to validate the behavior of the system under worst-case
timing conditions, so we have to design the system to
work with worst-case delays anyway. Finally, the biggest
benefit of delayed actuation may be resulting simplicity in
simulation and analysis compare to actual execution times.

More complex scenarios present additional challenges for
virtual prototyping, but as demonstrated by PTIDES,
these challenges can be overcome even in distributed sys-
tems, as shown by Eidson et al. (2012). Although PTIDES
may not be the ideal programming model for industrial
automation, it embodies an existence proof for effective
virtual prototyping. We strongly believe that there are op-
portunities for development of more specialized, domain-
specific programming models closer to current PLC prac-
tice while enabling effective virtual prototyping.

4. CONCLUSION

With the advent of Industry 4.0, industrial automation
is facing conflicting demands of increasing complexity
and safety requirements. At the same time, technology
is offering more sophisticated timing-sensitive networks,
open networks, multicore architectures and increasingly
complex microprocessor architectures, all of which stress
current PLC platforms. We believe it is time to reexamine
these practices with an eye towards improving determin-
ism, enabling virtual prototyping, leveraging multicore ar-
chitectures and strengthening safety guarantees. We hope
that this article will inspire future efforts towards the
opportunities identified above.

REFERENCES

Benveniste, A. and Berry, G. (1991). The synchronous
approach to reactive and real-time systems. Proceedings
of the IEEE, 79(9), 1270-1282.

Berger, H. (2006). Automating with SIMATIC: Con-
trollers, Software, Programming, Data Communication,

Operator Control, and Process Monitoring. Publicis
Corporate Publishing, 3rd edition.

Cataldo, A., Lee, E., Liu, X., Matsikoudis, E., and Zheng,
H. (2005). Discrete-event systems: Generalizing metric
spaces and fixed point semantics. Report Technical Re-
port UCB/ERL MO05/12; EECS Department, University
of California.

Cengic, G., Ljungkrantz, O., and Akesson, K. (2006).
Formal modeling of function block applications running
in IEC 61499 execution runtime. In 11th IEFEE In-
ternational Conference on Emerging Technologies and
Factory Automation. doi:10.1109/ETFA.2006.355187.

Eidson, J., Lee, E.A., Matic, S., Seshia, S.A., and Zou,
J. (2012). Distributed real-time software for cyber-
physical systems. Proceedings of the IEEE (special
issue on CPS), 100(1), 45-59. doi:10.1109/JPROC.
2011.2161237.

Eidson, J.C. (2006). Measurement, Control, and Commu-
nication Using IEEE 1588. Springer.

International Electrotechnical Commission (2017). In-
ternational Standard IEC 61131: Programmable Con-
trollers. IEC, 4.0 edition.

Jerad, C. and Lee, E.A. (2018). Deterministic timing for
the industrial internet of things. In IEEE Int. Conf. on
Industrial Internet (ICII). IEEE.

Kim, H. and Lee, E.A. (2017). Authentication and au-
thorization for the Internet of Things. IT Professional,
19(5), 27-33. doi:10.1109/MITP.2017.3680960.

Lee, E.A. and Sirjan, M. (2018). What good are models? In
Formal Aspects of Component Software (FACS), volume
LNCS 11222. Springer.

Lee, E.A. and Zheng, H. (2007). Leveraging synchronous
language principles for heterogeneous modeling and de-
sign of embedded systems. In EMSOFT, 114 — 123.
ACM. doi:10.1145/1289927.1289949.

Sha, L., Al-Nayeem, A., Sun, M., Meseguer, J., and
Olveczky, P. (2009). PALS: Physically asynchronous
logically synchronous systems. Report, Univ. of Illinois
at Urbana Champaign (UIUC). URL http://hdl.
handle.net/2142/11897.

Vyatkin, V. (2013). Software engineering in industrial
automation: State-of-the-art review. IEEE Transactions
on Industrial Informatics, 9(3), 1234-1249.

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N.,
Thesing, S., et al. (2008). The worst-case execution-
time problem - overview of methods and survey of tools.
ACM Transactions on Embedded Computing Systems
(TECS), 7(3), 1-53.

Wollschlaeger, M., Sauter, T., and Jasperneite, J. (2017).
The future of industrial communication: Automation
networks in the era of the internet of things and industry
4.0. IEEF Industrial Electronics Magazine, 11(1), 17—
27. doi:10.1109/MIE.2017.2649104.

Zimmer, M., Broman, D., Shaver, C., and Lee, E.A. (2014).
FlexPRET: A processor platform for mixed-criticality
systems. In Real-Time and Embedded Technology and
Application Symposium (RTAS). URL http://chess.
eecs.berkeley.edu/pubs/1048.html.

