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ABSTRACT 

Managing the buffering of data along arcs is a critical part of compiling a Synchronous Dataflow 
(SDF) program. This paper shows how dataflow properties can be analyzed at compile-time to 
make buffering more efficient. Since the target code conesponding to each node of an SDF graph 
is n01mally obtained from a hand-optimized libnuy of predefined blocks, the efficiency of data 
transfer between blocks is often the limiting factor in how closely an SDF compiler can approxi
mate meticulous manual coding. Fmthermore, in the presence of large sample-rate changes, 
straightf01ward buffe1ing techniques can quickly exhaust limited on-chip data memory, necessi
tating the use of slower external memory. The techniques presented in this paper address both of 
these problems in a unified manner. 

Key words: Dataflow Programming, Code Generation, Memory Allocation, Graphical Program
ming, Optimizing Compilers, Multirate Signal Processing. 

1 INTRODUCTION 
i 

Dataflow [6] can be viewed as a graph-oriented programming paradigm in which the 

nodes of the graph represent computations, and directed edges between nodes represent the pas

sage of data between computations. A computation is deemed ready for execution whenever it has 

sufficient data on each of its input arcs. When a computation is executed, or fired, the conespond

ing node in the dataflow graph consumes some number of data values (tokens) from each input arc 
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and produces some number of tokens on each output arc. Dataflow imposes only pa1tial ordering 

constraints, thus exposing parallelism. In Synchronous Dataflow (SDF), the number of tokens 

consumed from each input arc and produced onto each output arc is a fixed value that is known at 

compile time [23]. 

Another significant benefit of SDF is the ease with which a large class of signal processing 

algorithms can be expressed [3], and the effectiveness with which SDF graphs can be compiled 

into efficient microcode for programmable digital signal processors. This is in contrast to conven

tional procedural programming languages, which are not well-suited to specifying signal process

ing systems [!OJ. However, there are ongoing efforts towards augmenting such languages to make 

them more suitable; for example, [18] proposes extensions to the C language. 

There have been several efforts toward developing compiler techniques for SDF and 

related models[ll, 21, 26, 27, 28]. Ho [16] developed the first compiler for pure SDF semantics. 

The compiler, part of the Gabriel design environment [21], was targeted to the Motorola 

DSP56000 and the code that it produced was markably more efficient than that of existing C com

pilers. However, due to its inefficient implementation of buffering, the compiler could not match 

the quality of good handwiitten code, and the disparity rapidly worsened as the granularity of the 

graph decreased. 

The mandatory placement of all buffers in memory is a major cause of the high buffering 

overhead in Gabriel. Although this is a natural way to compile SDF graphs, it can create an enor

mous amount of overhead when actors of small granularity are present. This is illustrated in figure 

1. Here, a graphical representation for an atomic addition actor is placed alongside typical assem

bly code that would be generated if straightforward buffe1ing tactics are used. The target language 

is assembly code for the Motorola DSP56000. The numbers adjacent to the inputs and the output 
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move input1, a 
move input2, xO 
add xO, a 
move a, output 

Fig 1. An illustration of inefficient buffering for an SDF graph. 
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represent the number of tokens consumed or produced each time the actor is invoked. In this 

example, "input!" and "input2" represent memory addresses where the operands to the addition 

actor are stored, and "output" represents the location in which the output sample will be buffered. 

In figure 1, observe that four instructions are required to implement the addition actor. 

Simply augmenting the compiler with a register allocator and a mechanism for considering buffer 

locations as candidates for register-residence can reduce the cost of the addition to three, two or 

one instrnction. The Comdisco Procoder graphical DSP compiler (26) demonstrates that integrat

ing buffering with register allocation can produce code comparable to the best manually-Wiitten 

code. 

The Comdisco Procoder's pe1formance is impressive, however the Procoder framework 

has one major limitation: it is primarily designed for homogeneous SDF, in which a firing must 

consume exactly one token from each input arc and produce exactly one token on every output 

arc. In particular, it becomes less efficient when multiple sample rates are specified. Furthermore, 

their techniques apply only when all buffers can be mapped statically to memory. In general, this 

need not be the case, and we will elaborate on this topic in section 2. 

In this paper, we develop compiler techniques to optimize the buffe1ing of multiple sam

ple-rate SDF graphs. Multirate buffers are often best implemented as contiguous segments of 

memory to be accessed by indirect addressing, and thus they cannot be mapped to machine regis

ters. Efficiently implementing such buffers requires reducing the amount of indexing overhead. 

We show that for SDF, there is a large amount of information available at compile-time which can 

be used to optimize the indexing of multirate buffers. Also, buffering and code generation for 

multirate graphs is complicated by the desire to organize loops in the target code. With large sam

ple rate changes, failure to adequately exploit iteration may result in enormous code space 

requirements or excessive subroutine overhead. In (2), we develop techniques to schedule SDF 

graphs to maximize looping. We assume that such techniques are applied and examine the issues 

involved when buffers are accessed from within loops. Finally, multirate graphs may lead to very 

large buffe1ing requirements if large sample rates are involved. This problem is compounded by 

looping. For example, for the graph in figure 2, (AABCABC) and (AAABCBC) are both permis-
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sible periodic schedules. The latter schedule clearly offers simpler looping, however the amount 

of memmy required to implement the arc between A and Bis 50% greater (600 words vs. 400 

words). In general, increasing the degree of looping in the schedule significantly increases buffer

ing requirements [2]. Thus, due to the limited amount of on-chip data memory in programmable 

DSPs, it is highly desirable to overlay noninterfering buffers in the same physical memory space 

as much as possible. This paper presents ways to analyze the dataflow information to detect 

opportunities for overlaying buffers which can be incorporated into a best-fit memmy allocation 

scheme. 

Nmmally, when an SDF graph G is compiled, the target program is an infinite loop whose 

body executes one period of a periodic schedule for G. We refer to each pe1iod of this schedule as 

a schedule period of the target program. In [22], it is shown that for each node N in G, we can 

determine a positive integer q(N) such that every valid pe1iodic schedule for G must invoke N a 

multiple of q(N) times. More specifically, associated with each valid periodic schedule S for G, 

there is a positive integer J, called the blocking factor of S, such that S invokes every node M 

exactly Jq(M) times. Thus, code generation begins by dete1mining q(), selecting a blocking factor 

and constrncting an appropriate schedule. 

Several scheduling problems for SDF and related models have been addressed: constrnct- J 

ing efficient multiprocessor schedules is discussed in [27, 29]; Ritz et. al discuss vectorization 

[28]; the problem or organizing loops is examined in [2]; and compiler scheduling techniques for 

efficient register allocation are presented in [26]. In this paper, we assume that a schedule has 

been constrncted under one or more of these criteria. In other words, the techniques of this paper 

do not interact with the scheduling process - we assume that the schedule is fixed beforehand. 

Systematically incorporating buffering considerations in the scheduling process is a topic that we 

are currently examining. 

1 

Fig 2. A multirate SDF graph for which looping greatly increases buffering requirements. 
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We begin by reviewing the scheduling and code generation issues involved in effectively 

organizing loops in the target code. In section 3 we discuss circular buffers, which play a key role 

in multirate buffering. Section 4 presents a classification of buffers based on dataflow properties 

and discusses tradeoffs between the different categories. Most buffer-related optimizations apply 

only to particular subsets of these categories. The following section examines the problem of 

overlaying buffers for compact memory allocation. Section 6 considers optimization opportuni

ties that apply to modulo buffers. Section 7 desc1ibes a class of actors that can be implemented 

very efficiently by abandoning their dataflow interpretation and using more intelligent buffering. 

Finally, section 8 presents concluding remarks. 

Although the techniques in this paper are presented in the context of block-diagram pro

gramming, they can be applied to other DSP design environments. Many of the programming lan

guages used for DSP, such as Lucid[30], SISAL[24] and Silage[[OJ are based on or closely related 

to dataflow semantics. In these languages, the compiler can easily extract a view of the program 

as hierarchy of dataflow graphs. A coarse level view of part of this hierarchy may reveal SDF 

behavior, while the local behavior of the macro-blocks involved are not SDF. Knowledge of the 

high-level synchrony can be used to apply "global" optimizations such as those described in this 

paper, and the local subgraphs can be examined for finer SDF components. For example, in [7], 

Dennis shows how recursive stream functions in SISAL-2 can be converted into SDF graphs. In 

signal processing, usually a significant fraction of the overall computation can be represented with 

SDF semantics, so it is important to recognize and exploit SDF behavior as much as possible. 

2 Multirate Code Generation Issues 

If the number of samples produced on an SDF arc (per invocation of the source actor) does 

not equal the number of samples consumed (per sink invocation), the source actor or the sink 

actor must be repeated, and when the number of samples produced and consumed form a noninte

gral ratio, both actors must be repeated. For example, in figure 2, actor A must fire at least three 

times per schedule period and B must fire at least twice. It is thus natural to define iteration in 
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multirate SDF as the change in firing-rate which is manifested by a change in the production and 

consumption rates along an arc[20]. 

In conventional programming languages, the notion of iteration is normally associated 

with loops, in which the programmer specifies that a sequence of code is to be repeated some 

number of times in succession. However, in SDF there are three mechanisms which force us to 

distinguish looping from iteration. The most fundamental reason is that an SDF graph specifies 

only a paitial ordering on the computations involved. Whether or not repeated firings are invoked 

in succession depends on how the graph is scheduled. Second, feedback constraints may restrict 

the degree of looping that can be assembled from an instance of iteration. For example, figure 3(a) 

shows a multirate SDF graph that consists of a simple feedback loop. The only possible periodic 

schedule for this graph is BAB, which offers no opportunity for looping within a single schedule 

period. If, however, the delay on the lower arc were transferred to the upper arc, or if the upper arc 

were removed, then the sample-rate change between A and B could be translated into the schedule 

BBA, which allows a loop to subsume the firings of B. Finally, a cascade of iterations, the SDF 

form of nested iteration [20], does not translate into a unique oppmtunity for nested loops. For 

example, two possible schedules for the graph in figme 3(b) are AABBBAABBBCCCCCCCCC. 

and AAAABBCCCBBCCCBBCCC. Using the looped schedule notation defined in [2], we can 

express these schedules more compactly as (2 (2A) (3B)) (9C) and (4A) (3 (2B) (3C)) respec

tively. Here each parenthesized term (N X1 X2 ... XM) represents N successive invocations of the 

filing sequence X 1 X2 ... XM These compact representations of the two schedules reveal that 
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Fig 3. Examples that illustrate distinctions between iteration and 
looping in SDF. 
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they are two distinct nested loop organizations for the same graph. It is important for a scheduler 

to recognize this distinction because the buffering requirements may vmy significantly. In this 

case, for example, the former schedule requires 27 words of data memory and the latter schedule 

requires 21. 

In [2], we discuss the problem of scheduling SDF graphs to effectively synthesize looping 

from iteration. When there is a large amount of iteration, these techniques may be crucial to 

reducing the code-space requirements to a level that will allow the program to fit on-chip. Thus 

we must examine the code-generation aspects of having loops in the target code. 

The primary code generation issue for loops is the accessing of a buffer from within a 

loop. The difficulty lies in the requirement for different invocations of the same actor to be exe

cuted with the same block of instructions. As a simple example, consider figurn 4, which shows a 

multirate SDF graph, a looped schedule for the graph, and an outline of Motorola DSP56000 

assembly code that could efficiently implement this schedule. In the code outline, the statement 

"do #N LABEL" specifies N successive executions of the block of code between the "do" state

ment and the instruction at location LABEL. Thus the successive firings of B are carried out with 

a loop. This requires that both invocations of B must access their inputs with the same instruction, 

and that the output data for A be stored in a manner that can be accessed iteratively. This in turn 

suggests writing the data produced by A to successive memory locations, and having B read this 

data using the register autoincrement or autodecrement indirect addressing modes, addressing 

2 1 

Schedule: A(2B) 

code for "A" 
outputs in xO and yO 

move xO, but 
move yO, buf + 1 
move #but, r2 
do #2, LOOPEND 
move (r2)+, xo 

code for "B" 
input inxo 

LOOPEND: 

Fig 4. An illustration of compiled code for a looped schedule. 
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modes that were designed precisely for this purpose of iteratively stepping tJn·ough successive 

items of data. Here, the outputs of A are stored to successive locations buf and buf+ 1, and B reads 

these values into local register xO through the autoincremented buffer pointer r2. 

We conclude this section by introducing two definitions which will be useful throughout 

the remainder of the paper. The first definition provides a mapping from the appearances of actors 

in a looped schedule to the firings that they represent. In other words, it maps a code block in the 

target program to the set of invocations which it will execute. 

Definition 1: Given an SDF graph G, a looped schedule S for G, and a node A in G, a common 

code space set, abbreviated CCSS, for A is the set of invocations of A which are represented 

by some appearance of A in S. 

A CCSS is thus a set of invocations carried out by a given sequence of instIUctions in pro

gram memory (code space). For example consider the looped schedule (4A)C(2B(2C)BC)(2BC) 

for the SDF graph in figure 3(b). The CCSS's for this looped schedule are {A1, A2, A3, A4}, 

{C1}, {B1, B3}, {C2, C3, C5, C5}, {B2, B4}, {C4, C7}, {B5, B5}, and {Cs, Cg}. 

It will be useful to examine the flow of common code space sets. This can be depicted with 

a directed graph, called the CCSS flow graph, that is largely analogous to the basic block graph 

[1] used in conventional compiler techniques. Each CCSS corresponds to a node in the CCSS 

flow graph, and an arc is inse1ied from a CCSS A to a CCSS B if and only if there are invocations 

Aj E A and Bj E B such that Bj is fired immediately after Aj, To illustrate CCSS flow graph con

stIUction, figure 5 shows the CCSS flow graph associated with the schedule (4A)C(2B(2C)B

C)(2BC) for the SDF graph in figure 3(b). 

3 MODULO ADDRESSING 

Most programmable DSP's offer a modulo addressing mode, which can be used in con

junction with careful buffer sizing to alleviate the memory cost associated with requiring buffer 

accesses to be sequential. This addressing mode allows for efficient implementation of circular 
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Fig 5. The CCSS flow graph associated with the schedule (4A}C(28(2C}BC}(2BC} for the SDF 
graph in figure 3(b}. 

buffers, for which indices need to be updated modulo the length of the buffer so that they can 

wrap around to the other end. For example, consider the modulo addressing supp01t provided in 

the Motorola DSP56000. 

Example 1: In the Motorola DSP56000 programmable DSP, a modifier register MX is associ

ated with each address register RX. Loading MX with a value n > 0 specifies a circular buffer of 

length n + 1. The starting address of the buffer is determined by the value V that is stored in RX. 

If we let B denote the value obtained by clearing the flog 2[ n + l Jl least significant bits of V, then 

assuming that B s Vs (B + n), an autoincrement access (RX)+ updates RX to {B + [(V - B + l) 

mod(n+ l)J}. 

Figure 6 illustrates the use of modulo addressing to decrease memory requirements when 

sequential buffer access is needed. The schedule U(2UV) would clearly require a buffer of size 6 

for iterative access if only linear addressing is available. However, as the sequence of buffer dia

grams in figure 6 shows, only four buffer locations are required when modulo addressing is used. 

W and R respectively denote the write pointer for U and the read pointer for V, and a black circle 

inside a buffer slot indicates a llve sample - a sample which has been produced but not yet con

sumed. Note that the accesses of the second invocation of U and the second invocation of V wrap 

around the end of the buffer. 

Obse1ve also that the pointers R and W can be reset at the beginning of each schedule 

pe1iod to point to the beginning of the buffer, and thus the access patterns depicted in figure 6 
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could be repeated every period. This would cause the locations in each buffer's access to be static 

- fixed for every iteration of the periodic schedule - and hence they would be known values at 

compile time. 

This illustration renders false the previous notion that for static buffe1ing, the total number 

of samples exchanged on an arc per schedule period must always be a multiple of the buffer size. 

As we will show in the following section, the requirement holds only when there is a nonzero 

delay associated with the arc in question. 
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W R W R 

Fig 6. An illustration of modulo addressing. This figure shows how the position of samples 
in a buffer changes as the firings in a schedule are carried out. The schedule in this exam
ple is U(2UV). "W" and "R" represent the write pointer for U and the read pointer for V 
respectively. 
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4 A CLASSIFICATION OF BUFFERS 

We must determine four qualities of a buffer to guide memory allocation and code genera

tion - the logical size of the buffer, whether the buffer will be contiguous, whether the accesses 

to the buffer are static, and whether the buffer is circular or linear. By the logical size of a buffer, 

we mean the number of memory locations required for the buffer if it is implemented as a single 

contiguous block of memory. For example, the buffer for the graph of figure 6 will have a logical 

size of four or six depending, respectively, on whether or not we are willing to pay the cost of 

resetting the buffer pointers before the begiruring of every schedule pe1iod. In section 5, we will 

show that it may often be desirable to implement a buffer in multiple nonadjacent segments of 

physical memory. We will also show, however, that in such cases, the logical buffer size parame

ter is still important for guiding the memory allocation process. 

4.1 Terminology 

We digress briefly to introduce some definitions and notation that will be used frequently 

throughout the rest of this paper. 

We use the following notation to express the parameters of an SDF arc a: 

• source( a) = the source node of a. 

• sink( a) = the sink node of a. 

• p( a) = the number of samples produced onto a each time source( a) is invoked. 

• c(a) = the number of samples consumed from a each time sink(a) is invoked. 

• delay( a) = the delay on a. 

We define the total number of samples exchanged on a - abbreviated TNSE(a) or just 

TNSE, when the arc in question is understood - to be the total number of samples produced onto 

a by source(a) during a schedule period, or equivalently the total number of samples consumed 

from a during a schedule period. Finally, if a is the only arc directed from source(a) to sink(a), 
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then we will occasionally denote a by "source(a)tsink(a)". For example utv denotes the arc 

from U to V in figure 6. 

4.2 Static vs. Dynamic Buffering 

The first quality of a buffer that should be decided upon is whether or not the buffer is 

static. For an SDF arc a, static buffering means that for both source(a) and sink(a), the ith sample 

accessed in any schedule period resides in the same memory location as the ith sample accessed in 

any other schedule period [23]. From our discussion of figure 6, it is clear that when there is no 

delay on a, static buffering can occur with a logical buffer size equal to the maximum number of 

live samples that coexist on the arc. However, if a has nonzero delay, then we must impose an 

additional constraint that TNSE is some positive integral multiple of the buffer length. A "delay" 

on a can be viewed simply as an initial sample. In steady state, it can be viewed as data produced 

in one schedule pe1iod and consumed in the next. 

The need for this constraint is illustrated in figure 7. Here, the minimum buffer size 

according to the previous rule is four, since up to four samples can concunently exist on the arc. 

Figure 7 shows the succession of buffer states if a buffer of this length is used. Now since there is 

a delay on the arc, there will always be a sample in the buffer at the beginning of each schedule 

period - this is the first sample consumed by V 1 . For static buffering, we need this delay sample 

- which is consumed in the schedule pe1iod after it is produced - to reside in the same memory 

location every period. Comparison of the initial and final buffer states in figure 7 reveals that this 

is not the case, since the write pointer W did not wrap around to point to its original location. 

Clearly, W could have returned to its original position if and only if the total number of advances 

made by W (6, in this case) was an integer multiple of the buffer length. But the total number of 

advances made by Wis simply TNSE. 

We have motivated the following theorem: 

Theorem 1: For a given schedule, the logical buffer size N must satisfy the following conditions 

1. N cannot be less than the maximum number of live samples which coexist on the conespond-

12 of 53 MEMORY MANAGEMENT FOR SYNCHRONOUS DATAFLOW PROGRAMS 



A CLASSIFICATION OF BUFFERS 

ing arc a 

2. If a has no delay, then static buffering is possible with any buffer size that meets c1iterion 1. 

Othe1wise, static buffering is possible if and only if TNSE is a positive-integer multiple of N. 

Thus, static buffering for an arc with delay may require additional storage space - 50% 

more in the case of the example in figure 7. The difference may be negligible for most buffers, but 

it must be kept in mind when sample rates are very high. The storage economy of non-static, or 

dynamic, buffe1ing comes at the expense of potential execution-time overhead. When a pointer to 

a dynamic buffer is swapped out of its physical register, it is mandatory that its value be spilled to 

2 3 

D 

R W 

R w W R 

W R R w 

Fig 7. The effect of delay on the minimum buffer size required for static buffering. With a 
buffer size of only 4, the location of the "delay sample" shifts two positions each schedule 
period. The schedule in this example is UVUUV. 
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memory so that the next time the pointer is used, it can resume from the correct position in the 

buffer. With static buffe1ing, we know the offset at which eve1y invocation accesses the buffer. 

Thus we can resume the buffer addressing with an immediate value and there is no need to spill 

the pointer to memory. The net result is that every time a buffer pointer of the source or sink node 

is swapped out, dynamic buffering requires an extra store to memory. 

However, looping may limit the savings in overhead for static buffering. For instance, 

consider the example in figure 8. It can easily be verified that the repetitions counts for A, B, C, D, 

and E are respectively 1, 2, 4, 4, and 4 invocations per schedule pe1iod. Since TNSE(BtC) = 4, a 

buffer of size four suffices for static buffering on the arc between B and C. Now the code block for 

C must access BtC through some physical address register R, and R must contain the conect 

buffer position Crp eve1y time the code block is entered. If it is not possible to dedicate R to Crp 

for the entire inner loop (2DCE), then R must be loaded with the current value of Crp just prior to 

entering the code block for C. Since the code block executes C1, C2, C3 and C4 - the members 

of the associated CCSS - and each of these invocations accesses the buffer at a different offset, 

we cannot load R with an immediate value. R must be obtained from a memo1y location and the 

current value of Crp must be written to this location whenever R is swapped out. It can easily be 

verified that at most three samples coexist on BtC at any given time, and thus a dynamic buffer of 

size tlu·ee could implement the arc. Since the organization of loops precludes exploiting the static 

infmmation of a length four buffer, dynamic buffering is definitely preferable in this situation. 

It is not always the case, however, that different members of a CCSS access a static buffer 

at different offsets. As an illustration of this, consider again the example in figure 3(b ), and the 

2 D 

Schedule: A(2B(2DCE)) 
1 

D 

Fig 8. An example of how loops can limit the advantages of static buffering. 
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schedule (4A)C(28(2C)8C)(28C) for this SDF graph. We can tabulate the offsets for every buffer 

access in the program to examine the access patterns for each CCSS. Such a tabulation is shown 

in table 1, assuming that static buffers of length 12 and 6 are used for arcs A tB and 8tC respec

tively. The access port column specifies the different node-arc incidences in the SDF graph. For 

example A ""7 A tB refers to the connection of actor A to the input of arc A tB (the side without 

the airowhead), and 8tC ""7 C refers to the connection of the output of arc 8tC (the side with the 

arrowhead) to actor C. The invocation column lists the firings of the actor with the associated 

access port, and the offset at which the ith invocation of this actor references the access port is 

given in the ith offset entry for the access po1t. Examination of table 1 reveals that the members of 

CCSS {C4, C7} read from ai·c 8tC at the same offset. Similarly the Wiite accesses of CCSS's 

{81, 83) and {82, 84) occur respectively at the same offsets. If all members of a CCSS X access 

an arc a at the same offset, we say that X accesses a statically. 

Thus when a pointer into a static buffer is spilled, and the pointer is accessed elsewhere 

from within a loop, it is not always necessary to spill the pointer to memory. The procedure for 

determining whether a spill is necessruy at a given swap point can be conceptualized easily in 

terms of the CCSS flow graph, which we introduced in section 2. Suppose that a buffer pointer 

access port invocation offset access port invocation offset 

A'tB""7 B l 0 B'tC""7 C l 0 
2 2 2 2 

3 4 3 4 
4 6 4 0 
5 8 5 2 
6 10 6 4 

--B-""7 Btc-- ----·-1 ------- ---3 ··-· 7 0 
2 0 8 2 

9 4 
-A ""7°A tB•• ------1 ------- ---o·---3 3 

4 0 
5 3 2 3 
6 0 3 6 

4 9 

Table 1. A tabulation of the buffer access patterns associated with the schedule (4A)C(2B(2C)BC)(2BC) for 
the SDF graph in figure 3(b). 
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associated with actor A and arc o. must be swapped out of its register at some point in the pro

gram. First we must determine location X in the CCSS graph that COITesponds to this swap-point. 

From X, we traverse all forward paths until they either reach the end of the program, they traverse 

the same node twice (they traverse a cycle), or they reach an occurrence of a CCSS for A. We are 

interested only in the first time a fmward path encounters a CCSS for A. Let P be the set of all for

ward paths p from X which reach a CCSS for A before traversing any node twice, and let A(p) 

denote the first CCSS for A that p encounters. Then the buffer pointer must be spilled to memory 

if and only if the set P contains a member p' such that A(p') does not access o. statically. 

Traversing fo1ward paths at eve1y spill may be extremely inefficient. Instead, we can per

fo1m a one-time analysis of the loop organization to construct a table containing the desired reach

ability information. The concept is similar to the conventional global data flow analysis problem 

of determining which variable definitions reach which parts of the program [1]. However, our 

problem is slightly more complex. In global dataflow analysis, we need to know which variable 

definitions are live at a given point in the program. For eliminating buffer-pointer spills, we need 

to know which points in a program can reach a given CCSS without passing through another 

CCSS for the same actor. This info1mation can be summaiized in a boolean table which has each 

entry indexed by an ordered pair of CCSS's (C1, C2), The entry for (C1, C2) will be true if and 

only if there is a control path from C1 to C2 which does not pass through another CCSS for the 

actor that corresponds to C2. We refer to this table as the first-reaches table since it indicates the 

points (the CCSS's) at which control first reaches a given actor from a given CCSS.Table 2 shows 

the first-reaches table for the looped schedule ( 4A)C(2B(2C)BC)(2BC). The CCSS flow graph 

associated with this schedule is depicted in figure 5. 

In the appendix, we describe a technique for constructing the first-reaches table based 

largely on methods described in [1] for reaching definitions. An impmtant difference is that a sep

ai·ate pass through the loop hierai·chy is required to construct the columns associated with each 

actor, whereas reaching definitions can be dealt with in a single pass. In practice, however we are 

concerned only with the columns of the first-reaches matiix that correspond to actors which 

access multi word contiguous buffers, so often a large number of passes can be skipped. 
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To fully asses the benefit of choosing static buffe1ing over dynamic buffering for a partic

ular arc, we must consult the first-reaches table at every spill-point. Perfo1ming this check on 

every multiword buffer is ve1y expensive. Instead, we should pe1f01m this check only for critical 

sections of the program. For example if an arc canies a large amount of traffic, we would wish to 

choose dynamic buffe1ing unless the arc is accessed from very frequently executed parts of the 

program and the loop strncture permits taking advantage of static buffering. Similarly, the data

memory savings of implementing a low-traffic arc as a dynamic buffer is often negligible - the 

compiler has little to lose by choosing static buffe1ing for such cases. 

We conclude this subsection with a note on the requirements for static buffering. The two 

conditions of theorem 1 together imply that static buffering cannot be possible if TNSE is less 

than the maximum number of samples that coexist on the arc. For this to happen, clearly the arc 

must have nonzero delay since TNSE samples are produced and consumed from the arc every 

schedule period. When there is delay, however, it is possible that at some point in the schedule 

period, the arc will buffer more than TNSE tokens. For example, looping often creates a situation 

in which an arc must be implemented as a dynamic buffer. This is illustrated in figure 9. The 

A1 C2 
A2 C3 
A3 81 C5 82 C4 85 Cs 
A4 C1 83 C5 84 C7 85 Cg 

A1,A2,A3,A4 T T T F F F F F 
C1 T F T T F F F F 
81,83 T F F T T F F F 
C2,C3,C5,C5 T F F T T T F F 
82,84 T F T F F T T F 
C4,C7 T F T T F F T T 
85,85 T F T F F F T T 
Cs,Cg T T T F F F T T 

Table 2. The first-reaches table associated with the looped schedule (4A)C(2B(2C)BC)(2BC) 
(the corresponding flow graph is shown in figure 5. The entry corresponding to a row CCSS 
X and a column CCSS Y is "true" (T) if and only if there is a control path that goes from X to 
Y without passing through another CCSS for the actor that corresponds to Y. 

Schedule: A(48) 

Fig 9. An illustration of how looping can necessitate dynamic buffering. 
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schedule which talces full advantage of the looping possibilities for this graph is A(4B). However, 

this schedule results in five samples on the arc after A is fired, which exceeds the TNSE of four. 

Grouping all four invocations of B together in the schedule requires that the maximum number of 

samples on the arc exceed the TNSE. 

4.3 Contiguous vs. Scattered Buffering 

Once we have decided whether a buffer is to be static or dynamic, we may decide upon 

whether it will be a contiguous buffer, occupying a section of successive physical memmy loca

tions, or whether the buffer may be scattered through memory. The decision primarily affects the 

addressing modes that can be used to access the buffer and the storage efficiency of the memory 

allocation. Clearly, only a contiguous buffer can be accessed through register autoincrement/auto

decrement indirect addressing, and thus a buffer that is accessed from within any kind of loop - a 

loop ananged by the scheduler or a loop that appears inside the code template for an actor - must 

usually be implemented using a contiguous buffer. The only exception occurs when all CCSS 's 

associated with the source or sink of an arc access the arc statically - in this case absolute 

addressing can be used. Depending on the target processor, this may be an important exception to 

consider. For programmable DSPs such as the Motorola 56000, arbitrary absolute addresses 

require an additional word of program memory, and thus an additional instruction cycle. Register

indirect accesses require no such overhead and can often be perfmmed in parallel with other oper

ations [26]. Under these circumstances, contiguous buffering and register-defened addressing are 

preferable for multiword buffers even if the loop-structure permits absolute addressing. On the 

other hand, many general-pmpose RISC microprocessors allow large absolute displacements to 

be accessed through single-word instrnctions [14], but they do not allow register-indirect accesses 

to be issued in parallel with other instructions. Furthermore, they do not support autoincrement 

mode in hardware - a separate instruction must be issued to increment the index register. In this 

case there is no advantage to using register-indirect addressing when the loop structure does not 

require it. There is no point in incurring the overhead to initialize the address register and the 

overhead due to a possible increase in register swapping, and thus absolute addressing is prefera

ble. 
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With dynamic buffe1ing, no invocation accesses the buffer at the same offset every sched

ule period. To see this, suppose some invocation Aj accesses a buffer ~ at the same offset every 

period. Since the buffer pointer for Aj advances TNSE positions from one schedule period to the 

next, it follows that TNSE must be a positive integer multiple ~·s logical buffer size, and thus the 

buffer must be static. Thus, absolute addressing is never possible for a dynamic buffer - dynamic 

buffers must be contiguous, and if an actor A accesses a dynamic buffer, the cunent position in the 

buffer must be maintained as a state variable of A. We find register-indirect addressing most 

appropriate, and when available, hardware autoincrement/autodecrement should be used to 

advance the buffer pointer in parallel with the accesses. 

Another important aspect of the physical layout of a buffer is the effect on total storage 

requirements. The locations of a scattered buffer can be considered as independent entities with 

respect to memory allocation, and graph col01ing [12] can be used to assign physical memory 

locations to the set of scattered buffers. If all scattered buffers conespond to delayless arcs then 

the interference graph becomes an interval graph, and interval graphs can be colored with the 

minimum number of colors in linear time [31, 5]. The presence of delay on one more of the rele

vant arcs complicates col01ing substantially. A delay results in a sample that is read in a schedule 

period after the pe1iod in which it is written, and thus the lifetime of the sample crosses one or 

more iterations of the program's outermost (infinite) loop. The resulting inte1ference graphs 

belong to the class of circulaT-arc graphs [ 13]. Finding a minimum colo1ing for this class of 

graphs is intractable, but effective heuristics have been developed [13]. 

When subsets of vaiiables must reside in contiguous locations, we expect that the memory 

requirements will increase since this imposes additional constraints on the storage allocation 

problem. Until fmther insight is gained about this effect or a large set of experimental data is 

obtained, we cannot accurately estimate how much more mem01y will be required if a pa1ticular 

scattered buffer is changed to a contiguous buffer. However, since optimal storage layout requires 

scattered buffers, it is likely that when data-memory requirements are severe, arcs should be 

implemented as scattered buffers whenever possible. We will discuss storage optimization further 

in section 5. 
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4.4 Linear vs. Modulo Buffering 

For each contiguous buffer, we must detennine whether modulo address-updates will be 

required to make the buffer pointer "wrap-around" the end of the buffer. Such modulo address 

updates nonnally require overhead; the amount of overhead varies from processor to processor. 

For instance, recall example 1, which illustrates the Motorola DSP56000's hardware suppo1t for 

modulo address generation. Here a "modifier register" must be loaded with the buffer size before 

modulo updates can be pe1fonned on the corresponding address register, so there is a potential 

overhead of one instruction every time the buffer pointer is swapped into the register file. When 

there is no hardware support for modulo addressing, as with general purpose RISC microproces

sors such as the MIPS R3000 [17), the modulo update must be pe1fo1med in software every time 

the buffer is accessed. A sample MIPS R3000 assembly code sequence to pe1fo1m this update is 

shown in figure I 0. This reveals an overhead of several instructions for each buffer access. 

For static buffe1ing, we know exactly which accesses require a modulo update. We need 

not pe1fonn modulo address computations for any other access, and for the accesses that wrap 

around the buffer, we can simply load the start address of the buffer into the conesponding 

address register - no explicit modulo computation is required. For example, consider the exam

ple in figure ll(a) and suppose that a buffer of length 4 is used. Then clearly the read-pointer for 

B wraps around the buffer between the first and second accesses of the second invocation B2. 

Thus code for B2 could have the structure outlined in figure ll(b). The only overhead for modulo 

buffering in this case is a single load instruction - regardless of whether or not hardware support 

for modulo addressing is required. 

20 of 53 

$40: 

$41: 

lw $10, 22($11) 
beq $10, $12, $40 
addi$12, 1 
j $41 

lw $12, 23($11) 

# # Load the address of the end of the buffer. 
# # Compare with the buffer pointer. 
##Increment pointer if not equal ....... 

# # Otherwise, reset the pointer to the start of the buffer. 

Fig 10. Sample MIPS R3000 assembly code to perform a modulo address calculation. 
Note that both registers and labels are identified by leading '$' characters. 
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Unf01tunately, the presence of loops often precludes the application of this technique. For 

example, if actor B was programmed with a loop suuounding the input buffer accesses, then the 

modulo computation would have to be performed in eve1y iteration of the loop even though wrap

around only occurs dming the second iteration. A naive policy to account for loops would be to 

perfmm a modulo update every time a circular buffer is accessed from within a loop. However, 

this would prevent us from exploiting an opp01tunity for optimization which occurs in many mul

tirate graphs. 

Figure 12 shows a simple example. Here, due to the unit delay, a circular buffer is required 

to implement arc Btc. Since TNSE(BtC) = 4, a buffer of length four suffices for static buffering. 

Let C\p denote the readpointer associated with C's accesses of B tc, and obse1ve that Crp wraps 

around its associated buffer after every fomth access. Since C pe1f01ms four read accesses 

throughout each invocation of the loop (2B(2C)), modulo address computation can be avoided by 

move X:(rO)+, xO 
move #44, ro 
move X:(rO)+, x1 
move X:(rO)+, yo 

Schedule: AABAB 

(a) 

; Consume the first input token. 
; Reset the input buffer's pointer to the start of the buffer. 
; Consume the second input token. 
; Consume the third input token. 
; Process the input samples ...... 

(b) 

Fig 11. An example of how modulo address updates can be avoided for circular buffers. 
Part (a/ shows an SDF praph and a schedule for this graph, and part (b) shows sample 
Motoro a 56000 code to implement the buffer accesses of invocation 82 assuming a buffer 
size of four. 

2 
D 

Schedule A(2B(2C)) 

Fig 12. An example of an opportunity to optimize modulo buffer accesses within a loop. 
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resetting Crp to point to the beginning of the buffer just prior to entering the loop (2B(2C) ). Also, 

due to the delay on B tc, the write-pointer for B wraps around after the first write access of invo

cation B2 in each schedule period. Thus, if B's wiites do not occur inside a loop within B, then we 

can omit the modulo address computation for the first wiite in the code block for B. 

In section 6, we will present general techniques for eliminating modulo accesses. Pres

ently, we conclude that circular buffe1ing may potentially introduce execution-time overhead. For 

arcs with delay, this 1isk in unavoidable - circular buffers are mandat01y. However, for some 

delay-free arcs it may be preferable to forego the data-memory savings offered by modulo buffer

ing so that the overhead can be avoided. A buffer size of TNSE clearly guarantees that no modulo 

accesses will be required - provided that we reset the buffer pointer at the start of eve1y schedule 

period. Smaller buffer sizes (divisors of TNSE which meet or exceed the maximum number of 

coexisting samples) are also possible, but one must verify that no access within a loop wraps 

around the buffer. This expensive check is very rarely worth the effort. A simple rule of thumb 

can be used for deciding whether to switch to linear buffeiing for a delayless arc - we p1ioritize 

each delayless arc a by the following "urgency measure" µ: 

( _ [ TNSE(a) J [ 1 J 
µ a) - minimumbuffersizeofa x TNSE(a) - (minimumbuffersizeofa) 

The first bracketed term is the number of modulo accesses that occur on each end of a 

eve1y schedule period, and the denominator in the second term is the storage cost to convert this 

arc to a static buffer of size TNSE. Thus, µ( a) denotes the number of modulo accesses eliminated 

per word of additional storage. We simply conve1t the arcs with the highestµ values until we have 

exhausted the remaining data memory. Many variations on this scheme are possible, and architec

tural restiictions on the layout of storage, such as multiple independent memoiies [19), may 

require modification. 
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4.5 Summary 

Fig 13 illustrates the relationships between the different buffer classifications which we 

have presented. Any vertical path represents a set of buffer qualities that can coexist. There are 

four possible combinations - contiguous/static/linear, contiguous/static/modulo, contiguous/ 

dynamic/modulo and scattered/static/linear. This section has provided a systematic approach to 

determining the qualities of a buffer based on infmmation in the dataflow graph. 

We conclude this section with a summary of the situations in which register indirect 

addressing is desirable: 

• The buffer is dynamic. 

• The buffer is accessed from within a schedule loop and all members of the CCSS do not 

access the buffer at the same offset. 

• The buffer is accessed from a loop inside the actor. 

5 Overlaying Buffers 

Recall that storage optimization for the scattered buffers in an SDF program can be formu

lated in te1ms of coloring a circular-arc graph and that effective hemistics have been developed 

for this class of colo1ing problems [13]. Contiguous buffers do not lend themselves to this tech

nique since their sizes vary [12]. When large sample rate changes are involved, assigning each 

CONTI UOUS 

STA: 

LINEAR 

Fig 13. The relationship between the different categories of buffers for an SDF program. 
Any vertical path represents a set of buffer qualities that can coexist. 
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contiguous buffer to a separate block of physical memory may require more data-memory space 

than what is available. In this section, we show how to analyze dataflow prope1ties and prope1ties 

of the schedule to efficiently dete1mine opportunities for mapping multiple noninterfe1ing buffers 

to the same physical memory locations. We also show how to determine how to fragment contig

uous buffers in physical memory, which can expose more oppo1tunities for overlaying [8]. This 

precise lifetime and fragmentation information can be used to improve simple first-fit or best-fit 

storage optimization schemes, which are frequently applied to memory allocation for variable

sized data items. Fabri [8] has studied more elaborate storage optimization schemes that incmpo

rate a generalized inte1ference graph. These schemes are equally compatible with the methods 

developed in this section. 

5.1 Buffer Periods 

The periodic nature of buffer accesses can be exploited to fragment an arc's storage into 

multiple independent contiguous blocks whose combined lifetime does not exceed - and is often 

much less than - the lifetime of the entire arc. Figure 14 illustrates this effect. Here, a multirate 

graph is depicted along with a looped schedule for the graph and the resulting buffer lifetime pro

files. The first profile treats each arc as an indivisible unit with respect to buffering. In this model, 

a delay less buffer is assumed to be "live" from the first filing of the source actor until the last fir

ing of the sink actor and for an arc with nonzero delay, a buffer is deemed live throughout the 

entire schedule period. In the example of figure 14, we see that this straightfmward designation of 

buffer lifetimes does not reveal any opportunity for buffers to share storage and thus A 1'B, A tc, 

BTu and ctE require 2, 2, 10 and 10 units of storage respectively, for a total of 24 units. 

Notice, however, that invocations that access BTu can be divided into two sets {B1, o 1, 

D2, ... , D10} and {B2, D11, D12, ... , D2ol such that all samples are produced in the same set that 

they are consumed - there is no interaction among the two sets. Thus they can be considered as 

independent units for storage allocation, with lifetimes ranging from B1 through D10 and B2 

through D20 respectively. We call these two invocation subsets the buffer periods of B tD, and we 

denote them by successive indices as BTu<l> and BTu<2>. The live range for ctE can be 

decomposed similarly and the resulting lifetime profile is depicted at the bottom of figure 14 (we 
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suppress the "<1>" index for arcs that have only one buffer period). Tiris new profile reveals that 

we can map both BID and ctE to the same 10-unit block of storage, because even though the 

lifetimes of these arcs conflict, the buffer periods do not. Thus the memory requirements can be 

reduced almost in half to 14 words. 

In this example, we have exploited only the reduction in overall lifetime for a decomposi

tion into buffer pe1iods. It is also possible to map different buffer periods for the same arc to dif

ferent blocks of memory. This technique may be useful for overlaying buffers along multirate 

cyclic paths in the SDF graph. Consider, for example figure 15. Tiris figure shows an upsampled 

multirate feedback loop along with the resulting buffer pe1iod profiles. Notice that due to the 

delay of four on otB, the buffer periods of this arc are {D5, D5, D7, Ds, Bj} and {D1, D2, D3, 

Schedule : AB(1 OD)C(1 OE)B(1 OD)C(1 OE) 

Aggregate Buffer Lifetimes 

sto <1> ctE <1> Buffer Period Lifetimes 

Fig 14. An illustration of opportunities to overlay buffers based on the periodicity of accesses. 
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o 4, B2} and the first buffer pe1iod wraps around the end of the pe1iodic schedule - the first four 

samples consumed by B in a schedule period are the last four samples produced by Din the previ

ous schedule period. Notice also that each of the buffer periods for Bic, Cio and DiB requires 

four words of storage. From the lifetime profile, we see that BiC<l> overlaps with CID<l>, 

CID<l> overlaps with DiB<2>, and DiB<2> overlaps with BiC<2>. Thus if we are con

strained to map all buffer periods of a given arc to the same block of memory, then three separate 

4-word blocks are required for BiC, cio and DiB. If, however, we consider each buffer period 

as an independent unit, then from the two lower sections of the lifetime profile, we see that only 

two 4-word segments suffice - one for (BiC<l>, DiB<2>, CID<2>} and another for 

{DiB<l>, CiD<l>, BiC<2> }. Taking into account the 2 words required for A iB, we see that 

the decomposition into buffer periods reduces the total storage requirements from 14 words to 10. 

5.2 Determining Buffer Periods 

In the previous subsection, we illustrated the use of buffer periods to reduce lifetimes and 

to increase flexibility in allocating memory for contiguous buffers. Now we examine how to sys

tematically dete1mine the buffer periods and to apply them to memory allocation. We have loosely 
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4D 

4 1 

Schedule : AB(4C)(4D)B(4C)(4D) 

A1 B1 C1 ... C4 D1 ... D4 82 C5 ... Cs D5 ... De 

AiB 

Bic <1> oiB 

L DiB<l> cio <1> <2> D B<l> =1 
Fig 15. An example of how mapping different buffer periods of an arc to different blocks of 
memory can improve memory allocation. 
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defined a buffer period to be an indivisible subset of invocations whose accesses of a particular 

arc are independent of the other invocations that access the arc. This independence allows differ

ent buffer periods for the same arc to be mapped to different blocks of memory and it provides an 

efficient way to fragment the aggregate buffer's lifetime. 

There are four mechanisms that can impose contiguity constraints on successive buffer 

accesses of an arc a - wiites to a occw1ing from a loop inside source(a); reads from a occwling 

from inside a loop in sink( a); placement of source( a) or sink( a) within a schedule loop; and 

dynamic buffe1ing. The constraints imposed by these mechanisms can be specified as subsets of 

samples which must be buffered in the same block of storage. For example, suppose that for the 

SDF graph in figure 16(a), actor A is programmed so that it writes its samples iteratively. The 

resulting contiguity constraints are illustrated in figure 16(b) - the three samples produced by 

each invocation must be stored in three adjacent memory locations. We specify these two con-

(a) (b) (c) 

Fig 16. An illustration of buffering constraints when arcs are accessed through loops inside 
the actors. 

straints by the subsets {A[l], A[2], A[3]} and {A[4], A[5], A[6]}, where A[i] represents the ith 

sample accessed by A in a schedule pe1iod 1(for 1 sis TNSE). The constraints resulting from B's 

reads occuning from within a loop are depicted in figure 16(c), and we can represent these con

straints analogously as {B[l], B[2] }, {B[3], B[4]} and {B[5], B[6]}. However, since we must ulti

mately supe1impose all constraints, we would like to express them in terms of the same actor. Our 

convention will be to express all contiguity constraints in te1ms of the source actor. Thus, noting 

the unit delay on A tB, we translate figure 16(c) to {A[6], A[ll}, {A[2], A[3]}, {A[4], A[5]}. 

1. This notation assumes that the arc in question (in this case A 1'B) is understood. 
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Dete1mining the constraints due to schedule loops is also straightf01ward. Given an arc 

A tB and an X E { A,B}, each oute1most loop L in the periodic schedule defines a constraint set 

that consists of all accesses by X of A tB which occur within L. We can de1ive these from the con

tiguous ranges of invocations of A and B that L encapsulates. We map all accesses within a loop 

to the same physical block of memory because we cannot easily perf01m isolated resets of read/ 

write pointers inside loops. Expensive schemes - such as testing the loop index to determine 

which physical buffer to use or maintaining an array of buffer locations - are required to frag

ment buffe1ing within a loop. We do not consider such schemes presently because we expect that 

their benefits are rare, and thus we consolidate accesses within loops to the same physical buffers. 

Note that unlike the constraint sets corresponding to loops inside actors, a constraint set 

corresponding to a schedule loop does not necessarily require a separate word for each member of 

the set. A simple example is shown in figure 17. Here, the loop imposes the constraint set {B[l], 

B[2], ... B[20]} for Btc, but clearly only two words are required to implement the buffer for this 

arc. The actual memory requirement for each section of a fragmented buffer can easily be deter

mined by simulating the buffer activity over a single schedule period and noting the maximum 

number of coexisting samples. 

2 2 c Schedule: A(10 BC) 

Fig 17. An illustration of compact buffering within a constraint set. 

The constraint sets due to intra-actor looping, inter-actor looping and dynamic buffe1ing 

together define the physically independent sections of a buffer, which we have termed the "buffer 

periods". We also include the singleton constraints {A[!]}, {A[2]}, ... , {A[TNSE]}, which we 

need to account for samples that don't appear in any of the other constraint sets. For an SDF arc a, 

we refer to the entire collection of constraint sets, including the singleton constraints, as the col

lection of constraint sets imposed on a;, Then, dete1mining the buffer pe1iods, which can be 

viewed as the maximal independent constraint sets, amounts to partitioning the entire collection 

into maximal nonintersecting subsets. 

28 of 53 MEMORY MANAGEMENT FOR SYNCHRONOUS DATAFLOW PROGRAMS 

• 



Overlaying Buffers 

Definition 2: Given an SDF graph G, an arc ex in G, and a schedule S for G, let C = { C1, C2, ... , 

Ck} denote the collection of constraint sets imposed on ex. Suppose b = { b1, b2, ... , bn) S: C such 

that 

(1) No member of bis independent of all other members of b - if n > 1, then for 

each bi there is at least one bj * bi such that bi n bi * ¢; and 

(2) bis independent of the remainder of C - i.e. < u b,l n ( u c,) - < u b,) = ¢ n [ k n J 
zal za:1 z•l 

n 
Then < u b,) is called a buffer period for ex. 

z = 1 

One can easily ve1ify that for a given schedule, each arc has a unique partition into buffer 

periods. Furthe1more, samples in the same buffer period must be mapped to the same contiguous 

physical buffer whereas distinct buffer periods can be mapped to different segments of memory. 

Finally, the amount of memory required for a buffer period is simply the maximum number of 

coexisting live samples in that buffer period. Figure 18(a) depicts an example which we will use 

to illustrate the consolidation of different constraint sets into buffer periods. The schedule of fig

ure 18(a) does not contain any loops. If the buffer accesses within A or B do not occur 

within intra-actor loops, then only the singleton constraint sets apply to A iB, and the buffer pe1i

ods are {A[!]}, {A[2]}, ... , {A[l2]}. 

Now suppose A accesses A iB through a loop inside A. The c01Tesponding constraint set 

is shown in the second row of figure 18(b), and we obtain the resulting buffer periods by superim

posing the first two rows of figure 18(b) - {A[l-3]}, {A[4-6]}, {A[7-9]}, {A[I0-12]}. If we add 

the additional condition that the first two invocations of A are grouped into a schedule loop (we 

change the schedule to C(2A)BABBABBB), then we must consider another constraint set { A[l-

6]}. The new buffer periods are the combination of the 17 constraint sets in the first three rows of 

figure 18(b) - {A[l-6]}, {A[7-9]}, {A[I0-12]}. Now if we encapsulate B5 and B5 within a 

schedule loop (the new schedule is C(2A)BABBAB(2B)), the resulting constraint set is {B[9-

12]}, which is equivalent to { A[8-11]} due to the unit delay. This new constraint forces us to 
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merge buffer periods {A[7-9]} and {A[l0-12]}, and the resulting buffer periods are {A[l-6]} and 

{ A[7-12] ) . Finally, if we impose the condition that B reads A tB tlu·ough an intra-actor loop, then 

we have the six additional constraint sets shown in the fifth row of figure 18(b).The first of these 

constraint sets intersects both of the remaining buffer periods and we are left with a single buffer 

period {A[l-12]}. 

So far we have only mentioned that dynamic buffering can also lead to constraint sets, 

however we have not described this effect. The effects of dynamic buffe1ing are more subtle than 

conditions imposed by loops. This is the topic of the next subsection. 

f-4---e..il A t-3----.i2 
D 

Schedule: CAABABBABBB 

(a) 

Some Possible Constraint Sets 

Singletons {A[ll} {A[2]} ... {A[l2]} 

A w1ites to A tB through a loop 

Encapsulate A1, A2 in a schedule loop 

Encapsulate B5, B6 in a schedule loop 

B reads from A tB through a loop 

{A[l-3]) {A[4-6]} {A[7-9]} {A[l0-12]} 

{A[l-6]} 

{A[8-lll} 

{A[12],A[ll} {A[2],A[3]} {A[4],A[5]} 

{ A[6],A[7]} { A[8],A[9]} { A[lO],A[lll} 

30 of 53 

(b) 

Fig 18. This example illustrates how superimposing different constraint sets can lead to dif
ferent buffer periods. The figure depicts ll. multirate graph, a schedule for the graph and 
five possible constraint sets for the arc AIB. We use A[i-JJ as shorthand notation for A[i], 
A[i+1 ], .•. , AU], if i <j. 
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5.3 Constraints for Dynamic Buffering 

Dynamic buffering imposes contiguity constraints between buffer accesses whenever a 

read occurs when the number of samples on the arc exceeds TNSE. In such situations, the sample 

to be read co-exists with the corresponding sample of the next schedule period - so we cannot 

dedicate a single memory location to that sample. For a given arc, an efficient way do deal with 

such cases is to force all of these accesses to occur in the same contiguous block 13 of memory. 

Since each of these sample's location will vary between schedule periods, they access 13 through 

read/write pointers. Any read which occurs when the sample population is within TNSE however, 

conesponds to a sample whose location is independent of 13. To explain this effect precisely, we 

introduce the following definition: 

Definition 3: Let G be an SDF graph and suppose that A tB is an arc in G.Then a transaction on 

A iB is an ordered pair (i, }), 1 s; iJ s; TNSE, such that1 

j = ([i-l+delay(AiB)]mod TNSE) +1 

Thus (i, J) is a transaction on A tB if the }th sample consumed by B in any given schedule peiiod 

is the ith sample produced by A in that schedule period or some earlier schedule pe1iod. For a 

given pe1iodic schedule S for G, we say that (iJ) is a static transaction if the number of samples 

existing on A tB just prior to the }th read of B is less than or equal to TNSE. We can express this 

condition as 

[delay(A iB) + p(A iB)NA] - [c(A iB) (NB -1) + U-1) mod c(A iB)] s; TNSE, 

whereNs = 1 + floor[(i- 1) I c(A Tu)] is the invocation ofB in which thejth read access of A tB 
occurs and NA is the number of invocations of A which precede B N in S. Finally, we say that a 

B 
transaction is a dynamic transaction if it is not a static transaction. 

1. The "+ 1" and "~ 1 ° are required in this expression because we (by convention) number samples starting at 1 rather than 0. 
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The transactions on an arc can be determined easily from the acyclic precedence expan

sion graph, or APEG (see [29] for a systematic procedure for computing the APEG associated 

with an SDF graph), and the static and dynamic transactions can be identified by simulating the 

activity on the arc over one schedule period. Figure 19 illustrates the decomposition of a buffer 

based on static and dynamic transactions. In this example, TNSE is 6 while the maximum number 

of coexisting samples on A tB is 8 - so clearly dynamic buffering applies. However, from the 

table on the right side of figure 19(a), we see that the third, fifth and sixth read accesses of B occur 

when there are TNSE or fewer samples queued on A tB. This corresponds to the set of static 

transactions, which is summarized in the table on the left side of figure 19(a). Thus samples asso

ciated with transactions (1, 5), (2, 6) and (5, 3) can be buffered in independent memory locations, 

while (3, 1), (4, 2) and (6, 4) must be maintained in a single contiguous block of memory. The 

resulting constraint sets are {A[l]}, {A[2]}, {A[5]}, {A[3], A[4], A[6]}. Figure 19(b) illustrates 

the use of these constraint sets to form independent buffering units. Here, A[l], A[2] and A[5] are 

mapped to independent (not necessarily contiguous) memory locations Ll, L2 and L3 respec

tively, and the remaining constraint set is mapped to a five-word contiguous block of storage, 

labeled the "dynamic buffer component". Five words are required because this is the maximum 

number of coexisting live samples from {A[3], A[4], A[6]}. Figure 19(b) shows how the profile 

of live samples in this buffe1ing arrangement changes tin·ough the first schedule period. Each live 

sample is represented by an ordered pair ij, which denotes the jth sample to be consumed by B in 

schedule period i, and a shaded region designates the absence of a sample. Observe that for each 

live samples in the dynamic buffer component, there is some point in the schedule period whens 

coexists with the corresponding sample of the next or previous period. This is precisely why these 

samples must be buffered as a contiguous unit. Observe also that in the dynamic buffer compo· 

nent, the read and write pointers for B and A, respectively, each shift three positions to the right 

(in a modulo-5 sense) every schedule period. These pointers are not involved in accesses of Ll, 

L2 and L3 - these locations can be accessed using absolute addressing. 

For the example in figure 19, mapping all accesses of A tB to a single contiguous segment 

f3 of memory requires an 8 word block of memory, while decomposing this buffer based on static 

and dynamic transactions allows a partition into four mutually independent blocks of 1, 1, 1 and 5 

32 of 53 MEMORY MANAGEMENT FOR SYNCHRONOUS DATAFLOW PROGRAMS 

• 



Overlaying Bullers 

2 3 
4D 

transactions 
(1, 5) <static> (4, 2) <dynamic> 
(2, 6) <static> (5, 3) <static> 
(3, 1) <dynamic> (6, 4) <dynamic> 

L1 L2 L3 

initially 1,3 

after A1 1,3 1,5 1 ,6 

after A2 1,3 1,5 1 ,6 

after 81 

after A3 

after 82 

Schedule: AABAB 

read access 
number of samples on A tB 

just prior to the access 

(a) 

(b) 

B[l] 
B[2] 
B[3] 
B[4] 
B[5] 
B[6] 

8 
7 
6 
7 
6 
5 

Dynamic Buffer Component 

1,1 1 ,2 1,4 

1,1 1,2 1,4 

1,1 1 ,2 1 ,4 2,1 2,2 

2,1 2,2 

2, 1 2,2 

2,1 2,2 

Fig 19. An illustration of static transactions and dynamic transactions for a dynamic buffer. In 
(bJ,. "i,i''. represents the live sample which is to be the jth sample consumed by B in schedule 
period 1. 
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words. Although the net requirement of physical memmy is the same (8 words), there is less 

potential for fragmentation, or equivalently, more opportunity for buffer reuse [8) when this 

example is a subsystem in a larger graph. Furthermore, the lifetime of 13 extends through the entire 

schedule pe1iod, whereas L2 and L3 are live only in the interval between Al and B2. These two 

locations may thus be reused for other parts of the graph. 

It is not obvious however, that decomposing a buffer based on static and dynamic transac

tions will never increase the net memory requirements. If we refer to the samples associated with 

static transactions and dynamic transactions as static samples and dynamic samples respectively, 

then the transaction-based decomposition requires a set of blocks whose sizes total N5 + Nd 

words, where N5 is the number of static samples (in a single schedule pe1iod) and Nd is the maxi

mum number of coexisting dynamic samples. If this sum exceeds the maximum number of coex

isting samples on the arc, then without further analysis - for which currently there are no general 

techniques - we cannot guarantee that decomposing the buffer will not be detrimental. Fortu

nately, however, (N5 + Nd) is always equal to the undecomposed dynamic buffer size, as the fol

lowing theorem proves. 

Theorem 2: Suppose that a is an SDF arc for which the maximum number of coexisting samples 

M(a) exceeds TNSE. Then N5 +Nd= M(a). 

Proof' Suppose at some time, in the schedule pe1iod there are R live samples on a, and first sup

pose that R 2 TNSE. Since the tokens buffered on an arc are successive, the last TNSE samples 

produced by source( a) are on the arc. Thus, there is a sample cones ponding to each static transac

tion on the arc. It follows that there are R - N5 dynamic samples on a at time,. Now suppose that 

R < TNSE. We consider two cases here: 

Case 1: (R <TNSE) and (Ns <TNSE-R). Then 

(The number of dynamic samples at time,)~ R ~ TNSE- N5 < M(a) - N5 . 

Case 2: R < TNSE) and (Ns 2 TNSE - R). Then 

(The number of dynamic samples at time,)~ R - [N8 - (TNSE-R)] = TNSE- N8 < M(a)- N8 
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From the above discussion, the number of dynamic samples when R = M(o;) is M(o;) - N5, and 

this amount of dynamic samples cannot be exceeded with any other value of R. Therefore Nd = 

M(o;) - N5, which leads immediately to the desired result. QED 

We conclude this section by pointing out that it is possible to decompose the dynamic 

buffer component further - each dynamic transaction can be mapped to an independent block. 

For example, the dynamic buffer component in figure 19 can be separated into three two-word 

fragments COIT'esponding to transactions (3, 1), (4, 2) and (6, 4). This could be achieved simply by 

using different read and write pointers for each of the associated accesses - we would need three 

separate write pointers for A[3], A[4] and A[6) and three separate read pointers for B[l], B[2] and 

B[4). The overhead associated with this scheme is significant, but difficult to gauge precisely. 

First, it places more pressure on the address-register allocator and may increase the amount of 

spilling. This, in tum requires an extra memory location to save each spilled item. Finally, the sum 

of the independent dynamic transaction segments (in this case 2 + 2 + 2 = 6) may exceed the max

imum number of coexisting dynamic samples (in this case 5). Thus, for small to moderate 

dynamic buffer sizes it is unlikely that decomposing the dynamic buffer component further will 

be of value. However, when large delays are involved, it may provide substantial new opportuni

ties for overlaying. For example, in figure 20 there are no static transactions for BiC, and a 100 

word block of memmy is required for this arc if we do not decompose the dynamic buffer compo

nent. However, if we view each of the four dynamic transactions ((1, 1), (2, 2) (3, 3) (4, 4)) as a 

separate unit, we can implement this arc with four independent 25 word blocks of memory. This 

additional freedom may lead to much better overall memory use if this example is a subsystem in 

a more complex graph. 

Since currently we cannot effectively predict the tradeoffs in decomposing the dynamic 

buffer component, we have no systematic procedure for dete1mining precisely when the optimiza

tion is useful. This is a topic for further research. 
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6 Eliminating Modulo Address Computations 

In section 4 we discussed the overhead associated with accessing circular buffers and we 

presented examples of how we could reduce this overhead with careful compile-time analysis. We 

showed that in the absence of looping, we need only perform modulo address-register updates for 

accesses that wrap around the end of a circular buffer. We also presented examples of how modulo 

accesses can be eliminated even in the presence of looping. In this section we develop a system

atic approach to eliminating modulo accesses. 

6.1 Determining Which Accesses Wrap Around 

First, we show how to efficiently dete1mine which accesses of a circular buffer wrap 

around the end of the buffer. For a static circular buffer this is straightforward - we simply deter

mine the values of n E [0, TNSE- 1] for which 

delay(a) + n = (some positive integer) x BUFSIZE, 

where a denotes the arc in question, and BUFSIZE denotes the length of the circular buffer. 

For dynamic buffers, different accesses will wrap around the end of the buffer in different sched

ule periods. However there may still exist invocations whose accesses do not wrap around in any 

schedule pe1iod. To dete1mine these invocations we need to use a few simple facts of modulo 

a1ithmetic. 

Lemma 1: Suppose a, b and c are positive integers, and suppose that a divides b and c. Then a 

divides (c mod b). 
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1 1 1 
Schedule: ACBCBCBCB 

lOOD 

Fig 20. An example showing the benefits of decomposing the dynamic buffer component 
into a separate segment for each dynamic transaction. 
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Proof· c mod b = c - floor(c I b) x b. Both the subtrahend and minuend of the LHS are divisible 

by a, so a must divide c mod b. Qji:D 

Lemma 2: Suppose that p and q are coprime positive integers, letlq denote {0, 1, ... , q - 1 }, and 

supposer E /q, Then V k1 E 1q3 k2 E lq such that (r +pk2) mod q =k1, 

Proof· Suppose that for some k1, no such k2 exists. Then [(r + px) mod q] takes on at most (q- 1) 

distinct values as x varies accross Iq, Thus there exist distinct k2a, k2b E lq such that 

(r +k2aP) mod q = (r +k2bP) mod q =k, for some k E Iq. 

Which implies that there exist distinct nonnegative integers ra and rb such that 

Since p and q are coprime, it fonows that (k2a - k2b) is a multiple of q. This contradicts our 

assumption thatk2a, k2bE {O, 1, ... , q-1}. QED 

Applying lemma 1, with a= gcd(TNSE, BUFSIZE), b =k1TNSE, and c = BUFSIZE, we 

see that 

V positive integers k1 3 a positive integer k2 such that 

(k1 TNSE mod BUFSIZE) = k2gcd(TNSE, BUFSIZE). 

This means that we can consider each dynamic buffer as successive "windows" of size 

gcd(TNSE, BUFSIZE). In some schedule pe1iod, if source(o:) or sink(o:) performs its ith access at 

offset j of window Wx, then, since the ith access shifts TNSE positions from schedule peiiod to 

schedule period, we know that the ith access in any schedule pe1iod win occur at offset j of some 

window. For example, for the dynamic buffer in figure 21, it is easy to veiify that for an schedule 

pe1iods, the window offset for Ns first access is 0. 
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Now let Ws denote gcd(TNSE, BUFSIZE), the size of each window. Also let nw = BUF

SIZE I ws, the number of windows. Suppose that in the first schedule period, access i occurs at 

offsetj of window w (assume now that offsets and windows are numbered starting at 0). Then the 

window number of the ith access in some later schedule period k can be expressed as (w + kTNSE/ 

Ws) mod nw, This is simply the initial window number plus the number of windows traversed 

modulo the number of windows. To this expression, we can apply lemma 2 with p = TNSE/ws = 

TNSE/gcd(TNSE, BUFSIZE); q = nw = BUFSIZE/gcd(TNSE, BUFSIZE); and r = w. Interpreting 

this result, we see that for each window w', there will be schedule pe1iods (values of"k") in which 

the jth access occurs in w'. Thus the jth access of some schedule period will be a wrap-around 

access if and only if the jth access of the first schedule period occurs at the end of a window. We 

have proved the following theorem. 

Theorem 3: Suppose eds an SDF arc. Then thejth access (j E { 1, 2, ... , TNSE}) of source(a) or 

sink( a) is a wrap-around access in some schedule peiiod if and only if 

[delay(a) + (j-1)] mod gcd(TNSE, BUFSIZE) = gcd(TNSE, BUFSIZE)-1. 

3 5 

Schedule: AABAABAB 

TNSE = 15 

BUFSIZE = 10 

gcd(TNSE, BUFSIZE) = 5 ("window" size) 

first access by A in all odd schedule periods first access by A in all even schedule periods 

t + 

i<J<-----window 1----~l---- window 2---t>\ 
Fig 21. An illustration of repetitive access patterns in gcd(TNSE, BUFSIZE) windows. 
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This check can be further simplified by observing the periodicity of the modulo te1m 

above - we need only determine the first wrap-around access jw explicitly: 

jw = gcd(TNSE, BUFSIZE) - [delay(a) mod gcd(TNSE, BUFSIZE)]. 

Then we immediately obtain the complete set of wrap-around accesses Sw: 

Sw= Sw(o:, BUFSIZE) = { jw + n x w5 I n E {O, 1, ... , w5x floor[(TNSE-1) I w5] }, 

where w5 = gcd(TNSE, BUFSIZE) denotes the window size. 

For the example of figure 21 we havejw = 5, and Sw = {5, 10, 15). Code to implement 

these accesses must pe1form modulo address computations.These modulo computations will cor

respond to wrap-around accesses only one-third of the time. However, unless we increase the 

blocking factor, which would in tum increase TNSE, we must ensure that these accesses are 

always pe1formed with modulo updates. In general, modulo computations will wrap around 1 out 

of every nw = BUFSIZE I gcd(TNSE, BUFSIZE) times, and we can reduce the number of modulo 

computations by a factor of nw if we increase the blocking factor to nw, However, the resulting 

explosion in code space renders this optimization impractical except for extremely simple exam

ples. 

Note that the above developments apply to static buffering as well. In this case w
5 

= 

gcd(TNSE, BUFSIZE) = BUFSIZE and nw = 1, so each mandatory modulo computation always 

corresponds to a wrap-around access. Observe also that for both static and dynamic buffers, the 

number of modulo computations required depends on the choice of the buffer size. Clearly 1 out 

of gcd(TNSE, BUFSIZE) accesses requires a modulo computation. Thus the modulo overhead 

varies (neglecting looping considerations) inversely with gcd(TNSE, BUFSIZE). For example in 

figure 21, a 7-word buffer can support the given schedule. However, this requires 15 / gcd(l5, 7) = 

15 modulo computations per schedule period - every access must perform a modulo update! 

Increasing the buffer size to 10 results in 5 times fewer modulo computations. Thus, for c1itical 

sections of the code, it may be beneficial to explore tolerable increases in buffer size for the possi

ble reduction of modulo updates, particularly when the cost of the modulo update is high. 
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As we will show in the following subsection, if we assume that the schedule is fixed, we 

can efficiently eliminate unnecessruy modulo address computations using theorem 3 alone 

- without explicitly computing Sw However the technique described here for determining Sw 

should be kept in mind for advanced optimizations which attempt to reorganize the schedule to 

improve code efficiency. Such techniques might include, for example, selectively umolling intra

actor loops or schedule loops to isolate modulo address computations. This would require explicit 

knowledge of each wrap-around access. Incorporating modulo buffer analysis - as well as the 

other techniques in this paper - into scheduling is an unexplored, but in the authors' estimate, 

promising ru·ea of reseru·ch. 

6.2 Applying the Set of Wrap-Around Accesses 

In the absence of looping, the number of modulo computations required in the target code 

is exactly the number of elements in Sw, However, loops may cause the same physical instructions 

to perform both wrap-around accesses and lineru· accesses. In such cases, we must either umoll 

the loop to isolate the accesses that wrap around, or we must perlmm a modulo access computa

tion for every access that is executed from within the loop. We do not pursue the issue of umolling 

in this paper; it is a topic that our research has not yet addressed. Instead, we focus on analyzing 

the loop structure to eliminate modulo accesses while leaving the loops intact. 

To eliminate unnecessruy modulo address computations for the read or WJite accesses per

fmmed by some actor A from/to an arc a, we first identify the set of distinct physical instrnction 

sequences, called buffer access instruction sequences, that will be used to access a by A. This is 

analogous to common code space sets, which associate blocks of program memory with actor 

invocations. However the buffer access instrnction sequences depend on intra-actor loops as well 

as schedule loops. For example, consider the actor definition in figure 22(a), in which the input arc 

is accessed through a loop of two iterations. Here "input.i++" specifies the next sample in the 

buffer. Thus the first move statement consumes the first and third input samples in successive iter

ations of the loop, and the second move consumes the second and fourth input samples. Each of 

these move statements conesponds to a separate buffer access instruction sequence, since each 

must be translated to a sepru·ate instruction or sequence of instructions. Thus every common code 
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space set associated with an instance of this actor will have two buffer access instrnction 

sequences. For instance, for the schedule in figure 22(b), there are four distinct buffer accesses 

instrnction sequences associated with A's connection to Bt A. If we order them lexically, then the 

first two conespond to the first appearance of A in the schedule, and these represent access sets 

{ 1, 3} and { 2, 4}; the other two correspond to the second appearance of A, and the associated 

access sets are { 5, 7, 9, 11} and { 6, 8, 10, 12}. 

clear pseudoregister1 
repeat 2 

0.5 { (X1-X2) + (X3-X4)} 

• 

; initialize the sum 
; start of loop 

move input.i++, pseudoregister2 
move input.i++, pseudoregister3 

; consume the next input sample (X1 or X3) 
" II II " II " (X2 or X4) 

sub pseudoregister2, pseudoregister3 
add pseudoregister3, pseudoregister1 

end-repeat 
mull 0.5, pseudoregister1 
move pseudoregister1, output 

12 

3 

(a) 

40 

20 

(b) 

; compute the difference 
; update the sum 

; divide the sum by two 
; output the result 

Schedule: AB(2A) 

Fig 22. An illustration of distinct buff er access instruction sequences. 
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For a given buffer access instrnction sequence, the corresponding machine instructions 

must perfmm a modulo address computation if and only the associated access set Ia intersects the 

set of wrap-around accesses, i.e. iff Ian Sw * (/>. In practice, however we do not need to explic

itly compute and maintain Sw nor the access sets associated with each buffer access instrnction 

sequence. We simply simulate the buffer activity, traversing the buffer access instrnction 

sequences in succession, for one schedule period and apply theorem 3 for each access. If <I> 

denotes the current buffer access instruction sequence in our simulation, and the current access is 

the jth access of arc a by actor A, then we mark <I> as requiring a modulo computation if 

[delay(a) + (j - I)] mod gcd(TNSE, BUFSIZE) = gcd(TNSE, BUFSIZE) -1. 

All buffer access instruction sequences which are not marked by this simulation can be translated 

into simple lineru· address updates. 

6.3 Moving Modulo Address Computations Outside of Loops 

Frequently, the wrap-around access for a multirate modulo buffer occurs during the last 

access associated with each invocation of some schedule loop, allowing us to float the modulo 

address computation outside of the loop. We illustrated this effect earlier in the example of figure 

12. Such situations nmmally ruise through one of two mechanisms. First, when there is no delay 

on an arc a, optimally looping the firings of source(a) and sink(a) often requires that a loop 

encapsulate a number of accesses of a equal to the minimum buffer size. The details of this mech

anism are beyond the scope of this paper. Second, when there is a delay on a, and the buffer size 

matches the number of accesses pe1formed by some encapsulating loop Ae, then the modulo 

access associated with sink(a) can be moved outside of Ae (this is the case in figure 12). The 

modulo computation for source(a) must remain inside Ae since, due to the delay, the wrap-around 

access is not the last access of a by source(a) in an invocation of Ae· 

We can detect such opportunities in conjunction with the buffer simulation used to elimi

nate modulo address computations. For each invocation of a loop A, we record the last offset at 

which this loop invocation accesses each buffer. If at the end of the simulation, we find that each 

invocation of A accesses buffer bat the last position (offset BUFSIZE-1), and each invocation of 
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A pelfo1ms no more than BUFSIZE accesses of b, then we can float the corresponding modulo 

address computation outside of the loop. 

7 Deviating from Dataflow Semantics 

The most natural way to compile a dataflow program is to implement each arc as a distinct 

contiguous block of memory. The production of a sample onto an arc then corresponds to a wiite 

into a distinct physical location; and at any given time, there is a one-to-one correspondence 

between live samples and physical storage locations. We have already shown how modifying this 

strictly dataflow-based approach to include register allocation and buffer overlaying can improve 

target code efficiency. For a certain class of actors, a further modification is useful - suppressing 

the duplication of coexisting samples that have the same value. 

Probably the most obvious and most frequently-used example is the fork actor, which con

sumes one input sample and replicates the value of this sample on each of its output arcs. Figme 

23 shows a simple illustration of how implementation of fork can be optimized. Here, '¥ repre

sents an instance of a 2-outputfork; A represents an arbitrary homogeneous source actor; and B 

and C each denote arbitrary homogeneous sinks. The lower left side of the figme shows an outline 

of Motorola DSP56000 code to implement the graph if'¥ is treated like any other actor (the code 

outline assumes that register allocation has been pelfmmed accross the homogeneous buffer 

accesses). Since the code associated with 'I' simply copies data, we can eliminate move instruc

tions by having B and C read their inputs directly from the output buffer of A. An outline of the 

resulting code is shown in the lower right side of figure 23. Observe that no extra instructions are 

required to implement 'I'. 

The easiest way to automate this optimization is to make the compiler recognize fork as a 

special actor - we incorporate fork into the language. For each instance 'I' of fork, the compiler 

generates a single logical buffer to implement all of the arcs connected to '¥. A single write 

pointer into this buffer is associated with the source of 'I''s input arc, and the sink of each output 

arc is allocated a distinct read pointer. Thus no run-time code is required to implement the fork, 

except for possible swapping of buffer pointers. Furthe1more looping creates no complications for 
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this scheme. The only additional consideration is that the "macro-buffer" associated with ':I! must 

be large enough so that a sample is never overwiitten before it has been consumed by all destina

tion invocations. The required minimum buffer size is simply the maximum number of coexisting 

live samples that can exist on any of ':l!'s output arcs. The techniques presented in the previous 

sections of this paper can be extended straightforwardly to the macro-buffers associated with fork 

instances. 

We can apply similar optimizations to various other actors that do not perform any opera

tions on their inputs. However, looping often introduces complications. For example, consider the 

repeat actor, which consumes a single sample and replicates this sample n times on its output arc. 

Figure 24 shows the connection of such an actor (node B, with n = 4) to a sink (node C) that con

sumes three samples per invocation. If there is no looping, we can implement Btc efficiently by 

having C's read pointer Crp point directly into the buffer for A tB and advancing this pointer after 

every fom accesses. Thus no run-time code would be required for the upsample and we would 
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code for "A" 
output in xO 

move xO, yo 
move xO, y1 

code for "B" 
input in yO 

code for "C" 
input in y1 

code for 
irq,11 

code for "A" 
output in xO 

code for "B" 
input in xO 

code for "C" 
input in xO 

Fig 23. Optimizing the buffering for the fork actor. 
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save four move instrnctions over the conventional implementation of B. If however, we have the 

looped schedule (3AB)(4C) then it is difficult to apply this optimization. This is because the 

advances of Crp do not occur in lockstep with the loop Le that encapsulates C. In particular, if C 

reads directly from the buffer for A tB, then Crp advances after the 4th, 8th and 12th read 

accesses. These coD'espond respectively to the first access in the second iteration of Le, the second 

access in the third iteration of Le, and the third access in the fourth iteration of Le, Thus we must 

test the iteration count after each access to determine whether or not to advance Crp, which will 

most likely be less efficient than making four physical copies of each input sample to B. 

Figure 25 depicts tlu·ee other common non-computational actors that can be implemented 

efficiently as "macro buffers" only if the looping st:rncture permits it. Before "optimizing" such 

1 1 4 3 

Fig 24. An illustration of how looping can complicate the optimization of non-computational 
blocks. Here, "B" represents a repeat actor that consumes one sample and produces four 
copies of it on its output arc. 

• • • • • • 
•y2 1 1 x. • X4 

Y1 X1 2 X3 
2 

X2 
X1 

2 • 
Y2 • X2 • 
Y1 •x4 
X1 X2 

downsample 
(by factor of 2) commutator distributor 

Fig 25. Three useful actors that do not perform operations on their data. "Downsample by 
factor of n" outputs one out of every n samples consumed. A "commutator" interleaves 
samples from each input arc onto its output arc; and the "distributor actor" outputs alter
nate input samples to alternate output arcs. 
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actors by the teclmiques discussed in this section, the compiler should verify compatibility with 

the loop organization. 

Also, if we implement these optimizations by augmenting the language, then we should 

clearly consider only functions that will be used frequently. However, the ideal solution is to 

allow the user to define such actors in a programmable fashion. This would allow special-purpose 

non-computational blocks to be implemented efficiently - for example, an actor that reverses the 

elements in an array. Supporting this generally requires a significant innovation in the program

ming model. 

In this section, we have presented a class of optimizations for SDF programs based on 

suppressing the duplication of data by actors that do not pe1form any computations. There is 

another widely applicable code optimization that is closely related, and that also requires a devia

tion from stiict SDF semantics - this involves actors whose outputs depend on previously con

sumed input samples. Probably the most prevalent example of this in DSP applications is the FIR 

filter. Figure 26 shows one SDF topology for an nth order FIR filter. Here, the homogeneous input 

arc represents the next sample in the input sequence and the self loop represents the state associ

ated with the FIR block - these are the last n-1 samples of the input sequence. However directly 

applying this model to compilation would result in 2n buffer accesses per invocation! A far pref

erable solution is to have the code block for the FIR manage the buffering of past samples [15]. 

This simply involves maintaining a circular buffer of length n - 1, where each invocation copies 

the new input sample into the last position, overwriting the oldest buffered sample. In te1ms of 

dataflow, this implies replacing the self-loop of figure 26 with a homogenous arc containing unit 

n-1 

FIR (n-1)0 

n-1 

Fig 26. Graphical representation of an nth order FIR filter block. 
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delay. This arc represents the address of the current inse1t-position in the buffer of past samples, 

which must be maintained from invocation to invocation (for more details, see [15]). 

Although a big improvement, this scheme still involves overhead - replicating each new 

input sample and maintaining the intemal circular-buffer pointer. We can eliminate this overhead 

simply by ensuring that the Nth sample produced on the input arc of the FIR is never overwritten 

before the (N+n )th sample is consumed. This can be guaranteed by making sure the buffer size is 

at least n gi·eater than the maximum number of coexisting live samples. Thus, each FIR invoca

tion can read all past samples directly from the buffer associated with the input arc, and no repli

cation is necessaiy. 

This technique applies to any actor which references past samples. The requirement for 

past samples can be specified by annotating each SDF arc with an additional parameter - the 

number of past samples required by the sink. Allowing successive invocations to process overlap

ping "windows" of input samples in this manner also increases the exposure of data parallelism 

(for details, refer to [27]). 

8 Conclusion 

Until recently, in the domain of signal processing, graphical programming was primarily 

used in the context of simulation and developing software for applications with modest pe1for

mance requirements. When pe1formance requirements approached the limits of the target proces

sor, implementers had to resort to manual programming at the microcode level. However, recent 

progress in dataflow theo1y and in compiler technology for dataflow programming now allows 

compilers for gi·aphical DSP languages to approximate meticulous manual coding for single sam

ple-rate applications. 

Although the representation of multirate algorithms as dataflow graphs is well-understood, 

compiler techniques must be augmented to efficiently manage the iteration and lai·ge buffering 

requirements associated with the multirate case. This paper approaches these problems in a uni

fied manner and develops systematic solutions. A lai·ge number of optimization techniques have 
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been presented. Many of these, such as handling loops, determining buffer parameters, and com

puting wrap-around accesses will apply frequently, while the importance of various other tech· 

niques - e.g. decomposing dynamic buffer components and applying the first-reaches matrix -

is very problem-specific. For example, if minimizing chip area is c1itical, it may be necessary to 

overlay buffers as much as possible. However, since thorough exploitation of buffer period inf or· 

mation is computationally expensive (although not combinatmial), a robust compiler should not 

attempt it if it is not necessary. 

We envision that the large number of specialized optimization strategies introduced in this 

paper can be best applied within a knowledge-based, goal-miented framework, such as DES

CARTES [27). We are currently designing such a framework for optimized code generation of 

multirate signal processing systems. The implementation platform is Ptolemy, an object-oriented 

prototyping environment for heterogeneous systems [5]. 

We are also pursuing the incorporation of our memory management strategies into the 

scheduling process. 

9 Appendix 

In this appendix, we show how to systematically compute the first-reaches table, which 

was introduced in section 4. Our technique is an adaptation of the method described in [l] for 

dete1mining reaching definitions. Let G denote an SDF graph; let S denote a looped schedule for 

G; let$(•,•) denote the con-esponding first-reaches table; and recall that for any two CCSS's X 

and Y associated with G and S, $(X, Y) = T if and only if there is a control path from X to Y that 

does not pass through another CCSS for Y. Also, for any CCSS X, let actor(X) denote the actor 

associated with X - i.e. the actor for which Xis a CCSS. 

Figure 27 summarizes how to dete1mine the columns of$ that con-espond to an actor A· in 

G. We start by examining some innermost loop A1 of S (by "inne1most loop", we mean a loop in 

which no other loops are nested). Let C1, C2, ... , Cr denote the CCSS's encapsulated by A1 in lex

ical order. We process each Cj according to the following constrnction rules: 
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c 
actor(C) * A' 

out(C) = in(C) u {C} 

(a) 

Appendix 

c· 
actor(C) = A' 

. 

V x E in(C), $(x, C) = T 

out(C) =C' 

(b) 

A'· first(A) A· -first= the lexically first 
CCSS of A' in A 

A'-out = out(C r) A'· out(A) 

(c) 

if A'·fi rst*¢ 
(1) V x E in(A), $(x, A'·first) = T 
(2) V x E A· -out, $(x, A'-first) = T 
(3) out(A) = A '-out 

else 
out(A) = in(A) u A'-out 

Fig 27. This figure summarizes how the loop structure is hierarchically analyzed to con
struct the first-reaches table. Parts (a) and (b) correspond to CCSS's in an innermost loo!), 
and part (c) shows how an inner loop is consolidated into a single block CLin the CCSS 
flow praph. The pseudocode segment in (c) specifies how CLJS handled wlien its encap
sulating loop is examined.C1, C2, ... , Cr each represents a CCSS or a consolidated loop. 

• in(C1) = ¢. 

• fori=l,2, ... ,r: 

if actor(Ci) = A', then 

(1) V 11 E in(Ci), set $(11, Ci) to "T" 

(2) out(Ci) = {Ci} 
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else 

out(Cj) = in(Cj) u {Cj} 

if i * r then in(Ci+ 1) = out(Cj) 

These rules are summarized in figure 27(a) and 27(b). Observe that we can describe in(Cj) 

as the set of CCSS's in A1 which reach Ci before they reach a CCSS for A·. Thus when we 

encounter a CCSS CA associated with A', we set each entry in column CA of q> that corresponds to 

an element of in(CA), 

After processing A1 in this manner, we "collapse" the body of A1 into a single loop-CCSS 

in S. For example, if S = (2A(3 CBA))1 and A1 represents the loop (3CBA), then we collapse A1 

to obtain the hierarchical schedule S1 =(2AA1), We associate two parameters with A1: A·

first(A1 ), which denotes the lexically-first CCSS for A• in A1 (if A• does not appear in A1 then we 

Wiite A·-first(A1) =¢);and A·-out(A1), which simply denotes out(Cr), For example, suppose that 

S is the looped schedule shown in figure 28(a). Let H1, H2, H3 and H4 denote the CCSS 's corre

sponding to successive appearances of Hin the looped schedule, and similarly define CCSS's J1, 

J2, J3, J4 and K1
, K2, K3 (recall that for SDF actors, subscripts denote invocation numbers, so we 

use superscripts to label CCSS's). Now suppose that A•= J and A1 denotes the loop (2HJKJHK). 

Then A·-first(A1) = J1; A·-out(A1) = {H2, J2, K2}; and S2, the loop hierarchy for the next algo

rithm iteration, is (A1HJ(3KJH)). 

In the algorithm iteration corresponding to schedule Sj (i 2 2), we select one of the remain

ing inne1most loops from Sj. This loop Ai contains only actor appearances and collapsed loops 

(members of {A1, A2, ... , Ai-1 }). We process these elements of Si using the construction rules of 

figure 27(a) and 27(b) for actor appearances (CCSS's). For each collapsed loop A, we apply the 

rules shown in figure 27(c) instead. Here, rule (2) is required to capture the reachability informa

tion associated with successive iterations of A, whereas rule ( 1) co1responds to the flow path 

entering A. After applying the appropriate constmction mies to each component of Aj, we col

lapse Ai in Si to obtain Si+ 1, the schedule for the next algmithm iteration. We proceed thiough 

1. The outermost parenthesis represents the infinite loop that encapsulates the schedule period, 
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Schedule: ((2HJKJHK)HJ(3KJH))) 

A1 = (2HJKJHK) 

in(H1) = ¢ 
in(J1) = {H1} 
in(K1) = {J1} 
in(J2) = {J1 ,K1} 

in(H2) = {J2} 
in(K2) = {J2,H2} 

J-first(A1) = J1 

cj>(J1,J2)= T 
cj>(K\J2)= T 

J-out(A1) = out(K2) = (J2,H2,K2} 
82 = (A1 HJ(3KJH)) 

A2 = (3KJH) 

in(K3) = ¢ 
in(J4) = {K3} 
in(H4) = {J4} 

J-first(A2) = J4 

J-out(A2) = out(H4) = (H4,J4} 
83 = (A1 HJA2) 

(a) 

(b) 

A3 = (A1 HJA2)=> (oo A1 HJA2) 

in(A1) = ¢ cj>(J2,J1)= T 
cj>(H2,J1)= T 
cj>(K2,J1)= T 

in(H3) = {J2,H2,K2} 
in(J3) = {J2,H2,K2,H3} 

cj>(J2,J3)= T 
cj>(H2,J3)= T 
cj>(K2,J3)= T 
cj>(H3,J3)= T 

cj>(J3,J4)= T 
cj>(H4,J4)= T 
cj>(J4,J4)= T 

J-first(A3) = J-first(A1) = J1 

J-out(A3) = out(A2) = {H4,J4} 
84=A3 

cj>(H4,J1)= T 
cj>(J4,J1)= T 

Fig 28. An illustration of how the first-reaches matrix is constructed. For the schedule in 
part(a), part(b) shows step-by-step how the relevant reachability information is extracted 
to construct the columns of cl> associated with actor J. 

algorithm iterations until we have collapsed the infinite loop that encapsulates the schedule 

peiiod. 

Figure 28(b) illustrates the construction of the first-reaches table based on the method pre

sented in this appendix. 
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