1990 International Conference on Parallel Processing

SCHEDULING TO ACCOUNT FOR INTERPROCESSOR COMMUNICATION WITHIN
INTERCONNECTION-CONSTRAINED PROCESSOR NETWORKS

Gilbert C. Sih
Edward A. Lee
Department of EECS
University of California
Berkeley, California 94720

ABSTRACT

Interprocessor communication (IPC) overhead can
severely degrade the performance of parallel process-
ing systems. This paper presents a unified approach
to the compile-time scheduling of precedence-
constrained, communicating tasks onto arbitrarily
interconnected processor networks containing dedi-
cated communication hardware. Scheduling and rout-
ing are performed simultaneously to account for lim-
ited interconnections between processors, and shared
resource contention is eliminated through the schedul-
ing of all communications as well as computations. A
new scheduling heuristic called dynamic level
scheduling is proposed, which modifies the classical
list scheduling methodology to account for IPC and
synchronization overhead. This technique is fast,
widely targetable, and displays promising perfor-
mance results.

1. Introduction

The biggest impediment to the use of parallel
processing remains the scarcity of techniques for
effective partitioning and scheduling of programs.
The difficulties stem from the need for multiple pro-
cessors to exchange internmediate results, which
causes transmission/synchronization delays and con-
tention for shared resources. This interprocessor
Communication (IPC) degrades performance in
parallel processing systems. Instances of the "satura-
tion effect”, in which the addition of more processors
EC“MHY decreases throughput due to excessive IPC,
[ii:lr'ethbzen well-documented [1]. It is tﬁercforc essen-
ik tI psghedulelrs fo; parz}Ilel architectures incor-
Sy considerations if the full performance

€lits of parallel hardware are to be attained.

e
The authors
b 7ors gratefully acknowledge the support of SRC, Cygnet, Dol-
Y Laboratories, and the State of California Micro program.

The problem being addressed is the compile-time
(static) scheduling of acyclic precedence graphs onto
multiple processor architectures with limited intercon-
nections. These precedence graphs may be derived
from data flow graph algorithmic descriptions which
fit the Synchronous Data Flow (SDF) model [2],
which requires that the node execution times and the
number of data units passed or received on every arc
on each node invocation are known to the compiler.
While this model is primarily suited for signal pro-
cessing and some scientific computation, the domain
of application can be broadened somewhat through
the use of self-timed scheduling. See [3] for a discus-
sion of these issues.

Possible target architectures include tightly-
coupled shared bus configurations, message-passing
multicomputer topologies such as meshes, rings, or
hypercubes, as well as networks of processors and
memories interconnected through dynamic switching
networks. The architecture is assumed to contain
separate communication hardware, permitting the
overlap of communication with computation. Over-
head introduced by IPC is accounted for, and shared
resource contention is eliminated through scheduling
of all communications as well as computations.

The input to the scheduling algorithm is an acy-
clic precedence expansion graph (APEG), which is
the expanded precedence graph of the dataflow
representation augmented with data transfer informa-
tion. More precisely, an APEG is a finite acyclic
digraph G = {N,A}. N is a set of computation nodes
(tasks) {N;} i =1 ... n, with known execution times,
where each node is executed exactly once in each
invocation of the program. A is the set of directed
arcs {A;; } between nodes which define a partial order
or precedence constraint (<) on N such that arc A;
directed from node »; into node N; implies that N;
must precede N; (N; <N;) in execution. Each arc 4;
also carries label D;; which specifies the amount of
data (in bits, bytes, or words) that ~; passes to N; on
each invocation. An example APEG and associated
node execution time table is shown below in figure 1.

-9

1990 International Conference on Parallel Processing

Executlon Times

voZ| EIrx - =0/ moloo

Flgure 1. An APEG and node execution time table

The target architecture consists of a set of proces-
sors, {P,} k=1 ... p, interconnected in some specified
manner. The characteristics of the architecture must
be known, so that the time needed for communication
of data between two given processors can be calcu-
lated deterministically (or upper-bounded) if resource
availability is guaranteed. Communication between
nodes co-resident on the same processor is assumed to
have no cost. Communication between nodes located
on different processors entails IPC cost, because the
receiving node must postpone its execution for the
time interval required for data transfer. Processors
are assumed to be identical in this discussion, with a
treatment of heterogeneous processors deferred to a
forthcoming publication.

Scheduling will be nonpreemptive, so that once a
node has started execution on a processor, it will run
to completion. The scheduling objective is to minim-
ize the schedule length, or makespan, when all
communication and synchronization costs have been
included. This goal equivalently maximizes the
speedup, defined as the shortest time required for
sequential execution of the APEG on a single proces-
sor, divided by the time required for parallel execu-
tion on multiple processors. Even when communica-
tions are ignored, this scheduling problem falls into
the class of NP-complete problems[4]. When inter-
processor communications are included, the problem
becomes NP-complete in the strong sense, even if
there are an infinite number of processors available
[5]. Hence we will rely upon heuristics.

Much related work has concentrated on task allo-
cation, attempting to assign tasks to processors in
order to minimize some objective function [1,6,7, 8.
9]. While these works are innovative, they either
ignore precedence constraints or attempt to minimize
an objective other than schedule length, and thus are
not applicable in this context. A relevant approach,
called linear clustering, has been proposed by Kim
and Browne [10]). This technique transforms the task

TR

graph into an intermediate representation called a Vir.
tual Architecture Graph (VAG) by iteratively cluster-
ing the most expensive (in computation and commup-
ication) paths into a single node. After successive
refinement steps, the VAG is then mapped onto the
specified architecture using graph theoretic tech.
niques. A proposal by Sarkar and Hennessy attempts
to initially minimize the schedule length on an infinite
number of processors (critical path length) [11], by
initially partitioning the graph into blocks of tasks.
The initial partition places each task in a separate
block, and each successive step merges the two blocks
which yield the biggest decrease in critical path
length. This component terminates when no further
decreases in critical path length are possible. The
scheduling phase proceeds to merge blocks until the
number of blocks equals the number of processors. A
method which employs branch and bound heuristics
to prune the search space of possible schedules has
been suggested by Greenblatt and Linn [12].

The scheduler has been implemented as part of an
interactive design system for digital signal processing
(DSP) called Gabriel, which allows rapid prototyping
of new DSP algorithms using a block diagram graphi-
cal interface. The blocks span the entire range from
fine-grained operators such as adders or multipliers, to
medium-grained functions such as FFT’s, to large-
grained tasks such as a speech coder. Using feedback
information from the scheduler, an algorithm desi gner
can iteratively refine both task graph and target archi-
tecture to maximize performance. This environment
imposes three constraints on the scheduling method
employed. First, the interactive nature of the design
approach requires that the scheduling technique exe-
cute rapidly. Second, the scheduling technique must
be flexible enough to handle task graphs of arbitrary
granularity, which affects the tradeoff between the
amount of parallelism utilized and the amount of
communication overhead incurred. Third, the scheme
must be adaptable to the plethora of architectures
found in digital signal processing. Our proposed
scheme, called dynamic level scheduling, is a
promising approach toward meeting these goals.

This paper is organized as follows: section 2
reviews the classical HLFET scheduling algorithm.
Section 3 introduces the dynamic level scheduling
strategy, and section 4 presents methods of streamlin-
ing the algorithm. Section 5 summarizes and indi-
cates future research directions.

2. List Scheduling Algorithms

List scheduling is a technique in which tasks are
assigned priorities and placed in a list, sorted in order

I-10

1990 International Conference on Parallel Processing

-

of decreasing priority. Nodes whose predecessors
have been completed are designated as being ready
(for execution). A global time clock serves to regu-
late the scheduling process. Processors which are idle
at the current time are designated as being available
(for assignment). When a processor is available, the
first ready node in the list is assigned to be executed
on that processor. After assignment, the processor is
removed from the available processor list, the node is
deleted from the priority list, and this process is
repeated until the available processors have been
exhausted. The time clock is then incremented until
some processors finish execution of their allotted
tasks and are available once again. The algorithm ter-
minates when all nodes have been scheduled.

The most widely known list scheduling method is
HLFET (Highest Levels First with Estimated Times)
[13], one of the class of critical path algorithms [14].
HLFET is an extension of Hu’s pioneering work [15].
In this procedure, the priority of each node is set
equal to its level, defined as the largest sum of execu-
tion times on any directed path from the node to an
endnode of the graph. List scheduling is then per-
formed. To minimize confusion in terminology, these
levels will be referred to as static levels. In the
absence of IPC, the HLFET algorithm demonstrates
near-optimal performance in almost all cases [13].
The success of this technique stems from the accurate
representation of a node’s priority by its static level,
which causes each successive scheduling step to shor-
ten the longest path to completion.

List scheduling with inclusion of communication
delay was addressed by Yu in the context of a fully-
interconnected processor network [16]. He proposed
a heuristic which selects the ready node with the
highest static level at each step, and schedules it on
the available processor which will complete execution
of the node at the earliest time. Yu also proposed
advanced techniques which use combinatorial match-
ing algorithms to pair ready nodes with available pro-
cessors. Although the ideas are sound, the use of the
f:lassmal list-scheduling methodology leads to an
inherent flaw which is exposed in section 3.

3. Incorporating IPC Considerations

In the absence of interprocessor communication,
all available task parallelism can be utilized without
cost. That is, given enough processors, an optimal
schedule can always be constructed by invoking all
:Lmultaneously f:xechable nodes on different proces-
thrs. IPC considerations induce a tradeoff between
co;a;]nm}m i_af parallelism utilized and the amount of

unication overhead incurred. In general, as the

amount of computation decreases relative to the
amount of IPC, the amount of parallelism which can
be effectively utilized also decreases.

3.1. Handling Communication Resources

Scheduling in the presence of IPC contains two
main aspects: assigning processors for computation
nodes, and allocating communication resources for
interprocessor data transfers. These two problems,
often referred to as the "mapping problem” and the
"traffic scheduling" problem respectively, have tradi-
tionally been dealt with separately. A task allocation
algorithm first assigns nodes to processors in accor-
dance with some objective function, followed by a
routing algorithm which performs interprocessor
traffic scheduling upon the node mapping [17, 7].
This separation is imipractical, because the ease with
which the traffic scheduling can be performed is
directly dependent on the properties of the mapping;
the best isolated assignment of nodes to processors is
invariably suboptimal after simultaneous considera-
tion of both communications and computations.

Our proposed scheduling strategy addresses both
issues concurrently, trying to avert overloaded com-
munication resources by adjusting the node-processor
mapping accordingly. Just as computations are
scheduled upon processors, communications are
scheduled upon IPC resources by dedicating the
resources used in a data transfer for the duration of
the transmission. With guarantee of resource
availability, the communication time can be calcu-
lated deterministically (or upper bounded) using the
locations of source and destination processors, the
amount of data to be transferred, and the characteris-
tics of the communication architecture. A routing
algorithm, employed by the scheduler, uses
knowledge of previous resource usage to reserve a
path between source and destination processors for
this duration.

For illustrative purposes, consider the scheduling
of the APEG from figure 1 onto the target architecture
shown in figure 2, which consists of four processors
interconnected through four full-duplex interprocessor
links. For simplicity, assume that the time needed to
communicate D units of data between any two proces-
sors is merely D time units, ignoring the fact that
communication between P1 and P3 is bound to be
slower than communication between P1 and P2. The
upper chart in figure 3 shows a possible scheduling of
nodes onto processors, while the lower chart in figure
3 shows the corresponding scheduling of communica-
tions onto links. This simultaneous consideration of
spatial (routing) and temporal (scheduling communi-

I-11

1990 _International Conference on Parallel

Processing

P1 L1 P2
L4 L2
P4 B3
L3

Figure 2. A 4-processor target architecture

cation time windows) aspects of IPC eliminates the
possibility of shared resource contention, which
ensures deterministic behavior.

The scheduling algorithm is divided into two
components. The first component contains the fixed,
architecture-independent scheduling routines, while
the second component contains the architecture-
dependent communication resource scheduling and
routing routines. This division permits wide targeta-
bility without sacrificing efficiency, enabling special-
purpose routines optimized for a particular architec-
ture to be employed within the second component. A
specific interface is defined at the boundary, which
allows the topology dependent sections to be inter-
changeable. A topology dependent portion for a new
architecture can be coded within a few hours.

Flgure 3. Time charts displaying the scheduling of nodes
onto processors and communications onto links

3.2. Dynamic Levels

A list-scheduling algorithm can be decomposed
into the execution of two fundamental tasks at each
step: selection of the next ready node to schedule, and
selection of the processor on which the chosen node
should be scheduled. The HLFET scheme performs
these tasks independently, leading to poor perfor-
mance when IPC is taken into consideration. To
improve node and processor selection, a new quantity
is introduced whose value changes throughout the

—

scheduling process. This dynamic level, denoted
DL(N; ,P; ,Z(t)), reflects the quality of the match
between node N; and processor P; at state Z(r), where
Z(r) encompasses both the state of the processing
resources (previously scheduled nodes), and the state
of the communication resources (previously
scheduled data transfers) at global time t. To intro-
duce the dynamic level concept, some notation is first
defined. SL(V,;) represents the static level of node i,
Ng (Z(r)) denotes the set of ready nodes at state Z(r),
and P, (Z(1)) represents the set of available processors
at state Z(¢) In addition, we define DA, , P; , Z(r)) to
be the earliest time that all data required by node »; is
available at processor P; given state Z(t). This quan-
tity, calculated within the topology-dependent section
of the scheduler, represents the earliest time at which
all data transfers to node N; from its immediate prede-
cessors are guaranteed to have been completed with
communication resource availability assured. The
dynamic level can now be defined as

DL(N; ,P; ,E(t)) = SL(N;) — max [{ ,DA(N; ,P; ,Z{(t))] 2

The interpretation of this quantity is straightfor-
ward. The maximization term represents the earliest
time that node N; can start execution on processor P;,
because the node cannot start execution until the
current time, and it cannot be invoked until all the
data from its predecessors has been received. So the
dynamic level DL(N;,P; ,Z(r)) is the difference
between the static level of node N; and the earliest
time the node can start execution on processor Py
This expression is intuitively appealing, because it
simultaneously incorporates execution and communi-
cation time aspects. By evaluating dynamic levels
(which may be negative) over all combinations of
ready nodes and available processors, this technique
hopes to find the best node-processor match for
scheduling given the current state.

Before engaging in performance comparisons
between algorithms, it is important to realize that per-
formance variations can occur with changes in the
graph size, structure, density, parallelism, and the
relative magnitudes of node execution and internode
communication times. In our experience, the only
general principle seems to be that for each scheduling
approach, there exist specific graph instances which
will be scheduled poorly. The prevailing goal then,
must be to capture some notion of "average perfor-
mance”. To extract general trends over a broad range
of test inputs, we will use randomly-generated graphs,
where the graph instances have the relative amount of
data transfer and computation varied, as well as the
amount of task parallelism relative to the number of

1-12

1990 International Conference on Parallel Processing

m——

processors. We will supplement this data with results
obtained from scheduling DSP algorithms on our only
physical target architecture aimed at signal process-
ing: a four-processor shared-memory multiprocessor
donated by Dolby Labs.

To measure the performance improvement
obtainable through dynamic levels, randomly gen-
erated task graphs containing between 50 and 250
nodes were scheduled onto a 16-processor mesh.
Node execution times and nearest-neighbor communi-
cation times were chosen randomly from the same
uniform distribution. Several methods for node and
processor selection were investigated. The first
method initially selects the available processor with
smallest index and then chooses the ready node which
maximizes the dynamic level with this processor. The
second method initially selects the ready node with
highest static level and then chooses the available pro-
cessor maximizing the dynamic level with this node.
The third method examines all possible combinations
of ready nodes and available processors and chooses
the node-processor pair yielding the highest dynamic
level. The performance improvement of these three
methods over the HLFET approach using independent
node and processor selection are compared, where
communication costs have been included in all cases.

An interesting set of curves emerges when the
amount of parallelism in the APEG is varied with
respect to the number of processors. The measure of
parallelism being used is the ratio of the total sum of
node execution times divided by the length of the crit-
ical path through the graph (the longest path from any
initial node to any terminal node). This is a lower
bound on the number of processors needed to execute
the graph in time bounded by the critical path when
interprocessor communication is excluded. Curves
displaying percentage improvement in speedup
obtained from using dynamic levels over the static
levels employed by HLFET are shown below in figure
4, plotted against this measure of parallelism. A curve
1s shown for each of the aforementioned techniques,
where each point represents an average taken over
multiple graphs with the specified parallelism.

. The initial processor selection technique exhibits
!:ttle Improvement when the amount of graph parallel-
1Ism 1s small compared to the number of processors
bccause_ there are very few ready nodes at each
%?EQU_ll_ng step, in many cases only a single node.
Sine 1mlt::ally chosen processor is forced to choose this
s_[egse rclz_aldy node, rherfffore performing the same
ablﬁ as lt_f e HLFET algorithm and delivering compar-
e periormance. As the amount of parallelism

ases, the number of ready nodes increases, per-

mitting a better match between node and processor.
Performance increases accordingly.

: Select Node First
¢ Select Processor Firnt
: Select Together

20r

Percentage Improvement
ot
(=]
T
)
+

-10 L z
0 H 10 15 0 5

Graph Parallelism
Figure 4. Percentage improvement in speedup over HLFET

Conversely, the initial node selection technique
exhibits large improvement when the number of pro-
cessors exceeds the amount of graph parallelism,
because there is little contention for processors; each
node is able to select its "preferred” processor. As the
amount of parallelism increases, parallel paths in the
graph must share processing resources. As processors
are successively removed from the available proces-
sor list, the node with highest static level is often
forced to be executed on one of the remaining avail-
able processors for which excessive IPC is incurred.
This performance degradation is exacerbated as the
amount of parallelism is further increased.

Selecting the highest dynamic level ready-node,
available-processor pair out of all combinations
retains good improvement throughout the entire
range, increasing slightly as the amount of graph
parallelism increases. The increased flexibility
accorded this strategy allows a more effective match-
ing of nodes with processors. This method demon-
strates superior performance over the other tech-
niques, attaining speedup improvements of over 50%
in comparison with the HLFET algorithm. However,
this increased performance is realized at the price of
added computational complexity.

3.3. Revising Processor Selection

While the addition of dynamic levels significantly
improves performance, the algorithm still exhibits the
list scheduling deficiency of being unable to idle
“available" processors. Consider the graph shown in
figure 5, and for simplicity, assume a 2 processor sys-
tem with communication model C = D, so that the
number of cycles needed for IPC equals the number
of data units. The optimal schedule executes every

I-13

=ee—ungiiduonal Contference on Parallel Processing

node on a single processor while idling the other pro-
cessor completely, a solution which is unobtainable
using the current list scheduling methodology. The

clock can be updated to replenish the supply.

Execution Times

Flgure s, A fine-grained precedence graph

To remedy this difficulty, the fundamental opera-
tion of the algorithm is altered in a subtle byt impor-
tant manner. The globa] timeclock used to update the

secutive scheduling steps. To illustrate the effect of
this modification more clearly, the scheduling steps
taken by the algorithm both with and without the glo-
bal time clock wil] be contrasted using the APEG
shown in figure 6, which will be scheduled onto a two

Execution Times Statlc Levels

schedules Communication A to C op the link from Pj
to P2 in the interva] {3.8). The global clock s
i 6, when P]

results in node H being scheduled on PI and com-
the link from pp to

Munication F to | scheduled on

RIE] F MO

L. 2 A 8B W oy
P1 B\ S —
P2 A\ T

Figure g, Scheduling progression without the global clock

The scheduling steps taken by the algorithm
without the global clock, shown in figure 8, start to
diverge from the previous approach after nodes A, B,
E, and F have been scheduled. Dynamic levels are
evaluated for nodes C, G, and H on each of processors
P1 and P2, resulting in node C bej

approach relaxes the constraint which forces all pro-
cessors to be scheduled together; some processors
may have nodes scheduled far in advance of other
processors. The algorithm proceeds to schedule node
H on P2, node D on P1, and node G on P2, resulting
in an optimal schedule with makespan 16. Since addi-
tional processors are Incorporated only as they are
needed, this modified approach constructs schedules

I-14

1990 International Conference on Parallel Processing

node on a single processor while idling the other pro-
cessor completely, a solution which is unobtainable
using the current list scheduling methodology. The
inability to idle processors is an inherent flaw in the
algorithm, which requires that all available processors
be assigned nodes for execution before the global
clock can be updated to replenish the supply.

Execution Times
© 14 A

10

AR I A]

mimo0|o

11

Flgure 5. A fine-grained precedence graph

To remedy this difficulty, the fundamental opera-
tion of the algorithm is altered in a subtie but impor-
tant manner. The global timeclock used to update the
current time at each scheduling step is removed, so
that processors are no longer classified as being
"busy” or "available". All processors can now be
considered candidates for scheduling at each step,
which allows the same processor to be chosen in con-
secutive scheduling steps. To illustrate the effect of
this modification more clearly, the scheduling steps
taken by the algorithm both with and without the glo-
bal time clock will be contrasted using the APEG
shown in figure 6, which will be scheduled onto a two

Executlon Times Static Levels

3 13

10

10
7

1
9

5

6

4 |

I@mmo|o|o|s

IDI“I‘I‘IUOU’

3
3
7
2
3
5
6

Figure 6. An example acyclic precedence expansion graph
processor system interconnected by a full-duplex data
link. The scheduling steps taken by the algorithm
with the global clock are shown in figure 7. After
nodes A and B have been scheduled on P1 and nodes
E and F have been scheduled on P2, the algorithm has
its global clock at time 5, when P2 is the only proces-
sor available for scheduling. After dynamic level
evaluation of the three ready nodes C, G, and H with
P2, the algorithm schedules node C on P2, and
schedules communication A to C on the link from P1
to P2 in the interval {3,8}. The global clock is
updated to time 6, when P1 becomes available.
Dynamic level evaluation for nodes G and H with P1
results in node H being scheduled on P1 and com-
munication F to H scheduled on the link from P2 to

Figure 7. Scheduling progression with the global clock

P1 in the interval {5,9}. The global clock is updated
to time 11, freeing P2. After evaluating dynamic lev-
els for nodes G and D with P2, node G is scheduled
on P2. Finally, node D is scheduled on P1, yielding a
final makespan of 22 time units.

1] 2 4 &

pi| A [B]

p2[E] F]

0 2 4 6 8 10

Pl A T8 [¢ |
p2[E] F]

0 2 4 6 8 10

m[A [8 | ©

P2 E] F] H]

0 2 4 6 8 10 12 14 18
il A T 8 | © | 1]]
P2 ET F | H |

0 2 4 & 8 10 12 14 16
Pl A T B8 | € | D]
Pz ET F] H | G |

Figure 8. Scheduling progression without the global clock

The scheduling steps taken by the algorithm
without the global clock, shown in figure 8, start to
diverge from the previous approach after nodes A, B,
E, and F have been scheduled. Dynamic levels are
evaluated for nodes C, G, and H on each of processors
P1 and P2, resulting in node C being matched with
P1. After scheduling node C on P1, node D is
immediately released into the list of ready nodes even
though it can not be executed until time 9. This
approach relaxes the constraint which forces all pro-
cessors to be scheduled together; some processors
may have nodes scheduled far in advance of other
processors. The algorithm proceeds to schedule node
H on P2, node D on P1, and node G on P2, resulting
in an optimal schedule with makespan 16. Since addi-
tional processors are incorporated only as they are
needed, this modified approach constructs schedules

I-14

1990 International Conference on Parallel Processing

—

which exhibit a natural "clustering” of nodes which
communicate heavily, without sacrificing efficient use
of the communication resources.

Removal of the global time clock necessitates a
few changes in the dynamic level expression. The
state of the processing and communication resources
x(r) loses its time dependence and is now denoted Z.
The notation TF (P; , ¥) is introduced to represent the
time that the last node which has already been
mapped onto the jth processor finishes execution. The
revised dynamic level can now be represented as:

DL, .P; ,5) = SL(V;) - max [TF(P; ,E) ,DA(N; .P; .51 (3)

The ready node and processor which maximize this
expression are again chosen for scheduling, where the
processor candidates now encompass the entire set.

The effect of this modification is exhibited below
in figure 9 where the performance curve of the
revised algorithm is shown in comparison with the
global clock algorithm with dynamic levels. At mod-
est levels of graph parallelism, the two methods exhi-
bit comparable performance. As the amount of paral-
lelism increases, the modified approach exhibits shar-
ply increasing performance, due to this clustering

B0

®. —— : With Global Clock, Select Together + I 3
70k ¥~ - = @ Without Global Clock, Select Node First
0, —— : Without Global Clock, Select Together

Percentage Improvement

Graph Parallelism

Figure 9. Percentage improvement in speedup over HLFET

phenomenon. With increased freedom in selecting
processors, the modified approach displays an
enhanced ability to assign each node its "preferred”
Processor even as the number of parallel paths
Increases. Speedup improvements of 75% over the
HLFET algorithm were observed. As might be
tXpected, the greater the severity of the IPC costs, the
greater the performance gain obtained through the
revision. Notice that the modified algorithm using
g““al node selection does not exhibit the performance
€gradation shown earlier by the global clock
approach as the graph parallelism increases. Initially

selecting the highest static level node and then select-

ing the processor through dynamic levels now exhi-
bits nearly equal performance as simultancous node

and processor selection. A plausible explanation is

that as a result of the greater freedom in processor

selection, the same scheduling steps are occurring, but

in a different order.

In practice, we found the speedup improvement
to be even higher. When scheduling signal processing
algorithms on a four-processor shared-memory mul-
tiprocessor, speedup improvements exceeding 100%
compared to the HLFET algorithm were common
when the parallelism greatly exceeds the number of
processors.

4. Streamlining thie Algorithm

The algorithm using dynamic levels without a
global clock can be simplified for faster execution
without an appreciable degradation in performance.

4.1. Initial Node Selection

The ability to gain analogous performance in
using initial node selection as when selecting nodes
and processors together yields a great savings in exe-
cution time because examination of all node-
processor combinations is no longer necessary at each
scheduling step. After investigation of several
possibilities, the following expression was selected as
a criterion for choosing the node to be scheduled from
among all ready nodes: max {SL; +Cpy {mfx Ow]l}

The notation D,; represents the number of data units
passed from node k to node i, and the expression
Caqj(D) denotes the time needed to communicate D
data units between adjacent processors with commun-
ication resource availability guaranteed. This cri-
terion is therefore the node’s static level plus the adja-
cent processor communication time for the maximum
amount of data passed on any arc into the node from
an immediate predecessor.

4.2. Limiting Processor Selection

To further reduce the scheduling time, the
number of processors for which dynamic levels are
evaluated can be reduced. For many multicomputer
networks (e.g. mesh, hypercube), a scheme based on a
center of mass principle is effective. This method
identifies the processor locations for each predecessor
of the candidate node. Using these processor posi-
tions in an appropriate coordinate system, .and the
number of data units passed as a weighting function,
the center of mass of the data is calculated and
rounded to the nearest processor location. Candidate
processors are then limited to those within a fixed

I-15

1990 International Conference on Parallel Processing

radius of this center of mass processor, with a few
processors located outside this range included to pro-
mote spreading of the load. Intuitively, the center of
mass calculation compels each predecessor processor
to pull the candidate node toward it, with an attractive
force which is directly proportional to the amount of
data communicated. While this technique is not
intended as a panacea for all architectures, it is rea-
sonable to assume that similar techniques which limit
the number of processors at every step can be
developed for each topology with only minor perfor-
mance penalty.

The operations performed by the streamlined
algorithm at each scheduling step are displayed in
figure 10, with each operation classified as residing in
the fixed or topology-dependent component.

FIXED TOPOLOGY DEPENDENT
Select Single Node
“'-
Eval Dy lc Levels T Routing and
tor sach P R Reservation
Comparator
t?(l- Pll
S P ing and
Wjon Py Resource Reservation

Figure 10. The algorithm specification

The simplicity of this scheme permits execution
speeds suitable for a prototyping environment. A 200
node graph can be scheduled onto 16 processors in
less than a minute using the current unoptimized lisp
implementation.

5. Summary and Future Research

A new integrated approach called dynamic level
scheduling has been presented for the compile-time
scheduling of precedence graphs onto multiple pro-
cessor architectures with interconnection constraints.
Scheduling and routing are performed simultaneously
to enable the scheduling of all communications as
well as computations. Accounting for communication
overheads and eliminating shared resource contention
allows the scheduling of tasks with real-time con-
straints. This scheduling heuristic is fast, widely
retargetable, applicable in arbitrary granularity
scheduling environments, and displays promising per-
formance results.

—

Future studies will focus on optimization tech.
niques which were too time-consuming for the proto.
typing environment, but can be applied in the fina]
design phase. An initial prepass-scheduler or limited
backtracking techniques can be used to promote 3
more global scheduling perspective, and iterative
approaches designed to reduce the scheduling

bottleneck may prove beneficial. The interaction
between scheduling and routing also merits further
examination. Since previous communication resource
reservations may block a node from being scheduled
on a certain processor, the rerouting of data transfer
paths may facilitate a better node-processor mapping,

6. References

1. W.W. Chu, L.J. Holloway, M.T. Lan, and K. Efe, **Task Allocation
in Distributed Data Processing,” Computer, pp. 57-69 (November
1980).

2. E.A. Lee and D.G. Messerschmitt, **Static Scheduling of Synchro-
nous Data Flow Programs for Digital Signal Processing,” IEEE
Transactions on Computers C-36(2)(January, 1987).

3. E.A. lee and S. Ha, ‘‘Scheduling Strategies for Multiprocessor
Real-Time DSP,”” Globecom, (November, 1989).

4. M.R. Garey and D.S. Johnson, Computers and Iniractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman and Co., New
York, NY (1979).

5. V. Sarkar, “‘Partitioning and Scheduling Parallel Programs for Exe-
cution on Multiprocessors,” Ph.D. Dissertation, Stanford University,
(April, 1987).

6. W.W. Chu and L.M.T. Lan, **Task Allocation and Precedence Rela-
tions for Distributed Real-Time Systems,” JEEE Transactions on
Computers C-36(6) pp. 667-679 (June 1987).

7. S.W. Bollinger and S.F. Midkiff, **Processor and Link Assignment in
Multicomputers using Simulated Annealing,”’ 1988 International
Conference on Parallel Processing 1 pp. 1-7 (August, 1988).

8. K. Efe, “‘Heuristic Models of Task Assignment Scheduling in Distri-
buted Systems,’* Computer, pp. 50-56 (June 1982).

9. H.S. Stone, “‘Multiprocessor Scheduling with the Aid of Network
Flow Algorithms,”” IEEE Transactions on Computers SE-3(1) pp.
85-93 (January, 1977).

10. §.J. Kim and J.C. Browne, ‘A General Approach to Mapping of
Parallel Computations upon Multiprocessor Architectures,” Proceed-
ings 1988 International Conference on Parallel Processing 3 pp. 1-8
(Augast, 1988).

11. V. Sarkar and J. Hennessy, ‘*‘Compile-time Partitioning and Schedul-
ing of Parallel Programs,”” Proceedings of the SIGPLAN '86 Sympo-
sium on Compiler Construction, pp. 17-26 (July, 1986),

12. B. Greenblant and C.J. Linn, ‘‘Branch and Bound Algorithms for
Scheduling Communicating Tasks in a Distributed System,” Comp-
con 1987, pp. 12-16 ().

13. T.L. Adam, K.M. Chandy, and J.R. Dickson, “A Comparison of List
Schedules for Parallel Processing Systems,” Communications of the
ACM 17(12) pp. 685-690 (December 1974).

14. EG. Coffman Jr, Editor, Computer and Job Shop Scheduling
Theory, John Wiley and Sons, New York, NY (1976).

15. T.C. Hu, “Parallel Sequencing and Assembly Line Problems,”
Operations Research 9(6) pp. 841-848 (November 1961).

16. W.H. Yu, “LU Decomposition on a Multiprocessing System with
Communication Delay,"” Ph.D. Thesis, UC-Berkeley, (1984),

17. R.P. Bianchini Jr. and J.P. Shen, “‘Interprocessor Traffic Scheduling
Algorithm for Multiple-Processor Networks,” JEEE Transactions on
Computers C-36(4) pp. 396-409 (April 1987).

I-16

