
The authors gratefully acknowledge the support of DARPA (J-FBI 90-073), NSF (MIP-8657523), and The

Sony Corporation.

THE TOKEN FLOW MODEL

Joseph Buck and Edward A. Lee

Dept. of Electrical Engineering and Computer Science

University of California

Berkeley, CA 94720

internet address: jbuck@EECS.Berkeley.EDU, eal@EECS.Berkeley.EDU

(presented at Data Flow Workshop, Hamilton Island, Australia, May 1992)

Abstract

This paper reviews and extends an analytical model for the behavior of dataflow
graphs with data-dependent control flow. The number of tokens produced or
consumed by each actor is given as a symbolic function of the Booleans in the
system. Long-term averages can be analyzed to determine consistency of token
flow rates. Short-term behavior can be analyzed to construct an annotated
schedule, or a static schedule that annotates each firing of an actor with the
Boolean conditions under which that firing occurs. Necessary and sufficient con-
ditions for bounded-length schedules, as well as sufficient conditions for deter-
mining that a dataflow graph can be scheduled in bounded memory are given.
Annotated schedules can be used to generate efficient implementations of the
algorithms described by the dataflow graphs.

1. Introduction

The principal strength of dataflow graphs is that they do not over-specify an algorithm by impos-
ing unnecessary sequencing constraints between operators. Instead, they specify a partial order,
where sequencing constraints are imposed only by data precedences. Since the representation
does not over-constrain the order of operations, a scheduler has the freedom it needs to ade-
quately exploit deep pipelines, to maximize re-use of limited hardware resources, or to exploit
parallel processing units. To get these benefits, compilers for pipelined or parallel machines often
heavily rely on dataflow analysis. The most successful compilers either address only the modest
parallelism in pipelined and superscalar machines or restrict themselves to domain-specific areas
such as signal processing. In both cases, only dataflow graphs with deterministic control flow
have been handled. The general class of such graphs is called synchronous dataflow (SDF)
[Lee87a]. However, the class of applications that fit this model is too restricted. In compilers, the
SDF model constrains the dataflow analysis to lie within so-called “basic blocks”, regions of
code delimited by branches or branch destinations. In parallelizing schedulers, it limits the use of
dataflow techniques to overly specialized domains with restricted run-time decision making. The
model must be broadened.

The Token Flow Model 2 of 22

A dataflow graph is a directed graph with actors at the nodes. The arcs represent the flow of data.
Although there are many variations in implementation, conceptually arcs behave as FIFO
queues, sometimes with limited capacity, sometimes not. While tagged tokens [Arv82] achieve
behavior equivalent to a FIFO queue, they do not require that tokens be produced or consumed in
order. Tokens are tagged with context information so that their conceptual position in the queue
is maintained independent of the order in which they are processed. We will assume in this paper
that FIFO behavior is enforced on the arcs. This can lead to simpler run-time implementation
than a tagged-token schema.

Dataflow graphs have data-driven semantics. It is the availability of operands that enables an
operator. Hence, sequencing constraints follow only from data availability. Although this feature
is useful, it has its limitations. Virtually all programming languages provide primitives for
directly specifying control flow, such as the familiar if-then-else, do-while, goto, and for loops. A
purely data-driven language provides no such primitives, relying instead on actors that direct the
flow of tokens. We are so familiar with these control flow constructs that expressing equivalent
functionality using data-driven semantics can be awkward. If this awkwardness stems primarily
from lack of experience, however, then there is much to be gained by exploring languages that
have purely data-driven semantics at the source code level.

Such languages are rare. Even so called “dataflow” languages, such as Val [Mcg82] and ID
[Nik88], and functional languages such as DFL (Silage) [Hil89] contain familiar “for” loops and
“if-then-else” constructs. These are sometimes translated into a purely data-driven internal repre-
sentation, such as the machine code for a dataflow machine. In signal processing, however,
purely data-driven semantics are attractive. Signal processing is special in that dataflow graphs
are a natural representation for algorithms even in the absence of other practical motivations.

The intent of this paper is not to propose a particular language design, nor to advocate a particu-
lar choice of actors on which to base dataflow graphs. It is instead to develop an analytical tech-
nique that applies to a class of languages in which operators are described in terms of
consumption and production of tokens. The key property of these languages is that operators and
functions operate on streams of tokens. Although we will use a graphical syntax to illustrate
example programs, the method is not restricted to graphical languages. For some applications,
particularly signal processing, graphical syntax has proven attractive (see [Bie90] for one exam-
ple and references to dozens of others). For others it has not, and textual functional languages are
more attractive. To date, however, very few experiments have been done with graphical syntax of
the type discussed in this paper. A textual syntax with the same or related semantics could easily
be created, but it would demand more of the reader without adding materially to the exposition in
this paper.

The method in this paper is inspired by the algebraic techniques of Benveniste, et. al. [Ben88],
[Ben90a/b], [LeG90], which can accomplish some of the same objectives for a different class of
languages. Fortunately, for dataflow semantics our method is usually simpler than an adaptation
to dataflow of that in [Ben88].

This paper begins with a brief review of SDF, emphasizing the analytical properties that can be
used for static scheduling. The analysis and scheduling methodology for dynamic dataflow will
follow the same pattern, but computations will be symbolic rather than numeric. The token flow
model as presented in [Lee91] is reviewed and then extended to model cyclic firings, rather than
just long term averages. Consistency and strong consistency are defined and analytical methods
are given for checking for them. “Complete cycles” are then defined, enabling the systematic
construction of “annotated schedules”, or static schedules annotated with the Boolean conditions
under which actors fire.

Buck and Lee 3 of 22

2. Synchronous Dataflow

Synchronous dataflow (SDF) is a special case of dataflow where the number of tokens consumed
or produced by a given actor when it fires is fixed and known at compile time. In repeated firing
of the same actor, the same behavior will be repeated. Figure 1 shows some SDF actors. In the
left-most box, the actor has two operands, and the presence of one token on each input enables
the firing of the actor. When it fires, it produces one token on its output. In the middle, a single
token enables the firing, but multiple tokens (two shown) are produced. The right-most actor is
enabled by multiple tokens, and produces a single token when it fires.

2.1. Manifest iteration

Consider the dataflow graph in figure 2. The numbers adjacent to the inputs and outputs of the
actors indicate how many tokens are consumed and produced each time the actor fires. Conse-
quently, the third actor fires ten times for every firing of the second, which in turn fires ten times
for every firing of the first. There is nothing in this model to prevent simultaneous firing of suc-
cessive invocations of the same actor, so this schema solves the first open problem listed by Den-
nis in [Den75], providing the semantics of a “parallel for” in dataflow. The iteration is specified
in a truly data-driven way. Of course, if we restrict the dataflow actors to be SDF, then the itera-
tion can only be manifest, where the number of cycles of the iteration is known at compile-time.

2.2. Delays

A dataflow graph may contain initial tokens on an arc. These will be indicated in this paper with
a diamond, as shown in figure 3.

DOWNSAMPLEDOWNSAMPLEUPSAMPLEUPSAMPLE

ENABLED FIRED ENABLED FIRED ENABLED FIRED

Figure 1: Synchronous dataflow actors consume and produce fixed numbers of tokens.

1 1

1

1

12

2

1 2 3 4 5
10 1 10 1 1 10 1 10

Figure 2: A nested iteration expressed as an SDF graph.

1 2
1 1

Figure 3: A unit delay represents an initial token on an arc.

The Token Flow Model 4 of 22

These tokens can be viewed as causing an offset between the tokens produced and the tokens
consumed on the arc. Hence, such an initial token is called a unit delay. A delay can enable the
firing a downstream actor. For instance, at the start of execution, actor 2 in figure 3 is enabled.

2.3. Topology matrix and repetitions vector

Because of the predictable production and consumption of tokens, SDF graphs can be scheduled
statically, at compile time. When the graph is going to be repeatedly executed, this can result in
considerable speedup or simpler hardware, compared to run-time scheduling. For signal process-
ing applications the graph is typically repeatedly executed a very large number of times on a con-
tinuous stream of input data. If the application has real-time constraints, then the speedup
achieved by scheduling at compile time can be critical.

When an SDF graph is to be executed repeatedly, the compiler should construct just one cycle of
a periodic schedule. The first step is to determine how many invocations of each actor should be
included in each cycle. This can be determined using information about the number of samples
consumed and produced. Consider the connection of three actors shown in figure 4. Let denote

the number of tokens consumed by the ith actor, and i denote the number of tokens produced

by the ith actor, as shown in the figure. Let denote the number of times the ith actor is repeated

in the each cycle of the iterated schedule. Then it must be true that

(1)

(2)

These two equations ensure that the number of tokens produced on each arc is equal to the num-
ber consumed on that arc in each cycle of the iterated schedule. Indeed, the first step in finding a
schedule for an SDF graph is to solve a set of such equations, one for each arc in the graph, for
the unknowns .

These equations can be written concisely by constructing a topology matrix that contains the

integer in position if the i th actor produces tokens on the j th arc. It also contains the

integer in position if the i th actor consumes tokens from the j th arc. For example, the

nested iteration shown in figure 2 has the following topology matrix

. (3)

Then the system of equations to be solved is

(4)

1 2 3
O1 O2 O2I1 I2

I3

Figure 4: Three actors annotated with the number of
tokens consumed and produced on each firing.

Ii

Oi

ri

r1O1 r2I2=

r2O2 r3I3=

ri

Γ
Oi j i,() Oi

Ii− j i,() Ii

Γ

10 1− 0 0 0

0 10 1− 0 0

0 0 1 10− 0

0 0 0 1 10−

=

Γr o=

Buck and Lee 5 of 22

where is a vector full of zeros, and is the repetition vector containing the for each actor.
Printz calls (4) the “balance equations” [Pri91]. For the topology matrix in (9), one solution is

. (5)

In fact, this solution is the smallest one with integer entries.

For a connected SDF graph, it is shown in [Lee87a] that a necessary condition to be able to con-
struct an admissible periodic schedule is that the rank of be equal to one less than the number

of actors in the graph. This means that the null space of has dimension one. From (4) we see

that must lie in the null space of . It is also shown in [Lee87a] that when the rank is correct,

there always exists a vector that contains only integers and lies in this null space. Solving for the
smallest such vector is a simple procedure that involves finding a fractional solution and apply-
ing Euclid’s algorithm to find the least common multiple of all the denominators. This technique
has been implemented in the Gabriel [Bie90] and Ptolemy [Buc91] systems, and it is simple and
fast. Furthermore, the technique can be re-targeted to a wide variety of architectures, including
arrays of processors.

In order to construct a periodic schedule we must rule out the possibility of deadlock [Lee87a].
In this paper, we will simply assume the graphs we work with do not deadlock.

2.4. Inconsistency

For some SDF graphs, (4) has no solution. An example is shown in figure 5. The error here is that
actor 3 expects two streams with the same rate of token flow, and it is getting two streams with
different rates of flow. There is no schedule that can repeatedly run this graph with bounded
memory.

2.5. Disconnected Graphs

For disconnected graphs, if each graph is itself consistent, then the null space of has dimen-

sion equal to the number of disconnected graphs. In this case, the scheduling problem is easily
partitioned into smaller problems each of which involves only a connected subgraph.

2.6. Static Scheduling

Scheduling an SDF graph begins with solving for the smallest integer vector in the null space
of the topology matrix. This vector, as illustrated in (5), indicates how many times each actor
should be invoked in one cycle of a periodic schedule. Given this set of numbers, the required

o r ri

r

1

10

100

10

1

=

Γ
Γ

r Γ

1 2 3
1 1 1 1

2
1

Figure 5: An inconsistent SDF graph.

Γ

r

The Token Flow Model 6 of 22

invocations can be assembled into an acyclic precedence graph (APG). The procedure for doing
this is straightforward; it consists of simulating a dynamically scheduled run until each actor

has been added to the APG times. When an actor becomes enabled, an invocation of that actor

is added to the precedence graph, and precedence arc connections are made to previous actors
whose firings supplied the enabling data. Initially, only source actors (which have no input paths)
and actors that have enough delays on their input paths are enabled. But once an invocation is
added to the precedence graph, a data structure is updated to indicate the data that would be pro-
duced by a firing of that actor. This extra data, in turn, enables other actors.

The method for constructing the APG can be described precisely. Let be a vector denoting

the number of tokens in each arc at step of the procedure. Hence denotes the initial state

of the graph, indicating which arcs contain how many delays. Suppose that at the initial state a
certain actor is enabled. Then an invocation of that actor can be put in the APG with no ances-
tors, indicating that there are no precedents to be honored. The state of the system is then updated

by constructing a vector with a 1 in the position, and zeros everywhere else, and writ-

ing

. (6)

By only letting indicate enabled actors, is guaranteed to always have non-negative
entries.

The process is repeated with the new system state. Whenever a new actor is added to the APG,
arcs are created to indicate precedences. No actor will be added to the APG more than times,

and the graph will be declared complete when

. (7)

Notice that

, (8)

indicating that the state of the arcs after performing all invocations in the APG will be the same
as it was before.

Once the APG is constructed, there are many scheduling alternatives. For single processor tar-
gets, some reasonable scheduling objectives might include minimization of data or program
memory requirements. For multiprocessor targets, minimizing makespan, or maximizing flow-
time are more likely objectives. For some examples of scheduling heuristics that have been
applied, see [Sih91].

3. Dynamic Dataflow

Although SDF is adequate for representing large parts of many algorithms, it is rarely sufficient
for expressing an entire program. A more general dataflow model is needed in order to express
data-dependent iteration, conditionals, and recursion. The addition of two actors, SWITCH and
SELECT, enables all of these except recursion (for a discussion of recursion see [Lee91]). The
behavior of these actors is shown in figure 6. These are minor variations of the original Dennis

i
ri

b n()

n b 0()

i

q n() ith

b n 1+() b n() Γq n()+=

q n() b n()

i ri

q n()
n 0=

N

∑ r=

b N() b 0() Γr+ b 0()= =

Buck and Lee 7 of 22

actors [Den75], also used in [Wen75], [Tur81], and [Pin85], and are the same as the distributor
and selector in [Dav82]. Neither actor is SDF because the number of tokens consumed or pro-
duced is not fixed. It depends on the Boolean control input. In the case of the SWITCH, the firing
of downstream actors will be data-dependent. In the case of the SELECT actor, the firing of
upstream actors will be data-dependent. In both cases, run-time control is required.

The characterization of actors for SDF graphs can be extended to graphs containing SWITCH
and SELECT actors. The number of inputs consumed and produced must now be represented as
a function of Booleans in the system.

3.1. The Token Flow Model

Loosely speaking, the balance equations require that in the long run, the number of tokens pro-
duced on an arc must equal the number of tokens consumed. This can be checked by relating the
average number of tokens consumed and produced to the average number of TRUEs in the Bool-
ean streams in the system. This is shown for the SWITCH and SELECT actors in figure 7.
Loosely, is the long term proportion of TRUEs in the Boolean stream , which supplies the
control inputs.

Several rigorous interpretations of in figure 7 are possible. The most general interpretation of
 is that it is a formal placeholder for an unknown quantity that determines number of tokens

produced or consumed. In a probabilistic formulation, we model the Boolean stream as a ran-
dom process, and is the marginal probability that a token from is TRUE. This interpreta-
tion requires that the marginal probability be constant across firings. Equivalently, is
stationary is the mean. For practical dataflow graphs, this requirement is overly restrictive. Fortu-
nately, for most dataflow graphs, can be interpreted as the proportion of TRUE tokens in a

SWITCH

T F

SWITCH

T F

ENABLED FIRED

SWITCH

T F

SWITCH

T F

ENABLED FIRED

ENABLED FIRED

SELECT

T F

SELECT

T F

ENABLED FIRED

SELECT

T F

SELECT

T F

TRUE

TRUE

FALSE

FALSE

Figure 6: Dynamic dataflow actors consume and
produce tokens depending on Booleans in the system.

pi bi

pi
pi

bi
pi bi

bi

pi

The Token Flow Model 8 of 22

well-defined finite subsequence (called a complete cycle) of the infinite stream . Furthermore,
we will see that we never need to know or estimate the numerical value of . All manipulations
that use it can use it symbolically. For the initial development, for clarity and intuition, we will
assume the probabilistic interpretation. The complete cycle interpretation will follow.

Non-SDF actors other than SWITCH and SELECT can be modeled as well, as long as they have
representations like that in figure 7. This even includes non-determinate actors as in [Kos78] (see
[Lee91]). In this paper, however, we will use only SWITCH and SELECT in our examples
because they are traditional and familiar in the dataflow literature.

Consider the if-then-else program shown in figure 8. The SWITCH directs the incoming token to
one of two subsystems, 3 or 4, depending on the Boolean supplied by actor 7. Since the Boolean
is supplied to two actors, it is implicitly forked into two Boolean streams labeled and . It
will be important to recognize these as two Boolean streams. In this figure, the numbers adjacent
to the arcs will be used only to identify them.

Assuming that all unmarked actors produce and consume a single token when they fire, the
topology matrix for this system is given by:

SWITCH

T F SELECT

T F

1

pi 1 pi−

bi

1
bi

1

1

pi 1 pi−

Figure 7: Dynamic dataflow actors annotated with the expected number of
tokens produced or consumed per firing as a function of , the probability

that a token from the stream is TRUE.
pi

bi

bi
pi

S
W

IT
C

H

T

F

S
E

LE
C

T

1

3

4

6

7

T

F
52

1

2

4

3

5

6

7 8

Figure 8: An if-then-else dataflow graph. The numbers
adjacent to the arcs merely identify them.

b1 b2

b1 b2

Buck and Lee 9 of 22

. (9)

Here, is a vector with all Boolean probabilities. Analogous to (4), we need to find a vector
 such that

(10)

 must have rank 6 (or equivalently, its null space must have rank 1). It is easy to verify that

it has rank 6 if and only if

, (11)

which fortunately is true trivially, since and emanate from the same actor. A suitable vec-
tor in the nullspace of is given by

. (12)

Notice that this vector works for any numerical value of and . One interpretation for this is
that, on average, for every firing of actor 1, actor 3 will fire times, and actor 4 will fire

 times. This if intuitive. Since is not an integer, in general, it makes little sense to talk of
finding the smallest integer vector in the nullspace of . However, the information gained
from any solution to (10) is useful. It tells us (a) that a solution exists, and (b) in what proportion
the actors in the actors in the system should fire as functions of the Boolean proportions in the
system. We will strive for a schedule such that is a vector giving the probability
that each actor will fire given that one actor fires. Furthermore, we will extend this model below
in such a way that for most graphs we can find a similar vector that always has integer values and
can be used to construct compile-time schedules.

3.2. Consistency

In [Lee91], the above token-flow model is used to define consistency for dynamic dataflow
graphs. Two kinds of consistency are identified, strong and weak. Strong consistency means that

there exists a vector such that (10) is satisfied for any allowed value of the Boolean propor-

tions in the system. Weak consistency means that (10) is satisfied only for certain values of the

Boolean proportions . The if-then-else of figure 8 is consistent subject to the condition in (11).
Since this condition is always satisfied, the dataflow graph is strongly consistent.

However, not all dataflow graphs are strongly consistent. Consider the example in figure 9. The
topology matrix for this system is

Γ p()

1 1− 0 0 0 0 0

0 1 p1−() 1− 0 0 0 0

0 0 1 0 p2 1−() 0 0

0 p1 0 1− 0 0 0

0 0 0 1 p2− 0 0

0 0 0 0 1 1− 0

0 1− 0 0 0 0 1

0 0 0 0 1− 0 1

=

p
r p()

Γ p() r p() o=

Γ p()

p1 p2=

b1 b2

Γ p()

r p() 1 1 1 p1−() p1 1 1 1
T

=

p1 p2

1 p1−()
p1 p1

Γ p()

r p() r p()⁄

r p()
p

p

The Token Flow Model 10 of 22

. (13)

This assumes that actors 1 and 3 consume and produce only single tokens when they fire. Unless

, (14)

meaning that is always false, this matrix has full rank. Since given the information we have,

there is no reason to believe that , the graph is not strongly consistent.

Intuitively, each time actor 1 fires, it supplies a token to both the SWITCH (actor 2) and actor 3.
However, actor 3 can only consume that token if the SWITCH also provides it with a token,
which occurs only if the Boolean is false. Hence, each time is true, another token accumu-
lates on arc 2. These tokens will accumulate indefinitely, requiring unbounded memory.

Some additional notation will help to make the ideas below precise. Let be a vector containing

the Boolean probabilities in a system. Then define an indicator function that has value

“true” if has the appropriate rank for this particular . Otherwise, it has value “false”.

Hence, a particular graph will be said to be consistent subject to . It is strongly consistent if

 is always true, and inconsistent if is always false. For the system in figure 9, (14) is

equivalent to

. (15)

3.3. Mutually Dependent Booleans

The if-then-else of figure 8 is consistent subject to condition (11), which we know to be trivially
true, so the graph is strongly consistent. In general, however, there may be dependencies between
Boolean streams that are harder to discern. In particular, when Boolean streams are interrelated, a
graph that appears to be only conditionally consistent may in fact be strongly consistent. The
interrelationships between Boolean streams can come about from logical operators, such as those
in figure 10. In that figure, means the probability that two simultaneously consumed

tokens from the streams and are true. Similarly, means the probability that

they are both false, and means the probability that a token is true given that the

simultaneously consumed token is true. These relationships must be applied with care because

S
W

IT
C

H

T

F

1

3

c

2

1

2

3

Figure 9: A dataflow graph that is consistent if and only if c is always false.

Γ pc()
1 1− 0

1 0 1−
0 1 pc−() 1−

=

pc 0=

c
pc 0=

c c

p
C p()

Γ p() p

C p()
C p() C p()

C p()
TRUE; pc 0=

FALSE; otherwise
{=

Pr b1 b2,[]

b1 b2 Pr b1 b2,[]
Pr b2 b1[] b2

b1

Buck and Lee 11 of 22

they are only valid for tokens that are simultaneously consumed. However, even with this restric-
tion, they can be used sometimes to determine that conditionally consistent graphs are in fact
strongly consistent.

Consider the example in figure 11. This dataflow graph can be shown to be consistent if and only
if

. (16)

In other words,

. (17)

From the relationships in figure 10,

(18)

. (19)

Hence condition (16) is equivalent to

, (20)

Figure 10: Actors that operate on Boolean streams may produce new Boolean
streams that are interrelated as shown in these examples.

SWITCH

T F SELECT

T F

1

p1 1 p1−

b1

1 1

1

p1 1 p1−

b2

b3
b4

p3 Pr b2 b1[]=

b1

b3b2

b4

p4 Pr b2 b1,[] Pr b3 b1,[]+=

b1
b1b1

b2

b2b2

b3
b3

p2 1 p1−= p3 Pr b1 b2,[]= p3 1 Pr b1 b2,[]−=

p4 Pr b2 b1[]=

NOT AND OR

p3 p2p4=

C p()
TRUE; p3 p2p4=

FALSE; otherwise
{=

p3 Pr b1 b2,[]=

p4 Pr b1 b2[]=

Pr b1 b2,[] p2Pr b1 b2[]=

The Token Flow Model 12 of 22

which is always true by the multiplication rule in probability. Consequently, this graph is
strongly consistent.

The above analysis must be performed carefully, ensuring that when probabilities are combined
at a logical operator, they are combined for tokens that are simultaneously consumed. If, for
example, a delay were introduced in the path of one of the Boolean streams in figure 11, the anal-
ysis might require information about the joint statistics of successive tokens in a Boolean stream.
This knowledge may not be available to a compiler, or even to the programmer. Similarly, Bool-
eans that are generated by testing non-Boolean streams may have joint statistics that are difficult
or impossible for a compiler to discern. In principle, a compiler that does elaborate semantic
analysis of the program and has complete information about the inputs might be able to use this
type of analysis to verify consistency, but such a compiler is not practical. A practical compiler
will alert the programmer with a warning when a conditionally consistent dataflow graph is
encountered, and the conditions cannot be proven to be satisfied.

3.4. The Limitations of Consistency

In all cases above, inconsistency indicates a peculiar graph that is probably erroneous. This sug-
gests, at minimum, defining languages that do not admit inconsistent graphs. Conditionally con-
sistent graphs could be admitted with a warning, because a compiler cannot always determine the
relationships between separate Boolean streams.

The question arises, then, of whether consistency can be used in compilation of dataflow graphs.
Synchronous dataflow graphs, for example, can be statically scheduled onto multiple processors
[Lee87a]. Moreover, memory can be statically allocated for each arc, leading to particularly sim-
ple implementations on ordinary processors [Lee87b]. We wish to determine when these proper-
ties extend to more general dataflow graphs. For a given graph, we wish to answer the following
questions:

1. Can we define a schedule at compile time for execution of the graph?

Figure 11: An example of a graph that appears at first glance to be only conditionally
consistent, but on further analysis proves to be strongly consistent.

SWITCH

T F

b1

b2

b3

b4

AND
SWITCH

T F

SWITCH

T F

SWITCH

T F

Buck and Lee 13 of 22

2. Can we find an upper bound on the memory required to execute the graph?

We wish to answer both questions in finite time for an infinite execution of the graph. Not sur-
prisingly, we will find that we cannot always answer these questions definitively. However, for a
large class of dataflow graphs, we can answer quickly in the affirmative and synthesize a lean
implementation. Dataflow graphs for which the answer to both questions is yes have most, if not
all the desirable properties of the clean dataflow graphs of Davis [Dav82], the well-behaved data-
flow graphs of Arvind [Arv82] and Gao [Gao92], and k-bounded loops of Arvind and Culler
[Arv86].

Strong consistency is necessary, but not sufficient, to ensure that a graph will execute in bounded
memory. Perfectly correct (and strongly consistent) programs exist that cannot be executed
indefinitely in bounded memory. Consider the example in figure 12, given by Gao, et. al.
[Gao92]. A solution to the balance equations for this system is

, (21)

where . If a FIFO schema on the arcs is enforced, the memory required to execute

this graph is not bounded. Suppose for example the Boolean streams and consist of a sin-

gle TRUE token followed by an unbounded number of FALSE tokens. The SELECT actor can-
not fire until actor 4 has fired, and actor 4 cannot fire until a second TRUE token arrives. Hence,
the arc between actor 3 and the SELECT will require unbounded memory. A related example,
devised independently of [Gao92], is shown in figure 13. As in figure 8, this graph is consistent if

. In the probabilistic interpretation of , the initial token implied by the delay has no

S
W

IT
C

H

T

F
S

E
LE

C
T

1

3

4

6

7

T

F
52

1

2

b1 b2

1

1
1 1

1 1

2

2 2

Figure 12: An example of a strongly consistent system that cannot execute
in bounded memory if a FIFO protocol is enforced on the arcs.

r p() 2 2 1 p−() p 2 2 2
T

=

p p1 p2= =
b1 b2

S
W

IT
C

H

T

F

S
E

LE
C

T

1

3

4

6

7

T

F
52

b1 b2

Figure 13: A graph that is strongly consistent but cannot
execute in bounded memory if a FIFO schema is enforced on the arcs.

TRUE

p1 p2= pi

The Token Flow Model 14 of 22

effect on , so , and the graph is strongly consistent. Suppose, however, that the value

of the initial token is TRUE, and consists of an infinite sequence of FALSE tokens. Then the

SELECT can never fire.

Note that the examples in figures 12 and 13 have bounded memory requirements under a tagged-
token schema, which does not require that actors process tokens in order. A variant of figure 12,
shown in figure 14, has unbounded memory requirements under any dataflow schema. The feed-
back loop effectively enforces serial execution of actors 6 and 7, so that tokens into 6 must be
processed in order.

We recognize, however, that perfectly correct programs can have unbounded memory require-
ments (consider a program that recognizes a context-free grammar, for example). Such programs
fundamentally require dynamic memory allocation and at least some measure of dynamic sched-
uling. However, we wish to isolate the particular dataflow arcs and actors that require this, and
incur the additional runtime cost only where needed. The vast majority of arcs and actors in a
typical program have no such requirement, and can be implemented with much lower run-time
cost on routine hardware.

4. Scheduling

To construct a static schedule, we need to consider not probabilistic behavior of the dynamic
dataflow actors, but rather the behavior over short, well-defined firing sequences. To do this, we
modify the token flow model to consider not the probability , but rather the proportion of
TRUE tokens in a finite firing sequence . For a particular firing sequence , let denote
the number of TRUE tokens consumed from stream within the sequence. Let denote
the total number of tokens consumed from in . This is an unknown that we will only manip-
ulate symbolically. Define the vector

, (22)

where the size of the vector equals the number of Boolean streams in the graph. We wish to find

a finite such that is true for any possible outcomes of the Boolean proportions

. Let denote the number of firings of each actor in . Note that must

evaluate to an integer vector (actors can’t fire a fractional number of times) regardless of the out-

p2 p1 p2=
b1

S
W

IT
C

H

T

F

S
E

LE
C

T

1

3

4

6

7

T

F
52

1

2

b1 b2

1

1
1 1

1 1

2

2 2

7
1 1

1 1

Figure 14: A variant of figure 12 that cannot execute in bounded
memory even under a tagged-token schema.

pi
S S ti S()

bi ni S()
bi S

p S()
t1 S() / n1 S()
t2 S() / n2 S()

...

=

S C p S()()
ti S() / ni S() r S() S r S()

Buck and Lee 15 of 22

comes of the Boolean proportions . Furthermore, we require that all arcs in the

graph have the same number of tokens after executing as before, or equivalently, that

. (23)

We elaborate these requirements below, first showing how they are all satisfied for an appropri-
ately chosen for the if-then-else example.

4.1. Annotated Firing Sequence

In the if-then-else example in figure 8, consider the following annotated firing sequence:

. (24)

The parenthesized expressions give the conditions under which the corresponding actor should
fire. In this case, actor 3 will fire if is unity, and otherwise 4 will fire. Exactly one token is
consumed in from each Boolean stream, so . Furthermore,

.

The firing sequence in (24) can be repeated indefinitely, and hence constitutes an admissible peri-
odic annotated schedule. For this example, the number of firings of each actor in is given by

. (25)

Since can only take on values zero or one, is a vector of integers for any realization

of . Further, defining

(26)

 is always true, and using the topology matrix in (9), we get,

, (27)

where again is the vector of zeros.

4.2. Complete Cycles

A complete cycle is a sequence of (possibly annotated) firings where the number of tokens on
each arc after the sequence is equal to the number before. Fractional firings are not allowed, of
course. It is similar to the “firing cycle” of Kavi, et. al. [Kav86], but applies to more general data-
flow graphs. Any satisfying (27) for all possible outcomes of all Boolean proportions

 is a complete cycle. Mathematically, for any annotated sequence , the state of the

FIFO buffers after the sequence fires is given by

ti S() / ni S()
S

Γ p S()() r S() o=

S

S 1 7 2 1 t1 S()−() 3 t1 S()() 4 5 6, , , , , ,{ }=

t1 S()
S n1 S() n2 S() 1= =

t1 S() t2 S()=

S

r S()

1

1

t1 S()
1 t− 1 S()

1

1

1

=

t1 S() r S()
S

p S()
t1 S()
t1 S()

=

C p S()()

Γ p S()() r S() o=

o

S
ti S() / ni S() S

The Token Flow Model 16 of 22

, (28)

analogous to (8).

The problem of scheduling a dynamic dataflow graph at compile time is one of devising a com-
plete cycle. We wish to find a complete cycle that can be expressed as a finite annotated firing
sequence. Since such a sequence returns the number of tokens on each arc to its original value, it
can be repeated indefinitely. Furthermore, since the annotated sequence consists of a bounded
number of firings of each actor, then the total memory requirements for indefinite execution of
the graph can be bounded.

It is immediate that any graph possessing a finite complete cycle can be executed in bounded
memory. Since the state of the graph after the cycle is the same as before, then memory require-
ments on arcs cannot accumulate over multiple cycles. Within a cycle, every actor fires a finite
number of times with an easily derived upper bound, so there is no possibility of unbounded stor-
age requirements.

Unfortunately, a finite complete cycle does not exist for some strongly consistent graphs. Con-
sider again the example in figure 13. This graph is consistent under the condition , in

which case a solution to the balance equations is given by (12). This condition is satisfied under
the probabilistic formulation of the token-flow model, but will not be satisfied for any finite firing
sequence in general. From (12) we can see that if a complete sequence exists for this graph, it

must contain the same number of firings of actors 1, 2, 5, 6, and 7. Let that number be . Hence

. Then the repetition vector for is given by

. (29)

But this repetition vector will not satisfy the balance equations unless . Further-

more, this latter condition cannot be satisfied unless the last Boolean produced by actor 7 in the
sequence has value TRUE, returning the Boolean arc to its original state.

The example in figure 12 has a different problem with the same net effect. Let be any firing

sequence that contains firings of actors 1, 2, 5, 6, and 7. From (21), it is clear that any com-

plete cycle must fire these actors the same number of times. , therefore, gives the number of

Booleans consumed in on both and . Hence the repetition vector is

. (30)

Since can take on any integer value between zero and , there is no assurance for any

that the third and fourth entry will be integers. Since no firing sequence can fire any actor a non-
integer number of times, there is no finite complete cycle for this graph.

Since not all graphs of interest have finite complete cycles, we will develop below two methods,
called clustering and state enumeration, that can identify infinite complete cycles that can be
scheduled in bounded memory for some types of graphs. However, even with these methods,
some perfectly correct graphs will elude our analysis. Our strategy will be to identify subgraphs
for which we can find a complete cycle, construct a static schedule, and if possible statically allo-
cate memory for the arcs. Graphs for which we cannot find a complete cycle, but which are con-
sistent, will require dynamic memory allocation and probably dynamic scheduling. In many
cases, this extra overhead is fundamentally required by the program. Although it is certainly pos-
sible to schedule the graph in figure 13, no scheduling policy can guarantee finite memory

b S() b 0() Γ p S()() r S()+=

p1 p2=

S
N

n1 S() n2 S() N= = S

r p S()() N N N t1 S()−[] t2 S()[] N N N
T

=

t1 S() t2 S()=

S

S
N

S N
S b1 b2

r p S()() N N
N t1 S()−

2

t1 S()
2

N N N

T

=

t1 S() N N

Buck and Lee 17 of 22

requirements. Buffers will have to be dynamically allocated, greatly increasing the cost of imple-
mentation compared to static allocation.

4.3. Constructing Annotated Schedules when a Finite Firing Sequence Exists

Assume we have a dataflow graph with no delays on Boolean arcs and with an integer solution to
the balance equations. A procedure similar to that of the SDF case can be applied to this dynamic
dataflow case to construct annotated schedules. In this paper, we can only briefly describe this
procedure, and only for a single processor schedule. For multiple processors, the procedure must
be modified to construct an annotated precedence graph, which in turn can be used (in principle)
to construct multiprocessor schedules. The annotated precedence graph can also be used to check
for deadlock conditions, although in this paper we simply assume deadlock does not occur.

Constructing a single processor annotated schedule requires successively adding actors to a
schedule list , together with the annotations that enable them, until the number of invocations of

the actors forms a vector in the nullspace of the appropriate matrix , where

 is a vector of Boolean proportions for the Boolean tokens consumed in . Note that

is not well-defined for streams that have no Booleans consumed yet in , but these undefined
entries also cannot affect the system state, and hence can be ignored.

Define the state of the system to be the number of tokens on each arc (there are no delays on
Boolean arcs, recall). The initial state reflects the initial tokens on arcs with delays. We must also
uniquely label every Boolean token that is consumed in . In general, the number of tokens on

an arc may be a symbolic function of . With a given system state, some actors are condi-

tionally enabled. An actor is conditionally enabled if for some Boolean condition the number

of tokens on its input arcs is greater than or equal to the number of tokens it requires to fire. If

is a function that maps Boolean outcomes onto , then the number of tokens the actor puts

on its output arcs is times the number of tokens it produces on each output when it fires. This
symbolic function is used to update the state of the system after conditionally scheduling the
enabled actor. The number of firings of the actor is incremented by the symbolic function .

Scheduling is completed when the vector is in the nullspace of . Except for the

increased complication of having to manipulate symbolic expressions, the scheduling procedure
is not much more complicated than for the SDF case.

4.4. Conditions for Bounded Cycle Length

Elsewhere in this paper we assume that graphs do not deadlock; however, if deadlock actually
occurs, this fact will be detected during the process of building the annotated precedence graph
(if will be impossible to complete its construction). The existence of a bounded integer solution
to the balance equations, together with the successful construction of the annotated precedence
graph, are necessary and sufficient conditions for bounded cycle length. In addition to guarantee-
ing bounded memory requirements, this condition can be important in scheduling the graph with
a hard real-time constraint, as it may permit a proof that the constraint is always met regardless
of the Boolean outcomes.

4.5. Clustering

Some graphs do not have bounded cycle length, but nonetheless can be scheduled with bounded
memory. Consider the example in figure 15. This graph is strongly consistent, with

(31)

S
r S() Γ p S()()

p S() S p S()
S

S
p S()

B
B

0 1,{ }
B

B
r S() Γ p S()()

r p() 1 1 1 p1

1 p1−()
2

T

=

The Token Flow Model 18 of 22

offering one solution to the balance equations. However, this graph has no finite complete cycle.
To see this, let be the number of repetitions in any of actors 1, 2, and 3. Any complete cycle

 must have an equal number of firings of these three actors, as can be seen from (31). If is the

number of TRUE tokens consumed by actor 2 in , then

. (32)

For any , the last entry may not be an integer.

Consider clustering the graph as shown in figure 15. Actors 1, 2, 3, and 4 are collected into a
cluster that internally has a complete cycle and an easily derived annotated schedule. Moreover, a
bounded memory schedule can be constructed as follows:

repeat_forever {
n=0;
do {

fire 1;
fire 3;
fire 2;
if (t) fire 4;
n += t;

} while (n < 2);
}

In this pseudo-code notation, we use “t” to denote the Boolean value of the token produced by
actor 3. It takes on value 0 or 1.

We have developed systematic methods for constructing clusters like that in figure 15. The
method is related to the loop-scheduling of Bhattacharyya and Lee [Bha92], but generalized
beyond SDF graphs. Briefly, these methods begin a cluster with a single actor, and augment the
cluster with a new actor when

1. the new actor has the same “sample rate” as the cluster (on the connecting arc, the source
actor always writes the same number of tokens that the destination actor reads);

2. the augmented cluster has a finite complete cycle, and

b1 1

3

1

Figure 15: A graph that can be executed in bounded memory, but has no finite
complete cycle. Actors 1 to 4 considered alone, however, do have a complete cycle; we

can treat them as a cluster and execute the cluster until actor 5’s requirements are met.

S
W

IT
C

H

T

F

1

5

4

2

1

1 1

2

N S
S t1

S

r p S()() N N N t1

N t1−
2

T

=

N

Buck and Lee 19 of 22

3. when the augmented cluster is treated as an atomic actor, the graph does not deadlock.

The final test requires a conceptually straightforward extension of the reachability matrix test in
[Bha92] to perform symbolic manipulations, rather than just numeric. When a cluster can no
longer be augmented, it is treated as an atomic unit and invoked however many times are
required to match the “sample rates” of its neighbors. In this repeated invocation of the cluster,
we allow an unbounded number of invocations, implemented by embedding the schedule for the
cluster inside a while loop. We can still guarantee bounded memory requirements because the
cluster internally repeats a complete cycle, and hence has bounded memory requirements. Repe-
tition for a fixed number of cycles and conditional execution are also permitted.

Once a cluster is repeated so that it matches its neighbors, more merging is possible; the process
of merging actors into clusters, and of looping the clusters, is repeated until no more changes are
possible. The resulting hierarchical structure of clusters reflects the loop structure of the dataflow
graph, with loops, if-then, and do-while constructs.

This procedure is precisely the reverse of the “well-behaved dataflow graph” approach of
[Gao92]; instead of building up the dataflow graph out of bounded subunits, the clustering algo-
rithm finds the well-behaved subunits. Consequently, it also permits constructs that are not “well-
behaved” but nevertheless correspond to useful and correct programs.

4.6. State Enumeration

A more difficult example is shown in figure 16. This graph is strongly consistent, with

(33)

satisfying the balance equations, assuming . The difficulty arises when we try to con-

struct a finite complete cycle, and we discover that we cannot assure that . Hence, a

schedule with repetition vector

(34)

may not satisfy the balance equations. The solution is two-fold. First, we cluster the graph as
shown in figure 16. The cluster is internally SDF and can be cyclically scheduled using the firing
sequence . Then we construct a schedule that returns the cluster to its original

state:

S
W

IT
C

H

T

F
1 54

1

b2
1

S
E

LE
C

T

3

T

F
2

b1
1

1 1 1

1

11

Figure 16: A do-while construct. This graph is strongly consistent, and can execute
in bounded memory, but it has no finite complete cycle. Constructing a static

schedule requires both clustering and state enumeration.

FALSE

r p() 1 p1−() 1 1 1 p2()
T

=

p1 p2=
t1 t2=

r p S()() N t1−() N N N t2()
T

=

S1 2 3 4, ,{ }= S2

The Token Flow Model 20 of 22

do {

fire ;

} while (= TRUE);

Treated as a unit, the cluster always consumes and produces exactly one token, so the resulting
schedule is

. (35)

For this purpose, the “state” of a dataflow graph has two components, the number of tokens on
each arc, and the value of any Boolean tokens on Boolean arcs.

An alternative approach is to construct a schedule with the repetition vector given by (34) with
, and observe that two possible states can result from executing this schedule. One of

these states is the original state, denoted . The second is a new state, , shown in figure 17. If

a schedule with repetition vector (34) is applied to the starting state , then exactly two ending

states are possible, and . Consequently, a schedule with repetition vector (34) can be

repeated indefinitely with no difficulty.

Yet a third alternative approach is to construct a preamble, or initial schedule that transforms the
graph into one that has no delays on Boolean arcs. For the graph in figure 16, firing actors 1 and
2 constitute such a preamble. After the preamble has executed, then ordinary scheduling methods
can be applied.

4.7. Scheduling Graphs That Require Unbounded Memory

All three methods fail, however, for the graph in figure 13. The number of states that would need
to be considered is unbounded. For this graph, we offer no alternative to dynamic scheduling
with dynamic memory allocation. However, the clustering algorithm still finds well-behaved
substructures in the graph; by clustering the graph as much as possible, we reduce the amount of
dynamic memory allocation and scheduling that is required.

Some complex and irregular graphs will not be successfully clustered by our algorithm, and state
enumeration requires a heuristic to avoid exploring the (possibly infinite) state space forever.
Because of this, some graphs that have bounded-memory schedules may not be handled success-
fully by these techniques. If so, some dynamic memory allocation will be used although it is not
actually required. However, graphs composed only of the “well-behaved” structures appearing in
the dataflow literature are handled successfully (e.g. [Den75],[Gao92]).

S1

b1

S 1 S2 5, ,{ }=

N 1=
Σ

1
Σ

2

S
W

IT
C

H

T

F
1 54

1

b2
1

S
E

LE
C

T

3

T

F
2

b1
1

1 1 1

1

11

TRUE

Figure 17: One of two possible ending states for the graph in figure 16 after
executing a schedule with repetition vector given by (34).

Σ
2

Σ
1

Σ
2

Buck and Lee 21 of 22

5. Conclusions

Dataflow graphs that are strongly consistent and have finite complete cycles can always be
scheduled statically and executed in bounded memory. Some strongly consistent graphs without
finite complete cycles can also be executed in bounded memory. We have described a clustering
technique that can identify such graphs and construct their schedules. However, some perfectly
correct graphs may not fit the models described. To execute these, we must resort to the much
more costly methods of dynamic scheduling and memory allocation. Nonetheless, even within
such uncooperative graphs, large subgraphs are likely to be consistent and have finite complete
cycles. These subgraphs should be statically scheduled and memory should be statically allo-
cated. The cost of dynamic scheduling and memory allocation should be incurred only where
absolutely necessary.

6. References

[Arv82] Arvind and K. P. Gostelow, “The U-Interpreter”, Computer, 15(2), February 1982.

[Arv86] Arvind and D. E. Culler, “Managing resources in a parallel machine”, in Fifth Generation Com-
puter Architectures, pp. 103-121. Elsevier Science Publishers, 1986.

[Ben88] A. Benveniste, B. Le Goff, and P. Le Guernic, “Hybrid Dynamical Systems Theory and the

Language SIGNAL”, Research Report No. 838, April 1988, Institut National de Recherche en

Informatique et en Automatique (INRIA), Domain de Voluceau, Rocquencourt, B.P. 105, 78153

Le Chesnay Cedex, France.

[Ben90a] A. Benveniste and P. Le Guernic, “Hybrid Dynamical Systems Theory and the SIGNAL Lan-

guage”, to appear in IEEE Trans. on Automatic Control, May, 1990.

[Ben90b] A. Benveniste and P. Le Guernic, “A Denotational Theory of Synchronous Reactive Systems”,

to appear in Information and Computation, 1990.

[Bha92] S. Bhattacharyya and E. A. Lee, “Scheduling Synchronous Dataflow Graphs for Efficient Loop-

ing,” to appear in J. of VLSI Signal Processing, 1992.

[Bie90] J. Bier, E. Goei, W. Ho, P. Lapsley, M. O’Reilly, G. Sih and E.A. Lee, “Gabriel: A Design Envi-

ronment for DSP,” IEEE Micro Magazine, October 1990, Vol. 10, No. 5, pp. 28-45.

[Buc91] J. Buck, S. Ha, E. A. Lee, and D.G. Messerschmitt, “Ptolemy: A Platform for Heterogeneous

Simulation and Prototyping, to appear in Proc. 1991 European Simulation Conference, Copen-

hagen, Denmark, June 17-19, 1991.

[Dav82] A. L. Davis and R. M. Keller, “Data Flow Program Graphs”, Computer, 15(2), February, 1982.

[Den75] J.B. Dennis, “First Version Data Flow Procedure Language”, Technical Memo MAC TM61,

May, 1975, MIT Laboratory for Computer Science.

[Hil89] P. N. Hilfinger, “Silage Reference Manual, DRAFT Release 2.0”, Computer Science Division,

EECS Dept., University of California, Berkeley, CA 94720, July 8, 1989.

[Kav86] K. Kavi, B. P. Buckles, U. N. Bhat, “A Formal Definition of Data Flow Graph Models,” IEEE
Trans. on Computers, C-35(11), November 1986.

[Kos78] P. R. Kosinski, “A Straightforward Denotational Semantics for Non-Determinate Data Flow

Programs”, Conf. Record of the 5th Ann. ACM Symp. on Principles of Programming Lan-
guages, Tuscon, AZ, 1978.

[Lee87a] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow Programs for

Digital Signal Processing”, IEEE Trans. on Computers, January 1987.

The Token Flow Model 22 of 22

[Lee87b] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow” IEEE Proceedings, September,

1987.

[Lee91] E. A. Lee, “Consistency in Dataflow Graphs”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 2, No. 2, April 1991.

[LeG90] P. Le Guernic and T. Gautier, “Data-flow to Von Neumann: the SIGNAL approach”, in

Advanced Topics in Data-Flow Computing, ed. J.-L. Gaudiot and L. Bic, Prentice-Hall, 1991.

[Mcg82] J. R. McGraw, “The VAL Language: Description and Analysis”, ACM Trans. on Programming
Languages and Systems, 4(1), pp. 44-82, January 1982.

[Nik88] R. S. Nikhil, “ID Reference Manual”, Computation Structures Group Memo 284, August 29,

1988, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139.

[Pin85] K. Pingali and Arvind, “Efficient Demand-Driven Evaluation. Part I”, ACM Trans. on Program-
ming Languages and Systems, Vol. 7, No. 2, April 1985, p. 311-333.

[Pri91] H. Printz, “Automatic Mapping of Large Signal Processing Systems to a Parallel Machine,”

Memorandum CMU-CS-91-101, School of Computer Science, Carnegie Mellon University,

Ph.D. Thesis, May 15, 1991.

[Sih91] Gilbert C. Sih, “Multiprocessor Scheduling to Account for Inter-processor Communication”,

Ph.D. Thesis, Memorandum No. UCB/ERL M91/29, UC Berkeley, CA 94720, April 22, 1991.

[Tur81] D. A. Turner, “The Semantic Elegance of Applicative Languages”, Proc. of the ACM Conf. on
Functional Programming Languages and Computer Architecture, (Portsmouth, N.H., 1981), p.

85-92.

[Wen75] K.-S. Weng, “Stream-Oriented Computation in Recursive Data Flow Schemas”, Laboratory for

Computer Science (TM-68), MIT, Cambridge, MA 02139, Oct. 1975.

