ACKNOWLEDGEMENTS

| am deeply grateful to my advisor Professor Edward Lee for his support
and patience, and for his kindness and his great enthusiasm for research, which
have made it a tremendous pleasure and inspiration to work with him.

The work presented in this thesis includes significant contributions from
several people. Joseph Buck and Soonhoi Ha carried out a large part of the imple-
mentation of the scheduling framework that is central to the thesis. The work on
chain structured graphs, described in Section 3.3, was done jointly with Praveen
Murthy. Finally, Tom Parks, Alan Peevers, and Sam Sheng developed applications
that proved very useful for demonstrating features of the main algorithms devel-
oped in this thesis.

| thank my colleagues Alan Kamas, Praveen Murthy and Juergen Teich for
the helpful suggestions that they made while reviewing the first draft of this thesis.
Sebastian Ritz of the Aachen University of Technology made several helpful com-
ments while reviewing an early draft of the paper in which I first presented many
of the principles in Chapters 2 and 3. For their helpful suggestions, | also thank the
anonymous reviewers of submission #SP-6606 to the IEEE Transactions on Signal
Processing and submission #FORM93014 to the Journal of Formal Methods for
System Design.

| will greatly miss my office-mates Alan Kamas, Praveen Murthy, and
Sriram. | enjoyed and learned a great deal from the numerous discussions that |
had with them. | also had many enlightening conversations with Dev Chen, Cor-

mac Conroy, Phil Lapsley, Jose Pino, and Kennard White.

Vi

6 REFERENCES

3.3.3 Example: Sample Rate Conversion.............c.cceeeeeennnneee 143

3.3.4 EXIENSIONS. ...ttt 145
3.4 Related WOrKcoooiiiiii e 147
3.4.1 Loop Scheduling in Gabriel..............ccoovvviiiiiiiiiciieeen. 147
3.4.2 Buck’s Loop Schedulercccuuiiiiiiiiiiiiiiiie 153
3.4.3 VECIONZALION ...cceiiiiiiiiiiiee et 160
3.4.4 Minimum Activation Schedules in COSSAP................ 167
3.4.5 TRresholdsocooiiiiiiiiiee e 174
4 INCREASING THE EFFICIENCY OF BUFFERINGccccooviiveiiinnnn. 178
4.1 INtrOAUCTION ..ceeieiieee et 178
4.1.1 Code Generation for Looped Schedules.............cc.eeee.... 180
4.1.2 Modulo AdAreSSingccoveviviiieeiiiiiiiiie e 185
4.2 BUfEr PArametersuuuiiiiiiiiiiiiieiieiee e 186
4.2.1 Static VS. DYNamIC......cccvvviiiiieeiiiiiie e 187
4.2.2 Contiguous VS. Scatteredcccvvveeeeeeieiiiiieeeeeees 189
4.2.3 Linear vs. ModUIOccoooviiiiiiiiieee e 191
4.3 Increasing the Efficiency of Static BUffers........ccccccccceviiiinninnn, 192
4.4 Overlaying BUfferS.......ccooooiiiiiiii e 198
4.4.1 Fragmenting Buffer Lifetimes...........cccccvviiiiiieiiiiiinnnnnn. 198
4.4.2 Computing Buffer Periods...........cccccceeivieiviiiiiiic e, 201
4.4.3 Contiguity Constraints for Dynamic Buffers 209
4.5 Eliminating Modulo Address Computations..............cccccceeeieeeeenns 216
4.5.1 Determining Which Accesses Wrap Around 217
4.5.2 HaNdIiNG LOOPSoeiiiiiiiieeeeeeie et 223
4.6 SUMIMAIY ..oiiiiiiiiiiiiiiiiaaa e e e e e e e e et e e e e e r e e e e e e e e e e e eeeeeeennnnnnes 224
S FURTHER WORK ... 227
5.1 Tightly Interdependent Graphsieiiiiiiiiieeee e 228
5.2 BUMEIING oo 230
5.3 Parallel Computation...............ouvuuiiiiiiiiiiiieee e 231

Table of Contents

1 INTRODUCTION. ..ottt e e et eeeeaeaans 1
1.1 DABFIOW ... 7
1.2 Synchronous Datafloweeeeeeiiiiiiiiiiiiiiii e 11
1.3 Compilation MOdEelceiiiiiiiiiiiiiiiecer e 18
1.4 SCRedUIING.....coo oo 24
1.4.1 Constructing Efficient Periodic Schedules...................... 24
1.4.2 Related WOrK........coooiiiiiiiiiieeee e 27
1.5 An Overview of the Remaining Chapters.........ccccccceeieiiiiiieeeeeeeee, 33
2 LOOPED SCHEDULES ...t 36
2.1 BaCKQrOUNGouiiiiiiiiiie e 36
2.1.1 Mathematical Terms and Notationccccceeevvviiiinnee 36
2.1.2 Graph CONCEPLS ..covvviiiiiiiiiie e 37
2.1.3 Synchronous Dataflowcccccceeeeiiiiiiiiiiiiiiiiieeeee 42
2.1.4 Computing the Repetitions Vector............cccccveeeeeevevnnnnnn. 52
2.1.5 Constructing a Valid Schedule.............ccoooiiiiiiiiiiiieee. 53
2.2 Looped Schedule Terminology and Notation............ccceeeeevevvinnnnnnn. 54
2.3 Non-connected SDF Graphs ... 59
2.4 Factoring Schedule LOOPS......ccuvuuiiiiiiiiiiiiii et 69
2.5 Reduced Single Appearance Schedules...........cccccvciciiiiiiieeeeeeeenennn, 87
2.6 SUbINAEPENUENCEuiiiiiieii e 91
3 SCHEDULING TO MINIMIZE CODE SIZE.........ccooviiiiiieiiiiieeeeeeen 101
3.1 Loose Interdependence AlQorithmsccoovviiiiiiiiiiiiiiieeeeeeee, 102
3.2 Clustering in a Loose Interdependence Algorithm 116
3.3 Minimizing Buffer Memory: Chain-Structured Graphs 129
3.3.1 A Class of Recursively Constructed Schedules............. 132
3.3.2 Dynamic Programming Algorithm ... 138

Our scheduling framework provably synthesizes the most compact looping struc-
tures for a certain class of SDF graphs, and from our preliminary observations this
class appears to subsume most practical SDF graphs. Also, by modularizing differ-
ent components of the scheduling framework and establishing their independence,
we demonstrate how two additional scheduling objectives — decreasing the mem-
ory required for data buffering and increasing the amount of buffering that occurs
through registers — can be incorporated in a manner that does not conflict with the
goal of code size compactness. We carry out these additional optimization objec-
tives through graph clustering techniques that avoid deadlock and that fully pre-
serve the compact loop structures offered by the original graph.

We also present compile-time techniques for improving the efficiency of
buffering for a given uniprocessor schedule. The optimizations include dataflow
analysis techniques to statically determine buffer addressing patterns; examination
of the loop structures in a schedule to provide flexibility for overlaying buffer
memory; and techniques to optimize the management of circular buffers, which
are useful for implementing dataflow links that have delay and for reducing mem-

ory requirements.

Edward A. Lee, Thesis Committee Chairman

Abstract

COMPILING DATAFLOW PROGRAMS FOR
DIGITAL SIGNAL PROCESSING

by
Shuvra Shikhar Bhattacharyya
Doctor of Philosophy in Electrical Engineering

Professor Edward A. Lee, Chair

The synchronous dataflow (SDF) model has proven efficient for represent-
ing an important class of digital signal processing algorithms. The main property
of this model is that the number of data values produced and consumed by each
computation is fixed and known at compile-time. This thesis develops techniques
to compile SDF-based graphical programs for embedded signal processing appli-
cations into efficient uniprocessor implementations on microprocessors or pro-
grammable digital signal processors. The main problems that we address are the
minimization of code size and the minimization of the execution time and storage
cost required to buffer intermediate results.

The minimization of code size is an important problem since only limited
amounts of memory are feasible under the speed and cost constraints of typical
embedded system applications. We develop a class of scheduling algorithms that
minimize code space requirements without sacrificing the efficiency of inline code.
This is achieved through the careful organization of loops in the target program.

1

Compiling Dataflow Programs for Digital Signal Processing

Copyright 1994

by
Shuvra Shikhar Bhattacharyya

Memorandum UCB/ERL M94/52, Electronics Research Laboratory,
University of California at Berkeley, July, 1994.

Compiling Dataflow Programs for Digital Signal Processing
by
Shuvra Shikhar Bhattacharyya

B.S. (University of Wisconsin at Madison) 1987

M.S. (University of California at Berkeley) 1991

A dissertation submitted in partial satisfaction

of the requirements for the degree of
Doctor of Philosophy

in

Engineering — Electrical Engineering
and Computer Sciences

in the
GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY
Committee in charge:
Professor Edward Lee, Chair

Professor David Culler
Professor Charles Pugh

Soonhoi Ha, a post-doctoral fellow at U.C. Berkeley at the time and now a lecturer
at Seoul National University.

In Chapter 3, for a restricted class of SDF graphs, we also present a tech-
nique that computes the single appearance that minimizes the memory required for
buffering over all single appearance schedules. This work was done jointly with
Praveen Murthy, a fellow graduate student at U. C. Berkeley.

In Chapter 4, we present techniques for improving the efficiency of buffer-
ing for a given uniprocessor schedule. The optimizations include compile-time
dataflow analysis techniques to determine as much as possible about addressing
patterns; analysis of the loop structures in a schedule to provide flexibility for
overlaying buffer memory to a storage allocator; and techniques to optimize the
management ofircular, or modulq buffers, which are useful for implementing
dataflow edges that have delay. Finally, in Chapter 5, we discuss directions for

related future work.

35

applying the factoring transformation. It is shown that a fully reduced single
appearance schedule can be constructed from any legitimate single appearance
schedule, and that under certain assumptions, the memory required for buffering
by the fully reduced schedule is less than or equal to the memory required for buff-
ering by the schedule from which it is derived.

We also show that any fully reduced schedule has unit block factor. Since a
fully reduced single appearance schedule can be derived from any single appear-
ance schedule, it follows that the existence of a single appearance implies the
existence of a single appearance schedule that has unit blocking factor. We discuss
the implications that this fundamental property has on code generation, and later
we apply this property to help establish a recursive necessary and sufficient condi-
tion for the existence of a single appearance schedule. To develop this condition,
we also apply a special form of precedence independence, sal@tdepen-
dence for strongly connected SDF subgraphs.

In Chapter 3, we apply the concept of subindependence and our condition
for the existence of single appearance schedules to develop a general class of
scheduling algorithms, and we establish that all algorithms in this class guarantee
certain useful properties of code size compactness. We also demonstrate how algo-
rithms in this class can be tailored to additional scheduling objectives while main-
taining the properties of compact code size. Two specific additional objectives are
addressed: increasing the amount of buffering performed in registers and minimiz-
ing the amount of memory required for buffering. The scheduling framework
defined in Chapter 3 has been implemented in Ptolemy, a design environment for
simulation, prototyping, and software synthesis of heterogeneous systems
[Buck92]. A large part of the implementation in Ptolemy was performed by Joseph

Buck, a graduate student colleague at the time and now with Synopsys Inc., and

34

rithms developed by How and Buck. Finally, we will also exantimesholds a
technique primarily used to compile procedural code for vector machines in which
vector instructions on short vectors are cost-effective. The problems addressed by
thresholds are closely related to issues encountered when scheduling loops from
SDF graphs, particularly the issues discussed in [Ritz93] on constructing minimum

activation schedules.

1.5 An Overview of the Remaining Chapters

In this introductory chapter, we have described the use of synchronous
dataflow as an underlying model for block diagram programming of embedded
digital signal processing applications. We have also defined a compilation model
for synthesizing software from SDF-based graphical programs, we have discussed
how scheduling plays a central role in this compilation process, and we have
defined the class of single appearance schedules, which minimize code size under
inline code generation.

In the following chapter, we formally review the basic concepts introduced
casually in this chapter, and we build on the fundamental principles of SDF to
develop a formal framework for constructing and manipulating schedules that con-
tain loops. This framework is used first to present a technique, tadkeding, for
transforming a schedule into an alternative schedule that carries out the same com-
putation, but with lower memory cost to implement the FIFO buffers correspond-
ing to the graph edges. The concept of factoring is then applied to define a form a
single appearance schedule, calleflily reduced schedulevhich is roughly a
single appearance schedule that results when the factoring transformation is

applied to a given single appearance schedule until no more opportunities exist for

33

ule. Although How demonstrated that this approach often produced compact
schedules, the technique did not adequately exploit looping opportunities that
occur across subsystems that are iterated at different rates, and no systematic
method was provided for avoiding or recovering from consolidations that pro-
duced deadlock. How’s technique was subsequently extended to overcome these
shortcomings [Bhat93], and the resulting scheduler, implemented in Ptolemy, was
significantly more thorough in extracting looping opportunities. However, due to
its use of a data structure that could grow exponentially with the size of the SDF
graph, this scheduler became inefficient for graphs having large sample rate
changes. An alternative loop scheduling algorithm was developed by Buck
[Buck93]. This algorithm, which was in some ways an extension of How's
scheme, was designed to be more time and space efficient that the technique of
[Bhat93] while exploiting looping opportunities almost as thoroughly.

At the Aachen University of Technology, as part of the COSSAP design
environment, the construction of compact schedules for SDF graphs was studied in
the context oiminimum activation schedul¢Ritz93]. A major objective in this
work was the minimization of context-switches that occur when distinct actors are
executed in succession, and it was found that single appearance schedules are ben-
eficial for this purpose. As one would expect, there are similarities between the
techniques developed in this work on minimum activation schedules and the tech-
niques developed in this thesis. The parallels between the work on minimum acti-
vation schedules and the techniques of this thesis are similar to the relationships
between two major approaches to the compilation of nested loop procedural code
for vector computers. In Section 3.4, we will discuss in detail the problems and
techniques involved in minimum activation schedules and in compiling nested

loops for vector computers. We will also elaborate on the loop scheduling algo-

32

that the unrolled version executes the correct number of iterations of the original
loop [Dong79]. As with unfolding, unrolling facilitates the exploitation of inter-
iteration parallelism at the expense of a roughly linear increase in code size.

A fourth example of a code-increasing program transformation is the dupli-
cation of code to eliminate unconditional branches [Muel92]. A significant number
of unconditional jumps is generated by typical compilers. For example, when gen-
erating code for an if-then-else construct, compilers often place an unconditional
branch at the end of thteen section that skips over the else section. Here, the
unconditional branch can be eliminated by appending to the then section a dupli-
cate copy of the code at the target of the branch. The benefits of such code replica-
tion include fewer instructions executed, better program locality and increased
opportunities for common subexpression elimination [Muel92].

In the application domain that we are concerned with in thesis — the
domain of embedded real-time digital signal processing systems — the price paid
for neglecting opportunities such as trace scheduling, loop unrolling, subroutine
inlining or unconditional branch elimination is usually dominated by the penalty
incurred when the target program does not fit within the on-chip memory limits.
Given an SDF graph, we would like to first generate an efficient compact imple-
mentation, and then, if there is any remaining on-chip program memory, we can
expand the code in a controlled manner to utilize it. In this thesis, we focus largely
on the first part of this process — generating an efficient uniprocessor implementa-
tion with a minimal amount of code space.

The problem of scheduling SDF graphs to minimize the code size expan-
sion of inline code generation was first addressed by How [How90] in the context
of the Gabriel project. How proposed a heuristic that involved consolidating sub-

systems of actors that were iterated the same number of times in a periodic sched-

31

that this is the minimum unfolding factor for which a rate-optimal schedule exists.
Thus, Chao’s techniques determine the rate-optimal schedule that has minimum
code size. A related problem has been addressed by Murthy in [Murt94b] for the
more restricted class of blocked schedules. It is shown that for a given homoge-
nous SDF graph, we can determine in a finite number of steps whether or not there
is a finite blocking factor for which a rate-optimal blocked schedule exists, and
when such a blocking factor exists, we can determine in a finite number of steps
the minimum blocking factor for which rate-optimal blocked schedules exist.

In contrast to our primary objective of minimum code size, many compilers
for procedural languages apply transformations that deliberately increase the code
size. One example is the inlining of subroutines, which we discussed in Section
1.3. Second, itrace schedulingcompile-time branch prediction is performed to
estimate the most likely execution path through a program, and this path, called a
trace, is scheduled as if it were a single basic block [Fish84]. This permits exploi-
tation of the most abundant source of instruction-level parallelism — reordering
code across basic block boundaries. For each instruction that moves across a basic
block boundary, recovery code may have to be inserted just off the trace. For
example, if along the trace, it is assumed that a particular conditional branch will
be taken, then each instruction migrated from after the branch to a point before the
branch may have to be “undone” if the branch is not taken. The insertion of such
recovery instructions increases the code size. Once the most likely trace has been
selected and reorganized, the next most likely trace is selected, and the process is
repeated for any desired number of traces.

In loop unrolling which is analogous to the unfolding of SDF graphs, the
body of a loop is replicated to cover more than one iteration, and the iteration

count is modified and possibly a prologue or epilogue is generated to guarantee

30

throughput attainable with a blocked schedule for this gra%—%—l , ihere

is the blocking factor. Thus, for Lee’s example, a blocked schedule cannot match
the performance of the given unblocked schedule for any finite blocking factor.

If inline code generation is performed and no looping is applied within a
period of the periodic schedule, then the total amount of code space (across all pro-
cessors) required to implement a general parallel periodic schedule is roughly pro-
portional to the unfolding factor.

Also, given a representation of a computation as a homogeneous SDF
graph, there is a fundamental upper bound on the throughput. This upper bound,
which was established by Reiter in [Reit68], can be computed as the minimum
over all directed cycles of the number of delays in a cycle divided by the sum of
the computation times of all actors in the cycle. A multiprocessor schedule is
called rate-optimalif it attains this throughput bound, and the reciprocal of the
rate-optimal throughput is called theration period bound

Thus, for a given homogeneous SDF graph, it is natural to ask if a rate-
optimal schedule is attainable with a finite unfolding factor, and if so, what is the
minimum unfolding factor that achieves the optimum throughput? In [Parh91],
Parhi established that if we allow non-blocked schedules, the answer to the first
guestion is always affirmative and provided a systematic technique for construct-
ing finitely-unfolded rate-optimal schedules. The required unfolding factor for
Parhi's scheme is the least common multiple of the number of delays in each
directed cycle. In [Chao93] Chao found techniques to achieve rate-optimal sched-
ules with lower unfolding factors, and hence lower code size. Chao showed that a
rate-optimal schedule can efficiently be constructed for an unfolding factor equal

to the denominator of the reduced-fraction form of the iteration period bound, and

29

buffering when large amounts of iteration are present in general SDF graphs.
However, a number of the parallel scheduling techniques for homogeneous
SDF graphs have important implications on code size. Many of these connections
are related to thenfolding factorof a parallel schedule. The unfolding factor of a
given periodic schedul® s the largest common factor (greatest common divisor)

of the actor invocation counts & (by the invocation count of an actdr in , we

simply mean the number of times that the actor is invoke in). The unfolding
factor can also be viewed as the numbeanmiimalperiodic schedules that exist in

the schedule. For example, a minimal periodic schedule for Figure 1.4(a) consists
of 1 invocation ofA ,2 invocations d8 ,amtl invocations®f . Any schedule
that invokesA B andC U 2U andlU times, respectively, for some positive

integerU , is also a periodic schedule, &hd s referred to amtbkling factor
of the schedule. For example, the unfolding factor of the schedule
A(2B)A(2B) (8C) is2.

A related term, which we will use extensively in this thesis, idblbeking
factor of a periodic schedule. The blocking factor of a periodic schedule is simply
the unfolding factor of &locked schedujevhich is an infinite repetition of a peri-
odic schedule in which each cycle of the schedule must complete before the next
cycle is begun. The distinctions between blocked and non-blocked periodic sched-
ules are only relevant in a parallel scheduling context, and for parallel schedules,
the increased flexibility offered by a non-blocked schedule can often provide more
throughput than is possible with any blocked schedule. For example, in [Lee86],
Lee presents a homogeneous SDF graph that can be executed at a throughput of
0.5 minimal schedule periods per time unit (assuming that each actor takes unit

time to execute) with a non-blocked schedule, and Lee shows that the best

28

see that the implementation of schedlle , which corresponds to the same invoca-
tion sequence as scheddle with no looping applied, requires seven code blocks.

In contrast, in schedulés aBd , each actor appears only once, and thus no code
duplication is required across multiple invocations of the same actor. We refer to
such schedules adngle appearancachedules, and we see that neglecting the
code size overhead associated with the loops, any single appearance schedule
yields an optimally compact inline implementation of an SDF graph with regard to
code size. Typically the loop overhead is small, particularly in many programma-
ble DSPs, which usually have provisions to manage loop indices and perform the
loop test in hardware, without explicit software control. A large part of this thesis

is devoted to studying properties of single appearance schedules, determining
when single appearance schedules exist, and systematically constructing single
appearance schedules whenever they exist. Additionally, we analyze the interac-
tion between the use of schedule loops to construct compact schedules and the effi-
ciency of buffering (the management of the FIFO queues corresponding to each
edge in the SDF graph), and we present techniques to construct schedules that

simultaneously minimize code size and support efficient buffering.

1.4.2 Related Work

Numerous research efforts have focused on constructing efficient parallel
schedules from SDF graphs. These efforts operateonorogeneouSDF graphs;
that is, SDF graphs in which each actor produces a single token on each output
edge and consumes a single token from each input edge. Since iteration within a
periodic schedule, as defined in Subsection 1.4.1, does not arise in homogeneous
SDF graphs, scheduling techniques for homogenous SDF graphs do not encounter

the central problem addressed in this thesis — the management of code size and

27

tokens produced and consumed by the incident actors; for exampleAactor pro-
duces two tokens each time it is invoked & d consumes one tokeB. The -to-
mismatch on the left edge implies that within a periodic scheddle, = must be
invoked twice for every invocation & . Similarly, the mismatch on the right edge
implies that we must invok€ twice for every invocatiorBof

Figure 1.4(b) shows four possible periodic schedules that we could use to

implement Figure 1.4(a). For example, the first schedule specifies that first we are
to invoke A , followed byB , followed byC , followed b again, followed by
three consecutive invocations Gf . The parenthesized terms in sch@duBes ,
and4 are used to highlight repetitive invocation patterns in these schedules. For
example, the ternf2BC) in schedule represents aloop whose iteration count is
2 and whose body is the invocation sequeB€&2 ; 10aB,C) represents the
firing sequencdCBC . Similarly, the ter2B (2C)) represents the invocation
sequenceBCCBCC . Clearly, in addition to providing a convenient shorthand,

these parenthesized loop terms, cafieddedule loopspresent the code generator
with opportunities to organize loops in the target program, and we see that sched-
ule 2 corresponds to a nested loop, while schedsiles 4and correspond to cas-
cades of loops. For example, if each schedule loop is implemented as a loop in the
target program, the code generated from schedule would have the structure
shown in Figure 1.4(c).

We see that if each schedule loop is converted to a loop in the target code,

then eachappearanceof an actor in the schedule corresponds to a code block in
the target program. Thus, since acr appears twice in schédule of Figure

1.4(b), we must duplicate the code block@r in the target program. Similarly, we

26

(@)

Periodic Schedules

(1). ABCBCCC
(2). A2 B(2 C))
(3). A2 B)(4 C)

(4). A(2 BC)(2 C)

(b)

for (i=0; i<2; i++) {
code block for B
code block for C

}

for (i=0; i<2; i++) {
code block for C

}

()

Figure 1.4.An example used to illustrate the problem of scheduling SDF
graphs to minimize code size.

25

size increase of a particular inlining application does not lead to an increase in exe-
cution time, it is not guaranteed that the inlining will not decrease performance.
This refutes the prior notion that the only detrimental affects of inlining are related
to increases in code size. However, Davidson’s study also shows that when the
code size increase is not a factor, inlining is advantageous most of the time. Our
use of inline code generation is motivated by this premise that if the code size
increase is tolerable, then inline code generationsiglly more efficient than
heavy use of subroutines, and it is a main purpose of this thesis to examine the lim-
its to which we can exploit inline code generation under strict memory constraints

when compiling SDF programs.

1.4 Scheduling

1.4.1 Constructing Efficient Periodic Schedules

This section informally outlines the interaction between the construction of
periodic schedules for SDF graphs and the memory requirements of the compiled
code; also we review related work, particularly those efforts that involve interac-
tion between scheduling and memory requirements in other contexts. In Section
3.4, we will elaborate in detail on the research efforts that are most closely related
to the techniques developed in this thesis.

To understand the problem of scheduling SDF graphs to minimize code
size, it is useful to examine closely the mechanism by which iteration is specified
in SDF. In an SDF graph, iteration of actors in a periodic schedule arises whenever
the production and consumption parameters along an edge in the graph differ

[Lee88a]. For example, consider the SDF graph in Figure 1.4(a), which contains

three actors, labeled B ar@ . Each edge is annotated with the number of

24

operations an@0 restore operations. On the other haid, if is inlinkd in , as
shown in Figure 1.3(b), then under the callee-save convention, the save/restore
operations ofB are moved to a location where they must be executed more fre-

quently, and thelO calls t& now result49 save operations4énd restore
operations.

In [Davi92] it is explained that inlining can also degrade performance with
a caller-saveconvention, in which the registers used by the calling subroutine are
saved by the caller just before transferring control to the callee, and the caller
restores its registers just after control returns. It is also explained that the possible
penalties for using inlining with the callee-save or caller-save conventions can be
eliminated entirely through the application of dataflow-analysis. This has been
demonstrated for callee-save systems in [Chow88] and for caller-save systems in
[Davi89].

There is however one aspect of the negative interaction between inlining
and register allocation that is not simply an artifact of typical compiler implemen-
tations. This is that variables of a subroutine that are placed in registers can be dis-
placed to memory in inlined versions of the subroutine. This can lead to inefficient
register allocation if frequently used variables are involved. Theoretically, this
problem can be avoided since register assignments in inline code can be custom-
ized according to the context at the inlining boundaries, and thus, better register
allocation is possible with inlined coded than with noninlned code. However, effi-
ciently exploiting these opportunities for improvement is difficult, and it remains a
challenge to systematically perform register allocation of inlined code in such a
way that an improvement is consistently obtained over the register allocation of
corresponding noninlined code [Davi92].

An important conclusion from Davidson’s study is that even if the code

23

procedure A
save r0
saverl

if (x> 0) then
call B Body of procedure A
endif

(@) restore r0
restore rl

procedure B
save r2
save r3

body of procedure B

restore r2
restore r3

procedure A
save r0
save rl
save r2
save r3
if (x > 0) then

(b) body of procedure B

endif

restore rO
restore rl
restore r2
restore r3

Figure 1.3.An example of how inlining can increase register-memory traffic
under a callee-save register save/restore convention.

22

get code if inline code generation is applied with out employing any looping, while
by carefully applying loops, the target code can be reduced to only 70 code blocks.
A large part of this thesis is devoted to the construction of efficient loop structures
from SDF graphs to allow the advantages of inline code generation under stringent
memory constraints. We will elaborate on this problem informally in the following
section, and then present it formally in Chapter 2.

Until recently, it was widely believed that increased code size was the root
cause of all aspects of the subroutine/inline code trade-off that favor the use of
subroutines. However, experimental and analytical studies performed by Davidson
revealed that inlining can also have a negative impact on register allocation
[Davi92]. These effects however are largely artifacts of code generation conven-
tions in modern compilers. For example, consider the conventiatieke-save
method of maintaining the integrity of registers across subroutine calls. In this
convention, the values in the registers used by a subroutine are saved (stored to
memory) upon entry to the subroutine, and the saved values are restored in the cor-
responding registers just before returning from the subroutine.

Figure 1.3 shows an example of how this convention can cause inlining to

increase the amount of register-memory traffic in a program. Figure 1.3(a) shows
an outline of the compiled code for two procedukes Bnd ,wBiere s called by
A. Here,x is a global variable, and th&@veandrestoreoperations represent the
register-memory and memory-register transfers involved in saving and restoring
the registers used by a procedure. Also, we assum&that contains no subroutine
calls, and the only subroutine callAn is the calBto that is shown. If procedure
A is called10 timesx is positive exacth0% of the time, &hd is not inlined

in A, then it is easily verified that the callsAo resultin a tot@®mf register save

21

of the techniques developed in this thesis can be applied to synthesis; however, for
clarity, we consistently use the threading model throughout the thesis.

In our application of threading, we perform strictly inline code generation.
An alternative would be to define a subroutine for each actor and map the periodic
schedule into a list of subroutine calls. However, each subroutine call induces run-
time overhead. The principal components of the subroutine overhead come from
saving the return address, passing arguments, allocating and deallocating local
variable storage, branching to the subroutine, retrieving the return address, return-
ing control from the subroutine, and saving and restoring the state of machine reg-
isters. Clearly if subroutines are used, the total subroutine overhead can be very
detrimental if there are many actors of small granularity. The main reason that we
prefer inline code over subroutines is to avoid subroutine overhead.

There is a danger, however, in using inline code, particularly for embedded
system implementations, which typically can afford only very limited amounts of
memory. The danger is that unmanageably large code size can result from actors
that are invoked multiple times in the periodic schedule. For example, if an actor is
invoked 100 times in the schedule, a straightforward inline implementation of the
schedule will require 100 copies of the actor’s code block to be inserted in the tar-
get code. Clearly, such code duplication can consume enormous amounts of mem-
ory, especially if complex actors having large code blocks are involved or if high
invocation counts are involved.

Generally, the only mechanism to combat code size explosion while main-
taining inline code is the use of loops in the target code. Clearly, if an actor’s code
block is encapsulated by a loop, then multiple invocations of that actor can be car-
ried out without any code duplication. For example, for the system in Figure 1.1,

as it is represented in Ptolemy, over 9000 actor code blocks are required in the tar-

20

Actor Library

'

Code Generator

¢

Storage
Allocation

periodic

Scheduler schedule

Target Code

Figure 1.2 Compiling an SDF graph.

inserts the necessary instructions to route the data appropriately between actors
and assigns variables to memory locations. The output of this storage allocation
phase is the target program.

This form of block diagram compilation is referred tdatasading[Bier93]
since the target program is formed by linking together predefined code blocks. An
alternative approach, calleynthesisinvolves first translating the block diagram
to an intermediate language — possibly by threading code blocks that are defined
the intermediate language — and then compiling the intermediate language into C
or assembly language. Examples of code generation systems that use the synthesis
approach are the GOSPL [Covi87] and QuickSig [Karj88] systems, which first

translate the block diagram to LISP, and the Mentor Graphics DSP Station. Most

19

Although the techniques in this thesis are presented in the context of block
diagram programming, they can be applied to other DSP design environments.
Many of the programming languages used for DSP, such as Lucid[Asch75],
SISAL[McGr83] and Silage[Geni90] are based on or closely related to dataflow
semantics. In these languages, the compiler can easily extract a view of the pro-
gram as a hierarchy of dataflow graphs. A coarse level view of part of this hierar-
chy may reveal SDF behavior, while the local behavior of the macro-blocks
involved are not SDF. Knowledge of the high-level synchrony can be used to apply
“global” optimizations such as those described in this thesis, and the local sub-
graphs can be examined for finer SDF components. For example, in [Denn92],
Dennis shows how recursive stream functions in SISAL-2 can be converted into
SDF graphs. In signal processing, usually a significant fraction of the overall com-
putation can be represented with SDF semantics, so it is important to recognize

and exploit SDF behavior as much as possible.

1.3 Compilation Model

Figure 1.2 outlines the process of compiling an SDF block diagram pro-
gram that is used in the Gabriel [Ho88a] and Ptolemy [Pin094] systems. This is the
compilation model that the techniques in this thesis are geared towards. The com-
pilation begins with an SDF representation of the block diagram program specifi-
cation and from this SDF graph, a periodic schedule is constructexhdé
generatorsteps through this schedule and for each actor instance that it encoun-
ters, it generates a sequence of machine instructions, obtained from a predefined
library of actor code blocks, that implements the actor. The sequence of code

blocks output by the code generator is processed by a storage allocation phase that

18

single input to each of two outpuisut, aodt, , in alternation. In cyclo-static

dataflow, this operation can be represented as an actor that consumes one token on
its input edge, and produces tokens according to the periodic pat@rh Q ...
(one token produced on the first invocation, none on the second invocation, one on

the third invocation, and so on) on the output edge correspondiagtfo , and

according to complementary pattednl, O 1, ... on the edge corresponding to
out,. A general cyclo-static dataflow graph can be compiled as a cyclic pattern of

pure SDF graphs, and static periodic schedules can be constructed in this manner.
A major advantage of cyclo-static dataflow is that it can eliminate large amounts of
token traffic arising from the need to generate dummy tokens in corresponding
SDF representations [Lauw94]. This leads to lower memory requirements and
fewer run-time operations.

The techniques of this thesis are developed for pure (unidimensional) SDF
graphs. Due to the close relation between SDF and Lee’s multidimensional SDF,
they can easily be extended work with multidimensional SDF. However, how the
techniques are best extended to the other models described above is not obvious
and calls for further investigation.

To avoid confusion, we emphasize that SDF is not by itself a programming
language but a model on which a class of programming languages can be based. A
library of predefined SDF actors together with a means for specifying how to con-
nect a set of instances of these actors into an SDF graph constitutes a programming
language. Augmenting the actor library with a means for defining new actors, per-
haps in some other programming language, defines a more general SDF-based pro-
gramming language. This thesis presents techniques to compile programs in any

such language into efficient implementations.

17

amount of memory required (for buffering) can be determined at compile-time.
Buck presents techniques for finding finite complete cycles whenever they exist,
and heuristic techniques are developed to efficiently deal with graphs that don't
have finite complete cycles or cannot be implemented with bounded memory.

In [Gao92], Gao et al. have studied a programming model in which non-
SDF actors are used only as part of predefined constructs. Of the two non-SDF
constructs provided, one is a conditional construct, and the other is a looping con-
struct in which the number of iterations can be data-dependent. This restriction on
the use of more general actors guarantees that infinite schedules can be imple-
mented with bounded memory. However, Gao's model, although more general
than SDF, has significantly less expressive power than the token flow model of
Buck.

Third, Lee has proposed a multidimensional extension of SDF [Lee93] in
which actors produce and consume&imensional rectangles of data, and each

edge corresponds to a semi-infinite multidimensional sequence

{an, n, ---,nm| (0sny, N, ...,n <o)} . For example, an actor can be specified

to produce & x 3 grid consisting of six tokens each time it is invoked. Lee dem-
onstrated that in addition to substantially improving the expressive power of the
unidimensional SDF model, multidimensional SDF also exposes parallelism more
effectively than unidimensional SDF.

Also, in [Lauw94], Lauwereins et al. have proposed a minor but very use-
ful generalization of the SDF model, callegclo-static dataflowln cyclo-static
dataflow, the number of tokens produced and consumed by an actor can vary
between firings as long as the variations form a certain type of periodic pattern.

For example, consider distributor operator, which routes data received from a

16

graph has a periodic schedule that neither deadlocks nor requires unbounded
buffer sizes [Lee87]. They also defined a general and efficient framework for con-
structing such a periodic schedule whenever one exists. The suitability of SDF for
describing a large class of useful signal processing applications and the facility for
achieving the advantages of static scheduling have motivated the use of SDF and
closely related models in numerous design environments for DSP [Lauw90,
Lee89, Ohal91, Prin92, Ritz92, Veig90]. A large part of this thesis is devoted to
constructing static periodic schedules in such a way that the resulting target pro-
gram is optimized.

A number of generalizations of the SDF model have been studied. In these
new models, the methods for analyzing SDF graphs were extended or combined
with additional techniques to incorporate actors that are more general than SDF,
along with, in most cases, new techniques for constructing schedules. The objec-
tives were to maintain at least a significant part of the compile-time predictability
of SDF while broadening the range of applications that can be represented, and
possibly, allowing representations that expose more optimization opportunities to a
compiler. An example is theoken flow modelwhich was defined by Lee in
[Lee91] and explored further by Buck in [Buck93]. In this model, the number of
data values produced or consumed by each actor is either fixed, as in SDF, or is a
function of a boolean-valued token produced or consumed by the actor. Buck
addresses the problem of constructing a non-null sequence of conditional actor
invocations, where each actor is either invoked unconditionally or invoked condi-
tionally based on the value of boolean tokens, that produces no net change in the
number of tokens residing in the FIFO queue corresponding to each edge. Such an
invocation sequence is referred to aomplete cycleand clearly, if a finite com-

plete cycle is found, it can be repeated indefinitely and a finite bound on the

15

continuously from the DAT player. Each rate-changing FIR filter is applied repeat-
edly to successive data items that emerge from the output of the previous stage of
the chain. In just 10 minutes, this system must process over 28 million input sam-

ples, and we see that it makes sense to model the input data sequeseeas a

infinite sequence that starts at some fixed time (the time when the system is acti
vated) and extends to infinity. Correspondingly, we model the computation repre-
sented in Figure 1.1 as an infinite sequence of actor executions.

Three important issues emerge when attempting to derive an implementa-
tion of an infinite schedule from a dataflow graph. First, infinite schedules have the
potential of requiring unbounded amounts of memory to buffer tokens as they are
gueued along the graph edges. Second, if deadlock arises, no more executions are
possible and the infinite schedule cannot be carried out; similarly, if a subsystem
becomes deadlocked, no more actors in that subsystem can be executed (even
though it may be possible to continue executing actors outside the subsystem). In
either case, if we are attempting to implement a system in which all operations are
applied repeatedly on conceptually infinite data, then deadlock indicates an error.

Finally, we must provide a mechanism to sequence the actor executions in
accordance with the given schedule. One option is to implement a software kernel
that dynamically detects which actors have sufficient data on their inputs to be
fired and determines when these actors are executed. However, the run-time over-
head of this scheme is undesirable, particularly when a significant percentage of
the invocations requires low computation time. An alternative is to store the sched-
ule in memory as an infinite loop, thereby achiestagic schedulingand clearly
this is only feasible if the schedulepsriodic

Lee and Messerschmitt resolved these issues for SDF graphs by providing

efficient techniques to determine at compile-time whether or not an arbitrary SDF

14

are applied repeatedly to samples in an indefinitely long sequence of input data,
and thus when applying a dataflow representation, it is mandatory that we support
infinite sequences of actor executions. For example, consider the block diagram
program shown in Figure 1.1, which is taken from a snapshot of a session with the
Ptolemy system [Buck92]. This program specifies a sample rate conversion system
developed by Thomas Parks, a graduate student at U. C. Berkeley, to interface a
digital audio tape (DAT) player to a compact disc (CD) player. The sample rates of

CD players and DAT players are, respectively, 44.1kHz and 48kHz, and the system

in Figure 1.1 shows a multistage implementation of the conversion between these

sample Rate Conversion use edit—comment
impulse 48 kHz - 44.1 kHz (147:160) for docurmentation
[,
ALt e EE 4B
45 32 Ft= = 44 1
100.3
E:.: DFT of the
- = % CIB @ impulze
72 response

Figure 1.1A snapshot of a session with the Ptolemy system [Buck92] that
shows a sample rate conversion system for interfacing between a digital
audio tape player and a compact disc player.

rates. The sample rate conversion is performed by three polyphase FIR filters that
respectively perform 3:2, 7:5 and 7:18 rate conversions, and the cascade of blocks
rooted at each filter’s output simply scales the corresponding signal and displays
its frequency content.

Now the system represented in Figure 1.1 would normally receive input

13

theoretical developments on the SDF model and their application to block diagram
programming of DSP algorithms. These principles will be reviewed rigorously
early in Chapter 2, and they will form much of the theoretical basis for the remain-
der of the thesis.

Important foundations for the SDF model were laid by the definition and
exploration ofcomputation graphby Karp and Miller roughly two decades before
the development of SDF [Karp66]. The computation graph model is equivalent to
SDF graphs, except that in addition to production and consumption parameters, an
additionalthresholdparameter is associated with each edge. This threshold param-
eter, which must be greater than or equal to the corresponding consumption param-
eter, determines the minimum number of tokens that must be queued on the edge
before the sink actor can be fired. Thus, an SDF graph is a computation graph in
which the threshold parameter of each edge equals the number of tokens consumed
from the edge per sink invocation.

Karp and Miller established that computation graphs determinate
which means that each computation graph uniquely determines the sequence of
data values produced on the edges in the graph; these sequences do not depend on
the scheduleof actor executions — that is, on the order in which the actors are
invoked. Also, they developed topological and algebraic conditions to determine
which subgraphs in a computation graph become deadlocked. For the problems
that computation graphs were designed to represent, only graphs that terminate —
that is, reach a deadlocked state — are correct, and thus, the results of Karp and
Miller do not lead to solutions for constructing efficient infinite schedules,
although the underlying concept of determinacy applies both to infinite and finite
schedules.

However, in DSP applications, we are often concerned with operations that

12

cepts to a limited degree [Chas84, Schm91].

In this thesis, we do not apply dataflow computers; instead, we apply the
concepts of dataflow as they relate to program representation. Another aspect in
which our use of dataflow differs from dataflow computers is in the complexity of
the actors — we applyraixed graindataflow model, meaning that actors can rep-
resent operations of arbitrary complexity, whereas dataflow computers operate on
fine grain or atomic dataflow graphs, where the complexity of the actors is at the
level of individual machine instructions. In the SDF-based design environments to
which this thesis applies, dataflow actors typically range in complexity from basic
operations such as addition or subtraction to signal processing subsystems such as
FFT units and adaptive filters. Finally, our use of dataflow is limited by the granu-
larity of each actor: we use dataflow to describe the interaction between actors, but
the functionality of each actor can be specified in any programming language, such
as C, as in [Ritz92]; LISP, as in [Karj88]; or a LISP/assembly language hybrid as
in [Lee89], where a high level language is used to customize assembly language

code blocks according to compile-time parameters.

1.2 Synchronous Dataflow

Synchronous dataflow is a restricted version of dataflow in which the num-
ber of tokens produced (consumed) by an actor on each output (input) edge is a
fixed number that is known at compile time. Each edge in an SDF graph also has a
non-negative integer delay associated with it, which corresponds to the number of
initial tokens on the edge. The application of the SDF model to mixed-grain data-
flow programming of multirate DSP systems was pioneered by Lee and Messer-

schmitt in the mid 1980s [Lee87]. In this section, we informally outline important

11

cludes executing multiple invocations of a subroutine in parallel. To overcome this
shortcoming, Arvind and Nikhil at MIT [Arvi90], and Gurd et al. at Manchester
University [Gurd85] independently developed and exploredatged-tokercon-
cept, which permits an arbitrary number of invocations of the same actor to exe-
cute concurrently. In a tagged-token dataflow computer, an identifying tag is
carried around with each token. This tag designates the subroutine invocation
number, loop iteration number, and the instruction number. For example, in the
MIT Tagged-Token Dataflow Machine, thé/aiting-Matching Unitremoves
unprocessed tokens buffered ifiaken Queueand compares the tag of each token
it removes with the tags of all tokens that are in the Waiting-Matching unit at that
time. If a matching tag is not found, then the token is stored in the Waiting-Match-
ing unit until a matching token arrives. Otherwise the matching token pair is for-
warded to thelnstruction-Fetch Unit which accesses program memory to
determine the appropriate machine instruction and constructs an operation packet
consisting of the instruction and its operands. This operation packet is forwarded
to theALU, and simultaneously the operation is executed and the tag for the result
token is computed. The result token and its tag are then combined and entered in
the Token Queue

Although dataflow computers succeed in attacking the problems of syn-
chronization and memory latency, challenges remain in coping with the resource
requirements of unpredictable and unbounded amounts of parallelism, and in
amortizing the overhead incurred on sequential code. These issues continue to be
an active research area; for example, see [Arvi91]. However dataflow computer
technology has not yet matured to the point of being commercially advantageous,
and thus there are no commercially available dataflow computers to this date,

although some commercially available processors have incorporated dataflow con-

10

graph is maintained at the machine level as a collectioact¥ity templates

which correspond to actor invocations. Each activity template consists of an
opcode that specifies the associated machine instruction, locations to hold the
operands, and pointers to the appropriate operand slots of the activity templates
that must receive the output value. Each time an instruction is executed, each
activity template referenced by the associated destination address pointers is
updated by théJpdate Unitto contain the new output value in the appropriate
operand slot. For each activity template that it modifies, the Update Unit checks
whether that last vacant operand slot has been filled, and if so, it forwards a refer-
ence to the activity template to thestruction QueueEntries in this queue are
processed by thieetch Unit which looks up each corresponding activity template

in the activity store, sends an operation packet t&xeeution Unitand resets the
activity template.

Since the rate at which instructions are executed is limited mainly by the
rate at which the Execution Unit performs computations and by the rate at which
the Instruction Queue is filled, which in turn depends on the matching of operand
values to activity templates, the problems that arise in conventional von-Neumann
processors due to memory latencies and synchronization are mitigated. Rather than
handling interprocessor synchronization and processor-memory synchronization
by wasteful idle-waiting or by expensive context switches, data dependencies are
enforced by the hardware for each individual instruction, and independent opera-
tions are automatically detected and exploited.

A major shortcoming of the static dataflow computer arises from the
restriction that only one data value can be queued on an edge at a given time,
which implies that multiple invocations of a given actor cannot be executed in par-

allel. This severely limits the parallelism that can be exploited from loops and pre-

dependencies between computations from an operational specification and then
reorder the computations in a more efficient way, but this endeavor is often made
extremely difficult or impossible by side effects, aliasing, or unstructured control-
flow. Functional languages, such as pure Lisp and Haskell, are exceptions. In these
languages, in which computations are specified through compositions of functions,
programs can, in principle, be easily converted into equivalent dataflow represen-
tations [Acke82]. In [Lee94], Lee explores several more subtle relationships
between functional languages and dataflow-based graphical programming frame-
works.

Dennis applied the concepts of dataflow to pioneer a form of computer
architecture; computers that are based on this form of architecture aredetdied
flow computersUnlike conventional von Neumann computers in which the execu-
tion of instructions is controlled by a program counter, computations in a dataflow
computer are driven by the availability of data. This is achieved by maintaining, at
the machine level, a representation of the program as a dataflow graph, and by pro-
viding capabilities in hardware to detect which actors have sufficient data to fire, to
execute the corresponding instructions and to route the output values to the appro-
priate actor inputs.

There are two basic types of dataflow computerstatic dataflow com-
puters anddynamic or tagged-tokendataflow computers. The original dataflow
computer architecture, the MIT Static Dataflow Architecture [Denn80], was of the
static variety. In a static dataflow computer, at most one data value can be queued
on an edge at one time. This restriction allows the storage for the edges to be allo-
cated at compile-time, and it is enforced by adding feedback edges, called
acknowledgment arcslirected between the sink and source actors of the edges in

the original dataflow graph. In the MIT Static Dataflow Computer, the dataflow

natural specification format for signal processing algorithms, and they promote the
recycling of software, expertise and development effort. All of these advantages

motivate the solutions developed in this thesis.

1.1 Dataflow

The principles of dataflow and their application to the development of
computer architectures and programming languages were pioneered by Dennis
[Denn75]. A central objective of the dataflow concept is to facilitate the exploita-
tion of parallelism from a program. In dataflow, a program is represented as a
directed graph, calleddataflow graphin which the vertices, calleattors repre-
sent computations and the edges represent FIFO channels that queue data values,
encapsulated in objects calleakens as they are passed from the output of one
computation to the input of another. A key requirement of the computation corre-
sponding to a dataflow actor is that itfhactional that is, each output value of an
invocation of the computation is determined uniquely by the input values to that
invocation.

A dataflow representation of a computation differs fundamentally from a
corresponding representation in a procedural language such as C or FORTRAN in
that it specifies the function being computed rather than specifying a step-by-step
procedure to compute it. This distinction betweefinitionalapproaches to pro-
gramming, such as dataflow, amgkerationalapproaches, such as C or FORTRAN
is explored in depth in [AmbI92]. A major disadvantage of operational approaches
is that they leave the programmer responsible for a difficult task, namely ordering
the computations, that is often critical to the speed and memory requirements of

the target implementation. Of course, the compiler can attempt to deduce the

is. Moreover, off-chip memory typically needs to be static, increasing the system
cost considerably. In this thesis, we develop techniques to minimize the code size
when compiling an SDF program, and we combine these techniques with tech-
niques for minimizing the amount of memory required to buffer data between
computational blocks.

As we will discuss in the sequel, large sample rate changes result in an
explosion of code size requirements if naive compilation techniques are used. In
this thesis, we develop a class of scheduling algorithms that minimizes code space
requirements through the careful organization of loops in the target code. This
scheduling framework provably synthesizes the most compact looping structures
for a certain class of SDF graphs, and from our preliminary observations, this class
appears to subsume most practical SDF graphs. Also, by modularizing different
components of the scheduling framework and establishing their independence, we
show that other scheduling objectives can be incorporated in a manner that does
not conflict with the goal of code compactness, and we demonstrate this for two
specific additional objectives — decreasing the amount of memory required for
data storage and increasing the amount of data transfers that occur through regis-
ters rather than through memory. Finally, we present techniques to improve the
efficiency of data buffering between the computational blocks in an SDF program.

It should be noted that there have been significant efforts to improve the
efficiency of code generated from high level language programs of DSP applica-
tions, such as those described in [Hart88, Kafk90, Yu93], and the success of these
efforts indicates that the range of applications that are adequately supported by
high level language compilers is increasing. However we emphasize that the effi-
ciency of the compiled code is not the only advantage of block diagram program-

ming and the SDF model — block diagram environments often provide the most

comes at the expense of reduced expressive power: computations that include
data-dependent control constructs cannot be represented in SDF; however, SDF is
suitable for a large and important class of useful applications, as the large number
of SDF-based signal processing design environments suggests. Benchmarks on the
Gabriel design environment [Lee89] showed that compilation from SDF block dia-
grams produced code that was significantly more efficient than that of existing C
compilers [Ho88a], although not as efficient as hand-optimized code, and for a
restricted model of SDF in which each computation produces only one data value
on each output and consumes only one data value each input, the Comdisco Pro-
coder block diagram compiler produced results that were comparable to the best
hand-optimized code [Powe92]. Although the performance of the Comdisco Pro-
coder is impressive, the restricted computational model to which its optimizations
apply does not support systems that have multiple sample rates.

In this thesis, we develop techniques for compiling general SDF programs
for multirate DSP systems into efficient uniprocessor implementations. An impor-
tant problem that arises when compiling SDF programs is the minimization of
memory requirements— both for code and data (intermediate results). This is a
critical problem because programmable digital signal processors have very limited
amounts of on-chip memory, and the speed and financial penalties for using off-
chip memory are often prohibitively high for the types of applications, typically
embedded systems, where these processors are used. For example, the Motorola
DSP56001 has an on-chip capacity of 512 instruction and 512 data words, and Star
Semiconductor's SPROC can store 1k instructions and 1k data. In the Motorola
DSP56001, one on-chip instruction and two on-chip data words can be accessed in
parallel, while there is only one external memory interface. Thus, there is a speed

penalty for accessing off-chip memory regardless of how fast the external memory

optimize the function definition for efficiency.

An alternative means of attaining modularity that has been explored in
DSP design environments is the use of libraries of subroutines that can be called
from high level language programs [Egol93, Tow88]. Here, once the library is in
place, the programmer has the convenience of programming in a high level lan-
guage, such as C or FORTRAN, while exploiting the efficiency of hand-optimized
functions written in assembly language.

There have been widespread reports on the inability of high-level language
compilers to deliver satisfactory code for time-critical DSP applications [Geni89,
Tow88, Yu93]. The throughput requirements of such applications are often
extremely severe, and designers typically must resort to careful manual fine-tuning
to sufficiently exploit the parallel and deeply pipelined architectures of program-
mable digital signal processors while meeting their stringent memory constraints.
The use of optimized subroutine libraries, as described above, is one approach to
improving efficiency without forcing the user to write or fine-tune code at the
assembly language level. A second approach is to add extensions to a high level
language that facilitate the expression and optimization of common signal process-
ing operations [Lear90]. Another approach is the application of artificial intelli-
gence techniques to confer optimization expertise to high level language compilers
[Yu93]. Although it has not been extensively evaluated yet, preliminary results on
this method show promise.

The alternative that we pursue in this thesis is the use of graphical or tex-
tual block diagram languages based on the SDF model in conjunction with hand-
optimized block libraries. As we will discuss precisely in Chapter 2, the SDF
model allows us to schedule all of the computations at compile-time and thus elim-

inates the run-time overhead of dynamic sequencing. This increased efficiency

[Lee89]. The successor to BLOSIM and Gabriel is the Ptolemy project [Buck92],
an object-oriented framework for simulation, prototyping, and software synthesis
of heterogeneous systems. Unlike Gabriel, which is based on a single model of
computation — the SDF model, Ptolemy allows a system to consist of multiple
subsystems that are specified with different models of computation, and Ptolemy
allows the user to define new models of computation and to interface a newly-
defined model with the existing models. For example, dynamic dataflow, discrete-
event, and communicating processes, are some of the models of computation that
are supported by Ptolemy in addition to SDF. The Ptolemy framework together
with a block diagram programming interface have been used to develop DSP sim-
ulation capabilities [Buck91], as well as compilers for the Motorola 56000
[Pin094] and the Sproc microprocessor, developed by Star Semiconductor Corpo-
ration [Murt93].

As mentioned above, a primary advantage of graphical programming envi-
ronments for DSP is that DSP algorithms are often most naturally represented as
hierarchies of block diagrams. Two additional advantages are the support for soft-
ware reusenjodularity) and the support for efficient compilation. Graphical pro-
gramming environments for DSP normally contain palettes of graphical icons that
correspond to predefined computational blocks, and the program is constructed by
selecting blocks from these palettes and specifying interconnections. If some func-
tionality is desired that is not available in the existing library, usually it is easy to
define a new function and add it to the library, upon which the new function can
become available to all other users of the system. Thus, the format of graphical
programming environments makes it natural and convenient to recycle software
and development effort. For example, since each function is defined only once, for

frequently used functions it becomes economical to spend a large effort to hand-

grammable digital signal processors, which are specialized microprocessors for
DSP applications [Lee88D].

Block diagram programming of DSP systems dates back at least to the
early 1960s, when a group at Bell Telephone Laboratories developed a block dia-
gram compiler for simulating signal processing systems developed for visual and
acoustic research [Kell61]. In [Covi87], Covington presents a graphical program-
ming environment for designing digital filters based on only two types of computa-
tional blocks — adders and constant gains. At Advanced Micro Devices
Corporation, a graphical tool was developed for mapping signal processing algo-
rithms onto a two dimensional array of programmable digital signal processors
[Ziss87]. Similarly, at Carnegie-Mellon University, a hierarchical block diagram
format was used to represent signal processing algorithms for compilation onto the
iWarp multicomputer [Ohal91]. Currently, several graphical programming envi-
ronments for DSP are also available commercially, such as the Signal Processing
Worksystem, developed by Comdisco Systems, which is now the Alta Group of
Cadence Design Systems [Barr91]; COSSAP, developed by Cadis and by Heinrik
Meyer’s group at the Aachen University of Technology [Ritz92]; and the DSP Sta-
tion, developed by Mentor Graphics. See [Lee89] for a large number of additional
references to graphical programming and simulation environments for DSP.

At the University of California at Berkeley, there has been a large effort in
developing efficient and elaborate graphical design environments. This work is
rooted in the BLOSIM simulation system developed by Messerschmitt [Mess84].
Further exploration with BLOSIM inspired the development of the SDF model
[Lee87]; soon afterwards, Ho developed the first compiler for pure SDF semantics
[Ho88Db], targetted to the Motorola 56000 programmable digital signal processor,

and this compiler formed the foundation for the Gabriel design environment

1

INTRODUCTION

Algorithms for digital signal processing (DSP) are often most naturally
described by block diagrams in which computational blocks are interconnected by
links that represent sequences of data values. Due to the emergence of low cost
workstations and personal computing systems with graphics capabilities, it has
become feasible for designers of signal processing systems to acquire graphical
block diagram programming environments, and as a result, there has been a prolif-
eration of such programming environments in recent years, both from industrial
sources and from research and educational institutions.

The synchronous dataflow (SDF) model, whose fundamental theories were
developed by Karp and Miller in [Karp66] and by Lee and Messerschmitt [Lee87],
has proven efficient for representing an important class of digital signal processing
algorithms, and has been used as the basis for numerous DSP programming envi-
ronments, such as those described in [Lauw90, Lee89, Ohal91, Prin92, Ritz92,
Veig90]. The main property of the SDF model is that the nhumber of data values
produced and consumed by each functional component is fixed and known at com-
pile time. This thesis develops techniques for compiling block diagram programs
based on the SDF model into efficient object code for microprocessors and pro-

1

Figure 2.16An illustration of algorithm SubindependentPartition

strongly connected, a subindependent partitio@of exists: the root strongly con-
nected component A, B} is subindependent of the remaining ac@rb} in

G.

100

procedure SubindependentPartition(G)
Compute the repetitions vector q of G.
From G, remove each edge a for which
delay(a) = total_consumeda, G) .
Denote the resulting graph by G'.
Determine the strongly connected components of G'.
if G' consists of only one strongly connected component,
actors(G') ,
G' does not have a subindependent partition
else
for each strongly connected component Z
if no member of Z has an input edge a such that
source(a) O Z
Z is subindependentin G.

Let m = max({|actors(G)|, |edgeq G|}) . The algorithm presented
in Subsection 2.1.4 computes the repetitions vector in @) ; it is obvious
that the next step of algorith®ubindependentPartitior- removing the edges
with insufficient delay — can also be performedQr(m) time; Tarjan’s algo-
rithm allows the determination of the strongly connected componer@dy in)
time [Tarj72]; and the checks in the if-else segment are clé&xfiy) as well.
Thus, the time complexity of algorith®ubindependentPartitiors linear in the
number of actors and edgesGn

The operation of algorithrf8ubindependentPartitios illustrated in Figure

2.16. For the strongly connected SDF graph on the left side of this figure, which
we denote byG (A, B,C D) = (1,10 2 20 T Thus, the delay on the edge

directed fromD toB 25) exceeds the total number of tokens consumBd by in
a minimal schedule period @@ 2Q). We remove this edge to obtain the new

graph depicted on the right side of Figure 2.16. Since this new SDF graph is not

99

G has a subindependent partition if and onl¢if is not strongly connected. Fur-
thermore, ifG’ is not strongly connected, then any root strongly connected com-

ponentZ ofG’ is subindependent pactors(G) — 2 @&

Proof: First suppose tha®' is not strongly connected, and Jet be any root
strongly connected component@f . Thus, no edg8 in that is directed from a
member of (actors(G) — Z) to a member &f, is containedGh . Thus, by
the construction ofG' , for each edge @ directed from a member of
(actors(G) — 4) to a member of Z, , we have
delay(a) = total_consumeda, G) . It follows thatZ, is subindependent (&
Thus, sinceZ, is an arbitrary root strongly connected compongat of , we have
shown that ifG' is not strongly connected, ttén has a subindependent partition
and any root strongly connected componer®of IS subindependént in

To complete the proof, we show that wheneer has a subindependent
partition, G' is not strongly connected.& has a subindependent partition, then
actors(G) can be partitioned intd, and, such tlat is subindependent of
Z, in G. By construction of5" , there are no edge&in directed from a member
of Z, to amember oZ; ,sG’ is not strongly connec(@&D.

Theorem 2.7 establishes the validity of the following algorithm, which
takes as input a nontrivial consistent, strongly connected SDF Graph , and finds a

subindependent partition & if one exists.

98

(n(...) (...) ... (...)), then gcd%{qG(A) | (A0 actors(G)) } Ez n soS

does not have unity blocking factor — a contradiction. SB(® is a minimal,
valid single appearance schedule @r , every adtoractors(sS,) is invoked
dg (A) times before any actor outside a€tors(S,) is invoked. It follows that

actors(S,) is subindependent of dent attors(S)) @ . Also, by Fact 36,
is a valid single appearance schedule sabgraph(actors(S,)) apd is a
valid single appearance schedule sobgraph(actors(S,))) QED.

Theorem 2.6 states that a strongly connected SDF @ggaph has a valid sin-

gle appearance schedule only if we can find a subindependent patiti@dy , . If
we can find suctZ, and, , then we can construct a valid single appearance

schedule foiG by constructing a valid single appearance schedule for all invoca-

tions associated witd, and then concatenating a valid single appearance sched-

ule for all invocations associated with, . By repeatedly applying this type of

decomposition, we can construct single appearance schedules whenever they exist,
and we will elaborate on this extensively in the following chapter.

The following theorem presents a simple topological condition for the
existence of a subindependent partition that leads to an efficient algorithm for find-

ing a subindependent partition whenever one exists.

Theorem 2.7: Suppose thaG is a nontrivial, strongly connected, consistent SDF
graph. From G , remove all edges a for which

delay(a) = total_consumeda, G) , and call the resulting SDF gra@i . Then

97

Theorem 2.6: Suppose thaG is a nontrivial, consistent, strongly connected SDF
graph. ThenG has a valid single appearance schedule if and only if there exists a
nonempty proper subs#tl] actors(G) such that

(1). X is subindependent dfactors(G) — X ; and

(2). subgraph(X, G) and subgraph(actors(G) — X G) both

have valid single appearance schedules.

Proof: (O direction). LetS andl denote valid single appearance schedules for
Y = subgraph(X G andZ = subgraph((actors(G) — X, G) , respectively; let
Y1 Yo -0 Yy denote the connected componentyof ; andjlet,, ..., z denote
the connected componentsof . From Corollary 2.2, we can assume without loss
of generality that forl<i<k ,Jq(y;) = dg(y;)) , and that fol<i<I|
J;:(z) = qg5(7) . From Fact 2.7, it follows tha® invokes eaghl X g (A)
times, andT invokes eaoh (actors(G) — X g5 (A) times, and siXce s
subindependent i , it follows th&T , the schedule obtained by appehding to
S, is a valid single appearance schedule (of blocking factor on& for

(O direction). Suppose th& is a valid single appearance sched@e for
From Theorem 2.5, we can assume without loss of generalitysthat has blocking
factor one, and from Fact 2.4, there exists a valid single appearance sc@iedule
that has blocking factor one and contains no one-iteration loops.Shen can be

expressed aS,S, , whegy afyg are nonempty single appearance subsched-

ules of S that are not encompassed by a loop, sin& if is a schedule loop

96

all of the data required by, fro@, for that schedule period is available at the

inputs of Z, . For example, le& denote the SDF graph in Figure 2.15. Here

Figure 2.15An example used to illustrate the concept of subindependence.

qg(A/B,CD = (212 2)T, and we see that
{ A} issubindependento{C} ; {A, D} and {B, C} form a subindependent
partition of G ; and trivially,{ A, B, C} is subindependent of D}

The following properties of subindependence follow immediately from

Definition 2.6.

Fact 2.11: Suppose thaG is a connected, sample rate consistent SDF graph, and
X, Y andZ are disjoint, nonempty subsetsaofors(G) . Then

(@). (X is subindependent oZ) and (Y is subindependent of) [
(XOY) issubindependent o

(b). (X is subindependent of) and (X is subindependent oF)
0 X is subindependentof Y[I 2
Recall that an arbitrary consistent SDF graph has a valid single appearance
schedule if and only if each strongly connected component has a single appearance
schedule. The following theorem gives necessary and sufficient conditions for a

strongly connected SDF graph to have a valid single appearance schedule.

95

J (K Ky, ooy Kp) (24,2, ..., Z)) be an arbitrary blocking vector fé@6 , and
for L<i<n, letS denote the projection & onkp . Then from Fact 2.6, each
S is a valid single appearance schedule for the corresporstibgraph(k;)

From Theorem 2.5, fot <i<n , there exists a valid single appearance schedule

S' of blocking factorz, forsubgraph(k;, G) . Since the; 's are mutually dis-
joint and non-adjacent, it follows th&'S,"...S' is a valid single appearance

schedule of blocking vecta¥ f@ QED.
The condition for the existence of a valid single appearance schedule can
be expressed in terms of a form of precedence independence, which is specified in

the following definition.

Definition 2.6: Suppose thac is a connected, sample rate consistent SDF graph.

If Z, and Z, are disjoint nonempty subsetsaaftors(G) , we say Zhas sub-
independentof Z, in G if for every edgea irG such thaburce(a) 0 Z and
sink(a) O Z, we havedelay(a) > total_consumeda, G) . We occasionally

drop the “in G ” qualification if G is understood from context. Also, if

(Z, is subindependent oZ,) and (Z, 0 Z, = actors(G)) , then we say that
Z, is subindependent i, and we say thaZz, and, formsabindependent

partition of G.

In other words,Z;, is subindependent 2f if given a minimal periodic

schedule folG , data produced By is never consumegi by in the same sched-

ule period in which it is produced. Thus, at the beginning of each schedule period,

94

g(A B C = (10, 4 5)T, but we cannot fire so many invocationsfofB , , nor

C in succession. However, consider the strongly connected component subgraph
©' = subgraph({A, B}) . Then we obtairgg, (A) =5 andg (B) =2 , and

we immediately see that,, (B) invocations®f can be fired in succession to

yield a subschedule foB’ . The SDF graph that results from clust&ing is
shown in Figure 2.14(b). This leads to the valid single appearance schedule

(2(2B) (5A)) (5C) .

Theorem 2.5: Suppose thaG is a connected SDF graph and suppoge that has

a valid single appearance schedule for some arbitrary blocking factorGrhen has

valid single appearance schedules for all blocking factors.

Proof: Clearly, any valid schedul® of unity blocking factor can be converted
into a valid schedule of arbitrary blocking factor simply by encapsul&ing
inside a schedule loop having iteration count . Thus, it suffices to showsthat

has a valid single appearance schedule of unity blocking factor. Now, Theorem 2.4
guarantees tha has a valid fully reduced single appearance schedule, and Theo-

rem 2.3 guarantees that the blocking factor of this schedule is Q&).

Corollary 2.2: Suppose that is an SDF graph that has a valid single appearance

schedule G need not be connected). TBen has a valid single appearance sched-

ule for all blocking vectors.

Proof: Suppose thatS is a valid single appearance scheduleGfor , let

Ky Koy vony K denote the connected components 0iG , et

93

then we can cluster the subgraph associated with each nontrivial strongly con-
nected component @& . Clustering a strongly connected component into a single

actorQ never results in deadlock since there can be no cycle cont@ining . Since
clustering all strongly connected components yields an acyclic graph, it follows
from Fact 2.6 and Fact 2.8 th@t has a valid single appearance schedule if and
only if each strongly connected component has a valid single appearance sched-
ule.

Observe that we must, in general, analyze a strongly connected component
subgraph® as a separate entity siige may have a valid single appearance

schedule even if there is an actor @n for which we cannot firg a{lA)
invocations in succession. The key is thgt(A) may be lessgthén) , SO we

may be able to generate a single appearance subsched@le for ; for example, we

may be able to schedufe g (A) times in succession. Since we can scBedule

so that the subschedule f& appears only once, this will translate into a single

appearance schedule f@r . For example, in Figure 2.14(a), it can be verified that

; O

2

(&) :

1 5

5 10D 2

O O
(@) (b)

Figure 2.14An example of how clustering strongly connected compo-
nents can aid in generating compact looped schedules.

92

is also a valid schedule, and by our constructiog.of &hdS' , IS a coprime
single appearance schedule, and all schedule loo@s in are coprimeSThus,

is a valid fully reduced single appearance scheduleGor . Furthermore, since

(1S)) generates the same invocation sequence &s clearly
buffer_memory (1S))) = buffer_memory 3 . From Theorem 2.2
buffer_memoryS.') < buffer_memory (1S,)) , and thus

buffer_memoryS ') < buffer_memory 5. QED.

2.6 Subindependence

Since valid single appearance schedules implement the full repetition
inherent in an SDF graph without requiring subroutines or code duplication, we

examine the topological conditions required for such schedules to exist. First, sup-
pose thatG is a connected, consistent acyclic SDF graph containing actors.

Then we can take some root ac®yr @f and firga(R,) invocatioRg of
in succession. After all invocations Rﬁ have fired, we can reriQve Gom

pick a root actoR, of the new acyclic SDF graph, and scheduig, (&) rep-

etitions in succession. Clearly, we can repeat this process until no actors are left to
obtain the single appearance schedule

(A6 (RY R (A5 (R)Ry) ... (a6 (RYR))
for G. Thus, we see that any consistent acyclic SDF graph has a valid single
appearance schedule.

Also, observe that if5 is an arbitrary connected, consistent SDF graph,

91

y = gcd%{ Ny, Ny, oony N} E yields another valid single appearance sche8ple

and from Theorem 2.uffer_memoryS,) < buffer_memory B . Furthermore,

A,' is coprime, and since every schedule loop nested within IS coprime, every
loop nested withi\," is coprime as well. Now }¢f be any innermost member
of non-coprimg(S,) , and observe that, cannot eqial . Theorem 2.1 guaran-
tees a replacement,’ far, B that leads to another valid single appearance
schedule S . and Theorem 2.2 guarantees that
buffer_memoryS,) < buffer_memory 5. If we continue this process, it is clear

that no replacement loap,’ ever replaces one of the previous replacement loops

AN A 4", since these loops and the loops nested within these loops are

already coprime. Also, no replacement changes the total number of schedule loops

in the schedule. It follows that we can continue this process only a finite number of

times — eventually, we will arrive at &)~ such thah-coprimg(S,) is empty.

Now if S, is a coprime looped schedule, we are done. Otherise, is of

the form (p,T,) (p,T,) ... (P,T,) . Wherey' = gcd%{ Pys Pos wevs Pt E> 1.

Applying Theorem 2.1 to the schedul@S)) = (1(p;T,) (P,T,) - (P, T,)) ,
we have that

VB0 TR T) R0 B T PT oD
is a valid schedule fo& . From the definition of a valid schedule, it follows that

R P | 1, , -1 0 g, -1 O
Sy =0Y) P Tim(Y) P Tog--ay) Py Td

90

inv (Ly, S inv (Ly, Ly) inv (Ly L) ...inv(L,, L__)inv(A L)

= gige . (2-18)

m

By our selection of thé, '$/ Egcd%{j, iglg - m_1} % does not divide , and

thus from (2-18)] does not dividav (A, S
We have shown that given any integerl , there exists an ActoiG in

such thatinv (A, §) is not divisible by . If follows that the blocking factoBof is

one.QED.

Theorem 2.4: Suppose thaG is a consistent SDF graph@&nd is a valid single
appearance schedule f& . Then there exists a valid single appearance schedule
S for G such that S is fully reduced and

buffer_memoryS') < buffer_memory §.

Proof: We prove this theorem by construction. This construction process can eas-
ily be automated to yield an efficient algorithm for synthesizing a valid fully

reduced schedule from an arbitrary valid single appearance schedule.

Given a looped schedule , we denote the set of schedule lodps in that
are not coprime bynon-coprimg¥) . Now suppose tHat is a valid single
appearance schedule fér , andNet= (m(nW¥,) (n,%,) ... (n,¥,)) be any

innermost member ofon-coprimg(S) — that ia, is non-coprime, but every

schedule loop nested withky, is coprime. From Theorem 2.1, replaging with

, O Od- 1] 0 O-1 (]
A= oympy Wiy Yooy NG s where

89

reduced single appearance schedulésor . The®) = 1

Proof: First, suppose that not all iterands f are schedule loops. Then some
actorA isaniterand & .Sinde is notenclosed by alo& in , andSince isa
single appearance scheduley (A,S =1 ,andth(S) =1

Now suppose that all iterands f are schedule loops and suppoge that is
an arbitrary integer that is greater than one. Then $hce s fully reduced, does
not divide at least one of the iteration counts associated with the itera&ls of

Definei, = 1 andlet; denote one of the iterandSof whose iteration count
is not divisible by] = j/ gcd%{j,io} E . Again, sinc8 s fully reduced, if all iter-
ands ofL, are schedule loops, then there exists and itérand L, of such that
j/gcd%{j, Ny E does not divide the iteration count bf . Similarly, if all
iterands ofL, are schedule loops, there exists an itdrgnd L, of ~ whose iteration
countiy is not divisible by/ gcd={j, igiyis} o -

Continuing in this manner, we generate a sequence,, L, ... such that
the iteration count, of eadh, is not divisible bg}agcdg{j, NP P %

SinceG contains a finite number of actors, we cannot continue this process indef-

initely— for somem=1 , not all iterands &f | are schedule loops. Thus, there is

an actorA thatis aniterand bf, . SinfBe is a single appearance schedule,

inv(A S

88

2.5 Reduced Single Appearance Schedules

Definition 2.4: Suppose thaf\ is either a schedule loop or a looped schedule. We
say that\ ishon-coprimeif all iterands ofA are schedule loops and there exists
an integerj > 1 that divides all of the iteration counts of the iterands of A . If is

not non-coprime, we say that deprime.

For example, the schedule loof3 (4A) (2B)) arid (7C)) are both
non-coprime, while the loopg5 (3A) (7B)) and0C) are coprime. Similarly,
the looped schedule4AB) arAB) (3C) are both non-coprime, while the
scheduleA (7B) (7C) and2A) (3B) are coprime. From our discussion in the

previous section, we know that non-coprime schedules or loops may result in

much higher buffer memory requirements than their factored counterparts.

Definition 2.5: Given a single appearance sched8le , we sayShatfullys

reducedif Sis coprime and every schedule loop containe8 in is coprime.

In this section, we show that we can always convert a valid single appear-
ance schedule that is not fully reduced into a valid fully reduced schedule, and
thus, we can always avoid the potential overhead associated with using non-
coprime schedule loops over their corresponding factored forms. First, however,
we show that any fully reduced schedule has unit blocking factor. This implies that
any schedule that has blocking factor greater than one is not fully reduced. Thus, if
we decide to implement a schedule that has nonunity blocking factor, then we risk

introducing a higher buffer memory requirement.
Theorem 2.3: Suppose thaG is a connected SDF graph@&nd is a valid fully

87

max_tokenga, S) < max_tokenga, S) .

If (A=0) and (p>q) , then clearle cannot be less thdr{q, j) nor

M' (a,j) for anyj . Thus,
max_tokenga, S) = max%{ 5 Y1 Yo - Yinv (L, S)} % = max_tokenga, S) .
If (A<O0) and (p<q) , then forany |,

M(a,j) = X + npinv(source(a), %) produced(a) , and

n
M' (a,j) = X; +7pinv(source(0(), %) produced(a) .

Thus, M’ (a,]j) <M (a,j) for allj , and we have'<r, . From (2-16) and (2-

17), we conclude thanax_tokenga, S) < max_tokenga, S)
Finally, if (A<0) and (p>q) , then clearl (a,j) = M'(qa,j) = X;

for all j.Thus r;" =7 and (2-16) and (2-17) vyield that

1
max_tokenga, S) = max_tokensga, S) .

Any edgea inG must fall into the domain of case , cAse or8ase |,
and in each of these ~cases, we have established that
max_tokenga, S') < max_tokenga, S) . QED.

Recall that our definition dfuffer memory requiremeassumes that each
buffer is implemented as a separate, contiguous block of storage, and thus Theo-
rem 2.2 does not necessarily apply under more flexible buffer implementations —
such as when storage is shared between multiple buffers that are active (contain
unread data) in mutually disjoint segments of time. In Chapter 4, we will discuss
shared buffers and buffers that do not necessarily reside in contiguous memory

locations.

86

M(a,j) = max%{ T(a,i,S)|sink(a); is part of thejth invocation ofL} E; and

M'(a,j) = max%{ T(a,i,S')|sink(a); is part of thejth invocation ofL"} E

Also, we definexj to denote the number of tokension just befoge the th invoca-

tionofL (L")InS (S), and we defing!j to denote the number of tokens on

just after thg th invocationdf L()i8 S{).
Clearly, if A= 0, then during a particular invocationlof in an execution
of S, the maximum number of tokens an is attained just after the last invocation

of (npSp) . Similarly in an execution o8 , the maximum number of tokens on
during thej th invocation ofL’ s attained just after the last invocation of
Ey_lnpspg. Thus, ifp<q, then

M(a,j) = X + mnpinv(source(a), %) produced(a) —
(m-1) nqinv(sink(a), %) consumeda)

= Xt mA + nqinv(sink(a), %) consumeda) ,

and similarly,

M' (a,j) = X + (ym)n—\;’inv(source(cx), %) produceda) —

n . .
(ym-1) Vqlnv (sink(a), %) consume(a)

n
=Xt mA + tinv(sink(a), %) consumeda) .

Thus, sincey=1 , we have th&t' (a,j) <M (a,j) , and since this holds for all

j, r,/ cannot exceedr, . From (2-16) and (2-17), it follows that

85

wherep, q {1, 2 ..., k} and#q . We define

ry= maxE{T(a, I, S) |sink(a); is part of L} E;
ry'= maxE{T(a, i,S') |sink(a); is part of L'} %;
r,= max%{T(a, i, S) |sink(a); is not part of L} E;

r, = maxE{T(a, i,S') |sink(a); is not part of L'} E

Then clearly,
max_tokenga, S) = ma><%{ 5o} Eand

max_tokenga, S) = max%{ 115} E (2-16)

Now, if in' S, sink(a); is not part oL , then clearly by the construction of
L', sink(a); isnotpartoflL’ inS , and from Lemma 2.1(a) and Fact 2.5(a), we

have thafT (a,i,S') = T(a,i,S) , and thus
ry,. (2-17)

On the other hand, #ink(a), ispartaf # ,and theisk(a), is part

of L' in S, we define

A= (np x inv (source(a), %) x produced(a)) —
(nq x inv (sink(a), %) x consumeda))

84

graphG ;L = (m(nS) (n,S,) ... (n,S)) is aschedule loop# of any nest-
ing depth such thatl<i<j <k) O actors(S) n actors(S]) =0 ;and isa

positive integer that divides,, n,, ...,n, . Let’ denote the schedule loop

Eym%y_lnlsl%y_lnzszg...Ey_lnkg%, and letS denote the schedule that

results from replacing L with L’ in S . Then

buffer_memoryS') < buffer_memory §.

Proof: We show that for each edge a in G
max_tokenga, S) < max_tokenga, S) , which clearly implies the desired
result. We consider three cases.

Casel : (source(a) O actors() or (sink(a) O actors(L)) . From
Lemma 2.1(b), we have that

O@G(0{1,2...,inv(sink(a), 9}),P(a,i,S) = P(a,i,S),
and from Fact 2.5(a), it follows that

OG(0{L,2...,inv(sink(a), 9}),T(a,i,S) = T(a,i,S).
Thus, from Fact 2.5(c), we haveax_tokenga, S) = max_tokenga, S)

Case2 : Forsompel {1, 2 ..., k} source(a), sink(a) O actors(SJ)
Then sinceactors(S,) n actors(S) n ... n actors(§) = O , itis easily veri-

fied from the construction o8 , thairojection(S { source(a), sink(a)})
generates the same invocation sequence as
projection(S, { source(a), sink(a)}). From Fact 2.5(b) and Fact 2.5(a),
T(a,i,S') = T(a,1,S), and thusmax_tokenga, S) = max_tokenga, S

Case 3 : (source(a) [actors(%)) and (sink(a) O actors(%)) :

83

Let S, denote the schedule that results from replating with the schedule loop
L, = (m(1(nS) (n,S)...(n.S.)) (N ,,S.,,)) in S. SincelL, andL
generate the same invocation sequengg, generates the same invocation
sequence asS . Now Theorem 2.1 flr= K guarantees that replacing
Lo -1 (L] -1 0 -1 L] .
(1(n;S) (n,S) ... (n.S)) with fycy S,y meS,g..-c¥ wSe in
S, results in a valid schedulg
Observe thaf isthe schedi8e with replaced by
0 [0 0-1 (1] -1 0 O-1 L[] 0
Ly = OMOYEY MSy 2S00 MeSem(Ng 415+ 1) O
Theorem 2.1 fok = 2 guarantees that replading ~ with

o 0,0-1 L] -1 U Og- L1 -1 (L]
Lo = oymOley mSiay S0 Sy M +1S¢ + 100

yields another valid schedulg, . Now cleatly generates the same invocation
sequence as' , soreplacihg with 8Sp yields a valid schegjule . But, by
our constructionS; = S ,s& is a valid schedule ®r

We have shown that Theorem 2.1 holds kor 1 and 2 , and we

have shown that if the result holds fog k' |, then it hddds (k' + 1) . We con-

clude that Theorem 2.1 holds for RIIQED.

We have demonstrated that factoring may decrease the buffer memory
requirement for a schedule. Although the transformation is not guaranteed to
always decrease the buffer memory requirement, factoring never increases the

buffer memory requirement. This is established by the following theorem.

Theorem 2.2: As in Theorem 2.1, assume tiat is a valid schedule for an SDF

82

results from replacingg with’ i is a valid schedule @r

Proof: We will prove this theorem by induction én

First, letS denote the schedule that results from repldcing WithS in
and observe thatfde = 1 L, and generate the same invocation sequence, and
thus S andS generate the same invocation sequence. We conclud that is
valid for k = 1, and thus Theorem 2.1 holds for= 1

Second, consider the case= 2 . Therm= (m(nS)) (n,S,))) and

L' = %ym%y_lnlsl%y_lnzsz%. Now, observe that — generates the same invo-

cation sequence as the schedule lbop Em%y%y_lnlsl%ygy_lnzsz% , SO

replacingL withL in the valid schedu® yields another valid scheBlule . Since,

by assumptionactors(S,) n actors(S) = 0 , Lemma 2.2 guarantees that
replacingl withl' = Dm%y%y_lnlsl%y_lnzsz% inS yields a third valid
scheduleS . But, clearly.’ and’ generate the same invocation sequence, SO

replacingL’ withL' inS results in a valid sched@& . But by our construction,

A

S' = S, and thusS is a valid schedule fér . We conclude that Theorem 2.1
holds fork = 2.

Now suppose that Theorem 2.1 holds whendwek’ , for dome
We will show that this implies the validity of Theorem 2.1 kxx (k' + 1) . For
k=Kk+1,

L= (m(nS) (nS)...(.,,S.,,)),and

, O 0O-1 1] 1 O 0O-1 (1]
L' = DVmDV nlleDy nZSZD"'DV nk'+1SK’+1D]'

81

zinv(sink(a), B))consume() ,

which is equivalent to

OkoO{12..,n}),t + (k=1)inv(source(a), B)produced(a)

2kinv (sink(a), B))consumeda) . (2-15)

Now, it is easily seen that (2-14) implies (2-15). Since this analysis holds for any

choice ofr ,S does not terminate on during an invocatio,of , and from
Corollary 2.1(a)S cannot terminate at an invocation that is not p&f of , sowe

conclude thaS does not terminaten
Our treatment of cases 1-4 shows that for any edge contairt@d$h

does not terminate om QED.

The following theorem establishes a sufficient condition for valid applica-
tion of the factoring transformation. The condition is that the sets of actors invoked
by the factored loops are all mutually disjoint. Clearly, this condition is always sat-
isfied when working with single appearance schedules, and thus a major conse-
guence of Theorem 2.1 is that factoring cannot convert a valid single appearance

schedule into a schedule that is not valid.

Theorem 2.1: Suppose tha® is a valid schedule for an SDF gfaph , and sup-

pose thal. = (m(nS)) (n,S) ... (n,S)) is aschedule loop$n of any nest-
ing depth such tha(l<i<j<k) O actors(S) n actors(SJ) = [0 . Suppose
also thaty is any positive integer that dividgsn,, ..., n, , andllet denote the

schedule Ioop%ym%y_lnlsl%y_lnzszg...%y_lnksk% . Then the schedule that

80

B, — that is, if

O(KkO{L,2 ...n})

t. +Kinv(source(a), B)produced(a) — (k—1) inv(sink(a), B,)consumeda)
>inv(sink(a), B,)consumeda) .

which is equivalent to

OkO{1,2...,n}),t +k(inv(source(a), B)) produced(a)

2k (inv (sink(a), B,)) consumeda) . (2-13)

By Fact 2.10, (2-13) is guaranteed by (2-11), and since (2-11) holds for all invoca-
tion numberg | it follows tha® does not terminateoon during an invocation of

Sy - Furthermore, from Corollary 2.1(&, cannot terminate at an invocation that
is not part ofS," . We conclude th& does not terminate on

Case4 :(source(a) O actors(B)) and (sink(a) [actors(B))) .
Again, letr be any positive integer such thatr < inv (S;, S ,and let denote
the number of tokens an just prior to the th invocatiogpf Sin . Then since

S is admissable,
t. =2 n(inv (sink(a), B))) consumeda) . (2-14)

Now clearly,S' does not terminate on during the th invocatio,bf if
OkO{1,2..,n}),

t+(k-1) inv(source(a), B)produceda)—(k—1) inv(sink(a), B;)consumefx)

79

Now, (S terminates ona)

0 (projection(S, actors(B;)) terminates ona) (by Fact 2.6b)
O (projection(S, actors(B)) terminates ona) (by 2-10)
O (Sis not valid) (by Fact 2.6a).

By contraposition, it follows that under the assumptions of LemmaS2.2, does
not terminate o

Case2 :(source(a) [(actors(B) U actors(B,))) or
(sink(a) O (actors(B,) U actors(B))))

By Corollary 2.1(b),S does not terminate an

Case3 :(source(a) U actors(B)) and (sink(a) O actors(B,)) .
Letr be any positive integer such tat r < inv (S, S ,iet denote the num-
ber of tokens o just prior to the th invocation§f 9n ; and observe that

sinceS is admissable, we must have

t. +n(inv(source(a), B)) produced(a)

>n (inv(sink(a), B,)consumeda)) . (2-11)
Now, by construction 0§ , we have that
for all actorsA [actors(G) ,inv(A §') = inv(A §) . (2-12)

Thus, the number of tokens @n just prior to the th invocatio§,of S'in s
equal tot, , andS does not terminate @n duringrthe th invocatids of if

there is a sufficient number of tokens@n prior to each ohthe invocations of

78

ated by this new schedulBBCCBBBCCBBCC , terminates on the &lgeC
at invocationC, . Thus, the fusion of the schedule 106pB) @adCBB

converts a valid schedule into a schedule that is not valid.

Proof of Lemma 2.2tet S denote the schedule that results from replad§ng
with S," in S. By construction ofS , we have that for all acteks Gn
inv(A, S) = inv(A § . SinceS is valid, and hence periodic, it follows tBat
is also periodic. It remains to be shown tBat is admissable.

Clearly S is admissable if for each edge GnS, does notterminate on

o . There are four cases to consider here:

1. (source(a), sink(a) O actors(B,)) or
(source(a), sink(a) [actors(B,))

2. (source(a) O (actors(B) O actors(B,))) or
(sink(a) O (actors(B)) O actors(B))))

3. (source(a) O actors(B)) and (sink(a) O actors(B,))

4, (source(a) O actors(B)) and (sink(a) O actors(B,))

Casel :

(source(a), sink(a) O actors(B,)) or (source(a), sink(a) O actors(B,))

Let i be that member of {1,2} such that

source(a), sink(a) O actors(B,) , and observe that since
actors(B;) n actors(B) = [,

projection(S,, actors(B;)) = (nB) = projection(S,’, actors(B;)) , and thus

projection(S, actors(B,)) = projection(Sactors(B)) . (2-10)

77

application of the loop fusion transformation to a looped schedule. It states that
given a valid looped schedule, two adjacent loops having the same iteration count
can be fused to yield another valid schedule if the sets of actors invoked by the

fused loops are mutually disjoint.

Lemma 2.2: Suppose tha® is a valid schedule for an SDF gfaph , and suppose

thatS contains a subsched8g = L,L, ,whefe= (nB,) Bpd= (nB,)

are two schedule loops having identical iteration counts and arbitrary H&dies
and B, , respectively. Assume also thattors(B,) n actors(B,) = O . Then
replacingS, with the schedule lodg’ = (nB,B,) $ resultsin a valid sched-

ule forG .

As a counter-example that illustrates the need for the assumption that

actors(B;) n actors(B) = [0, consider the SDF graph in Figure 2.13. One can

2D
Figure 2.13An SDF graph used to illustrate that the fusion of two adja-

cent schedule loops in a valid looped schedule is not always a legitimate
transformation

easily verify that the looped schedulg 2B) (2CCBB) CC is a valid schedule

for this SDF graph. Observe that although the two schedule loops in this schedule
have a common iteration count, they both contain instances of theBactor , and
thus these loops do not satisfy the hypotheses of Lemma 2.2. If we fuse these two

loops, we obtain the scheduwlg(2BCCBB CC . The invocation sequence gener-

76

Corollary 2.1: Assume the hypotheses of Lemma 2.1 with the additional assump-

tion thatS is admissable. Then
(a). If invocationN,, is not part dg,’ I8 ,thesi does not terminate on

a atNm.

(b). If a is not contained irsubgraph(actors(S;), G , theB does not

terminate oro .

Consider the example in Figure 2.Here, eachJIj represents the number

Figure 2.12.An example used to illustrate the application of Lemma
2.1.

of delays on the corresponding edge, and the repetitions vector is given by
g(AABCDBE = (2441])T. Suppose that thedj 's are such that

D (2A(2BC)) E is an admissable schedule. Then Corollary 2.1(b) — with

S = A(2BC) and S = BCABC — guarantees that the schedule

D (2BCABQ E does not terminate on the edggs- D D~ A E » A , or

C - E; and Corollary 2.1(a) insures that this schedule does not terminate at invo-

cation D, orE, .

The following lemma establishes a simple sufficient condition for valid

75

P(a,m-(k=1)inv(N, §),s;S,...5) + (k=1) inv (source(a), Q).

and

P(a,m, S)=

P (a, m— (k=1)inv(N, §'),s;S,...5,) + (k—1) inv(source(a), §) .
But, by assumption, inv(source(a), §) = inv(source(a), §') , and

inv(N,§) = inv(N, §'), soP(a,m § = P(a,m, S) , and the proof of
part (a) is complete.

For the proof of part (b), first observe that ifSnN is part of one of the

S's, then from part (a), we have immediately tRata, m, § = P (a,m, S)

On the other hand, iiN is part of one of tlhﬁa 'S, stl?)y ,Sin -, then

m
inv(N, §) = inv(N, §') implies that inS ,N_ is part obp’ . Also, by
assumptioro is not isubgraph(actors((S;), G)) , sosindg, is parlbgf ,
N = sink(a) is contained inactors(S;) , and thusource(a) [actors()

It follows that

P(a,m, § = inv(source(a), §32...sp) =P(a,m S),

and the proof of part (b) is comple@ED.
The following corollary follows immediately from Lemma 2.1. It implies

that under the assumptions of Lemma 2.1 together with the additional assumption

thatS is admissable, if an invocation is not parggf Sin ,tBen cannot termi-

nate at that invocation, andaf is not contained in the subgraph associated with

actors(S;) , thenS' cannot terminate @n

74

Lemma 2.1: Suppose thaG is a consistent SDF greh, is a looped schedule

for G, andS, is a subschedule 8f . Suppose alsoSliat is any looped schedule
such that actors(S)) = actors(Q) , and inv(A §') =inv(A §)
O(AD actors(S))) . Let S denote the schedule obtained by replagng with
S, in S. Then for any actoN [J actors(G) , any positive integar such that

l<ms<inv(N §,andanyinputedge ®& ,we have

(@. |If invocation N is not part of Sy inS , then
P(a,m S) = P(a,m S ; and

(b). If a is not contained isubgraph(actors((S;),G)) ,then

P(aom S) = P(a,m 9.

Proof: The sequence of invocations % can be decomposed into

S;b;8,0,...b.s, ., whereb; denotes the sequence of invocations associated with
the j th invocation of subschedulg, asjd is the sequence of invocations
between the(j —1) thand thinvocations®f .Si®e is derived by rearrang-
ing the invocations ir§, , we can expreSs similarlysgs,'s,b,"...b.'s , ; ,
Wherebj’ corresponds to the th invocatior§gf Sin

For the proof of part (a), observe thyt is part of seme ssay S, in
Then k—1 invocations ofS,’ preced®l i® , and since for jall
inv (N, bj') = inv(N, b) we have thatir§ N_ is also part gf . It follows
that

P(a,m 9=

73

complications do not arise, and loop fusion, as well as our more general factoring
transformation, is always a valid transformation. Thus, loop fusion is an additional
example of the increased compile-time predictability that can be gained when
restricting the computational model to SDF.

We will apply the following simple number-theoretic fact in the develop-

ment of this section.

Fact 2.10: Suppose that is a nonnegative integer,and , yand are positive

integers such that+ ya=yb .Then(id {0, 1, ...,y}) Xx;ia=ib

Proof: Suppose that {0, 1, ...,y} , and first suppose thatb . Then,
x+yazybl x= (b—-ayld x=(b-ail x+ia=ib.
While, on the other hand &d>b , the(b—a)i<0 , and since0 , it follows
that (b—a)i<x,and thux+ia=ib QED.
The following lemma establishes similarities between two looped sched-
ulesS andS for a consistent SDF graph, wH&re is obtained by replacing some

subschedules, i with another sched8jg that invokes each actor the same
number of times a§, . For an SDF edge , Lemma 2.1(a) states thatif the th
invocation ofsink(a) is not part 0§, & , then the number of invocations of

source(a) that precede them thinvocationsihk(a) $ equals the number

of invocations ofsource(a) that precede tihne th invocationsofk (a) Sin

and Lemma 2.1(b) asserts the same conclusion wheaever is not contained in the
subgraph associated with the set of actors invokeg,by . We first state and prove

the lemma, and present a corollary, and then we illustrate with an example.

72

B - A at the second invocation & . Further exploration of reverse factoring is
beyond the scope of this thesis.

The factoring transformation is closely related tolteg fusiontransfor-
mation, which has been used for decades in compilers for procedural languages. In
the basic version of this transformation, two adjacent loops having the same itera-
tion count are merged into a single loop by concatenating the bodies. It is well-
known that loop fusion can reduce a program’s memory requirements [Wolf89]
just as the factoring transformation that we present in this section does. Also, loop
fusion has been found to increase data locality, and hence to improve the exploita-
tion of memory hierarchies [AbuS81]. In compilers for procedural languages, tests

for the validity of loop fusion include analysis of array subscripts to determine
whether or not for each iteratiam of the (lexically) second loop, this iteration

depends only on iteratiorls 2, ...n of the first loop [Zima90]. These tests are dif-
ficult to perform comprehensively due to the complexity of exact subscript analy-
sis [Bane88], and due to complications such as data-dependent subscript values,
conditional branches inside one or more of the loops, and input/output statements.

In this section, we show that for single appearance schedules of SDF graphs, these

Figure 2.11.An example used to illustrate that reverse factoring is not
always valid for single appearance schedules.

71

are required to implement the buffering of tokens for this schedule

Now observe that this schedule generates the same invocation sequence as
(1(100A) (100B) (10C)) D. The main result developed in this section allows

us to factor the common divisor &0 in the iteration counts of the three inner
loops into the iteration count of the outer loop. This yields the new single appear-
ance schedule(10(10A) (10B)C)D , for which at mo$0 tokens simulta-
neously reside on each edge. Thus, this factoring application has reduced the
buffer memory requirement by a factor6f

There is, however, a trade-off involved in factoring. For example, the

schedule (100A) (100B) (10C)D requires3 loop initiations per schedule

period, while the factored schedul@0(10A) (10B) C) D requi2ds . Thus, the
run-time cost of starting loops — usually, initializing the loop indices — has
increased by the same factor by which the buffer memory requirement has
decreased. However, for programmable digital signal processors, the loop-startup
overhead is normally much smaller than the penalty that is paid when the memory
requirement exceeds the on-chip limits. Unfortunately, we cannot in general per-
form the reverse of the factoring transformation; that is, moving a factor from the
iteration count of an outer loop to the iteration counts of the inner loops. This
reverse factoringransformation might be desirable in situations where minimiz-
ing the buffer memory requirement is not critical.

Figure 2.11 shows a simple SDF graph that can be used to demonstrate that
unlike the factoring transformation, reverse factoring does not necessarily preserve

the admissability of a valid single appearance schedule. It is easily verified that
(10AB) is a valid single appearance schedule (with blocking falflor) for this

graph, while the reverse-factored derivat§A) (10B) terminates on the edge

70

counter, while the invocation of threads is carried out in a data-driven manner.
Thus, the computation within a thread is performed in a von Neumann style, while
the threads themselves are sequenced in a dataflow style. When compiling for a
hybrid dataflow/von Neumann machine, clustering can be used to construct
coarse-grain threads from a fine-grain dataflow representation of the program

[Najjo2].

2.4 Factoring Schedule Loops

In this section, we show that in a single appearance schedule, we can “fac-
tor” common terms from the iteration counts of inner loops into the iteration count
of the enclosing loop. An important practical advantage of factoring is that it may
significantly reduce the amount of memory required for buffering.

For example, consider the SDF graph in Figure 2.10. Here,

@ 10
1 10
© ©
1 10

Figure 2.10.An SDF graph used to illustrate the factoring of
loops.

g(A B C D = (100 10Q 10 JT, and one valid single appearance schedule
for this graph is(100A) (100B) (10C) D . With this schedule, prior to each invo-
cation ofC ,100 tokens are queued on each of the input edgés of , and a maxi-

mum of 10 tokens are queued on the input edgb of . PAGs units of storage

69

dg (Q) = dg5(2) ,andUAD (actors(G) — 4 .95 (A) = qg(A) .

Proof. Let q' denote the vector that we claim is the repetitions vectdgfor , and

recall from Fact 2.1 that’ = q5 ifand onlydf satisfies the balance equations

for G' and the components gf are coprime. From the definitiatustering it
can easily be verified thaf satisfies the balance equatio® for . Furthermore,

from Fact 2.1, no positive integer greater tHan can divide all members of

Hide (A) | (ADactors(G) — 2} O {ged={ds (A) | (AU} F 5

Sinceq' (Q) = gcd%{ dg (A) | (AO2)} O it follows that the components of

g’ are coprimeQED.

Fact 2.8 and Fact 2.9 imply that for scheduling purposes, a cluster in a con-
nected SDF graph can be viewed as monolithic from the outside or as an SDF
graph (possibly non-connected) from the inside, and that the SDF parameters of
the monolith and the repetitions vector of the graph that it is contained in can be
formally bound to the repetitions vector of the original SDF graph.

The concept of a cluster in a graph has been defined in and applied in many
different contexts. In VLSI circuits, for example, a “cluster” is informally defined
as a particularly dense or complex subcircuit, and the problem of detecting such
clusters has been addressed to partition a circuit so that the number of connections
crossing the partition are minimized [Garb90]. In multiprocessor scheduling, clus-
tering is commonly used to group subsets of dataflow actors that are to be sched-
uled on the same processor [Gera92]. A third example arises in the context of
dataflow/von Neumann hybrid architectures, which allow collections of data flow

actors, called threads, to execute sequentially under the control of a program

68

lows thatS does not terminate §n , ahgp, S = 0
Now suppose thasource(3) O actors(R andink(p3) O actors(R

Then corresponding tp | there is an e@@ge Gin , suchsthace(B’) = Q ,
sink(B') = sink(B), produced(B') = qg, g(source(B)) x produced(f) ,

and consumedf’) = consumedf) . Now each invocation &, produces

inv (source(P), $) produced(B) = qg, s(source(B)) produced(p)

= produced(f’)

tokens onto3 . Sinceonsumed’) = consumed) and is a valid sched-

ule, it follows thatA (B, S) = 0 , an& does not terminatefn
Similarly, if source(3) [0 actors(B andsink(f3) [0 actors(R , we see

that each invocation 0§, consumes the same number of tokens3fromQ2 as
consumes from the corresponding edg&in , andA(@& S) = 0 Sand does
not terminate oifg .

We conclude thaS does not terminate on any eddg® in , andShus, is
admissable. Furthermor&,(a,S) = 0 for each edge Gin , and Shce and
S, are both periodic schedules, it is easily verified ghat invokes each a@Gor in
at least once, so we conclude tBat is a periodic schegi®.

We conclude this section with a fact that relates the repetitions vector of an

SDF graph obtained by clustering a subgraph to the repetitions vector of the origi-

nal graph.

Fact 2.9: If G is a connected SDF grapi,[] actors(G) , a@d is the SDF

graph obtained fromG by clusteringubgraph(Z) into the acfor , then

67

As a simple example, consider Figure 2.9 again. N@®®Q) E is a valid
schedule for the SDF graph in Figure 2.9(b), 8nd AB(2CD) is a valid sched-

ule for R = subgraph({A B G b)) such that

(inv(A',S) =dg,g(A")),0A. Thus Fact 2.8 guarantees tHAB (2CD)) E

is a valid schedule for Figure 2.9(a).

Proof of Fact 2.8Given a schedul& and an SDF edge , we define

A(a,S) = (inv(source(a), $ x produced(a))

—(inv (sink(a), 9 x consumeda)) . (2-9)

ThenSis periodic if and only if it invokes each actor apfl (a, S) = 0) Ja

We can decomposg in®Qs,Q...s,_,Qs,, where ea]ch denotes the
sequence of invocations between tfje- 1) th pnd th invocatio®s of . Then
S = 5,58,5 S5

First, suppose that (3 is an edge IinG such that
source(P), sink(B) O actors(R) . Then S, contains no occurrences of
source(3) nor sink(p) ,soP(B,i,é) = P(B,i,S') for any invocation num-
beri ofsink(B) . Thus, sinc& is admissabf, does not terminafe on . Also,
A (B, é) = A(B,$;Sy--8) = A(B,S) =0, sinceS s periodic.

If source(B), sink(pB) O actors(R), then none of thesj 'S contain any
occurrences of source(pB) or sink(B) . Thus, for anyi ,
P(B.i.S) = P(Bi,S), whereS = §.S;...S; denote§ with all of the s
removed. Sinc&S consists of successive invocations of a valid schedule, it fol-

66

For example, in Figure 2.9(a), I&® = subgraph({ A B) . We have
4c(ABGCDB = (22441, q(AB) = (1 1), and from Defini-

tion 2.3, gg (actors(R)) = gcd(2,2) = 2 and

dr/ (A B) = (2,2 T2 = (1, 1)T. As Fact 2.7 assures Ui, = O, ¢

Finally, we formalize the concept ofustering a subgraph of a connected
SDF graphG , which as we discussed earlier, we use to organize hierarchy for
scheduling purposes. This process is illustrated in Figure 2.9. Here
subgraph({ A, B, C, D}) of Figure 2.9(a) is clustered into the hierarchical actor
Q, and the resulting SDF graph is shown in Figure 2.9(b). Each inputbedge to a

clustered subgrapR is replaced by an emlge having
produced(a’) = produced(a) , and
consumeda’) = consumeda) X gy, s(sink(a)),
the number of tokens consumed fream in one invocatioR a6 a subgraph of

G. Similarly, we replace each output edge with such that
consumedf’) = consumedp) , and

produced(B') = produced(B) x g, s (source(p)) .

We will use the following property of clustered subgraphs.

Fact 2.8: SupposeG is an SDF grapR, is a subgrapk oG’ , is the SDF
graph that results from clusterirgy into the hierarchical a@&oiS is a valid

schedule folG' and§R is a valid schedulefor such that for eachActoR in
inv (A S) = dg, (A . Let S denote the schedule that results from replacing

each instance d® i Wi'[BR .Thé® is a valid scheduleZor

65

4 (2) = gcd%{ ds (A [AD Z % and we defing,, ; to be the vector of posi-

tive integers indexed by the members d that is defined by

dr/g(A) =0q5(A) /95 (2) , foreachAl Z . We can vieg; (Z) dse number

of times a minimal periodic schedule f6r invokes the subgRypdind we refer

to g, ¢ as theepetitions vector oR as a subgraph®f For example, in Figure

2.9(a), if R = subgraph(A B G D , then q;(actors(R)) =2, and
Or/e = dr/o(ABCD = (1,122,

The following fact establishes that for a connected SDF subgraph, its repe-

titions vector is the repetitions vector of itself as a subgraph of the enclosing graph.

Fact 2.7: If G is a connected SDF graph aRd is a connected subgra@h of

thenqg, 5 = dr - Thus, for a connected subgrdph , for edchactors(R) ,

dg (A) = gg(actors(R)) qg (A) .

Proof: Let S be any periodic schedule & of unit blocking factor, and let
S = projection(S R . Then from Fact 2.6 and Fact 2.2, for Alll actors(R) ,

we haveqg (A) = J(S)dg(A) . From Fact 2.1, we know that the components

of g are coprime, and it follows that

J(S) = gcd%{ dg (A) |A’ O actors(R) } E = ¢ (actors(R)) .

Thus, for each actoh iR qgz(A) = qg5(A)/qg(actors(R)) = g, 5(A)

QED.

64

(a) (b)

Figure 2.9 An example of clustering a subgraph in an SDF graph.

subgraph({ A, B}) . We see that for a periodic schedule, the minimum numbers

of repetitions forsubgraph({ A, B, C, D}) as a subgraph athe original graph

are given byp(A,B,C D) = (1,1, 2 Z)T , Which can be obtained by dividing

each corresponding componentjg by

gcd={ g (A), dg (B), 06 (C), dg (D)} H = 2.
On the other hand, concatenating the repetitions vectossitigraph({ A, B})
and subgraph({ C, D}) yields the repetition counts

p'(AB,CD = (111])T. However, repeatedly invoking the subsystem
with these relative repetition rates can never lead to a periodic schedGle for . We

have motivated the following definition.

Definition 2.3: Let G be a connected SDF graph, supposeZhat is a subset of

actors(G) , and let R = subgraph(2) . We define

63

is a valid schedule fosubgraph(C, G) . Thus, associated With , there is a vector

of positive integerslg , indexed by the connected componei@s of , such that

for each connected compondéht &f

AOCO inv(A 9 = J5(C) Ugupgrapcy (A) - (2-8)

We call J4 theblocking vector of S. For example, ifS = A(2C) B(2D) for
Figure 2.8, thedg({A, B}) =1 ,andg({C,D}) = 2 .On the other hand, if
S is connected, thedg has only one component, which is the blocking factor of

S, J(S) . We refer to any vector of positive integers indexed by the connected

components o5 as a blocking vector far

It is often convenient to view a part of an SDF graph as a subsystem that is
invoked as a single unit. The invocation of a subsystem corresponds to invoking a
minimal valid schedule for the associated subgraph. If this subgraph is connected,
its repetitions vector gives the minimum number of invocations required for a peri-
odic schedule. However, if the subgraph is not connected, then the minimum num-
ber of invocations involved in a periodic schedule is not necessarily obtained by
concatenating the repetitions vectors associated with the connected components of
the subgraph. This is because the full SDF graph may contain connections between

the non-connected components of the subgraph.
For example, leG denote the SDF graph in Figure 2.9(a) and consider the

subsystemsubgraph({ A, B, C, D}) in this graph. It is easily verified that
ds(AABCDBH =(2244 J)T. Thus in a periodic schedule, the actors in

subgraph({C, D}) must be invoked twice as frequently as those In

62

of A in S equals the number of tokens queuedion just prior to the th invoca-

tion of A in an execution oprojection(S 2 . Thus, we have the following fact.

Fact 2.6: If Sis a schedule for an SDF gragh G, is a subgrap@ of pand
is an edge iIrG' | then

(a). S is valid (periodic) implies thgprojection(S, G) is a valid (peri-
odic) schedule foG" ; and

(b). S terminates o implies thatojection(S, G) terminatesoon

The concept of blocking factor does not apply directly to SDF graphs that

are not connected. For example in Figure 2.8 the minimal numbers of repetitions

Figure 2.8 A simple non-connected SDF graph.

for a periodic schedule are given pfA,B,C D) = (1,1, 1) "1 The sched-
ule A(2C)B(2D) is a valid schedule for this example, but this schedule corre-
sponds to a blocking factor a&f faubgraph({A, B}) and a blocking factor of
2 for subgraph({ C, D}) — there is no singlscalar blocking factor associated
with A(2C) B (2D) .

Now suppose thad is a valid schedule for an arbitrary SDF dggaph . By

Fact 2.6, for each connected componént Gof , we haveptbgction(S O

1. Note that this vector is not a repetitions vector, and thus it is not represergjed by , be-
cause the associated graph is not connected. By definition, only connected SDF graphs can
have repetitions vectors.

61

Definition 2.2: Suppose that is a looped schedule for an SDF g&aph and
Z [0 actors(G) . If we remove fromS all actors that are notan and then we
repeatedly remove all null loops until no null loops remain, we obtain another
looped schedule, which we call thejection of S ontoZ , and which we denote
by projection(S, 2) . For example,

projection((2(2B) (5A)), {A, C}) = (2(54)),
and projection((5C), { A, B}) is the null schedule. &' is a subgraphGof ,

we defineprojection(S, G) = projection(S actors(G)) .

We will use the following fact, which follows immediately from Definition

2.2 and the definitions introduced in the previous section.

Fact 2.5: If Sand S are valid looped schedules for an SDF g@pla , is an
edge inG , and is a positive integer such thati < inv (sink(a), 9 and
1<i<inv(sink(a), S), then

@. (P(a,i,S) =P(a,i,S)) =« (T(a,i,S) =T(a,i,5)) ;

(b). P(a,i,S) = P(a,i, projection(S, { source(a), sink(a)})) ; and

(c). max_tokenga, S = max({ Ta,i,S)|(l<i<inv(sink(a), §)}) .

The projection of an admissable schedslle onto a subset of actors fully
specifies the sequence of token populations occurring on each edge in the corre-
sponding subgraph. More precisely, for any adadi Z , any positive integer
such thatl<i<inv(A,S) , and any input edge o contained in

subgraph(Z) , the number of tokens queued@n just prior toithe th invocation

60

memory required byS , denotefluffer_memoryS) , to be the number of storage
units required to implement the buffering r if each buffer is mapped to a sepa-
rate contiguous block of memory. Quantitatively,niax_tokenga, S) denotes
the maximum number of tokens that are simultaneously queued omedge during

an execution of the schedule S we have that

buffer_memoryS) = Z max_tokenga,S). In Figure 2.3, if
o 0 edgeq G)

S = BC(2ABO) , then max_tokengA - B, S) = 4,
max_tokengB —» C,S) = 1, andbuffer_memoryS) = 4+1 =5

Our model of buffering here — each is buffer mapped to a contiguous and
independent block of memory — is convenient and natural for code generation,
and it is the model used, for example, in the SDF-based code generation environ-
ments described in [Ho88b, Pino94, Ritz92]. However, perfectly valid target pro-
grams can be generated without these restrictions. In this and the following
chapter, we examine the interaction of scheduling and memory requirements under
the assumption that each buffer is mapped to a separate, independent block of con-
tiguous memory. Developing scheduling techniques that take advantage of more
flexible buffer implementations is a topic for future work; although some of the
pertinent issues are explained in Chapter 4, which discusses how to increase the

efficiency of buffering for a given schedule.

2.3 Non-connected SDF Graphs

The fundamentals of SDF were introduced in terms of connected SDF
graphs. In this section, we extend some basic principles of SDF to non-connected

SDF graphs. We begin with a definition.

59

iteration loop and replace it with its body, select a one-iteration loop in the result-

ing schedule and replace it with its body, and repeat this process until there are no
one-iteration loops remaining, we will arrive at a new sche8ule that generates

the same invocation sequenceSs and contains no one-iteration loops. Thus, the

following fact is obvious.

Fact 2.4: Given a looped schedule |, there exists a looped sch&ule that gen-

erates the same invocation sequenc&as suclSthat contains no one-iteration
schedule loops, and

O(A D actors(S)), appearancegA, S) = appearancegA, S .

Given a schedul® , aninvocatibn is said tgpa# of a subschedul§,
if I occurs in an invocation 0§, . For example, in the schedg2AB) BB :
invocationsA; A, B; ,an®, are part of the subsched@lB) , Whérgas
A,, B, andB, are not. Given an SDF graph , anemlge G in , a looped sched-

ule S for G, and a nonnegative integer , we defih€q, i, S) to denote the
number of invocations afource(a) that precede the th invocatiosimi (o)

in S; and we defind (a,i,S) to denote the number of tokena on just prior to
the i th invocation ofsink(a) in an execution & . For example, consider the
SDF graph in Figure 2.3 and lat denote the edge directedBromC to . Then
P (a,2,BC(2ABQC)) = 2, the number of invocations & that precede invoca-
tion C, in the invocation sequence BCABCABC , and
T(a,2 BC(2ABC)) = 1.

Given a looped schedul® for an SDF gradph , we defindulfer

58

ond appearance of2BC) ." I, is a subscheduleSof , we sayShat conis
tained in S, and we say tha, isested inSif §;is contained inS andg,#S .

We denote the set of actors that appear in a looped sch&dule by
actors(S) , and we denote the number of times that an aktor appe&rs in by
appearancegA, S ; thus, actors((2(2B) (5A))) = {A B ,
actors(X(2Y(32) X)) = { X Y 4, appearances$C, (3CA) (4BC)) = 2,
and appearancegA, (2ABAQ (3A)) = 3. Given a looped schedue and an
actorA , we definenv (A, S to be the number of times that invékes . Simi-

larly, if S, is a subschedule, we defing (S,, S) to be the number of times that
S invokes S,. For example, if S= A(2(3BA)C)BA(2B) , then

inv(B,S =9, inv((3BA),S = 2, and
inv (first appearance d8A, § = 6. Also, we refer to the invocation sequence
that a looped schedul® represents asnbhecation sequence generatedy S.
For example, the invocation sequence generatesl By A(2 (3BA) C) BA(2B)
is ABABABACBABABACBABBNhen there is no ambiguity, we occasionally
do not distinguish between a looped schedule and the invocation sequence that it
generates.

A schedule loop is ane-iteration loop if its iteration count is 1. Although
such loops are usually useless in the implementation of a schedule, they are useful
for analyzing schedules, as will be apparent, for example, in Section 2.4. Since a
one-iteration schedule loop generates the same invocation sequence as its body,

replacing the loop by its body does not change the invocation sequence of an

enclosing schedule. Thus, given an arbitrary looped sch&dule , if we select a one-

57

Definition 2.1: Given an SDF grape ,schedule loopis a parenthesized term

of the form (nT,T,...T) , wheren is a positive integer, and edch s either an
actor inG or another schedule loop. The parenthesized taefT,...T) rep-
resents the successive repetiton times of the invocation seqlighge. T f
L = (nT,T,...T.) is aschedule loop, we say tmat isiteeation count of L,
eachT; is anterand of L, andT,T,...T constitutes theody of L. If the body

of L is empty, that is ifm = 0 , we say that isnall schedule loop; except

where otherwise stated, we assume that all schedule loops are nonioajed

scheduleis a sequenc¥,V,...V, , where ea¢h s either an actor or a schedule

loop. Since a looped schedule is usually executed repeatedly, we refer 4 each

as anterand of the associated looped schedule.

When referring to a looped schedule, we often omit the “looped” qualifica-

tion if it is understood from context; similarly, we may refer to a schedule loop
simply as doop. Given a looped scheduf& , we refer to any contiguous sequence
of actors and schedule loops$ (at any nesting depthsabszheduleof S.

For example, the scheduldSAB)C a(@B (3AB)C) A are both subschedules
of A(2B(3AB) C) A(2B) , whereas(3AB) CA is not. By this definitio®, is a
subschedule of itself, and every schedule loof in is a subschedsle of . If the

same invocation sequence appears in more than one place in a looped schedule, we
distinguish each instance as a separate subschedule. For example, in
(3A(2BC) D (2BC)) , there are two appearances (#BC) , and these corre-
spond to two distinct subschedules. In this case, the content of a subschedule is not

sufficient to specify it — we must also specify the lexical position, as in “the sec-

56

procedure ConstructValidSchedule (G, r)
 define ready to be a queue of actors
 define queuedand scheduledto be vectors of non-negative
integers indexed by the actors in G
« define S to be a schedule; initialize S to be the null schedule.
for each edge a
b (a) = delay(a)
for each actor A in G
r=r(A
for each input edge a of A
r = min({r, | delay(a)/consumeda) |})
if (r>0)
append A to the ready queue
queued A =r
scheduled A =0
repeat until ready is empty
remove the actor A at the head of ready
append queued A successive invocations of A to S
scheduled A = scheduled A+ queued A
n = queued A; queued A =0
for each input edge a of A
b(a) = b(a) — (nx consumeda))
for each output edge a of A
b(a) = b(a) + (nx produced(a))
for each output edge a of A
r = r (sink(a)) —scheduledsink(a))
for each input edge B of sink(a)
r = min({r, [b (B)/consumedp) J})
if (r>queuedsink(a)))
append sink(a) to ready
queued A =
for each actor A in G

if (scheduled AZr (A))
error; inconsistent graph
exit

output S

Figure 2.7.An algorithm for constructing a valid schedule for a connected
SDF graph.

55

puted, a valid schedule can be constructed. In [Lee87], Lee defines a class of

scheduling algorithms, calledass-S algorithmsthat construct valid schedules
given a positive integer multiple of the repetitions vector . A class-S algorithm
maintains the state of the system as a vdator that is indexed by the edges in the
input SDF graph. A class-S algorithm is any algorithm that repeatedly schedules
fireable actors, updating as each actor is fired, until either no actor is fireable or
until all actors have been scheduled exactly the number of times specified by the

corresponding component of . Thus, once an a&tor has been sche@ifjed

times, a class-S algorithm does not schedule again. Lee shows that a class-S
algorithm constructs a valid schedule if and only if the SDF graph in question is
consistent [Lee87].

One specific class-S scheduling algorithm is given by proce@aore
structValidSchedulen Figure 2.7. It is easily verified that if we assume that the
number of input and output edges for a given actor is bounded by a constant,

which is a reasonable assumption in practice, then the time complexitynef

structValidSchedules O(r (A)), whereG is the input SDF graph.

AO a(%rs(G)

2.2 Looped Schedule Terminology and Notation

In Section 2.1, we reviewed relevant mathematical background, and we
summarized several important developments in [Lee86]. In this section, we begin
presenting the contributions of this thesis. We start by introducing some basic con-
cepts and terminology pertaining to uniprocessor scheduling that will be used

heavily throughout the remainder of the thesis.

54

if G has a repetitions vector.

procedure ComputeRepetitions (G)
for each A [0 actors(G) , initialize reps(A to zero
select an actor A’ [1 actors(G)
SetReps (A, 1)
compute x = lcm({ denom(reps(A) | Ad actors(G})
for each A0 actors(G) , reps(A = xx reps(A
for each edge a [edgeq G)
if (reps(source(a)) x produced(a))#
(reps(sink(a)) x consumeda))
error : inconsistent graph
exit

procedure SetReps (A, n)
reps(A =n
for each output edge a of A
if reps(sink(a)) =0
SetReps(sink(a) ,
ReducedFractiorf (nproduced(a)) / consumeda)))
for each input edge a of A

if reps(source(a)) =0
SetReps(source(a) ,
ReducedFractiorf (nconsumeda)) / produced(a)))

Assuming the production and consumption parameters on the edges are
bounded — so that computing the least common multiple of two numbers is an
elementary operation — this algorithm has time complexity that is linear in the

number of actors and edges in the input SDF graph.

2.1.5 Constructing a Valid Schedule

If a connected SDF graph is consistent and the repetitions vector is com-

53

f,: edgeqG,) - edgeq G) such that for each a0l edgeqG;) ,
source(f, (a)) = f(source(a)), sink(f, (a)) = f (sink(a)),
delay(f, (a)) = delay(a), produced(f, (o)) = produced(a) , and
consumedf, (o)) = consumeda) . Intuitively, two SDF graphs are isomor-

phic if they differ only by a relabeling of the actors and/or edges. For example,
subgraprB{ A, Asl E in Figure 2.5 andsubgraph({ A, B}) in Figure 2.3 are

isomorphic.

Finally, given a sample rate consistent, connected SDF dgaph and an
edgea IinG , we denote the total number of tokens consumesinkya) in a
minimal schedule period by total consumeda, G) ; that is
total_consumeda, G) = g (sink(a)) x consumeda) . Since in a periodic
schedule, the number of tokens produced on an edge equals the number of tokens
consumed, we also have that
total_consumeda, G) = g, (source(a)) x produced(a) . If, G is under-
stood from context, we may suppress the second argument and write

total_consumeda) in place oftotal_consumeda, G) .

2.1.4 Computing the Repetitions Vector
The repetitions vector can be computed efficiently by applying depth-first
search. An algorithm based on the one that is used in the Gabriel [Lee89] and

Ptolemy [Buck92] systems is described by the pseudocode segment below. In this
algorithm, we maintain an array of fractions caltegs . At the end of the algo-

rithm, numer(reps(A) = qg(A) , for each actoA in the input SDF gragh

52

schedules, such as the schedfbsgev;l\lA:,)A2A1A3A2Al , exist.

Associated with any connected, consistent SDF g@ph , and a positive
integer blocking factod , there is a unique directed graph, calladyatic prece-
dence graph (APG) that specifies the precedence relationships between actor
invocations [Lee87] throughout successive minimal schedule periodS for
Each vertex of the APG corresponds to an actor invocation and there is an edge
directed from the vertex corresponding to invocatton to the vertex correspond-

ing to Bj if and only if at least one token produceddy is consumeBil by .Asa

simple example, Figure 2.6 below shows the APG for Figure 2.3 and blocking fac-
tor 1. See [Sih91] for an efficient algorithm that systematically constructs the
APG.

We say that two SDF grapls; aisl, &gemorphic if there exist

bijective mappings f, - actors(G,) - actors(G) and

Figure 2.6.The acyclic precedence graph for Figure 2.3 and unity blocking fac-
tor.

51

graphs, consistency implies sample rate consistency, but the converse is not true: a
sample rate consistent SDF graph that is deadlocked is not consistent.

Clearly, an SDF graph is consistent if and only if each connected compo-
nent subgraph is consistent, and a necessary condition for a connected SDF graph
to be consistent is that the topology matrix does not have full rank. However, for
an admissable periodic schedule to exist, an SDF graph must also have a sufficient
amount of delay in each fundamental cycle. For example, consider the SDF graph

in Figure 2.5. The repetitions vector for this graph is given by

Figure 2.5.An SDF graph that has a repetitions vector but does not have
an admissable schedule.

q(ALALA) = (332, (2-7)

and thus periodic schedules exits. However, one can easily verify that there are

only five possible non-null admissable schedules for this SDF graph -A.A, ,

AA A, AAAA,, andA2A1A3A2A1 . Since none of these five schedules con-

tains enough invocations for a periodic schedule, we see that a valid schedule does

not exist. If we increase delay on the output edgé of from one to two, valid

50

duces only two tokens per firing an, , only two firingsAof are possible for
each firing ofA, . Thus, any infinite admissable sequence of firings for this graph
will produce an unbounded token accumulatiorogna, , , or both.

If we changeproduced(a;) t&® , the resulting SDF graph, shown in Fig-

ure 2.4(b), has a periodic schedule. The topology matrix of this new SDF graph is

2-10
r=1[01-1 (2-5)
2 0 -
2 0 -

It is easily verified that the first two rows bf are linearly independent, and each

of the third and fourth rows is the sum of the first two rows. Thus, the rdnk of is
2, one less than the number of actors, so positive-integer solutions to (2-2) exist,
and thus the repetitions vector exists. The repetitions vector for Figure 2.4(b) is

given by
q(ALALA) = (1,22 (2-6)

From (2-6), we see thad, A, A;AA; andl A AAA, are minimal periodic
schedules, ané, A,A; A,AAAAAA, is a periodic schedule having blocking
factor 2 . All three of these schedules are admissable.

In this thesis we are primarily concerned with schedules that are both peri-
odic and admissable, and we refer to such schedulesidsschedules. An SDF

graph isconsistentif and only if it has a valid schedule, and we say that an SDF

graph issample rate consistentf it has a periodic schedule. Thus, for SDF

49

ule is shown in Figure 2.4. The topology matrix for this SDF graph is

(a) (b)

Figure 2.4. (a). An SDF graph that does not have a periodic schedule.
(b). A slightly modified version that has a periodic schedule.

0
, (2-4)

-
11
N N O W

-1
1
0
0

[e

where eachn; corresponds to the th row and édach corresponds to the th col-

umn. Observe that the bottom two rowsl'of are identical, and the top three rows
form a square matrix whose determinant is nonzero. Thus, the matrix contains
three linearly independent rows, so it has full rank, and there is no nontrivial solu-
tion to 2-2.

To understand what is “defective” about this graph, observe that for each

firing of A, , three firings oA, are required to return edge to its initial state of
having no tokens queued in its buffer, and then three firings, of are required to

returna, to its initial state. However, sinag is an input edg®,of Agnd pro-

48

when a periodic schedule exists, the null spade of has dimehsion , and there is
a unique minimum positive integer vector that satisfies (2-2). This unique mini-
mum positive-integer vector is called tlepetitions vector of G, and we denote

this vector byqg , or simply by iG is understood from context. Clearly, any
positive integer multiple of the repetitions vector also solves the balance equations,
and since the null space bf is of dimensioA (N—1) = 1 , every positive-
integer vector that solves the balance equations is a positive-integer multiple of the
repetitions vector. Note that the topology matrix, and hence the existence of a peri-

odic schedule, does not depend on the delays in an SDF graph. Facts 2.1-2.3 sum-

marize the main properties that follow from the definition of the repetitions vector.

Fact 2.1: A positive-integer vector is the repetitions vector of a connected SDF
graph if and only if its components are coprime and it satisfies the balance equa-

tions.

Fact 2.2: Any positive-integer vector that satisfies the balance equations is a pos-

itive-integer multiple of the repetitions vector.

Fact 2.3: A scheduleS for a connected SDF graph is periodic if and only if

gg exists and there exists a positive integgr such $hat invokes each

A0 actors(G) exactlyJ,qs (A) times.

The positive integed, in Fact 2.3 is called thlecking factor of the

associated schedule. ¥ is a periodic schedule, we denote the blocking factor of

SbyJ(S ,andifJ(S) = 1 we saytha& isminimal periodic schedule.

An example of a connected SDF graph that does not have a periodic sched-

a7

b (source(a)) x produced(a) = b (sink(a)) x consumeda) . (2-1)

This system of equations in the set of \variables
{b(A)| (A0 actors(G))} — consisting of one equation for each edg&in —
is known as the system bélance equationsor G. Clearly, a periodic schedule
exists forG if and only if the balance equations have a solution whose compo-

nents are all positive integérdhe balance equations can be expressed more com-

pactly in matrix-vector form as
b =0, (2-2)

wherel , called théopology matrix of G, is a two-dimensional matrix whose
rows are indexed by the edgesGn and whose columns are indexed by the actors
in G, and whose entries are defined by
Dproduced(O(), if A= source(a)
MNa,A) = E—consumecﬂa), if A= sink(a) (2-3)
0, otherwise
Thus,G has a periodic schedule only if it's topology matrix does not have
full rank. Furthermore, in [Lee87], Lee shows that the rank of is always either
or n—1, wheren denotes the number of actor&in , and that whenever the rank

is n—1, a positive-integer vector exists that satisfies the balance equations. Thus,

1. Recall that in our definition gferiodic schedulewe do not require admissability — a
periodic schedule need not be admissable.

2. This formulation assumes that does not containsatfyloops edges whose source

and sink vertices are identical, such as egljge in Figure 2.1. In an SDF graph, a self-loop

edgea precludes the existence a periodic schedptedficed(a) # consumeda) ; other-
wise it has no effect on the existence of a periodic schedule, and thus it can be ignored in
this analysis.

46

schedule for the SDF graph in Figure 2.3. In contrast, the slightly different sched-
ule BACBB is not admissable, since only one token resides on the input délge of

prior to invocationB; .
If S = AAA;... is not an admissable schedule, then sdme is not fire-

able immediately after its antecedents have fired. Thus, there is at least ooe edge

such that (1)sink(a) = A and (2) the buffer associated itk (o) contains

less thanconsumeda) tokens just prior to the th firingSn . For each such
we say thatS terminates on a at invocation A, . Clearly then, a schedule is
admissable if and only if it does not terminate on any edge.

We say that a schedug ipeariodic scheduleif it invokes each actor at
least once and produces no net change in the system state — for each edge , (the
number of timessource(a) is fired 5 ¥ produced(a) = (the number of
times sink(a) s fired inS x consumeda) . For example for the SDF graph in
Figure 2.3, we saw that if the initial state(’0) , the state after executing the
scheduleBACBA is(4,1) . Thus this schedule produces a net change of
tokens on the left-side edge afd token on the right-side edge, so this schedule
is not periodic.

Suppose thab is a vector of positive integers indexed by the actors in a
connected SDF grapB . Non-connected SDF graphs can be analyzed by examin-
ing each connected component separately; we will elaborate on this in Section 2.3.
By definition, a schedule that invokes each a&ob (A) times is a periodic

schedule if and only if

for each edger i

45

is calledexecutingthe schedule, and if a schedule is executed repeatedly, each
repetition of the schedule is called@edule periodof the execution.

Consider the simple SDF graph in Figure 2.3. Each edge is annotated with

(5=
2D

Figure 2.3 A simple SDF graph.

the number of tokens produced by its source actor and the number of tokens con-
sumed by its sink — for example, actr produces three tokens per firing on its
output edge an8 consumes two tokens from its input edge.Zlhe “ " nextto the
edge directed fromdh tB indicates that this edge has a delay of . Now consider
the schedul8 ACBA for this example. As we fire the invocations in the schedule,

we can represent thetate of the system — the number of tokens queued on the

buffers — with an ordered pair whose first and second members are, respectively,
the number of tokens on the edg§e- B and the number of tokens on the edge
B - C. Then, since there is a delay®f on the left side edge, the initial state of

the system i2,0) . Thus, the first invocation of the schedulB,— — is fireable,

and as it fires, two tokens are removed from the left edge and one token is
appended to the right edge, so the state becdts . Since the corresponding
actor has no input edges, the second invocation of the schedule is fireable, and its
firing leads to the stat€3,1) . It is easily verified that the remaining three invoca-
tions in the schedule are fireable and the sequence of buffer states that results from
these remaining firings i$3,0), (1,1), (4,1) . ThuSACBA is an admissable

44

sink(a) . We refer to a vertex of an SDF graph asaator, and given an SDF
graphG , we represent the set of actors and the set of ed@es inactdrg(G)
and edgeqG) , respectively. If for each a[edgeqdG) |,

produced(a) = consumeda) = 1, then we say thaG is homogeneous
SDF graph.

Conceptually, each edge B , corresponds to a FIFO queue that buffers
the tokens that pass through the edge. The FIFO queue associated with an edge is
called abuffer for that edge, and the process of maintaining the queue of tokens

on a buffer is referred to dmiffering. Each buffer contains an initial number of
tokens equal to the delay on the associated edfjegné of an actor inG corre-
sponds to removingonsumeda) tokens from the head of the buffer for each
input edgea , and appendingoduced(3) tokens to the buffer for each output
edgep . Thus, a firing is only possible if for each input ealge , there are at least

consumeda) tokens on the corresponding buffer. After a sequene of or more
firings, we say that an actor fiseable if there are enough tokens on each input

buffer to fire the actor. Achedulefor G is a sequenc8 = AA,A;... of actors
in G. Each termA, of this sequence is calledraocation of the corresponding

actor in the schedule; and for each adfor , we denotg the th invocatibn of in
the schedule bp\lj , and we cpll tiheocation number of Nj . The schedule that
consists of no invocations — the empty sequence — is callenuthechedule

An admissable scheduldor G is a schedule‘\lAzAs... for G such that each

invocation A, is fireable immediately aftéy, A,, ..., A _; have fired in succes-

sion. The process of successively firing the invocations in an admissable schedule

43

Vi Vo ooV of the members of V such that for eackOE
((source(e) = y) and (sink(e) = \1) O (i<j)) ;thatis, the source vertex of
each edge occurs earlier in the ordering than the sink vertex. Thus, in Figure 2.2,
subgraph(v,, v, v,, Vg) has two distinct topological sorts v, v, v, Vg) and

(V1) V3 Vg V) - An acyclic directed multigraph is said towell-ordered if it has

only one topological sort, and we say thanan -vertex well-ordered directed multi-

graph ischain-structured if it has (n—1) edges. Thus, for a chain-structured

directed multigraph, there are orderingsv., ..., v, , ance,, ...,e of the
vertices and edges, respectively, such that each s directed;fromv, , ,to . For
example, in Figure 2.2,subgraph(v,, v, V) is chain-structured, while
subgraph(v,, v, Vg) is neither chain-structured nor well-ordered; and in Figure

2.1, subgraph(v,, v,, v;) is well-ordered but not chain-structured.

In the remainder of this thesis, by a “graph” or a “directed graph”, we mean

a directed multigraph, unless otherwise stated.

2.1.3 Synchronous Dataflow

Formally, an SDF graph is a directed multigraph in which each@dge has
three properties in addition &ource(a) asdtk(a) delay(a) , Which is a
nonnegative integer that gives the number of initial data values associated with ;
produced(a) , a positive integer that indicates the number of data values, called
tokens produced onto the channel correspondingito by each execution of the
computation corresponding source(a) ; aednsumeda) , @ positive integer

that represents the number of tokens consumed fxtom by each execution of

42

Figure 2.2 A directed multigraph that has three strongly connected com-

ponents — {Vvy,V,} , {V3 V,, Ve} ,and {Vg} .

{vs Vv, ve} , and{v,} . The strongly connected components of a directed multi-

graph can be determined in linear time by an algorithm developed by Tarjan
[Tarj72].

Given a directed multigrapl\v, E) , avertex @F, E) iDat vertex
of (V,E) if there is no edge in(V,E) such thaink(e) = v , andoat
strongly connected componenbf (V, E) is a strongly connected compon&fit
of (V, E) such that{el E| (source(e) O Vandsink(e) O V)} =0 . For

example, in Figure 2.2 there are no root vertices, and there is one root strongly

connected component —{v,,v,} . Finally, Wf is a connected component of

(V,E), thensubgraph(V') is called aonnected component subgrapbf (V,E);
similarly, if V' is a strongly connected component(¢fE) , teebgraph(V')
is astrongly connected component subgrapbf (V,E).

A topological sortof an acyclic directed multigrapfV,E) is an ordering

41

the same source and sink vertices.

We say that a directed multigraphcisnnectedif for each distinct pair of

verticesv,, v, , there is a path directed frasn Vo or there is a path directed

from v, tov, . Thus, the directed multigraph in Figure 2.1 is not connected, while
the subgraph associated wiftv,, v,, v} is connected. Given a directed multi-

graphG = (V, E) , there is a unique partition (unique up to a reordering of the

members of the partitiony,, V,, ...,V suchthatfogi<n subgraph(V,) is

n
connected; and for ea@dl] E source(e), sink(¢ O Vj for sone . Thus, each

V, can be viewed as a maximal connected subsét of , and we refer e, each as

a connected componenbf G. For example, the connected components of the
directed multigraph in Figure 2.1 afev;, v,, V5} afd,} . Depth-first search

can be used to find the connected components of a directed multigraph in time that

is linear in the number of vertices and edges.
A directed multigraph(V,E) istrongly connectedif for each pair of dis-

tinct verticesv,, v, , there is a path directed fren vipand there is a path
directed fromv, tov, . We say that a subset of verticeg in is strongly con-

nected if subgrapiV',(V,E)) is strongly connected. s&rongly connected com-
ponent of (V,E) is a strongly connected subsét]V such that no strongly

connected subset & properly contaWfis . For example, the directed multigraph

in Figure 2.2 has three strongly connected components {vg, V,} :

40

a predecessor of ;andwe say that apnd admcentif v, is a successor or
predecessor of, . Two subsets, V, IV are adjacent if there exist vertices
v, 0V, andv, 0V, such thav, and, are adjacent. Bgubgraph of a
directed multigraphG = (V, E) , we mean the directed multigraph formed by
anyV' OV together with the set of edgge [l E| (source(e), sink(¢ OV')}

We denote the subgraph associated with the vertex-subbet by

subgraph(V', G) ; if G is understood from context, we may simply write

subgraph(V') . A path in (V,E) is a nonempty sequeneg, e,, €, ... U E such
that sink(e;) = source(e,) , sink(e,) = source(eg,) , We say that the

path p = ¢e,e,e;.. passes through each member of
Zy = ED { source(e)) } %D ED { sink(e)} E and we refer to the SDF graph
I i

formed byZID together with the set of edgesin asadsociated graphof p.

Observe that the associated graplpof is not necessarily a subgraph since it does
not necessarily contain all of the edges whose source and sink actors are members

of Zp. Given a finite pathp = €, €, ...,6, , We say that d&ected from

n

source(e;) to sink(e,) . A path that is directed from some vertex to itself is

called acycle or adirected cycle and a@undamental cycleis a cycle of which no

proper subsequence is a cycle. A directed multigragateyslic if it contains no
cycles. Finally, ife is the only edge directed fraource(e) dimk (e) , then

we occasionally denote bsource(e) — sink(¢ ;thus, in Figure 21> v,

represents the edgg , wheregs- v, cannot repregent begause also has

39

source(e) andsink(e) such thasource(e), sink(e) O V . Each member\of

is called avertex of the directed multigraph and each membeEof s called an
edge We say that a directed multigraphnsial if it contains only one vertex. If

e is an edge in a directed multigraph, we say Huairce(e) isdbecevertex

of e; sink(e) is the sink vertex of e ; e isdirected from source(e) to
sink(e) ; e is anoutput edgeof source(e) ; ande is annput edgeof sink(e) .

We represent a directed multigraph pictorially by drawing a circle for each vertex,

and for each edge , drawing a directed line segment from the circle correspond-

ing to source(e) to the circle corresponding teink(e) . For example, the
directed multigraph depicted in Figure 2.1 consists of vertices, v, v, , ,and
edges e, €,€;¢€,6e; , where source(e;) = y , sink(e) =\ ,

source(e,) = V, sink(e,) = v, source(ey) = \, sink(ey) V.

3 ’

source(e,) \, sink(e,) = \, source(e;) = y,andsink(e;) = v, .

Given two not necessarily distinct vertices ~ and in a directed multi-
graph(V,E) , we say that, ismredecessonf v, if there existee 1 E such that

source(e) = \ andsink(e) = v, ;we saythat, issuccessoof v, if v, is

€3

Figure 2.1A directed multigraph.

38

real numbers, we denote the largest and smallest numbBrs inmax§R) and

min (R) , respectively. Given a fractioh = , we defimemer(f) = a and

T

denom(f) = b and given a positive rational numberqg , by

ReducedFractioig) we denote that unique fractidn for whiclkimer(f) and

denom(f) are positive and mutually coprime, anerr?oirw((g =q .Alsqg,if isa

real number, we denote the largest integer that is less than or equal to (the “floor”

of r) by | r |, and we denote the smallest integer that is greater than or equal to

(the “ceiling” of r) by[r] . Finally, given two arbitrary se® aBg , we define
the difference of these two sets 8y—S, = {s[Sl|s 0 S} , and we denote the

number of elements in a finite @t [|§

When discussing the complexity of algorithms, we will use the star@@dard
Q and© notation. A functiom(x) iI®(g(x)) if for sufficiently large f (x)
is bounded above by a positive real multiple gfX) . Similaflgx) is
Q(g(x)) if f(x) is bounded below by a positive real multiplegafx) for suffi-

ciently largex ,and(x) i©(g(x)) ifitisbot®(g(x)) ard(g(x))

2.1.2 Graph Concepts

This section introduces the basic graph-theoretic concepts that will be
applied in this thesis. For elaboration on any of these concepts, the reader is
referred to [Corm90].

By adirected multigraph, we mean an ordered pdVv,E) , wh&fe and

E are finite sets, and associated with eadh E there are two properties

37

2

LOOPED SCHEDULES

2.1 Background

For reference, the definitions behind much of the terminology and notation
that is introduced in this and subsequent chapters can be located by using the index

at the end of the thesis.

2.1.1 Mathematical Terms and Notation

We adopt the convention of indexing vectors and matrices using functional
notation rather than subscripts or superscripts. Thus, for exanip)e represents
the third component of the vectar , akt{i,j) represents the value correspond-

ing to thei th row ang th column of the two-dimensional mattix . We denote

the transpose of the vector l&)T/

Given a finite seP of positive integers, we denotegbgl (P) the great-
est common divisor d? — the largest positive integer that divides all members of
P, and we denote the least common multiple of the membéd?s of lcnb{P) f

gcd(P) = 1, we say that the members®f aoprime. Given a finite seR of

36

and the vectorized FORTRAN code of figure 3.17(c) is easily seen.

The problem of applying thresholds is in some ways more general, and in
some ways less general than the problem of scheduling SDF graphs to minimize
activations. It is more general because complicated patterns of data transfers — for
example data dependent, multi-dimensional, or nonlinear patterns — can be speci-
fied by arbitrary FORTRAN statements whereas in SDF graphs, each edge always
corresponds to a linear stream of data with the producing and consuming computa-
tions offset by a constant amount (the edge delay) that is known at compile time.
On the other hand, the threshold application problem is less general because in its
underlying model of computation, each fundamental operation consumes and pro-
duces a single data value. Thus, unlike the SDF case, there is no issue of repetition
and looping arising implicitly from mismatches in production and consumption

parameters along data dependence edges.

177

mum number of iterations that elapse between the definition of a variable and its
use in a dependence. Thus, if we can construct an inner loop whose iteration count
is equal to one less than the threshold, then this inner loop may be amenable to dis-
tribution and/or vectorization. This transformation is particularly useful for vector
machines in which vector instructions outperform equivalent scalar instruction
sequences for short vector lengths; that is, if the start-up overhead for performing a

vector instruction is small compared to the execution time of a scalar instruction.

10D

Figure 3.18 An SDF graph that corresponds to the dependence relation-
ships in figure 3.17(a).

In some cases, the problem of applying thresholds efficiently can be solved
by constructing a minimum activation schedule for a homogeneous SDF graph.
For example, the dependence relationships in figure 3.17(a) can be modeled by the

homogeneous SDF graph depicted in figure 3.18. Here, the actors correspond to
the subroutinesl F2 F3 and4 in figure 3.17, and each edge corresponds to
one of the arraysW ,X ,Y orZ . It can be verified that

(2(5F) (5F2 (5F3)) (10F4) is a single appearance schedule that minimizes

the activation rate for figure 3.18, and the correspondence between this schedule

176

DO 100 | = 1, 100
Y(I) = F1(X(I-5))
Z(I) = F2(Y(1))
X(1) = F3(W(I-10), Z(1))
W(l) = FA(X(1))
100 CONTINUE

(@)
DO 100 1 =1, 10
DO90J=1,2
DO80K=1,5

Il = 10%(I-1) + 5*(J-1) + K
Y(Il) = F1(X(1I-5))
Z(I1) = F2(Y(I))
X(Il) = F3(W(11-10), Z(I1))
80 CONTINUE
90 CONTINUE
DO70J=1, 10
Il = 10%(1-1) + J
W(Il) = FA(X(I1)
70 CONTINUE
100 CONTINUE

(b)

DO 1001 =1, 10
DO90J=1,2
Il = 10%(I-1) + 5*(J-1)
Y(I+1:11+5) = F1(X(1I-4:11))
Z(I1+1:11+5) = F2(Y(I1+1:11+5))

X(I+1:11+5) = F3(W(11-9:11-5),Z(11+1:11+5))

90 CONTINUE
W(L0*1 - 9:10%1) = F4(X(10*I - 9:10%1))
100 CONTINUE

(©)

Figure 3.17 An illustration of thresholds, and of a relationship between thresh-
olds and minimum activation schedules for SDF graphs.

175

that have polynomial time-complexity. In contrast, the solution of [Ritz93] does
not have polynomially-bounded complexity, and it will rapidly become infeasible

if the input graph is sufficiently complicated. Fortunately, this threshold will rarely
be reached by the systems for which the technique was designed — large grain
specifications of signal processing algorithms.

Despite the differences in generality, for the specific purpose of jointly
minimizing code size and actor activation rate for SDF graphs that have single
appearance schedules, the method of [Ritz93] is superior to that proposed in this
thesis. Furthermore, since the techniques of [Ritz93] require an optimization pass
that traverses all levels of the cluster hierarchy, it is unlikely that these techniques
can be directly incorporated into our scheduling framework, which restricts the
component algorithms to operate only on one specific level of the hierarchy at a

time.

3.4.5 Thresholds

Constructing looped schedules for SDF graphs that minimize actor activa-
tions is related to the concept thfresholds which is discussed by Allen and
Kennedy [Alle87] in the context of compiling FORTRAN programs into code for
vector computers. As a simple example, consider the FORTRAN code fragment in
figure 3.17(a). Due to the recurrences in the body of this loop, loop distribution
cannot be applied and none of the statements can be vectorized. However, if we
“split” the loop up as shown in figure 3.17(b), loops amenable to distribution and
vectorization emerge. Figure 3.17(c) shows the result of applying distribution and
vectorization to the inner loops of figure 3.17(b).

The transformation from the loop in figure 3.17(a) to the loop in figure

3.17(b) is an application of thresholds. A threshold is loosely defined as the mini-

174

|Br|| qG (An)
N' o = LA LAy (3-14)
adt I'IEH kI'I

In the proposed technique, an exhaustive search ovigy all kand is car-

ried out to minimize (3-14). The search is restricted by constraints derived from
the requirement that the resulting scheduleGor be valid. As with the construc-
tion of complete hierarchizations, it is argued that the simplicity of strongly con-

nected components in most practical applications permits this expensive
evaluation scheme.

As with the techniques presented in Sections 3.1 am 3.2 of this thesis, the
minimum activation scheduler of [Ritz93] provides a solution for constructing
schedules that minimize code size. However, with regards to scheduling for mini-
mum code size, the solution in this thesis is more general for three reasons. First,
our scheduling framework guarantees code size optimality for all actors that lie
outside the tightly interdependent components, and thus, it handles graphs that do
not have single appearance schedules. In contrast, the techniques of [Ritz93] apply
only to SDF graphs that have single appearance schedules.

Second, the minimum code size scheduler of [Ritz93] is designed for the
specific secondary goal of minimizing actor activations. In contrast, our schedul-
ing framework can be adapted to different secondary optimization goals. For
example, the clustering techniques of [Bhat93] can be incorporated into the acyclic
scheduling algorithm to minimize the buffer memory requirement; the technique
of Section 3.3 can be applied to any chain-structured graphs that arise in the cluster
hierarchy; and the technique related to Theorem 3.3 can be employed to increase
the use of registers.

Finally, we have demonstrated that loose interdependence algorithms exist

173

the vectorization degree associated vith , then all fundamental cydles in con-

tain at least one edge for whi€h; (a) = v . Thus, if we remove ffom all
edges in the sef{a|Ds(a) =vh} , the resulting graph is acyclic, and if

F Fro - Fn nn is a topological sort of this acyclic graph, then valid sched-

n, 1
ules exist for M that are of the form
Ta= (i (il'l,lFI'I,l) (in,an,z) (in,nnFn,nn)) . This is the subschedule tem-
plate forll .

Here, eacH:H,j is a vertex in the hierarchical SDF gi@gh associated

with . Thus, eacI"Fn,j is eitherl@ase block— an actor in the original SDF

graphG — or a hierarchical actor, which represents the execution of a periodic

schedule for the corresponding subgraphGof . NowAlet denote the set of

actors inG that are contained B and in all hierarchical subgraphs nested

within G, ; and letk, = gcdg{ inj|1<isng) E . Thus we have

I =Kol (Fn b = 1,2 .0, (3-13)

In [Ritz93], it is stated that number of activations tfigt contributes to

Br|dg (An)

N',ct IS given by ”
n

, whereBn is the set of base blocké;}p . Thus,

if H denotes the set of hierarchical components in the given complete hierarchiza-

tion, then

172

Now observe that the relative vectorization degree of the fundamental

cycle in figure 3.16(c) with respect to the original SDF grapthlé@J =2 , While

the relative vectorization degree of the fundamental cycle in figure 3.16(b) is

FZ—ZJ = 6; and the relative vectorization degree of the fundamental cycle in fig-

ure 3.16(c) is{%J = 1 . Thus, we see that the relative vectorization degree

decreases as we descend the hierarchy, and thus the hierarchization depicted in fig-
ure 3.16 is complete. The hierarchization step defined by each of the SDF graphs
in Figures 3.16(b)-(d) is calledcamponentof the overall hierarchization.

The technique described in [Ritz93] constructs a complete hierarchization
by first evaluating the relative vectorization degree of each fundamental cycle,
determining the maximum vectorization degree, and then clustering the graphs
associated with the fundamental cycles that do not achieve the maximum vector-
ization degree. This process is then repeated recursively on each of the clusters
until no new clusters are produced. In general, this bottom-up construction process
has unmanageable complexity; for example, in the worst case, the number of fun-

n-1
damental cycles in a directed graph E Eh—
i=1

n O

iy 1D(n—l)! [John75]. How-

ever, this normally doesn’t create problems in practice since the strongly
connected components of useful signal processing systems are often small, partic-
ularly in large grain descriptions.

Once a complete hierarchization is constructed, the technique of [Ritz93]

constructs a schedule “template” — a sequence of loops whose iteration counts are

to be determined later. For a given comporfént of the hierarchizatigy, if is

171

are clustered, all cycles at a given level of the hierarchy have the same relative
vectorization degree, and cycles in higher levels of the hierarchy have strictly

higher relative vectorization degrees that cycles in lower levels. Figure 3.16

12D 16D 12D

12D 16D 12D
(b) (©) (d)

Figure 3.16.A complete hierarchization of a strongly connected SDF
graph.

depicts a complete hierarchization of an SDF graph. Figure 3.16(a) shows the orig-

inal SDF graph; hereq (A, B, C, D) = (1, 2 4 S)T . Figure 3.16(b), shows the

top level of the cluster hierarchy. The hierarchical acfey represents

subgraph({B, C, D}), and this subgraph is decomposed as shown in figure
3.16(c), which gives the next level of the cluster hierarchy. Finally, figure 3.16(d),

shows thatsubgraph({C, D}) corresponds @, and is the bottom level of the

cluster hierarchy.

170

(4B) (4A) (4C) . However, valid schedules exist that are not single appearance
schedules, and that have valueNgf belovb ; for example, the valid sched-
ule (4B) (4A) (3B) (3A) (7C) contains two appearancesff d@&d , and sat-
isfiesN'get = 5/7 = 0.71.

In [Ritz93], therelative vectorization degreeof a fundamental cycl€ in

a consistent, connected SDF graph is defined by

N (C) = ma%{ min%{ Dg (a') |a’ O parallel (a) } Ea 0 edgesC) } &,

(3-12)
whereDg (a) = Lotal_cdoer:zzf:e)da, S J is the delay on edge normalized by
the total number of tokens consumedsdyk (a) in a minimal schedule period of
G, and
parallel (a)

= {a’' [0 edgeq G) |source(a’) = source(a) and sink(a') = sink(a)}
is the set of edges with the same source and sink as . For exan@le, if denotes

the SDF graph in figure 3.12(a) agd denotes the cycte in whose associated

graph contains the actofs aBd , thgg(x) = B_SJ =0 ;ar@d if denotes

the graph in figure 3.15 and denotes the cycle whose associated graph contains

A andC , therDg (X) = EJ =

Ritz et. al postulate that given a strongly connected SDF graph, a valid sin-
gle appearance schedule that minimikeg, can be constructed éammpéete

hierarchization, which is a cluster hierarchy such that only connected subgraphs

169

time. In practice, these assumptions are seldom valid; howsgr(S) gives a
useful estimate and means for comparing schedules. For consistent acyclic SDF
graphs, clearlyN';; can be made arbitrarily large by increasing the blocking fac-
tor sufficiently; thus, as with the problem of constructing compact schedules, the
extent to which the activation rate can be minimized is limited by the strongly con-
nected components.

The technique developed in [Ritz93] attempts to find the valid single
appearance schedule that minimidg. over all valid single appearance sched-
ules. The technique applies only to SDF graphs that have single appearance sched-
ules. Minimizing the number of activations does not imply minimizing the number
of appearances, and thus, the primary objective of the techniques in [Ritz93]
agrees with our primary objective — code size minimization. As a simple exam-

ple, consider the SDF graph in figure 3.15. It can be verified that for this graph, the

Figure 3.15This example illustrates that minimizing actor activations does
not imply minimizing actor appearances.

lowest value ofN'y; that is obtainable by a valid single appearance schedule is

0.75, and one valid single appearance schedule that achieves this minimum rate is

168

3.4.4 Minimum Activation Schedules in COSSAP

The techniques in this thesis focus on compiling SDF graphs to minimize
the code size and to increase the efficiency of buffering. At the Aachen University
of Technology, as part of the COSSAP software synthesis environment for DSP,
Ritz et. al have investigated the minimization of code size in conjunction with a
different secondary optimization criterion: minimization of the context-switch
overhead, or the average rate at whactor activations occur [Ritz93]. An actor
activation occurs whenever two distinct actors are invoked in succession; for
example, the schedul@ (2B) (5A)) (5C) for figure 3.12(a) results in five acti-
vations per schedule period. Activation overhead includes saving the contents of
registers that are used by the next actor to invoke, if necessary, and loading state
variables and buffer pointers into registers. In the code generation system
described in [Ritz93], the context-switch overhead also includes a function call,
which in turn requires saving the current value of the program counter (the return
address of the function call), branching to the location of the function, retrieving
the return address when the function is completed, and branching to that return

address.

In [Ritz93], the average rate of activations for a periodic sche®lule s esti-
mated as the number of activations that occur in one iteratin of divided by the
blocking factor ofS , and this quantity is denoted MYy (S) . For example, for
figure 3.12(a), N'act ((2(2B) (5A)) (5C)) =5, and
N'act ((4(2B) (5A)) (10C)) = 9/2 = 4.5. If for each actor, each invocation

takes the same amount of time, and if we ignore the time spent on computation that

is not directly associated with actor invocations (for example, schedule loops),

then N',¢ (S) is directly proportional to the number of actor activations per unit

167

This approach bears resemblance to the scheduling framework of loose
interdependence algorithms. When scheduling SDF graphs, the outermost loop
corresponds to a singe period of the periodic schedule. The strongly connected
components of the SDF graph are isolated by the clustering process of step 2 in fig-
ure 3.2. Then, for each strongly connected component, we focus on the next inner
loop nesting level of the target program by examining the interdependencies
within a minimal schedule period for the given strongly connected component, and
attempting to find a subindependent partition. Just as some dependence graph
edges disappear as we descend the nesting levels of a group of nested loops, SDF
graph edges can become “ignorable” as a loose interdependence algorithm recur-
sively decomposes strongly connected components of an SDF graph. Given a con-
sistent, connected SDF graph , an edge does not impose precedence

constraints within a minimal schedule period fdp if and only if

delay(a) = qs(sink(a)) x consumeda) . From Fact 2.7, wheneved' is a

connected subgraph d& amdil] actors(G') , we hayg (A) <qg(A)

Thus, as a loose interdependence algorithm decomposes a strongly connected
component into finer and finer components, the amount of delay required for a
given edge to be ignorable (within a minimal schedule period) decreases, in gen-
eral.

In contrast to the top-down approach of outside-in vectorization,
Muraoka’s inside-out vectorization works by examining the innermost loops first
and working outward. If both techniques are fully applied, inside-out vectorization
and outside-in vectorization yield the same result. However, the outside-in method
is computationally more efficient since a statement that can be vectorized for a

series of nested loops is examined once rather than repeatedly for each loop.

166

S, B(I, J) = A(l, J) + C(I - 1, J)
. C(,3)=B(,J)*6

20 CONTINUE
10 CONTINUE

The associated dependence graph is:

Sinces, is not part of a dependence cycle, it is isolated and vectorized, and

this results in the transformed program below.

A(1:100,1:100) = X(1:100,1:100) + Y(1:100,1:100)
DO 10 1=1, 100
DO 20J=1, 100

S, B(I, J) = A(l, J) + C(I - 1, J)
S, C(,J)=B(,J)*6

20 CONTINUE
10 CONTINUE

Next, the dependence graph for the inner loop is examined:

(=) ~(=)

Since no dependence graph cycles exist, the inner loop can be vectorized,

and the final result of applying outside-in vectorization is:

A(1:100,1:100) = X(1:100,1:100) + Y(1:100,1:100)
DO 10 1=1, 100
B(l1,1:100) = A(1,1:100) + C(I-1,1:100)
C(1,1:100) = B(l, 1:100) * 6
10 CONTINUE

165

If the target processor has multidimensional vector instructions available,

then it may be desirable to vectorize across multiple nestedladpsted loop
vectorization is the form of vectorization that is most closely related to the tech-
niques developed in Section 3.1 of this thesis. Two main approaches to nested loop
vectorization have emerged — tbetside-invectorization of Allen and Kennedy
[Alle87], and theinside-outvectorization of Muraoka [Mura71]. Respectively, the
relationship between these two techniques is somewhat analogous to the differ-
ences between our loose interdependence scheduling framework and the method

of Ritz et. al [Ritz93] described in the following subsection.

Suppose that , L,, ...,L, is a sequence of perfectly nested FORTRAN

n

loops; that is, there are no statements between the loops. Suppadse that is the
outermost loopl, is the next outermost loop, and so on. In outside-in vectoriza-
tion, thel, 's are traversed starting with the outermost loop and working inward.
First, the dependence graph fof L,, ..., L, is examined, and loop distribution is

applied to isolate strongly connected components and vectorizeable statements.

Then, for each strongly connected component]the loop is fixed and the depen-

dence graph fot,, L, ...,L, is examined. Again, loop distribution is applied,

n

and the method continues recursively on each strongly connected component of

the dependence graph for thg L, ..., L combination.

For example, consider the nested loops below.

DO 101=1, 100
DO 20J=1, 100

S, Al J) = X(1, 3) + Y(I, J)

1. In [Wolf89], Wolfe states that modern vector processors do not support multidimension-
al vector instructions, and thus, nested loop vectorization is seldom applied anymore.

164

A common tool for vectorization is tHeop distributiontransformation,
which was introduced by Muraoka in [Mura71]. In loop distribution, the body of a
loop is partitioned into segments, and a separate loop is created for each segment.
As an example of loop distribution, and how it can be applied to vectorization,

consider the FORTRAN loop below.

DO10I1=1,10
S, Alh=B(I)+C(1-1)
S,: D) =2 * A(l)
S5! Ch=A()+5

10 CONTINUE

The dependence graph for this loop is:

() ~(s2)

We see thas, and, form a dependence graph cycle, and,that is not
part of any cycle. We can replace the loop with one loop that spags the - cycle

and a second loop f®, , which can be vectorized. The transformed program that

results from this combination of loop distribution and vectorization is shown

below.

DO 101=1, 10
A(l) = B(l) + C(I - 1)
Ci)=A()+5

10 CONTINUE

D(1:10) = 2 * A(1:10)

We see that this method of transformation bears similarities with the loose interde-

pendence scheduling framework.

163

repetition of statements results from control-flow structure that is specified explic-
itly in the corresponding program. With SDF graphs, no control-flow structure
exists a-priori, and we must construct one carefully with regards to the available
memory in the target processor before proceeding with other scheduling optimiza-
tions. Once the control-flow has been specified for an SDF graph, and code blocks
for each actor have been inlined, dependence graphs can be constructed and depen-
dence graph analysis can be applied to further optimize the target program. How-
ever, the construction of the initial control-flow structure is a crucial step, and we
expect that failure in this step is generally difficult to overcome through post-opti-
mization. For example, recall that How’s study [How90], discussed in Subsection
3.4.1, confirmed that pattern matching on a schedule designed for minimum buffer
memory requirement does not acceptably minimize the code size. When compiling
an SDF graph, the scheduling framework of Section 3.1 can be applied first. If the
resulting target program fits within the available processor memory, then post-opti-
mization techniques, such as those that apply dependence graphs, loop unrolling
[Dong79], or reorganizing the loop structure to improve memory access locality
[Wolf91], can be applied until the remaining memory is exhausted.

The vectorization problem is similar in structure to the problem of con-
structing compact looped schedules for SDF graphs since just as strongly con-
nected components in an SDF graph can limit looping opportunities, cycles in a
dependence graph limit vectorization. Vectorization is most commonly applied to
the innermost loop of a group of nested loops. If the dependence graph for the
inner loop is acyclic, then each statement can be vectorized provided that a match-
ing vector instruction exists. If cycles are present, then they are carefully analyzed

to see if they can be ignored or if transformations can be applied to eliminate them

[Wolf89].

162

Vectorization algorithms normally operate on a data structure called a
dependence grapiThe dependence graph of a procedural program segment is a

directed graph in which each vertex corresponds to a statement of the program. If

v, andv, are vertices of a dependence graphsand sand are, respectively, the
corresponding statements, then there is an edge directedvfromv, to if it has
been determined that some invocatiorspf is dependent on an invocatipn of
that is, there exist invocations and sf a@d |, respectively, such that exe-

cuting i, beforei; may be inconsistent with the semantics of the original pro-

gram.

Unlike the precedence relationships specified by an SDF graph, the depen-
dences in a dependence graph cannot always be determined exactly at compile-
time. This is because the programming languages to which dependence graphs are
applied are based on more general models of computation than SDF. For example,

consider the following FORTRAN code segment in which the value of the variable

X is not known at compile-time.

DO10I1=1, X

S Alh=1

S, B(l) = A(100 - 1)
10 CONTINUE

Here,s, depends og, if and onlyXf>50 . Unless itis known that the value of

X will definitely be less tha®0 , there is a dependence graph edge directed from
the vertex corresponding 8 to the vertex correspondiisg to
Another significant difference between SDF graphs and dependence graphs

is that SDF graph edges specify iteration implicitly — through mismatches in the

production and consumption parameters — whereas with dependence graphs, the

161

modification of Buck’s merge pass algorithm always preserves code size optimal-

ity.

3.4.3 Vectorization

The techniques developed in Sections 3.1 and 3.2 in this thesis are related
to techniques for transforming serial procedural programs into programs that are
suitable for vector processors. Vector processors are computers that have special
operations, calledector instructionsfor operating on arrays of data. For example,
in a vector processor, the following loop can be implemented by a single vector
instruction:

DO 101=1, 100
X(l) = Y(1+10) + Z(1+20)
10 CONTINUE

A common syntax for the vector instruction corresponding to this loop is
X(1:100) = Y(11:110) + Z(21:120)

In a vector instruction, the computations of the components of the result
vector are independent of one another, so deep pipelines can be employed without
any hazards [Kogg81]. Also with a vector instruction, the number of instructions
that must be fetched and decoded is reduced; interleaved memories can be
exploited to reduce the average time required to read an operand from memory;
and the pipeline hazards arising from the loop branch in the original (unvectorized)
loop are eliminated[Henn90]. Often, as a consequence of upgrades in computing
resources, programs written for conventional scalar processors must be ported to
vector processors. Also, from the programmer’s viewpoint, it is often more natural
or convenient to write serial programs without worrying about efficiently utilizing
vector instructions. These considerations have motivated the study of automatic

techniques for vectorizing serial procedural programs.

160

introduces a tightly interdependent subgraphsabgraph({T (B, 2), C, D})

The hierarchical graph that corresponds to the subsequent merge pass operation is
shown in figure 3.14(c). As expected, the tight interdependence introduced by the
loop pass persists, and we conclude that in this example, the integral loop pass has
steered the solution away from a single appearance schedule.

Comparing Buck’s merge pass / loop pass scheme with the techniques
developed in this thesis reveals a trade-off in compile-time efficiency vs. optimal-
ity. Buck’s scheduling technique is more time-efficient because it applies only
local dataflow information; there is no need to recompute repetitions vectors and
repeatedly determine connected and strongly connected components, for example.
This same trade-off is observed with How's CSURC approach, but Buck’s sched-
uler is more thorough than How's since it considers looping opportunities that span
repetition-count boundaries and it systematically avoids deadlock.

Buck’s merge pass directly inspired the clustering technique presented in
Section 3.2 for increasing the use of registers in buffering. The merge pass was
attractive for this purpose because it handled edges on which the production and
consumption parameters are identically unity; it handled many actors that occur
frequently in practice; and it was based on a clustering scheme that could easily be
incorporated into the framework of loose interdependence algorithms. Our main
modification to the merge pass clustering conditions was to replace the condition
that there is no “external” path directed from the source actor to the sink actor
(condition 2) with the stronger condition that the sink actor in the pairwise cluster
candidate must have no predecessors other than the two actors in the candidate
cluster. The previous example of figure 3.13 illustrates how a violation of this
modified condition can result in suboptimal scheduling. The rigorous theory of

looped schedules developed in this thesis allowed us to formally establish that our

159

appearance schedule here because it consolidates actors from both sides of the par-
tition, and thus, it destroys the subindependent partition.
As an example of how the integral loop pass can introduce suboptimality,

consider figure 3.14. For the SDF graph in figure 3.14(a),

g(A,B,C D = (5104 49T and (5A) (2(2D) (5B) (2C)) is a valid
looped schedule. No pair of adjacent actors in this graph satisfies the merge pass

clustering conditions, so the first transformation of the graph is performed by the
integral loop pass. It is easily verified that the edge B is the only edge that
satisfies the integral loop pass conditions, and thus Bctor s looped with loop fac-

tor 2. The resulting hierarchical SDF graph is shown in figure 3.14(b), and the rep-

etitions vector for this new graph is given by

qg(A,T(B2),C D) = (5549 T Examination of this repetitions vector and

figure 3.14(b) reveals that the transformation performed by the integral loop pass

(@) (b) (c)

Figure 3.14.An example that illustrates suboptimal performance from
Buck’s integral loop pass.

158

Figure 3.13An example that illustrates how Buck’s merge pass can fail to
preserve the existence of a single appearance schedule.

157

Here, conditionsl an@ are sufficient, but not necessary, to avoid dead-

lock; and condition2 is provided to favor nested loops, which reduce the buffer
memory requirement over schedules that don’t involve nesting [Bhat93].

The nonintegral loop pass is designed to accommodate looping opportuni-
ties that arise from edges whose production and consumption parameters are not
related by integer multiples. Here, the integral loop pass looping conditions are not
sufficient to guarantee deadlock-free looping, and thus, the nonintegral loop pass is
applied only to graphs that are tree structured or contain only two actors. With this
restriction, deadlock avoidance is not an issue, but nonintegral looping opportuni-
ties that involve actors in the strongly connected components cannot be exploited.

Together, the merge pass, integral loop pass, and nonintegral loop pass pro-
vide a means for rapidly obtaining compact looped schedules. However, since they
are based on heuristics, each pass can introduce suboptimalities (with regards to
code size). For example, figure 3.13 illustrates how the merge pass can introduce

tight interdependence from a graph that has a single appearance schedule. For the

graph in figure 3.13(a), q(A,B,C D = (6,36 2)T , and
(3(2A)B) (2(3C) D) is a valid single appearance schedule. Now observe that
the edgeA —» C satisfies the merge pass clustering conditions, and that it is the
only edge that satisfies the conditions. Thus, the merge pass clusters
subgraph({ A, C}) . It can easily be verified that the graph that results from this
clustering, shown in 3.13(b), is tightly interdependent. Hence, a schedule con-
structed from a cluster hierarchy that includes the result of this merge pass opera-
tion cannot be a single appearance schedule.

Observe that in figure 3.13(a) there is only one possible subindependent

partition — { A, B}, { C, D} . The merge pass cancels the existence of a single

156

3. a is not contained in a strongly connected component subgraph,
or
min ({ delay(a') | (source(a’) = source(a)) and (sink(a') = sink(a))})
=0,

or

min ({ delay(a') | (source(a’) = sink(a)) and (sink(a') = source(a))})
= 0.
The merge pass repeatedly clusters pairs of adjacent actors that satisfy conditions

1 through3 until no pairs remain that satisfy the conditions.
The loop pass is divided into two steps — ifegral loop passand the

nonintegral loop pasdn the integral loop pass, a candidate looping opportunity is
introduced by each edge that satisfigeduced(a) = k< consumeda) or
consumeda) = k produced(a) , for some positive integek>2 . If the can-
didate looping opportunity corresponding to is chosen, then that member
z(a) O { source(a), sink(a)} that has higher repetition count (repetitions
vector component) is looped with loop factor . The candidate is selected if the
following conditions hold

1. There is no edge’ directed to (from()a) such that
produced(a’') # consumeda’) , delay(a') >0,anda’ is a member of a cycle.

2. No actor adjacent to(a) can be looped to match the repetition count
(repetitions vector component) ofa)

3. After loopingz(a) ,{T(z(a),n),z} satisfies the merge pass clus-
tering conditions, where 7 is the single member of
({ source(a), sink(a)} —{z(a)}).

155

ties accross boundaries in repetition count almost as thoroughly. The main space
and speed advantages are gained by using simple and efficient heuristics, rather
than a reachability matrix, to decide whether a consolidation of multiple invoca-
tions should be avoided.

In addition to applying clustering, Buck’s technique employs an alternative
mechanism for building hierarchy in which an individual a&or is replaced by an
actorT (A n) thatrepresents successive invocations of |, for an arbitrary pos-
itive integern . Thus each input edge Af isreplaced by an@dge that differs
only in the sink actor and the consumption parametesink(a’) = T(A 1)
and consumeda’) = i consumeda) ; and similarly, each output edfe is
replaced by an edgB’ that has identical parameters, with the exception that
source(f’) = T(A h andproduced(') = mx produced(3) . Buck refers to

this process dsopingactor A with doop factorof n.

Buck’s technige involves a clustering step, callednieege passin which
adjacent actors that have the same repetition count are clustered; and a looping
step, called théoop passin which selected actors are looped to eliminate mis-
matches in repetition count between adjacent actors. The merge pass and loop pass
are alternated until neither pass produces any transformations, and then the algo-
rithm terminates.

Given an SDF edga , the merge pass clustetsce(a) samd a)
only if the following three conditions are met

1. produced(a) = consumeda) ; and

2. there is no path directed frosource(a) wink(a) that

passes through an actor that is not a membérsolurce(a), sink(a) } ; and

154

2 5

1
2 10D

(a) (b)

Figure 3.12This example illustrates how clustering subgraphs based on
repetition count alone can conceal looping opportunities that occur within
cycles.

On the other hand, any loose interdependence algorithm guarantees that a
minimum amount of code will be required for any actor that is not contained in a
tightly interdependent component. As we discussed in Section 3.2, our preliminary
observations suggest that tightly interdependent subgraphs are rare in practice, and
thus, loose interdependence algorithms guarantee code size optimality for a large

class of useful SDF graphs.

3.4.2 Buck’s Loop Scheduler

The clustering algorithm developed in Section 3.2 is based largely on part
of an alternative technique for constructing compact looped schedules that was
developed by Buck [Buck93]. Buck’s technique is designed to be more space and

time efficient than the technique of [Bhat93], while extracting looping opportuni-

153

cases.

In contrast, for SDF graphs that contain no tightly interdependent compo-
nents, the scheduling framework of Section 3.1 does not require use of the reach-
ability matrix, the acyclic precedence graph, or any other data structure that can
become unreasonably large. As mentioned in Section 3.2, our observations suggest
that a large majority of practical SDF graphs fall into this category. For SDF
graphs that contain tightly interdependent subgraphs, our scheduling framework
naturally isolates the minimal subgraphs that require special care. Only when ana-
lyzing these tightly interdependent components, may the need arise for reachabil-
ity matrix analysis, or some other explicit deadlock-detection scheme.

A second limitation of the technique of [Bhat93] is that, although it
extracts looping more thoroughly that How's CSURC approach, it fails to process

cycles in the graph optimally. This is illustrated in figure 3.12. Figure 3.12(a)
depicts a multirate SDF graph, and hgréA, B, C) = (10, 4, 5 T . Two pairwise
clusterings lead to graphs that have valid schedulesibgraph({ A, B}) , hav-
ing repetition counk , andubgraph({ A, C}) , having repetition cobnt (the

clustering ofsubgraph({ B, C}) results in deadlock). Clustering the subgraph

with the highest repetition count yields the hierarchical topology in figure 3.12(b),

for which the most compact minimal valid schedule is
(2B) (2Q,¢) BQAB(2Q,¢) which yields the schedule
(2B) (2(2A)C)B(2A)CB(2(2A)C) for figure 3.12(a). On the other hand,
clustering the subgraph of lower repetition coustjbgraph({ A, B}) , as

depicted in figure 3.12(c), vyields the more compact schedule

(2Q,g) (5C) O (2(2B) (5A)) (5C) .

152

almost the entire schedule.

In [Bhat93], a technique is described that generalizes How's CSURC
scheme to exploit looping opportunities that occur across changes in repetition
count. The approach involves constructing the cluster hierarchy in a pairwise fash-
ion by clustering exactly two vertices at each step. The cluster selection is based
on frequency of occurrence — the pair of adjacent actors is selected whose associ-
ated subgraph has the highest repetition count. This approach favors nested loops
over “flat” loop hierarchies, and thus reduces the buffer memory requirement.

The technique of [Bhat93] also included a systematic method for dealing
with deadlock. This method maintains the cluster hierarchy on the acyclic prece-
dence graph rather than the SDF graph. Thus, it verifies whether or not a grouping
introduces deadlock by checking whether or not it introduces a cycle in the APG.
Furthermore, it is shown that this check can be performed quickly by applying a

reachability matrix , which indicates for any two APG vertices (actor invocations)

P, andP, , whether there is a precedence path fgm P,to

Unfortunately, the storage cost of the reachability matrix proved prohibi-
tive for multirate applications involving very large sample rate changes. Observe
that this cost is quadratic in the number of distinct actor invocations in a minimal
schedule period. For example, a rasterization actor that decomposes an image into
component pixels may involve a change in repetition count on the order of
250,000to0 1. If the rasterization output is connected to homogeneous actor (for

example, a gamma level correction), this block alone will produce on the order of

(250,00()2 = 6.25x 10° entries in the reachability matrix! Thus very large
changes in repetition count preclude straightforward application of the reachability

matrix; this is unfortunate because looping is most important precisely for such

151

shown in figure 3.10(b), and a corresponding looped schedule is
(2(3ABF) D) E (6C) . Unfortunately, How was unable to deduce a general solu-
tion to the problem of efficiently decomposing a CSURC in a deadlocked clustered
graph.

The second shortcoming of the CSURC approach arises from its inability

to detect looping that occurs across changes in repetition count. In figure 3.11, we

Figure 3.11An SDF graph that offers opportunities for looping that span
changes in repetition count.

show an SDF graph with opportunities for this kind of looping. Here

g(AABCDB =(8214 ZT andS= C(2E (2D (2A)) B) is a schedule.
Although this schedule reveals that a large amount of looping is inherent in the
graph, clearly none of the looping results from CSURC's, since every edge induces
a change in repetition count. In this case, the How’s CSURC-driven schedule is the
same as that produced by the minimum buffer memory heuristic with post-pro-
cessing, which i€ (2D (2A)) ECB(2D (2A)) B . Clearly, this schedule applies

significantly less looping tha8 . It fails to recognize the opportunity to repeat a

firing pattern involvingA ,D andE . As a resulf, is allowed to fire midway
through the schedule, and this breaks up the nested loop which could have spanned

150

processing. This is mainly because multirate signal processing systems frequently

consist of single sample rate subsystems, with changes in sample rate occurring

only at scattered interface points.
Although How's CSURC-based scheduling greatly improves the ability to

extract looping from SDF graphs, it has two major limitations. The first shortcom-

ing is illustrated in figure 3.10() Here the clustering of the CSURC

(b)

Figure 3.10An example of how How's CSURC scheduling can lead to deadlock.

subgraph({ A, B, C, F}) results in a deadlocked graph. The deadlock arises
because the root actér has been subsumed by a hierarchical actor which is no
longer a root actor. The execution of the graph must beginAvith , but the cluster
containingA needs external data to fire. A similar situation can occur when an

edge with nonzero delay is subsumed by a CSURC.
Thus, subgraph({ A, B, C, F}) must be decomposed to retain as large a

CSURC as possible without creating a deadlocked graph. The desired partition is

1. This example is taken from [How90].

149

all when constructing the ordering of invocations, the technique fails to synthesize
compact schedules for even very simple examples. For example, for the simple

acyclic SDF graph of figure 3.9, it is easily verified that the minimum buffer mem-

O—E—0C

Figure 3.9.An example used to illustrate scheduling techniques used in
the Gabriel design environment.

ory heuristic yields the scheduleBCABCBC . The most compact schedule that

How’s post-processor can extract from thidABCA(2BC) , Which contains two
appearances per actor; since the graph of figure 3.9 is acyclic, valid single appear-
ance schedules exist, and thus, the minimum buffer memory heuristic yields a sub-
optimal result both with and without post-processing.

Gabriel’s minimum buffer memory heuristic together with How’s post-pro-
cessing approach fails to provide looping opportunities because it does consider
looping when it orders the invocations [How90]. Having made this observation,
How proposed a technique that analyzes the SDF graph to directly construct repet-

itive invocation sequences. The technique involves isolatimgnected sub-
graphs of uniform repetition count!, abbreviatedSURC. Given a connected,
consistent SDF grap@ , a subgraph isa CSURG of G’ if is connected, and

there is a positive integdr such thigt (A) =k, DA O actors(G') . How dem-

onstrated experimentally that detecting and clustering CSURC'’s often greatly

increases code compactness over the minimum buffer memory heuristic with post-

1. How used the terfinequencyin place ofrepetition count.

148

for the subchaim,, A . Aj . We follow this computation with

i1
b'[i,j] = ming{b[i,jl,CS } & (3-11)

to determine amount of memory to use for buffering in the subchain

AvA L Aj . In general, this gives us a combination of overlaid and non-over-

laid buffers for different sub-chains. Incorporating the techniques of this section

with more general overlaying schemes is a topic for future work.

34 Related Work

3.4.1 Loop Scheduling in Gabriel

As part of the Gabriel project [Lee89], How [How90] was the one of the
first to investigate the problem of scheduling SDF graphs for compact code. The
first uniprocessor scheduler for Gabriel did not attempt to minimize code size, and
was based on a simple heuristic for minimizing the buffer memory requirement
[Lee89, Ho88a]. This heuristic involves deferring the firing of actors whose suc-
cessors are fireable until all successors have used up the tokens on their input
edges, and are no longer fireable. Furthermore, no actor is scheduled twice until all
other actors have been tried. The technique is an intuitive way to keep excess
tokens from accumulating in buffers, and thus to keep the buffer memory require-
ment low.

How’s first approach to generating compact code was to post-process the
minimum buffer memory scheduler with a pattern matching algorithm that finds
successively repeated sequences of firings. The scheduler then groups such

sequences into schedule loops. Since in this approach, looping is not considered at

147

acyclic SDF graph and again for simplicity, assume that the edges in the graph

contain no delay. LeW = B,,B,, ...,B denote the sequence of lexical actor

m
appearances inS (for example, for the schedul@A(2FD))C ,

W = A F D, C). Thus, sinceS is a single appearance schedle, must be a
topological sort of the associated acyclic SDF graph. The technique of Subsection
3.3.2 can easily be modified to optimally “re-parenthes&e” into the optimal sin-
gle appearance schedule (with regard to buffer memory requirement) associated
with the topological sortV . The technique is applied to the sequénce , with

Ci,| [K] computed as in (3-10).

Thus, given any topological so#l] for a consistent acyclic SDF graph,
we can efficiently determine the single appearance schedule that minimizes the
buffer memory requirement over all valid single appearance schedules for which
the sequence of lexical actor appearancédis

Another extension applies when we relax the assumption that each edge is
mapped to a separate block of memory, and allow buffers to be overlaid in the
same block of memory. There are several ways in which buffers can be overlaid,;

the simplest is to have one memory segment of size

CS,] =

max%{ total_consumeda,) + total_consumeda, , ,) | (isk<j-1)} E

ged{a (A). a (A,), - a(A)}

146

This is an important savings with regard to current technology: a buffer memory
requirement o260 will fit in the on-chip memory of most existing programmable
digital signal processors, while a buffer memory requiremem26f is too high

for all programmable digital signal processors, except for a small number of the

most expensive ones.

3.3.4 Extensions
There are three simple extensions of the dynamic programming solution
developed in Subsection 3.3.2. First, the technique applies to the more general

class of well-ordered SDF graphs. This requires that we modify the computation of

Ci | [K] , the amount of memory required to split the subchgiA, _ 4, ..., Aj
between the actors, amg _ , . This cost now gets computed as
D% q (A produced(a,)
G [k = S B (3-10)

god{ag (A | (<m<)} §

where
S .. = {B|Esource(B) O { A A AYE
1j, K O PN NSO

and Zsink(B) O { A, 1 Agu - A} B

that iS'S|,j,k is the set of edges directed from one side of the split to the other side.

The dynamic programming technique of Subsection 3.3.2 can also be
applied to reducing the buffer memory requirement of a given single appearance

schedule for an arbitrary acyclic SDF graph (not necessarily chain-structured or

well-ordered). Suppose, we are given a valid single appearance sc8edule for an

145

48,000are22325272 an’3's> , respectively. Thus, the ratg100: 48,000 is

37 2551, or 147: 60. One way to perform this conversion in three stages is
4:3, 8:7, and 5:7 . Figure 3.8(b) shows the multistage implementation.
Explicit upsamplers and downsamplers are omitted, and it is assumed that the FIR
filters are general polyphase filters [Buck91].

Here q (A, B,C D, B = (147, 49 28 32 16DT; the optimal looped
schedule given by our dynamic programming approach is
(49(3A) (1B)) (4(7C) (8(1D) (5E))) ; and the associated buffer memory
requirement is 260 . In contrast, the alternative schedule

(147A) (49B) (28C) (32D) (160E) has a buffer memory requirement €9

160 147

CD —— FIR | DAT

(@)

1 3 4 7 8 7 5 1
o
CD DAT
(b)

Figure 3.8. (a). CD to DAT sample rate change system.
(b). Multi-stage implementation of a CD to DAT sample rate
system.

144

n
It is easily observed that(=) < z n°=n’ , and thug=) O'Ensﬁ
k=1

Toseethat (=) iR Hn‘?H , define= {%J , and observe from (3-8)

m m

. iy . _ m(m+1) 2 _

and from the |dent|t|e§zll === ahdzll =
1 = | =

m(m+1) (2m+1)

6 for

mO {12 3 ...} , that

(n-1)

1(2) = Y k(n-Wz Y k(- =Y k(z-¥
k=1 k=1 k=1

=2y k-5 K= %z(z+ 1) (z—-1) . (3-9)

Now from the definition of z |, 22@ , SO (3-9) implies that

1(3) z%(n—l) (n=2) (n—3) , and thud (3) iR’ QED.

3.3.3 Example: Sample Rate Conversion

The recently introduced digital audio tape (DAT) technology operates at a
sampling rate o#8 kHz, while compact disk (CD) players operate at a sampling
rate of44.1 kHz. Interfacing the two, for example, to record a CD onto a digital

tape, requires a sample rate conversion.
The naive way to do this is shown in figure 3.8(a). It is more efficient to

perform the rate change in stages. Rate conversion ratios are chosen by examining

the prime factors of the two sampling rates. The prime facto#4d00 and

143

cedure ConvertSplits is called to recursively construct an optimal R-schedule
from a top-down traversal of the optimal split positions stored in the
SplitPositionsarray.

Assuming that the components @f, are bounded, which makegdhe
computations elementary operations, it is easily verified that the time complexity
of ScheduleChainGrapis dominated by the time required for the innerniost
loop —thefor i = 0,1, ..., chain_size- 2loop — and the running time of one
iteration of this loop is bounded by a constant that is independent of . Thus, the

following theorem guarantees that under our assumptions, the running time of

ScheduleChainGrapls @Hn%.

Theorem 3.5: The total number of iterations of the for

i =0,1,...,chain_size- 2 loop that are carried out iBcheduleChainGraph is
OHn‘gH andQHﬁH .

Proof. Let = denote thef¢r i = 0, 1, ..., chain_size- 2 loop, and denote total

the number of iterations & by(=Z) . Observe that an iteratiog of is carried
out for each possible split of each possible subchai@ in that contains two or
more actors. Now fok = 2, 3 ...,n , there are exac(lg—k+ 1) distikct -

actor subchains, and for eakh -actor subchain, there are exketly) distinct

split positions. Thus,

1(3) = F (n-k+1) (k-1). (3-8)
k=2

142

procedure ScheduleChainGraph

input: a chain-structured SDF graph G consisting of actors A;, A,, ..., A,

and edges a4, a,, ..., d, _, suchthat each q; is directed from A, to A, , ;.

output: an R-schedule for G that minimizes the buffer memory requirement.

fori =1,2...,n [* Compute the gcd’s of all subchains */
GCD[i,i] = ag(A)
for j = (i+1),(i+2),...,n

GCDIi,j] = gedH{ GCDIi,j—1],dg (A)} H

for i = 1,2 ...,n Subcost$i,i] = 0;
for chain_size= 2 3...,n
for right = chain_size chain_size ,1.,n
left = right—chain_size+ 1
min_cost= oo
for i = 0,1, ..., chain_size- 2

split_cost=(qg (A, ;) 7/ GCD[left, righf) x produced(a .)

total_cost= split_ cost Subcogts left lefi] + Subcost$ left-i + 1, right] ;
if (total_cosk min_co3$t
split = i; min_cost= total cost
Subcost§ left right = min_cost, SplitPositiond left right = split;
output ConvertSplit§ 1n) ; /* Convert the SplitPositionsarray into an R-schedule */

procedure ConvertSplits(L, R)

implicit inputs: the SDF graph G and the GCD and SplitPositionsarrays

of procedure ScheduleChainGraph

explicit inputs: positive integers L and R such that 1<L <R< n = |actors(G)]|.

output: An R-schedule for subgraprg{ ALA AR GE that minimizes

L+1

the buffer memory requirement.

if (L=R) output A
else
s = SplitPositiondL,R] ; i, = GCD[L,L+s]/GCD[L,R] ;

ir = GCD[L+s+1,R]/GCDI[L,R] ;
output (i, ConvertSplit{L, L +s)) (igConvertSplit{L +s+1,R)) ;

Figure 3.7.

141

whereb[i,i] = 0 for alli ,and:u [K] is the memory cost at the split if we split

the chain a#A, . Itis given by

dg (A produced(a,)

god g (A | (<m<i)} §

6 [K = (3-7)

Thegcdterm in the denominator arises because from Fact 2.7, the repetitions vec-

tor q’ of subgraprg{ AnA Aj} , GE satisfies

dg (A)

gedd{ag (A [(ism<))}

q'(Ap) = JforallpO {i,i+1,...,j} .
A dynamic programming algorithm derived from the above formulation is

specified in figure 3.7. In this algorithm, first the quantity

oA

gcd%{ dg (AL | (isms<j)} E is computed for each subchatg, A J

i+1, .

Then the two-actor subchains are examined, and the buffer memory requirements
for these subchains are recorded. This information is then used to determine the
minimum buffer memory requirement and the location of the split that achieves

this minimum for each three-actor subchain. The minimum buffer memory

requirement for each three-actor subch@nA, , , A ., is stored in entry

[i,i +2] of the arraySubcosts, and the index of the edge corresponding to the
split is stored in entry[i,i +2] of th&plitPositions array. This data is then

examined to determine the minimum buffer memory requirement for each four-

actor subchain, and so on, until the minimum buffer memory requirement for the

n-actor subchain, which is the original gragh , is determined. At this point, pro-

140

thesization is the cost of computing the prodd¢M,,...M, , plus the cost of com-
putingM, M, ,,...M_, plus the cost of multiplying these two products together.

In an optimal parenthesization, the subch&hd,...M, Mpd, M, ,,...M_

must themselves be parenthesized optimally. Hence this problem has the optimal
substructure property and is thus amenable to a dynamic programming solution.
Determining the optimal R-schedule for a chain-structured SDF graph is
similar to the matrix chain multiplication problem. Recall the example of figure
3.6. Here q(A,B,C D = (9,12 12 § T ; an optimal R-schedule is
(3(3A) (4B)) (4(3C) (2D)) ; and the associated buffer memory requirement
is 30. Therefore, as in the matrix chain multiplication case, the optimal parenthe-
sization contains a break in the chain at séme{1, 2, ..., (n—1)} . Because

the parenthesization is optimal, the chains to the lek of and to the right of
must both be parenthesized optimally. Thus, we have the optimal substructure
property.

Now given a chain-structured SDF graph consisting of actors
AL A, ...,A, and edges , 0,, ...,a__, ,suchthateaxh is directed flom

to A, ., givenintegers,j intherande<i<j<n , denoteddy,] the mini-

mum buffer memory requirement over all R-schedules for

subgraprE{Ai, AL Aj} , GE. Then, the minimum buffer memory require-

ment over all R-schedules f@& lif1,n] .IKi<j<n ,then,

b[i,j] = min3{ (b[i,Kl +b[k+1,j] +c,;[K)[(ik<)} 5 (3-6)

139

however, from (3-5), we know that in general, the R-schedules are too numerous
for exhaustive evaluation to be feasible. The following subsection presents a
dynamic programming algorithm that obtains an optimal R-schedule in polyno-

mial time.

3.3.2 Dynamic Programming Algorithm

The problem of determining the R-schedule that minimizes the buffer
memory requirement for a chain-structured SDF graph can be formulated as an
optimal parenthesization problem. A familiar example of an optimal parenthesiza-
tion problem is matrix chain multiplication [Corm90, Godb73]. In matrix chain

multiplication, we must compute the matrix proditiM,...M , assuming that

n
the dimensions of the matrices are compatible with one another for the specified

multiplication. There are several ways in which the product can be computed. For
example, withn = 4 , one way of computing the produc(i, (M,M;)) M, :
where the parenthesizations indicate the order in which the multiplies occur. Sup-
pose thatV;, M,, M5, M, have dimensiod®x 1,1x 10,10x 33x2 , respec-
tively. It is easily verified that computing the matrix chain product as

((M;M,) M;) M, requires460 scalar multiplications, whereas computing it as

(M; (M,M;)) M, requires onlyl20 multiplications (assuming that we use the

standard algorithm for multiplying two matrices).
Thus, we would like to determine an optimal way of placing the parenthe-
ses so that the total number of scalar multiplications is minimized. This can be

achieved using a dynamic programming approach. The key observation is that any

optimal parenthesization splits the prodiM,...M_ betwikkn Mpd,
for somek in the rangé<k< (n—1) , and thus the cost of this optimal paren-

138

observe that ifm = 3 , themonR(S)") = nonR((1S))) —{ L} , while if

m# 3, then nonR(S,") = nonR((1S))) —{ L} +{S} . Since

1(S,) = 1(Ly) —1, it follows that for any value af 1,(S,') <T((1S,))
Thus, from (1S,) , we have constructed a valid, fully reduced schedule

S, such thatbuffer_memoryS;’) < buffer_memory § < buffer_memory 5

andl (S,) <1((1S,)) . By construction§,’ = (1T) , for some iterafid . We

define S =T . Thus, buffer_memoryS,) < buffer_memory 5 and

1((18)) <1((13)) .

Clearly, if T((lSl)) #0, we can repeat the above process to obtain a
valid, fully reduced single appearance schedulg, such that
buffer_memoryS,) < buffer_memory § and i ((1S,)) <1((1S,)) . Con-

tinuing in this manner, we obtain a sequence of valid single appearance schedules

S S S, Sy ... such that for eachS in the sequence withk» 0 :
buffer_memoryS) < buffer_memory 5, andi ((1S)) <1((1S_,)) . Since
1((1S,)) is finite, we cannot go on generatig ‘s indefinitely — eventually, we

will arrive at anS, ,n>0 , such thdt((1S)) = 0 .From Fact 3%, isanR-

scheduleQED.
Theorem 3.4 guarantees that from within the set of R-schedules for a given
chain-structured SDF graph, we can always find a single appearance schedule that

minimizes the buffer memory requirement over all single appearance schedules;

137

ther assumptions are required to assure that valid schedules ex{st for , and

observe that from Theorem 2.4, there exists a valid fully reduced sciggdule for
G such thatouffer_memoryS;) < buffer_memory 5 .

Now letL, = (nT;T,...T,)) be aninnermost non-R-loop (1S;) ;that
is, L, is not an R-loop, but every loop nested jn is an R-loom # 1 then
sinceS, is fully reduced,., = (n(1T")) , for some iteramtd . ISt be the
schedule that results from replacibg ~ w{thT’) (ibS,) . Then cle&yy, is
also valid and fully reduced, arf§)’ generates the same invocation sequence as
Sy sobuffer_memoryS,’) = buffer_memory § . Also,
nonR(S,) = nonR((1S)) —{ L, sol (Sy) <T((1Sy)) -

If on the other hanadn>2 , we defirg = (1T,) T, is an actor and

S, =T, otherwise (ifT; is a schedule loop). Also,Ti§, T,, ..., T, are all sched-

I (T | (T I (T
ule loops, we defin&, = Ey% (yz) Bz% (y3) BSE_H (ym) Bm% :

wherey = gcd%{l (T | (2<i<m)} E , and,, B,, ..., B, are the bodies of the

m

loopsT,, Ty, ..., T, , respectively; i, T,, ..., T, are not all schedule loops, we

m
defineS, = (1T,...T,) . LetS,’ be the schedule that results from replacing
with Ly = (nS,S) in (1S)) . It is easily verified thag,’ is a valid, fully

reduced schedule and tHaf is an R-loop, and with the aid of Theorem 2.2, it is

also easily verified thatuffer_memoryS,’) < buffer_memory § . Finally,

136

where

e0_a(a=1)...(a—b+1)
00 =

= , and it can be shown that the expression on

the right hand side of (3-5) @"/nE [Corma0].

For example, the chain-structured SDF graph in figure 3.6 consists of four

actors, so (3-5) indicates that this graph ﬁ% =5 R-schedules. The R-sched-

ules for figure 3.6 are (3(3A) (4B)) (4(3C) (2D))
(3(3A) (4(1B) (1C))) (8D), (3(1(3A) (4B)) (4C)) (8D),

(9A) (4(3(1B) (1C)) (2D)), and (9A) (4(3B) (1(3C) (2D))) ; and the
corresponding buffer memory requirements are, respect®@h37 40 43 , ,and

45.
The following theorem establishes that the set of R-schedules always con-
tains a schedule that achieves the minimum buffer memory requirement over all

valid single appearance schedules.

Theorem 3.4. Suppose thatG is a chain-structured SDF graph;
(delay(a) =0), O(a O edgegG)) ; andS is a valid single appearance sched-
ule for G. Then there exists an R-schedulg f&¥ such that

buffer_memoryS') < buffer_memory ¥.

Proof: We prove this theorem by construction. We use the following notation

here: given a schedule lodp and a looped scheklule , we defiri S) to be
the set of schedule loops$ that are not R-loops; we deflng to be the num-
ber of iterands of. ; and we defih¢S) = > W)

L' O nonR(S)

First observe that all chain-structured SDF graphs are consistent so no fur-

135

able by the recursive scheduling process;;se 1 . or a -actor graph, there is

only one edge, and thus only one choiceifor = 1 . Since Br a -actor graph,

left (1) andright (1) both contain only one actor, we haye= ¢, xg; = 1

For a3 -actor graphleft(1) contaidls actor amght (1) cont&ins actors,
while left(2) contain2 actors angght (2) contains a single actor. Thus,

€; = (the number of R-schedules whe¢n= 1))
+ (the number of R-schedules whén= 2))

= (the number of R-schedules ftaft () L
x (the number of R-schedules foght ()

+ (the number of R-schedules fteft () P
x (the number of R-schedules faght () 1L

= (g, %¢&,) + (g,%€)) = 2€.¢,.
Continuing in this manner, we see that for each positive integér ,
n-1 n-1

€, = z (the number of R-schedules whéh=k)) = z (g, x€,_}) - (3-4)
k=1 k=1

The sequence of positive integers generated by (3-4) syith 1 is

known as the set @atalan numbers and eacle; is known as tife—1) th Cat-
alan number. Catalan numbers arise in many problems in combinatorics; for exam-
ple, the number of different binary trees with vertices is given bynthe th

Catalan numberg . It can be shown that the sequence generated by (3-4) is

n+1

given by

1 —
€& = HEan—lzg,forn =1L23.., (3-5)

134

for figure 3.6.

We can recursively apply this procedure of decomposing a chain-structured
SDF graph into left and right subgraphs to construct a schedule. However, differ-
ent sequences of choices for will in general lead to different schedules. For a
given chain-structured SDF graph, we refer to the set of valid minimal single
appearance schedules obtainable from this recursive scheduling process as the set
of R-schedules

We will use the following fact, which is easily verified from the definition

of an R-schedule.

Fact 3.3: Suppose thatc is a nontrivial chain-structured SDF graph, and
(delay(a) =0), (a0 edgeqG)) . Then a valid single appearance schedule
S for G is an R-schedule if and only if every schedule lbop contained in the
schedule(1S) satisfies the following property:

(a). L has a single iterand, which is an actor; thdt is, (nA) for some
positive integen and son& [actors(G) or

(b). L has exactly two iterands, which are schedule loops having coprime

iteration counts; that id, = (m(nS) (n,S,)) ,where n, ang are posi-

tive integersgcd(n,, n,) = 1 ;and;, an8, arelooped schedules.

If a schedule loofh satisfies condition (a) or condition (b) of Fact 3.3, we
say thatL is aRR-loop. Thus, a valid single appearance sche@ule is an R-sched-
ule if and only if every schedule loop contained i) is an R-loop.

Now let €, denote the number of R-schedules fonan -actor chain-struc-
tured SDF graph. Trivially, for & -actor graph there is only one schedule obtain-

133

For simplicity, in this section we assume that the edges in a chain-structured SDF
graph have no delay; however, the techniques presented here can be extended to

handle delays.

3.3.1 A Class of Recursively Constructed Schedules

Let G be a chain-structured SDF graph with actafsA,, ..., A and

m

edgesa,, a,, ..., O such that eat) is directed frAm Alq , . In the

' Ym-1

trivial case,m = 1 , we immediately obtaiA, as a valid single appearance

schedule foilG . Otherwise, given anyl {1, 2, ..., m—1} , define

left (i) = subgraprB{ AL A, AL, GH, and

right (i) = s,ubgraprB{Ai s A At GE.

From Fact 2.7, if§ and; are valid minimal single appearance schedules for

left (i) andright (i) , respectively, thelq, §) (dzSz) is a valid minimal sin-

gle appearance schedule f@& , whege = gcd%{ ds(A)|1=] Si}% and

ag = gcd%{ qG(Aj) |i <j <m} E
For example, suppose th& is the SDF graph in figure 3.6 and suppose
i=2. It is easly verified that g, (AB) = (34" and

-
Uright (i) (C,D) = (3,2 .Thus,§ = (3A) (4B) andS, = (3C) (2D) are
valid minimal single appearance schedules feft (i) aight (i) , and

(3(3A) (4B)) (4(3C) (2D)) is a valid minimal single appearance schedule

132

verify that buffer_memoryS,) = 36+ 12+ 24= 72. In contrast,
S,= (3(3A) (4B)) (4(3C) (2D)) is an alternative single appearance schedule
(with the same blocking factor & — unity) with a much lower buffer memory
requirementbuffer_memoryS,) = 12+ 12+ 6= 30 .

As we will show in Subsection 3.3.1, for chain-structured SDF graphs, the
number of distinct valid single appearance schedules increases combinatorially
with the number of actors, and thus exhaustive evaluation is not, in a general, a
feasible means to find the single appearance schedule that minimizes the buffer
memory requirement. In this section, we show that the problem of finding the valid
single appearance schedule that minimizes buffering memory for a chain-struc-
tured SDF graph is similar to the problem of most-efficiently multiplying a chain
of matrices, for which a cubic-time dynamic programming algorithm exists

[Godb73]. We show that this dynamic programming technique can be adapted to

. . e L 3L .
our problem to give an algorithm with time complexmgm3g , Wwhare is the

number of actors in the input chain-structured SDF graph. Finally, in Subsection
3.3.4, we discuss how the dynamic programming technique of Subsection 3.3.2

can be applied to other problems in the construction of efficient looped schedules.

() —(r—=()
Figure 3.6 A chain-structured SDF graph.

131

the pertinent issues are elaborated on in Section 4. Also, in this section, we focus
on SDF graphs that are chain-structured; some extensions to more general graphs
are discussed in Subsection 3.3.4.

In [Ade94], Ade develops upper bounds on the minimum buffer memory
requirement for a number of restricted classes of SDF graphs. The graphs consid-
ered each consist of a chain-structured subgraph, together with zero or more edges
directed between distinct actors in the chain-structured subgraph. For graphs that
fall into the categories considered, Ade presents an efficiently computable upper
bound on the minimum buffer memory required over all valid schedules, and Ade
presents simulation data that demonstrates that on average, the computed bounds
are close to the corresponding actual minima. Since Ade’s bounds attempt to mini-
mize over all valid schedules, and since single appearance schedules generally
have much larger buffer memory requirements than schedules that are optimized
for minimum buffer memory only, Ade’s bounds cannot consistently give close
estimates of the minimum buffer memory requirement for single appearance
schedules.

In Section 2.6, we demonstrated that every consistent, acyclic SDF graph
has a valid single appearance schedule since given a topologioa] syt ... A
for a connected, consistent, acyclic SDF graph G ,
(ag(ADA) (ag(A)A)) ... (ag (A A,) is always a valid schedule. However

single appearance schedules constructed from topological sorts in this way can be

inefficient with regards buffer memory. For example, consider the SDF graph in

figure 3.6. Hereq (A, B, C, D) = (9,12 12 aT , and there is only one topolog-
ical sort —A, B, C, D . Thus, the approach outlined in Section 2.6 yields the valid

single appearance schedute= (9A) (12B) (12C) (8D) , and one can easily

130

that subgraph(X, G') is a tightly interdependent subgraphGf , and hence that

the deadlocked grapB; is containeddn . It follows Bat is deadlocked, and

G is not a consistent SDF gragpED.

Under the assumption that the input SDF graph has a single appearance
schedule, the clustering process defined by Theorem 3.3 requirdscaallglata-
flow information, and thus it can be implemented very efficiently. If our assump-
tion that a single appearance schedule exists is wrong, then we can always undo
our clustering decisions. Since the assumption is frequently valid, and since it
leads to an efficient algorithm, this is the form in which we have implemented The-
orem 3.3. Finally, in addition to making buffering more efficient, our clustering
process provides a fast way to reduce the size of an SDF graph without cancelling
the existence of a single appearance schedule. When used as a preprocessing tech-
nique, this can sharply reduce the execution time of a loose interdependence algo-

rithm.

3.3 Minimizing Buffer Memory: Chain-Structured Graphs

In this section, we address the problem of constructing single appearance
schedules that minimize the buffer memory requirement. The work presented in
this section was done jointly with Praveen K. Murthy, a fellow graduate student at
U. C. Berkeley [Murt94a].

Our model of buffering here is that discussed in Section 2.2 — each buffer
is mapped to a contiguous and independent block of memory. Scheduling to mini-
mize the amount of memory required for buffering while taking advantage of more
flexible buffer implementations, a more difficult problem, is mainly beyond the

scope of this thesis; one simple technique is given in Subsection 3.3.4, and some of

129

(Z-{A B}) is adjacent toB . In the former case, Lemma 3.7 immediately
yields the loose interdependencesobgraph(Z', G')

In the latter case, Lemma 3.5 guarantees shdgraph(Z— { B} , G) is
isomorphic tosubgraph(Z', G') . SincA (Z—{ B}) , and since from condi-
tion (1), A is not contained in any tightly interdependent subgrah of , it follows

that subgraph(Z', G') is loosely interdependeQED.
If we assume that the input SDF graph has a single appearance schedule,
then we can ignore condition (1). From our observations, this is a valid assumption

for a large class of practical SDF graphs. Also, condition (3) can be verified by
examining any single edge directed frégm Bo qif is an edge directedArom
to B, then condition (3) is equivalent fwoduced(a) = konsumeda) . Inour

current implementation, we consider only the c&se 1 for condition (3)
because in practice, this corresponds to most of the opportunities for efficiently
using registers to implement the buffers for the edges in an SDF graph.

The following corollary assures us that when applying Theorem 3.3, no
further checks are necessary to determine whether the clusteAng ofB and intro-

duces deadlock.

Corollary 3.3: Assume the hypotheses of Theorem 3.3, including conditions (1)

through (4). TherG' is not deadlocked.

Proof: (By contraposition). IfG" is deadlocked, then there exists a fundamental

cycle inG' whose associated gra@h is deadlocked. By the definition of tight
interdependences; s tightly interdependent, sxors(G;) is contained in

some tightly interdependent componéfit @f . Thus, Theorem 3.3 guarantees

128

illustrated in figure 3.5(a) and (b); the situation in figure 3.5(c) cannot arise
because of condition (4).

Now in subgraph(Z', G') , if one or more of the cycles that pass through
Q correspond to figure 3.5(a), th&n must be a strongly connected suldset in
Otherwise, all of the cycles involving correspond to figure 3.5(b), so

(Z-{B}) is strongly connected, and from condition (4), no member of

D4 D4
& ®) ©

() (b)

(€)

Figure 3.5An illustration of how a cycle containing Q originates in G' for

Theorem 3.3. The two possible scenarios are shown in (a) and (b); (c) will
not occur due to condition (4). SDF parameters on the edges have not
been assigned because they are not relevant to the introduction of cycles.

127

From Fact 2.11(b), it follows that, an@X, O {B}) constitute a subindepen-

dent partition ofG , so again we can apply Lemma 3.4 to concludeGthat is

loosely interdependenED.

Theorem 3.3: Suppose thaG is a consistent, connected SDF gfaph, Band are
distinct actors ifG such th& is a successokof \nd { A B is a proper
subset ofactors(G) . Suppose also that the following four conditions all hold:

(1). NeitherA nomB is contained in a tightly interdependent component of

(2). At least one edge directed frofn Bo has zero delay.
(3). For some positive integér q; (B) = kqg (A)
(4). Actor B has no predecessors other than B or
Then the tightly interdependent componentsGof are the same as the tightly

interdependent components Gf

Proof: Observe that all subgraphs @& that do not contain Bior are not
affected by the clustering & , and thus it suffices to show that all strongly con-
nected subgraphs @' that cont&n are loosely interdependent. So we suppose
thatZ' is a strongly connected subset of actoriG'in that cortains , and we let
Z denote the corresponding subset of actors (& ; that s
Z=7-{Q} +{A B} . Now, in subgraph(Z', G") , suppose that there is a
cycle consisting o) and two other actos, dhd . From condition (4), this
implies that there is a cycle @ containidg C, D, , and posdtoly . The two

possible ways in which a cycle & introduces a cycle consistifg of G’ in are

126

= gcd%{ dg (N) [N O actors(G) } E: 1.

That is,
as(Z) = 1. (3-3)

Now if Z, is not strongly connected, then it has a proper sibset such that
there are no edges directed from a membe{Zf-Y) to a member of . Fur-

thermore, from condition (3A T Y . This is true becaus¥ if contatked , then

there would be no path directed from a membe(5f-Y) Bto , andGhus
would not be strongly connected. Thus[] (Z,-Y) , and there are no edges
directed from a member qfZ, -Y) to a membeivof . So all edges directed from
a member of(Z,-Y+ { B}) toY have act& as their source. From (3-2), it
follows that Y is subindependent of(Z,-Y+ { B}) inG . Now,

A, BO (Z,-Y+ {B}), so applying Lemma 3.4, we conclude tket is loosely

interdependent.

If Z, is strongly connected, we know from condition (1) that there exists a
partition X;, X, ofZ, such thaK; is subindependentgf sirbgraph(Z,)
From (3-3) and Lemma 3.&5, is subindependenXof Gin . Now0f X, ,
then from condition (3){ B} is subindependenXgf Gn , so from Fact 2.11(a),
(X, O {B}) and X, constitute a subindependent partitonG®f . Applying

Lemma 3.4, we see th&' is loosely interdependent. On the other hand, suppose

that A0 X, . Then from (3-2), we know th&t, is subindependert®f G in

125

C O actors(G) suchthalC#B .
Then the SDF grap’ that results from clustekivig Gin is loosely interdepen-

dent.

Proof: From (1),G must be loosely interdependent, so there exist suljsets and
Z, of actors(G) suchthaZ, and@, partitioactors(G) ,amt] is subinde-
pendent ofZ, inG . IfA,BOZ;, orA,BOZ, , then from Lemma 3.4, we are
done. Now, condition (2) precludes the scendr(@ [Z;) and (AL Z))) , SO

the only remaining possibility i (A0 Z;) and (BO Z,)) . There are two sub-

cases to consider here:

(). B is not the only member &, . Then from (3, + { B}) is sub-
independent of(Z,— {B}) .BuA, BOZ, +{B} ,solLemma 3.4 again guaran-

tees thatG' is loosely interdependent.

(i). Z, = {B} . Thus, we haveZ, is subindependent{d} , SO

O(a O {a 0 edgeqG) |sink(a) # B),

(source(a) = B O delay(a) = total_consumeda, G) . (3-2)
Also, sinceC 1 Z, , we have from (4) that

dg(Zy) = ged3{ag(N)[(NOZ)} H

ged{ag (N)[(NO Z)} O {kdg (C)} &

ged{ dg (N) [(ND'Z)} O {ag(B)} H

124

f,(A) = Aif AzA,, f,(A) = Q;and0a,f,(a) =a’

demonstrate thadubgraph(Z, G) is isomorphicXo QED.

Lemma 3.6: Suppose that is a consistent, strongly connected SDF grapah and

is a strongly connected subset of actor&in suchgpéZ) = 1 . Sugpose
and Z, form a partition ofZ such thai, is subindependentZof in

subgraph(Z, G) . ThenZ, is subindependentdf @

Proof: For each edger directed from a membeZgf to a membgf of , we
have delay(a) = A subgraph(2) (sink(a)) consumedqa) . From Fact 2.7,
9 subgraph(2) (A) =qg(A) for all AOZ. Thus, for all edgesa in
subgraph(2) ,

9 subgraph(2) (sink(a)) consumeda) = gg(sink(a)) consumeda) ,

and we conclude that, is subindependerZ.pf GirQED.

Lemma 3.7: Suppose thaG is a consistent, strongly connected SDF ghaph,
and B are distinct actors i , al = { A B forms a proper subset of
actors(G) . Suppose also that the following four conditions all hold:

(1). NeitherA norB is contained in a tightly interdependent subgraph of
(2). There is at least one edge directed flom Bto that has zero delay.
(3). B has no predecessors other than Bor

(4). qg(B) =kgg(C) for kO{1,23..}, and for some

123

If we clusterW = {A,A} inG, thensubgraprEZ— {A} +{Q}, G’E is
isomorphic tosubgraph(z, G) .

As a simple illustration, consider again the clustering example of figure
3.3(c) and figure 3.3(d). L& ar@’ respectively denote the graphs of figure

3.3(c) and figure 3.3(d), and It = {B,C} A, =B ,ad =A . Then
EZ—{Al} +{Q} % = {C,Q} , and clearly,subgraph({C, Q} ,G') s iso-

morphic tosubgraph({B, C}, G) .

Proof of Lemma 3.5tet X = subgraerZ— {A} +{Q}, G’E, let ® denote

the set of edges isubgraph(zZ, G) , and lét denote the set of edg¥s in
From (1), every edge ilX has a corresponding edgsubgraph(Z, G) , and
vice-versa, and thu®' = {a’'|a O®} . Now, from the definition of clustering a
subgraph, we know thabroduced(a’) = produced(a) for any edgel @

such thatsource(a) # A . Ifsource(a) = A ther s replaced loy with

source(a’) = Q, and

produced(a’) = produced(a) qG(Al)/gch{ dg (A, dg (A)} E

But, geds{dg(A). (A} 5= geda{ag (A, kag(A)} H = a5 (A)

so produced(a’) = produced(a) . Thusproduced(a') = produced(a) for
all a O ®. Similarly, we can show thatonsumeda’) = consumeda) for all

a 0 ®. Thus, the mapping§ : Z - actors(X) arid: ® - ®" defined by

122

Lemma 3.4: Suppose thaG is a strongly connected, consistent SDF graph, and

X, andX, form a partition ofictors(G) such that, is subindependen,of
in G. Also, suppose thad anB are actorsGn such fd 0 X, or

A BOX,. If we clusterW = { A B , then the resulting SDF gragh is

loosely interdependent.

Proof. Let ® denote the set of edges@® that are directed from an actgrin to
an actor inX, , and le®’ denote the set of edges'in that are directed from an
actor inX,' to an actor iX," . Sincgubgraph({A, B}) does not contain any
edges in® , it follows tha®' = {a’'|a O®} . From Fact 2.9, we have that for
all o', gg (sink(a’)) consumeda’) = gg(sink(a)) consumeda) . Now

since X; is subindependent ofX, inG , for alladOd® ,
delay(a) = qs(sink(a)) consumeda) . It follows that for all a’'0®" ,
delay(a') = qg (sink(a')) consumeda’) , and we conclude thaX;" is sub-
independent ofX,” inG" . But, by constructiorX,’ ang)’ partition

actors(G') ; thus,G' is loosely interdepende@ED.

Lemma 3.5: Suppose thaG is a connected, consistent SDF geaph, is a proper

subset ofactors(G) A, 0Z ,and, is an actor that is containedators(G)

but not inZ such that

(1). A, is not adjacent to any member%ﬁ— {A} % , and
(2). for some positive integdr g, (A,) = kgg(A))

121

from this clustering is shown in figure 3.4(b); this graph leads to the valid single

appearance schedule

(10Q,) Q, (10B) O (10CD)EA(10B) .
In this second schedule, each token produce@ by is consunigd by in the same
loop iteration, so all of the transfers betwggn Bnd can occur through a single
machine register. Thus, the clustering®f &hd sd@es units of memory for

the data transfers betweén abdd |, and it allows these transfers to be performed

through a register rather than memory, which will usually result in faster code.

When it is not ambiguous, we will the following additional notation in the

development of this section.

Definition 3.3: Let G be an SDF graph and suppose that we cluster a 3&bset of
actors inG . We will refer to the resulting hierarchical SDF grap®'as , and we
will refer to the actor irG' into whichV has been clustere@as . For each edge
a in G that is not contained isubgraph(W, G) , we denote the corresponding
edge inG" bya' . Finally, iiX 0 actors(G) , we denote the corresponding subset
of actors(G') asX' . That isX' contains all membersXf that are n&V/in

and if X contains one or more memberd/of |, tién also corfains

For example ifG is the SDF graph in figure 3.3@&)= { B G , and
and3 respectively deno® -~ D aAd- B , then we denote the graph in figure
3.3(b) byG' , and inG' , we deno® - D Iy aAd- Q py . Also, if

X = {A B thenX' = {A Q} .

120

We motivate our clustering technique with the example shown in figure

3.4. The repetitions vector for the SDF graph in figure 3.4(a) is

10 1 1 1 1 1 1 10
@—>—’m @—>@—>%>
1 1

(@)

(b)

Figure 3.4.An example of clustering to increase the frequency of data
transfers that occur through registers rather than memory.

g(AB,C DB = (1,10 19 10 JT, and one valid single appearance sched-
ule for this graph is(10C) (10D) EA(10B) . This schedule is inefficient with
regards to buffering. Due to the schedule loop that specifies ten successive invoca-
tions of actorC , the data transfers betw€en [R@nd cannot take place in machine
registers andlO units of memory are required to implement the @dgeD
However, observe that the four conditions of Fact 3.2 all hold for the adjacent pairs
{C,D} and {A E} . Thus, we can cluster these pairs without cancelling the

existence of a single appearance schedule. The hierarchical SDF graph that results

119

figure 3.3(a) cancels the existence of a single appearance schedule.

In figure 3.3(c),subgraph({ B, C, D}) is a tightly interdependent com-
ponent and actoA is not contained in any tightly interdependent subgraph. From
Theorem 3.2, we know that any loose interdependence algorithm will schedule the
graph of figure 3.3(c) in such a way thfat appears only once. Now observe that
the hierarchical SDF graph that results from clusteAng End , shown in figure
3.3(d), is a tightly interdependent graph. It can be verified that the most compact
minimal periodic schedule for this graphQ<C (2D) Q , which leads to the sched-
ule ABC(2D) AB for figure 3.3(c). By increasing the extent of the tightly interde-
pendent componergubgraph({B, C, D}) to subsume ador , this clustering
decision increases the minimum number of appearandes of in the final schedule.

Thus, we see that a clustering decision can conflict with optimal code com-
pactness if it introduces a new tightly interdependent component or extends an
existing tightly interdependent component. In this section, we present a clustering
technique of practical use and prove that it neither extends nor introduces tight
interdependence. Our clustering technique and its compatibility with loose interde-
pendence algorithms is summarized by Fact 3.2 below. This fact is an immediate

corollary of Theorem 3.3, which will be presented later in this section. Establish-

ing Theorem 3.3 is the main topic of the remainder of this section.

Fact 3.2: Clustering two adjacent acto’s aBd in an SDF graph does not
introduce or extend a tightly interdependent component if (a) Neither Bnor is
contained in a tightly interdependent component; (b) At least one edge directed
from A toB has zero delay; (&) aml are invoked the same number of times in

a periodic schedulgnd(d) B has no predecessors other than Bor

118

clustering preserves the properties of loose interdependence algorithms discussed
in the previous section.

Figure 3.3 illustrates two ways in which arbitrary clustering decisions can

—
(b)

1
1
- D 5
2 1

@2 gl

() (d)

Figure 3.3.Examples of clustering decisions that conflict with code com-
pactness goals.

conflict with code compactness objectives. Observe that the SDF graph in figure

3.3(a) is acyclic, so it must have a single appearance schedule. Figure 3.3(b) shows
the hierarchical SDF graph that results from clustering a@&ors Cand in figure
3.3(a) into the single actof . It is easily verified that in figure 3.3(b),

subgraph({ Q, D}) is tightly interdependent. Thus, the clustering@of @&nd in

117

We have specifiei‘jSIO (. Gys »amg, such that the resulting loose inter-

. . . . L
dependence algorith@ has worst-case running time tr@Hmz +10 , Where

m = max({|actors(G)|, |edgeq G|}) and I = Z dg (A) . Note
A0 actors(G)

that our worst-case estimate is conservative — in practice, usually only a few

decomposition steps are required to fully schedule a strongly connected subgraph,
while our estimate assumeactors(G)| steps. Furthermore, a more accurate

expression for the total time that the tight scheduling algorithm accounts for is

OP
ou

z Z are the subgraphs associated
EE = 1A 0 actors(T))

O
qTi (A) E where LETRLPY Tp

with the tightly interdependent components®f . When the tightly interdependent

components form only a small part @f this bound will be much tighter than the

dg (A) bound.
A0 actors(G)

3.2 Clustering in a Loose Interdependence Algorithm

As we discussed in 2.3, clustering subgraphs — grouping subgraphs so that
they are invoked as single units — can be used to guide a scheduler toward more
efficient schedules. However, certain clustering decisions conflict with code-space
minimization goals, and thus if any clustering is to be incorporated into a loose
interdependence algorithm, then the possible degradation on code-compaction
potential should be considered. In this section, we present a useful clustering tech-
nigue for increasing the frequency of data transfers that occur through machine
registers rather than memory, and we prove that this technique does not interfere

with the code compactness potential of a loose interdependence algorithm — this

116

dependent component. For example, the algorithm specified in Subsection 2.1.5,

ConstructValidSchedulecan be used as the tight scheduling algorithm. If this
algorithm is applied to a tightly interdependent compodent , it runs in time that is
linear in the total number of invocations in a minimal schedule period of

subgraph(X) . That is, the running time is O(ly) , where

Iy = % 9 subgraph(X) (A) . Thus, if(, is algorithnConstructValidSchedulend
ATTX

(is applied to an SDF grap@ , the total time that accounts for(is,) ,

wherel ; = dg (A) .
A0 actors(G)

The other component algorithmg,. (,. aﬁglp , are successively

applied to decompose an SDF graph, and the process is repeated until all tightly

interdependent components are found. In the worst case, each decomposition step
isolates a single actor from the current -actor subgraph, and the decomposition
must be recursively applied to the remainifg— 1) -actor subgraph. Th@s, if

denotes the input SDF graph, thén perfotactors(G) | decomposition steps
in the worst case. Tarjan’s algorithm [Tarj72] allows the strongly connected com-

ponents of G to be found in O(m) time, where

m = max({|actors(G)|, |edgeq G|}) . Hence{,, can be chosen to be linear,

and since at mosiactors(G)| < m decomposition steps are required, the total

. L 2L . . .

time that such & . accounts for {n @qjng . Finally, in Section 2.6 we
described a simple linear-time algorithm that constructs a single appearance sched-
ule for an acyclic graph. This, can also be chosen such that its total time is also

LI 2L
ogm .

115

appearancesA, %(G)) = appearance$ Agsubgraph(MO)))

appearancesgA, S< (subgraph(M,)))

...= appearancesA, Q (subgraph(M,))) ;
and thus, appearance$A,§(G)) = appearances$ AZS(subgraph(X)))

QED.

Theorem 3.2 states that the tight scheduling algorithm is independent of the
subindependence partitioning algorithm and vice-versa. Any subindependence
partitioning algorithm guarantees that there is only one appearance for each actor
outside the tightly interdependent components, and the tight scheduling algorithm
completely determines the number of appearances for actors inside the tightly
interdependent components. For example, if we develop a new subindependence
partitioning algorithm that is more efficient in some way (for example, it is faster
or minimizes the memory required to implement buffering), we can replace it for
any existing subindependence partitioning algorithm without changing the com-
pactness of the resulting schedules — we don’t need to analyze its interaction with
the rest of the loose interdependence algorithm. Similarly, if we develop a new
tight scheduling algorithm that schedules any tightly interdependent graph more
compactly than the existing tight scheduling algorithm, we are guaranteed that
using the new algorithm instead of the old one will lead to more compact sched-

ules overall.

The complexity of a loose interdependence algorithm depends on its

subindependence partitioning algoritrir;rb , strongly connected components algo-

rithm (., acyclic scheduling algorith,, , and tight scheduling algoriym

sc’

From Definition 3.2, we see thgf, is applied exactly once for each tightly inter-

114

subgraph(M,) .

If X is a proper subset & , thesubgraph(2) must be loosely interde-
pendent, since otherwisaubgraph(X) would not be a maximal tightly interde-
pendent subgraph. Thug partitior’s intb awd such wat is

subindependent oV isubgraph(Z) . We skt; to be that connected compo-

nent of subgraph(VV) orsubgraph(W) that containd . Sind¢ aWwd parti-

tion Z, M, is a proper subset df, . Also from Remark 3.3,

appearancesgA, %(subgraph(MO)))

= appearancesA, S<(subgraph(M,))), (3-1)

and from Corollary 3.1X 0 M,
Onthe other hand, X = Z ,thenwe $8f = X . Sidce M, M, is a
proper subset dfl, ; from Remark 3.2, (3-1) holds, and trivixliy, M,
If X# M, then we can repeat the above procedure to obtain a proper sub-
setM, ofM; such that
appearancesA, S< (subgraph(M,)))
= appearancesgA, Q (subgraph(M,))) ,
and X M, . Continuing this process, we get a sequahgeM , M., Since
for eachi >1 ,M, is a proper subset of its predecebsor; , We cannot repeat

this process indefinitely — eventually, for sorke 1 , we will have M,

But, by construction

113

dependent componenbf G. It follows from Theorem 3.1 tha® has a single

appearance schedule if and onlyGf has no tightly interdependent components.
Furthermore, since the tightly interdependent components are unique, the perfor-
mance of a loose interdependence algorithm, with regards to schedule compact-
ness, is not dependent on the particular subindependence partitioning algorithm,
the component algorithm used to partition the loosely interdependent subgraphs.

The following theorem develops this result.

Theorem 3.2: Suppose that is a connected, consistent SDF glaph, is an actor
in G, and{ is a loose interdependence algorithm.
(a). If A is not contained in a tightly interdependent componefit of , then
A appears only once lﬁz (G) ;and
(b). If A is contained in a tightly interdependent componéent , then
appearancesA, % (G)) = appearanceg A gsubgraph(X))) —
the number of appearances Af is determined entirely by the tight scheduling

algorithm of(.

Proof: If A is not contained in a tightly interdependent componer@ of , fen
is not contained in any tightly interdependent subgraph. Then from Lemma 3.1,

appearancesA, S (G)) = 1. Thus the proof of part (a) is complete.

Now suppose tha® is contained in some tightly interdependent compo-

nentX ofG . IfX = actors(G) , we are done. Otherwise, 8&} = actors(G) ,
and thusX# M, ; by definition, tightly interdependent graphs are strongly con-

nected, soX is contained in some strongly connected compahent of

112

such thatZ, is subindependentsf @ , ahd is subindependent of in

G, is it possible that one of these partitions leads to a more compact schedule than
the other? Fortunately, as we will show in the remainder of this section, the answer
to this question is “No”. In other words, any two loose interdependence algorithms
that use the same tight scheduling algorithm always lead to equally compact

schedules. The key reason is that tight interdependence is an additive property.

Lemma 3.3: Suppose thaG is a connected, consistent SDF gkaph, Zand are
distinct strongly connected subsets aftors(G) such than 2) # 0 , and
subgraph(Y) and subgraph(Z) are both tightly interdependent. Then

subgraph(Y O 2) is tightly interdependent.

Proof: (By contraposition). LeH = (YO 2) , and suppose tisabgraph(H)

is loosely interdependent. Then there exist Bind suchHbat is subinde-
pendent oH, insubgraph(H) .FrontH, 0H, =H =YOZ ,andn Zz0

itis easily seenthad, artd, both have a nonempty intersectiorywith , or they

both have a nonempty intersection with . Without loss of generality, assume that

H,nY#0O andH, n Y#0O . From Lemma 3.ZH, n Y) s subindependent in

subgraph(Y) , and thussubgraph(Y) is not tightly interdependeQ&D.

Lemma 3.3 implies that each SDF grapgh has a unique set

{T,T,.. T} of maximal tightly interdependent subgraphs such that

(i#j) O actors(T,) n actors('IJT) = [, and every tightly interdependent sub-

graph inG is contained in sonfe . We call eachagors(T,) tighdly inter-

111

appearance schedulesXf avd do not both intesect Zthen is completely
contained in some strongly connected componént subgraph(X,) or

subgraph(Y,) . We can then apply Theorem 2.6 to partition iKto and

and continue recursively in this manner until we obtain a strongly connected

Z, O actors(G) with the following properties: there exi¥{, Y, 1 Z, such that
X, is subindependent o¥, isubgraph(z,) Z0OZ ; angX, n Z) and
(Y, n Z) are both nonempty. From Lemma 3, n Z) Is subindependent in

subgraph(Z) , sosubgraph(Z) must be loosely interdepende&pED.

Corollary 3.2: Given a connected, consistent SDF gr&ph , any loose interde-

pendence algorithm will obtain a single appearance schedule if one exists.

Proof: If a single appearance schedule dr exists, then from Theoren® 3.1,
contains no tightly interdependent subgraphs. In other words, no aGor in is con-
tained in a tightly interdependent subgraplGof . From Lemma 3.1, the schedule
resulting from any loose interdependence algorithm contains only one appearance
of each actor irG QED.

Thus, a loose interdependence algorithm always obtains an optimally com-
pact solution when a single appearance schedule exists. When a single appearance

schedule does not exist, strongly connected graphs are repeatedly decomposed

until tightly interdependent subgraphs are found. In general, however, there may
be more than one way to decomp@sxors(G) into two parts so that one of the

parts is subindependent of the othedn . Thus, it is natural to ask the following
question: Given two distinct partition§Z,, Z,} aqd,’', Z,'} adttors(G)

110

holds for anya directed from an actor{@— (Yn 2)) to an acto(Ym 2) ,

we conclude tha{Y n 2) is subindependensubgraph(Z) QED.

Corollary 3.1: Suppose thaG is a strongly connected, consistent SDF gtaph,
andZ, are subsets afctors(G) suchtl@gt is subindependef of G in , and

T is a tightly interdependent subgraph of G . Then

(actors(T) O Z) or (actors(T) U %) .

Proof: (By contraposition). Ifactors(T) has nonempty intersection with both
andZ, , then from Lemma 3.4,actors(T) n Z) is subindependerit in , and

thus, T is loosely interdepende@ED.

Theorem 3.1: A nontrivial, strongly connected, consistent SDF gr&h has a
single appearance schedule if and only if every nontrivial strongly connected sub-

graph ofG is loosely interdependent.

Proof: (O direction). Suppose that every nontrivial strongly connected subgraph
of G is loosely interdependent, and let be any loose interdependence algorithm.
Since no actor irG is contained in a tightly interdependent subgraph, it follows

from Lemma 3.1 thaSZ (G) is asingle appearance schedulg for

(O direction). Suppose th& has a single appearance schedule and that

Z is a strongly connected subset axftors(G) such t@ht 1 Zget G
From Theorem 2.6, there exixf, Y, Z, such thgt is subindependaft of

in subgraph(Z,) , and subgraph(X,) andsubgraph(Y,) both have single

109

= appearancesgA, S (subgraph(Z,"))) .

Continuing in this manner, we get a seque#c¢gZ,', ... of subsets of
actors(G) such that eacl,’ is a proper subseZof," A , is contained in each
Z',and

appearancesgA, Q (G)) = appearances A ZS(Ssubgraph(Zl’))) =
appearancegA, S(subgraph(Z,'))) = ...

Since eacly;" is a proper subset of its predecessor, we can continue this process
only a finite number, sagn , of times. Tharil Z ' A, is not contained in a non-
trivial strongly connected component siibgraph(Z_') , and

appearancesA, S (G)) = appearance$ A gsubgraph(zm’))) .
But from Remark 3.15 (subgraph(Z_')) contains only one appearancé of

QED.

Lemma 3.2: Suppose thatG is a strongly connected, consistent SDF graph,
Y [0 actors(G) is subindependent i , arfl is a strongly connected subset of
actors(G) such thatYn Z#Z and'n Zz0O . ThefYn 2 s subindepen-

dent insubgraph(z) .

Proof: Suppose thatt is an edge directed from a membéZef (Yn 2)) toa
member of (Yn 2 . By the subindependence o¥ iG ,
delay(a) = consumeda) g (sink(a)) , and by Fact 2.7,

qg (sink(a)) = 9 subgraph(2) (sink(a)) .

Thus, delay(a) zconsumecw)qsubgrapmz)(sink(a)) . Since this

108

(AOY,) O appearance¢A, S (G)) = appearancegA, § (subgraph(Y;)))

We will apply a loose interdependence algorithm to derive nonrecursive
necessary and sufficient conditions for the existence of a valid single appearance

schedule. First, we introduce two useful lemmas.

Lemma 3.1: Supposes is a connected, consistent SDF graph; is an a@or in
that is not contained in any tightly interdependent subgraggh of ¢and is aloose

interdependence algorithm. Thén appears only oncféZ () , the schedule

generated by

Proof: From Remark 3.1, iA is not contained in a nontrivial strongly connected
component ofG , the result is obvious, so we assume, without loss of generality,

that A is in some nontrivial strongly connected compor#®gnt Gof . From our
assumptionssubgraph(Z,) must be loosely interdependent, so partifipns
into X andY , whereX is subindependentYof sirbgraph(Z,) kgt denote

that connected component stibgraph(X) subgraph(Y) that contains

From Remark 3.3,
appearancesA, S (G)) = appearance$ A gsubgraph(zl’))) .
From our assumptions, all nontrivial strongly connected subgraphs of

subgraph(Z,’) that containA are loosely interdependent. Thu4, if is contained
in a nontrivial strongly connected componeit sobgraph(Z,’) , tden will
partition Z, , and we will obtain a proper sub&t Zof such that

appearancesgA, Q (subgraph(Z,")))

107

is not contained in a nontrivial strongly connected component Gof

appearancegA, § (G)) = 1.

Remark 3.2: If Z is a nontrivial strongly connected component®f &nd Z ,

then sinceS (G) is derived fror8 (G) by replacing the single appearance of

eachQi , we have that

appearancegA, § (G)) = appearance$ AS (subgraph(1)) .

Remark 3.3: For each strongly connected compongnt whose associated sub-
graph is loosely interdependent, partitiggs iKto &nd suchthat is sub-
independent ol irsubgraph(Z,) , and replaces the single appearar@g of in
S (G) with (qGZ(X) S) (qGZ(Y) Sy) . If A is a member of the connected com-
ponentX; ,therA Y , so

appearanceA, (dg (X)) (dg (V) S))

= appearance¢A, § (subgraph(X))) .

Also, sinceA cannot be in any other strongly connected component b&gides
and since S (G) contains only one appearance Qf , we have
appearancegA, S (G)) = appearanceg A((gZ(X) S) (qGZ(Y) Sy)) . Thus,
fori = 1,2 ...,v,

(AOX)0O

appearancegA, § (G)) = appearance¢ AS (subgraph(X)) .

By a similar argument, we can show that for= 1,2 ...,.w

106

procedure ScheduleLoops
input : a connected, consistent SDF graph G.
output: a valid unit blocking factor looped schedule § (G) for G.

step 1: Use 9, to determine the nontrivial strongly connected
components Z,, Z,, ..., Z,.
step 2: Cluster Z;, Z,, ..., Z, into the actors Q,, Q,, ..., Q_ respectively,

and denote the resulting graph by G'. This is an acyclic graph.
step 3: Apply 395 to G', and denote the resulting schedule by S'.
step 4:
fori =1,2...,s
Let G, denote subgraph(Z;) .
Apply 3, to G,.
if X, YO Z are found such that X is subindependent of Y in G, .
* Let G, denote subgraph(X) and Gy denote subgraph(Y) .
* Determine the connected components X,, X, ..., X,

and Y, Y,, ..., Y, of G, and Gy, respectively.
» Recursively apply ScheduleLoopt® construct

S = (ag (X)) S (subgraph(X,))) ... (ag (X,) S (subgraph(X,)))

and

§ = (g, (Y1) § (subgraph(Y;))) ... (dg (Yy) S (subgraph(Y,))) .
* Replace the single appearance of Q, in S
with (dg, (X) S) (95, (V) S,) -

else (subgraph(Z,) is tightly interdependent)
* Apply 8, to obtain a valid schedule S for subgraph(Z,) .
* Replace the single appearance of Q, in S with §.
step 5: Output S' as S (G) .

Figure 3.2 The specification of how algorithms 81, 192, 193, 84 in Definition

3.2 are combined to form a loose interdependence algorithm

105

generates a valid looped schedule of blocking factor one. We define the algorithm
L(3,39,3393,) by the sequence of steps shown in fig-
ure 3.2. This process for combining the algoritiiys 9, ,3,, ,&pd defines a
family of algorithmsL (,+,*,*) , which we calbose interdependence algo-

rithms because they exploit loose interdependence to decompose the input SDF

graph. Given a loose interdependence algorithm L (3, 9,, 94 9,) , we call
the component algorithm, 9, 3, ,adg Sebindependence partition-

ing algorithm of ¢, the strongly connected components algorithnof (, the

acyclic scheduling algorithmof ¢, and thetight scheduling algorithm of C,

respectively.

Since nested recursive calls decompose a graph into finer and finer strongly

connected components, it easy to verify that a loose interdependence algorithm
always terminates on a finite input graph. Also, sincefdindoop in step4

replaces eac; I8 with a valid looped schedulestdsgraph(Z;) , we know
from Fact 2.6 that these replacements yield a valid looped schedule for , and
thus that the outpu, (G) of a loose interdependence algorithm is always a valid

schedule.
We will also make use of the following observations in the remainder of

this section.

Remark 3.1: Observe that step 4 does not insert or delete appearances of actors

that are not contained in a nontrivial strongly connected compahent .Bjnce

generates a single appearance schedul&for , we have that for evéy actor that

104

Figure 3.1.An example used to illustrate the concepts of loose and tight
interdependence.

We will use the following fact, which follows immediately from the defini-

tion of loose interdependence.

Fact 3.1: If G, and G, are two isomorphic SDF graphs dag is loosely inter-

dependent, the®, is loosely interdependent.

Our code scheduling framework is based on the following definition, which
decomposes the scheduling process into four distinct functions, and defines how
algorithms for these functions can be combined to generate a class of scheduling

algorithms.

Definition 3.2: Let &, be any algorithm that takes as input a nontrivial strongly

connected SDF grapB , determines whetBer s loosely interdependent, and if
so, finds a subindependent partition@®f .dg be any algorithm that finds the
strongly connected components of a directed multigraphd L et be any algorithm
that takes an acyclic SDF graph and generates a valid single appearance schedule.

Finally, letd, be any algorithm that takes a tightly interdependent SDF graph and

103

minimization properties of the scheduling framework. In the following section, we
discuss the problem of constructing single appearance schedules that minimize the
buffer memory requirement. Here, we focus on the class of chain-structured SDF
graphs, and some extensions to more general graphs are given in Subsection 3.3.4.
Finally, in Section 3.4 we describe in detail a number of research efforts that are
closely related to the work presented in this section. These efforts include loop
scheduling mechanisms in Gabriel, which were examined by How [How90]; a
related loop scheduling technique described in [Buck93] for the Ptolemy system;
the construction of uniprocessor schedules that minimize the number of context-
switches, a problem that has been addressed in the COSSAP design environment
[Ritz93]; and a number of techniques developed to compile procedural programs

into efficient code for vector computers [Mura71, Alle87].

3.1 Loose Interdependence Algorithms

Definition 3.1: Suppose thaG is a sample rate consistent, nontrivial strongly
connected SDF graph. Then we say fBat loosely interdependentf G has a

subindependent partition. We say ti@at tightly interdependent if it is not

loosely interdependent.

For example, consider the strongly connected SDF graph in figure 3.1.
Here, the repetitions vector (A, B, C) = (3, 2 1)T ,add d,, ahd rep-
resent the number of delays on the associated edges. From Definition 3.1, this SDF
graph is loosely interdependent if and only(d; = 6) or (d,=2) or (d;=3) ;
equivalently the graph is tightly interdependent if and only if
(d; <6) and (d,<2) and (d;<3) .

102

SCHEDULING TO MINIMIZE CODE SIZE

In this chapter, we present systematic techniques for compiling SDF graphs
into implementations that require minimum code size. We define a graph decom-
position process that can be used to construct single appearance schedules when-
ever they exist. Based on this decomposition process, we define a general
framework for developing scheduling algorithms, and we show that all scheduling
algorithms that are constructed through this framework construct single appear-
ance schedules whenever they exist. Also, we show that the code size optimality of
the scheduling framework extends in a restricted way to SDF graphs that do not
have single appearance schedules: the framework guarantees minimum code size
for all actors that are not contained in subgraphs of a certain form, tighég
interdependent subgraphs

In Section 3.2, we discuss considerations that must be addressed when
incorporating clustering techniques into our scheduling framework, and we present
a clustering technique that can be incorporated into the framework to increase the
amount of buffering that occurs through registers. A large part of Section 3.2 is

devoted to establishing that this clustering technique does not violate the code size

101

they do not allow register-indirect accesses to issue in parallel with other instruc-
tions. Furthermore, many do not support hardware autoincrement — a separate
instruction must be issued to update the buffer pointer. Thus, more aggressive scat-
tering of buffers may favor such general purpose processors, while there is a strong
trade-off between buffer storage, address storage, and execution time in the
DSP56000 and most other digital signal processors.

Also a scattered buffer can consist of multiple contiguous blocks of mem-
ory, each of which is accessed through a separate buffer pointer. Managing these
multiple buffer pointers introduces another machine-dependent trade-off. Further
examining the machine-dependent aspects of contiguous vs. scattered buffering is
an important direction for future work.

Finally, we presented techniques to reduce modulo addressing overhead for
both static and dynamic buffers. These techniques apply whenever modulo buffers
are used, but how much improvement is gained depends on how expensive a mod-

ulo address update is in the target processor.

226

static or dynamic, linear or modulo, and contiguous or scattered; we have evalu-
ated the impact of these choices on storage requirements; and we have suggested
guidelines for choosing between them. More thorough and systematic techniques
to determine an optimal combination of buffering parameters is an important and
challenging area for further study.

In Section 4.3, we introduced dataflow analysis techniques to minimize the
spilling of address registers under static buffering. How useful and effective these
techniques are depend both on the number of available registers and on how
expensive a spill to memory is. For example, in the Motorola DSP56000, eight
registers are available for addressing, while spills can often be performed with no
run-time overhead (by doing them in parallel with other operations [Powe92]). In
contrast, in the MIPS R3000, any of the availaBke registers can be used for
addressing, and at least one instruction cycle is required for a spill. Being able to
accurately and efficiently estimate the effects of spilling would be useful in decid-
ing between static and dynamic buffering.

In Section 4.4, we developed lifetime analysis techniques that aid in reduc-
ing storage requirements for buffers. An important area for further investigation is
the incorporation of addressing trade-offs between contiguous and scattered buff-

ering. For example, if a logical buffer of length is assigned to mutually non-

contiguous memory locations, then in genenal absolute addresses must be
employed. For programmable DSPs such as the DSP56000, arbitrary absolute
addresses require an additional word of program memory and an additional
instruction cycle, while register-indirect accesses to a contiguous buffer involve no
program memory overhead and can often be performed in parallel with other use-
ful operations [Powe92]. In contrast, many general purpose microprocessors allow

large absolute displacements to be accessed through single-word instructions, but

225

distinct physical instruction sequences, -calledffer access instruction
sequencesthat will be used to access By . This concept is similar to common
code space sets, which associate blocks of program memory with actor invoca-
tions. However, the buffer access instruction sequences depend on intra-actor
loops as well as schedule loops.

For a given buffer access instruction sequence, the corresponding machine

instruction(s) must perform a modulo address computation if and only if the asso-

ciated set of buffer accessgs intersects the set of wrap-around accesses — that
is, ifand only if (I, n' §,) # 0 . In practice, however, we do not need to explicitly

compute and maintai§, nor the access sets associated with each buffer instruc-

tion sequence. We simply simulate the buffer activity, traversing the buffer access

instruction sequences in succession, for one schedule period and apply Theorem
4.3 for each access. ¥ denotes the current buffer access instruction sequence in
our simulation, and the current access isjthe th access obledge b#actor ,then

we mark® as requiring a modulo computation if

(Pg+ (j—1)) modgced({Jx total_consumeda), BUFSIZE}) .

= (gcd({Jx total_consumeda), BUFSIZE}) —1) .

All buffer access instruction sequences that are not marked by this simula-

tion can be translated into simple linear address updates.

4.6 Summary

We have presented a classification of buffers based on whether they are

224

factor of2 .

Observe that the number of modulo computations required also depends on
the choice of the buffer size. Clearly, one out of
ged({J x total_consumeda),, BUFSIZE}) accesses requires a modulo com-
putation. Thus the modulo overhead varies (neglecting looping considerations,
which will be discussed in Subsection 4.5.2) inversely with
ged({J x total_consumeda), BUFSIZE}) . For example in Figure 4.14, & -
word buffer can support the given schedule. However, this requires
15/gcd({ 15 A) = 15 modulo computations per minimal schedule period:

every access must perform a modulo update! Increasing the buffer sife to

results in5 times fewer modulo computations. Thus, for frequently executed sec-
tions of code, it may be beneficial to explore tolerable increases in buffer size for

the possible reduction of modulo updates.

4.5.2 Handling Loops
In the absence of schedule loops and loops within the actor code blocks,

the number of modulo computations required in the target code is e*@,g}tly

However, a loop may cause the same physical instructions to perform both wrap-
around accesses and linear accesses. In such cases, we must either unroll the loop
to isolate the accesses that wrap around, or we must perform a modulo address
computation for every access that is executed from within the loop. Here we
assume that the loop structure is fixed: we focus on analyzing the loop structure to
eliminate modulo accesses while leaving the loops intact.

To eliminate unnecessary modulo address computation for the read or write

accesses performed by some aé¢tor from/to an edge , we first identify the set of

223

S, = S, (a,BUFSIZE, J) = (4-8)

{j,+nx Ws|Eh 040,14, ..., { (J x total_consumeda)) —1J} ETT}

Ws

For the example of Figure 4.14, we hgye= 5 , &)= {5, 10 13

Code to implement these accesses must perform modulo address computations.
These modulo computations will correspond to accesses that wrap around only
one-third of the time. However, unless, we increase the blocking factor, we must
ensure that these accesses are always performed with modulo updates. In general,

modulo computations will wrap around one out of every

no = BUFSIZE
W gcd({Jx total_consumeda), BUFSIZE})

times.

We can reduce the average rate at which modulo computations must be

performed by a factor ofi, if we increase the blocking factanjo . Assuming

that all invocations of the same actor require the same amount of time to &xecute

the rate at which modulo computations must be performed is proportional to

[Su

Ry = 5 Where|$N| denotes the number of members in thaﬁet . The denom-

inator termJ is required because the amount of execution time required for a
schedule period (an iteration of the target program’s outermost loop) is propor-

tional to the blocking factor. For example, in Figure 4.13,=1

S, = {510 13, |SN| = 3, andRy, = 3 . If we increase the blocking factor to
2 and retain the same buffer si&, = {10, 2Q 3¢ |§N| =3 ,&d=15

— thus the frequency of required modulo address computations decreases by a

1. In general, this assumption does not hold; in such cases our analysis is not exact, but it
gives a useful estimate.

222

_ BUFSIZE
497 N gcd({J x total_consumeda), BUFSIZE}) '

andr = w . Interpret-

ing this result, we see that for each windeswv , there will be schedule periods
(values ofk) in which th¢ th access occursMn . Thusjthe th access of some

schedule period will wrap around the end of the buffer if and only if the th access
of the first schedule period occurs at the end of a window.

We have proved the following theorem.

Theorem 4.3: Suppose thatt is an edge in a connected, consistent SDF graph;

supposeA [l ({ source(a)} O {sink(a)}) ; and definp, = delay(a) if
A = source(a) , and p,=0 if A = sink(a) . Then for

jo{1, 2 ...,Jxtotal consumeda)} ,thej thaccessal b& wraps around
the end of the buffer if and only if

(Pp+ (j—1)) modw, = w -1,

wherew, = gcd({J x total_consumeda), BUFSIZE}) .

The check of Theorem 4.3 can be further simplified by observing the peri-

odicity of the modulo term — we need only determine the first access that wraps

around, which we denote by , explicitly:

Jw = Wy— (pgmodw,) . (4-7)

Then, we immediately obtain the complete et of accesses that wrap around by

221

Schedule: AABAABAB

total_consumedA - B) = 15

BUFSIZE = 10

J=1

ged({J x total_consumedA - B), BUFSIZE}) = 5 (“window” size)

first access by actor A in first access by actor A in
all odd schedule periods all even schedule periods

' '

=+——window 1] window 2 —— >

Figure 4.14. An illustration of repetitive access patterns in

ged({J x total_consumeda), BUFSIZE}) -word windows within a
buffer.

220

o
I

k, x J x total_consumeda) , and

¢ = BUFSIZE,

we see that for each positive integgr , there is a nonnegative ikteger such that

(k, x J x total_consumeda)) modBUFSIZE (4-6)
= k,gcd({J x total_consumeda), BUFSIZE})
This means that we can consider each dynamic buffer as consisting of suc-
cessive “windows” of sizegcd({Jx total consumeda), BUFSIZE}) . In
some schedule period, sburce(a) aink(a) performsiits th access at offset

j of windoww, , then since thie th access shifsx total_consumeda)) posi-

tions from schedule period to schedule period, we know that the th access in any
schedule period will occur at offs¢t of some window. For example, for the
dynamic buffer in Figure 4.14, it is easy to verify that for all odd schedule periods,
the window offset for the first accessAf Ois

Now letw, denotegcd({ J x total_consumeda) , BUFSIZE}) , the size
of each window. Also, len,, = BUFSIZE/w, , the number of windows. Suppose

that in the first schedule period, access occurs at ¢gffset of wimdow (assume
now that windows and offsets are numbered startifty at). Then the window num-
ber of thei th access in some later schedule pekiod can be expressed as
((w+ ((kx Jx total_consumeda)) /w,)) modn,) . This is simply the initial
window number plus the number of windows traversed modulo the number of
windows. To this expression, we can apply Fact 4.2 with

_ Jxtotal_consumeda) _ J x total_consumeda)
w gcd({J x total_consumeda), BUFSIZE}) ’

S

219

soa must divide(b modc) QED.

Fact 4.2: Suppose thap ang are coprime positive integersqlet denote the
set{0,1,...,(g—1)} , and suppose thatl Iq . Then forigll] Iq there exists

k, O Iq such that(r +pk,) modq = k; .

Proof: (By contraposition). Suppose that for sokel] Iq , there i&Ji0 | q
such that (r +pk,) modqg = k; . Then((r +px) modq) takes on at most

(g—1) distinct values asx varies acrosg . Thus, there exist distinct

k k2b O Iq such that

2a’
(r +k,,p) modq = (r +k,,p) modq = k, for somek [J Iq , (4-3)
which implies that there exist distinct nonnegative integgrs rgnd such that
(r+k,,p) = (r,g+K,and(r+ky,p) = (r,a+Kk) , (4-4)
and thus,
(Kya=Kop) P = (ry—rp) Q. (4-5)

Now sincek,, k,, 0 {0, 1, ..., (—1)} , it follows from (4-5) thgt amgl are

not coprime. Thus, the original assumption that @nd are coprime cannot hold.
QED.
Applying Fact 4.1 with

a = gcd({Jx total_consumeda), BUFSIZE}) ,

218

tematic approach to eliminating modulo accesses.

45.1 Determining Which Accesses Wrap Around
First, we show how to efficiently determine which accesses of a circular

buffer wrap around the end of the buffer. For a static circular buffer, this is straight-
forward — if a denotes the edge in question dnd denotes the blocking factor, we

simply determine the values of(] {0, 1, ..., J % total_consumeda) — 1} for
which

Po*+ N = (some positive integgrx BUFSIZE,
whereBUFSIZE denotes the length (number of words) of the circular buffer, and

p, denotes the buffer position of the initial access — thatjs= delay(a) if
we are concerned with the accessesaiirce(a) phe 0 if we are con-

cerned withsink(a) .

For dynamic buffers, different accesses will wrap around the end of the
buffer in different schedule periods. However, there may still exist invocations
whose accesses do not wrap around in any schedule period. To determine these

invocations we need to use two simple facts of modulo arithmetic.

Fact 4.1: Suppose that b and are positive integers, and supposa that

divides bothb ana . Then for some nonnegative intkgeib modc) = ka

Proof: By definition,

(bmodc) = b— EVE)J xc (4-2)

Both the subtrahend and minuend of the left hand side of (4-2) are divisiale by ,

217

For example, for the SDF graph and schedule in Figure 4.13, there are no static
transactions for the eddg2 -~ C ,and@ -word block of memory is required for
this edge if we do not decompose the dynamic buffer component. However, if we
view each of the four dynamic transactiofls 1) (2,2) (3,3) &dd4) as

a separate unit, we can impleméht. C with four indepen#®&nt -word blocks
of memory. This additional freedom may lead to much better overall memory use

if this example is used as a subsystem in a more complex graph.

4.5 Eliminating Modulo Address Computations

In Subsections 4.1.2 and 4.2.1, we discussed the use of circular buffers to
decrease memory requirements and to implement edges that have delay, and in
Subsection 4.2.3, we discussed the overhead associated with accessing circular
buffers, which ranges from zero to a few instructions for processors that have hard-
ware support for circular buffering, such as the Motorola DSP56000, to several
instructions for processors that do not have hardware support, as with general pur-

pose microprocessors such as the MIPS R3000. In this section, we develop a sys-

4 1 1 1
° e e Schedule: ACBCBCBCB
100D

Figure 4.13 An example that illustrates the benefits of decomposing the
dynamic buffer component into a separate segment for each dynamic
transaction.

216

(The number of dynamic tokens at timg <
R— (N,— (total_consumeda) — R

= total_consumeda) — N<M(a) —N,.

From the above discussion — for bofiR > total _consumeda)) and
(R<total_consumeda)) — the number of dynamic tokens whBn= M (a)

is (M (a) —=N,) , and this amount of dynamic tokens cannot be exceeded with any

other value oR . Therefordy, = M (a) —N, , which is equivalent to the desired

S

result.QED.

We conclude this section by pointing out that it is possible to decompose
the dynamic buffer component further — each dynamic transaction can be mapped
to an independent block of memory. For example, the dynamic buffer component
in Figure 4.12 can be separated into three two-word fragments corresponding to
transactions(3, 1) (4,2 and6,4) . This could be achieved simply by using
different read and write pointers for each of the associated accesses — we would

need three separate write pointersAdr3] A[4] F2Y(16) , and three separate

read pointers foB[1] B[2] an®[4] . The overhead associated with this
scheme is significant, but difficult to gauge precisely. First, it places more pressure
on the address-register allocator and may increase the amount of spilling. This, in
turn requires an extra memory location to save each spilled item. Finally, the sum
of the independent dynamic transaction segments (in thisZase+ 2 = 6)
may exceed the maximum number of coexisting dynamic tokens (in thiScase).
Thus, for small to moderate dynamic buffer sizes it is unlikely that decomposing
the dynamic buffer component further will be of value. However, when large

delays are involved, it may provide substantial new opportunities for overlaying.

215

coexisting tokens on the edge, then without further analysis — for which currently

there are no general techniques — we cannot guarantee that decomposing the

buffer will not be detrimental. Fortunately, howeveN_ + N,) is always equal to

the undecomposed dynamic buffer size, as the following theorem suggests.

Theorem 4.2: Suppose thaG is a consistent, connected SDF g&aph, is a mini-
mal, valid schedule foc ,amadl is an edg&in . Suppose also that the maximum
number of coexisting tokensl (o) om during an executiorSof exceeds

total_consumed@a) . ThenN_+ N, = M (a) , whereN, is the number of static

tokens andN,, is the maximum number of coexisting dynamic tokens.

Proof: Suppose that at some time in the schedule period theRe are live tokens
on o, and first suppose th&=> total_consume@a) . Since the tokens buffered

on an edge are successive, the ladal consumeda) tokens produced by
source(a) are live at timet . Thus, there is a token corresponding to each static

transaction on the edge. It follows that there RreN, dynamic tokeas on at

timet.

Now suppose thaR < total_consumeda) . We consider two cases here:
Case 1 — (R<total_consumeda)) and (N, < total_consumeda) - R.
Then,

(The number of dynamic tokens at timg < R<
total_consumeda) — N<M (a) —Ng

Case 2 — (R<total_consumeda)) and (N, = total_consumeda) - R .

Then,

214

s in the dynamic buffer component, there is some point in the schedule period

when s coexists with the corresponding token of the next or previous schedule
period. This is precisely why these tokens must be buffered as a contiguous unit.

Observe also that in the dynamic buffer component, the read and write pointers for
B andA , respectively, each shift three positions to the right (in a m&dulo- sense)
every schedule period. These pointers are not involved in accedsksldt and
L3 — these locations can be accessed using absolute addressing.

For the example in Figure 4.12, mapping all accessés-ofB to a single
contiguous segmerg of memory requires@&n -word block of memory, while
decomposing this buffer based on static and dynamic transactions allows a parti-
tion into four mutually independent blocksbf1,1, &d words. Although the

net requirement of physical memory is the same, there is less potential for frag-

mentation, or equivalently, more opportunity for buffer reuse [Fabr82] when this
example is a subsystem in a larger graph. Furthermore, the lifetime of extends
throughout the entire schedule period, where2s Leghd are live only in the
interval between invocations, am) . These two locations may thus be reused
for other parts of the graph.

It is not obvious, however, that decomposing a buffer based on static and
dynamic transactions will never increase the net memory requirements. If we refer

to the tokens associated with static transactions and dynamic transacstatgcas

tokensanddynamic tokensespectively, then the transaction-based decompaosition

requires a set of memory blocks whose sizes totad N words, Where s the
number of static tokens (in a single schedule period\gnd is the maximum num-

ber of coexisting dynamic tokens. If this sum exceeds the maximum number of

213

2 S Schedule: AABAB
4D

transactions

(4, 2) <dynamic>
(5, 3) <static>
(6, 4) <dynamic>

number of tokens on-AB
just prior to the access

(@)
(1, 5) <static>
(2, 6) <static>
(3, 1) <dynamic>
read
access
B[1]
B[2]
B[3]
B[4]
B[5]
B[6]
(b) L1 L2 L3
initially
after A
after A,
after B;
after A3
after B,

g oo ~NO N

Dynamic Buffer Component

11|12 | 14
11|12 | 14
11|12 | 14

14 | 21 | 2,2

14 | 2,1 | 2,2

21 | 2,2

Figure 4.12 An illustration of static and dynamic transactions for a dynamic

buffer. In (b), i,] represents the live token that is to be the j th token consumed

by actor B in schedule period i .

212

cedence graph, and the static and dynamic transactions can be identified by simu-
lating the activity on the edge over one schedule period. Figure 4.12 illustrates the

decomposition of a buffer based on static and dynamic transactions. Here, the rep-

etitions vector is given by q(A B) = (3 2)T : and thus
total_consumedA - B) = 6, Now, it is easily verified that for the given sched-
ule, the maximum number of tokens that coexistton B 8 is — so clearly
dynamic buffering applies. However, from the lower table in Figure 4.12(a), we
see that the third, fifth, and sixth read accesse® of occur when there are
total_consumeda) or fewer tokens queued g B . This corresponds to the
set of static transactions, which is summarized in the table |latvateshctionsn

Figure 4.12(a). Thus tokens associated with transactidn®) (2, 6) and
(5, 3) can be buffered in independent memory locations, wtlel) (4, 2)

and (6,4) must be maintained in contiguous memory. The resulting constraint
sets a¢ {A[1]} , {A[2]} , {A[5]} , and {A[3],A[4],A[6]} .Figure
4.12(b) illustrates the use of these constraint sets to form independent buffering
units. Here A[1] A[2] and\[5] are mapped to independent (not necessarily
contiguous) memory locationsl L2 , ahd respectively, and the remaining

constraint set is mapped to a contiguous five-word block of storage, labeled the

“dynamic buffer component”. Five words are required because this is the maxi-
mum number of coexisting tokens froffA[3],A[4],A[6]} . Figure 4.12(b)

shows how the profile of live tokens in this buffering arrangement changes through
the first schedule period. Each live token is represented by an orderadj pair
which denotes thg th token to be consumed by d&tor in schedule period , and

a shaded region designates the absence of a token. Observe that for each live token

211

ods, the accesses are performed through read/write pointers. Any read that occurs
when the token population is withitotal_consumeda) , however, corresponds

to a token whose location is independent of . To explain this effect precisely, we

introduce the following definition.

Definition 4.3: Let G be an SDF graph and suppose that isaned@ein . Then
a transacton on o is an ordered pair (i,j) , such that
1<i,j < total_consumeda) and

] = ((i—=1+delay(a)) modtotal consumeda)) + 1.

Thus, (i,j) is atransaction an if the th token consumedibl¢(a)
in any given schedule period is tihe th token producedsdayce(a) in that
schedule period or some earlier schedule period. For a given periodic looped
scheduleS foiG , we say that the transact{ayj) sgatic transactionif the
number of tokens existing an just prior to fhe th read accesskya) o of
is less than or equal total consumeda) . We can express this condition as

delay(a) + produced(a) N, —consumeda) (N—-1) —
(j—1) modconsumeda) < total_consumeda)

whereNg = 1+ (j—1)/ (consumeda)) | is the invocation adink(a) dur-
ing which thej th read access of occurs, &hd is number of invocations of

source(a) that precede th&l; th invocation eink(a) # . We say that a

transaction is dynamic transactionif it is not a static transaction.

The transactions on an edge can be determined easily from the acyclic pre-

1.The+1 and-1 are required in this expression because we (by convention) number to-
kens starting al rather thd&h

210

{A[1-3]}, {A[4-6]}, {A[7-9]}, {A[10-12} . If we add the addi-
tional condition that the first two invocations Af are grouped into a schedule
loop (we change the schedule @(2A) BABBABBB), then we must consider
another constraint sgtA[1—-6]} . The new buffer periods are the combination
of the 17 constraint sets in the first three rows of Figure 4.11(b) —
{A[1-6]}, {A[7-9]}, {A[10-12} . Now if we encapsulat8; ari

within a schedule loop (the new schedul€i2A) BABBAB(2B)), the resulting
constraint set i B[9—-12]} , which is equivalent {&A[8—11] } , due to the
unit delay. This new constraint forces us to merge buffer pefidds7 — 9] } and
{A[10-12}, and the resulting buffer periods ar¢ A[1l-6]} and

{A[7-12} . Finally, if we impose the condition th& readls- B through
an intra-actor loop, then we have the six additional constraint sets shown in the
fifth row of Figure 4.11(b). The first of these constraint sets intersects both of the

remaining buffer periods and we are left with a single buffer period

{A[1-17} .

4.4.3 Contiguity Constraints for Dynamic Buffers

Dynamic buffering imposes contiguity constraints between buffer accesses
whenever a read occurs when the number of tokens on ancedge exceeds
total_consumeda) . In such situations, the token to be read co-exists with the

corresponding token of the next schedule period — so we cannot dedicate a single

memory location to that token. For a given edge, an efficient way to deal with such
cases is to force all of these accesses to occur in the same contiguous block of

memory. Since the location of each of these accesses varies between schedule peri-

209

within intra-actor loops, then only the singleton constraint sets apply toB
and the buffer periods agA[1] }, {A[2]}, ..., {A[12]}

Now suppose that all accessesdofs B Ay are performed from within a

loop insideA . The corresponding constraint set is shown in the second row of Fig-
ure 4.11(b), and we obtain the resulting buffer periods by superimposing the first

two rows of Figure 4.11(b) —

4 13 5 2 Schedule: CAABABBABBB

(@)

Some Possible Constraint Sets

Singletons {A[1]}, {A[2]}, ..., {A[12]}

Actor A writestoA - B fromaloop {A[1-3]} {A[4-6]} ,
{A[7-91}, {A[10-173}

Encapsulatéd; A, inascheduleloop {A[1-6]}

Encapsulat8; B, in aschedule loop {A[8-11]}

Actor B readsA - B from a loop {A[12],A[1]} {A[2],A[3]}
{A[4],A[5]} , {A[6],A[7]}
{A[8],A[9]} ,
{A[10], A[11]}

(b)

Figure 4.11.This example illustrates how superimposing different constraint
sets can lead to different buffer periods. The figure depicts an SDF graph, a
schedule for the graph and five possible mechanisms for imposing contiguity

constraints on the edge A - B.

208

ton constraints, as theollection of constraint sets imposed an. Then,
determining the buffer periods, which can be viewed as the maximal independent
constraint sets, amounts to partitioning the entire collection into maximal noninter-

secting subsets.

Definition 4.2: Given an SDF graps ,anedge Gn ,and alooped sch&dule

for G, letC = C,, C,, ..., C, denote the collection of constraint sets imposed on
a. Suppose that = {b;, b,,...,b } isasubset®f such that

(1). No member ob is independent of all other membets of A=il :

then for eacrbi , there is at least dJJnet bi suchlluhatbj [0 and;

(2). b is independent of the remainder of — that s,

Dﬁ .0 D]
b./n EL=0O.
Dzzl U kneeoy O

Then Ezﬁlbzg is called auffer period for a.

One can easily verify that for a given schedule, each eadge has a unique
partition into buffer periods. Furthermore, tokens in the same buffer period must
be mapped to the same contiguous physical buffer, whereas distinct buffer periods
can be mapped to different segments of memory. Finally, the amount of memory
required for a buffer period is simply the maximum number of coexisting live

tokens in that buffer period.

Figure 4.11 depicts an example that we will use to illustrate the consolida-
tion of different constraint sets into buffer periods. The schedule of Figure 4.11(a)

does not contain any loops. If the buffer accesses whin B or do not occur

207

lates the third through fifth invocations Bf , which prodyde[17— 4Q } , and
the third through eighth invocations Bf , which consufriie[11- 4Q } . Tak-
ing the union yields{ E[11-4(} as the constraint set imposed by the outer-
most loop (3E(2F)) . Thus, the two outermost loops (ZFEF) (3E(2F))
respectively impose the constraint s¢ts[1— 16] } o[11— 4Q } . Since
these two constraint sets overlap (over the tokepkl— 16), they are equiva-
lent to a single constraint set that is obtained by taking their union —
{E[1-40} .

Thus, the schedule loops in Figure 4.10 impose a single constraint set on
the edgeE —» F , and this is the sE[1-40] } . It follows that for the given
schedule,E -~ F must be mapped to a single block of contiguous memory —
fragmentation cannot be performed. In Figure 4.10, the single block of contiguous
memory forE - F is implemented by the arfayoutbuf

So far we have only mentioned that dynamic buffering can also lead to
constraint sets, but we have not described this effect. The effects of dynamic buff-
ering, which are more subtle than the conditions imposed by loops, will be dis-
cussed fully in Subsection 4.4.3.

For an SDF edge , the constraint sets due to intra-actor looping, inter-
actor looping (schedule loops), and dynamic buffering together define the logical
sections of a buffer that are restricted to contiguous segments of physical memory.
We also include the trivial singleton constraints
{A[1]}, {A[2]}, ..., {A[total_consumeda)]} , where A = source(a) |,
which we need to account for tokens that don’'t appear in any of the other con-

straint sets. We refer to the entire collection of constraint sets, including the single-

206

{E[9]}, {E[17]}, {E[25]} and {E[33]} could be mapped to five dis-
tinct memory locations, and the sets of tokdns[2—-8]} {E[10-19} ,
{E[18-24}, {E[26-3} ,and {E[34—-4(} could be mapped to five
independent seven-unit blocks of contiguous storage. However, due to additional
contiguity constraints that arise due to schedule loops, which we discuss below,
this flexibility cannot be exploited for the implementation in Figure 4.10.

As with computing the contiguity constraints that arise from intra-actor
loops, determining the constraints due to schedule loops is straightforward. Given
an edgea , and an actdf ({source(a)} O {sink(a)}) , each outermost
schedule loof. in the periodic schedule defines a constraint set that consists of all

access byN ofx that occur within . We can derive these from the contiguous

ranges of invocations & ari®l tHat encapsulates. We map all accesses within
a loop to the same physical block of memory because we cannot easily perform
isolated resets of read/write pointers inside loops. Expensive schemes — such as
testing the loop index to determine which physical buffer to use or maintaining an
array of buffer locations — are required to fragment buffering within a loop. We
do not consider such schemes presently because we expect that their benefits are
rare, and thus we consolidate accesses within loops to the same physical buffers.
For the example of Figures 4.9 and 4.10, the given looped schedule is
(2EF) (3E(2F)) . This schedule has two outermost schedule |l00PpEF) and
(3E(2F)) , and thus two constraint sets emerge. The first schedule loop encapsu-

lates the first two invocations & , which together produce toKdéngl — 16] } ,

and the first two invocations & , which consume tokégq 1 - 10| } . Taking

the union of these two sets gives us the constraint set imposed by the outermost

loop (2EF) — {E[1-16]} . The other outermost loop3E (2F)) , encapsu-
205

{ I* begin subschedule for subgraph({E,F}) */
[* initialize read and write pointers for
edges that are internal to the subgraph */
E_writeptr = 0;
F_readptr = 0;

for (i=0; i<2; i++) {
/* begin code block. for CCSS {E1,E2} */
templ = E_inpbuf[E_readptr++];
E_outbuf[E_writeptr++] = temp1l,;
for (12=0; i12<7; i2++) {
E_outbuf[E_writeptr++] = O;

/* end code block for CCSS {E1,E2} */

/* begin code block for CCSS {F1,F2} */
temp2 = E_outbuf[F_readptr++];
F_outbuf[F_writeptr++] = temp2;
F_readptr += 4; /* skip over next 4 tokens */
/* end code block for CCSS {F1,F2} */

} /* end schedule loop (2 E F) */

for (i=0; i<3; i++) {
/* begin code block. for CCSS {E3-E5} */
templ = E_inpbuf[E_readptr++];
E_outbuf[E_writeptr++] = temp1;
for (i2=0; i2<7; i2++) {
E_outbuf[E_writeptr++] = 0;
}

/* end code block for CCSS {E3-E5} */

for (i2=0; i2<2; i2++) {
/* begin code block for CCSS {F3-F8} */
temp2 = E_outbuf[F_readptr++];
F_outbuf[F_writeptr++] = temp2;
F_readptr += 4; /* skip over next 4 tokens */
/* end code block for CCSS {F3-F8} */

} I* end schedule loop (2 F) */

} I* end schedule loop (3 E (2 F)) */
} I* end subschedule for subgraph({E,F}) */

Figure 4.10.An example of C code that can be used to implement the
looped schedule (2EF) (3E(2F)) for the subsystem of Figure 4.9.

204

actorF represents@ -foltecimator which consume8 tokens and outputs one
token with the same data value as the first token consumed. For clarity, we have
specifiedE to be a simple form of upsampler; however, similar contiguity con-
straints can apply to more elaborate upsamplers, such as an upsampler that per-
forms linear interpolation. Now if clusterirgubgraph({ E, F}) in the enclosing

graph does not produce deadlock, then it is easily verified that the looped schedule
(2EF) (3E(2F)) can be used to invoke this subsystem. Figure 4.10 shows a
possible implementation of this loop schedule if the target language is C.

Now, from examination of the code blocks fiér in Figure 4.10, we see
that in each invocation & , the last seven accesses of the output edge (all but the
first) are generated from within a loop inside the corresponding code bloEk for
Thus, we constrain the last seven data values outpldt by to be written to contigu-
ous memory locations. This leads to the contiguity constrafnis[1]} :
{E[2-8]}, ({E[9}. {E[10-14}, ({E[17}, {E[18-24},
{E[25]}, {E[26-32}, {E[33]}, {E[34-4(} , where we have used
E[i—j] as shorthand notation fd£[i],E[i+1],...,E[j] . If there were no

other contiguity constraints for the output edge Eof , the tokEkq1]} ,

Figure 4.9 An SDF subgraph that represents a cascade of an upsampler
and a decimator.

203

Our convention is to express all contiguity constraints for an edge in terms of the
source actor. Thus, noting the unit delay/n. B , We translate Figure 4.8(c) to
{A[6],A[1]}, {A[2],A[3]} ,and{A[4],A[5]} .

As a more complete example, consider the SDF subgraph in Figure 4.9,

which we use to represent a common cascade of multirate DSP actors. Here, actor
E represents aB -foldpsamplerwhich consumes one token per invocation and

outputs a token with the same data value along With zero-valued tokens; and

(=)
D

(@)

(b)

TR

()

Figure 4.8 An illustration of buffering constraints when edges are accessed
through loops inside actor definitions.

202

required. On the other hand, the fragmented buffer information in Figure 4.7(c)

separates the items to be allocated into six variables. It can easily be verified that
both first-fit and best-fit allocation require orily units of storage to achieve a

valid storage layout for Figure 4.7(c).

4.4.2 Computing Buffer Periods

There are four mechanisms that can impose contiguity constraints on suc-
cessive buffer accesses of an edge — writes to occurring from a loop inside
source(a) ; reads froma occurring from a loop insidgenk () ; placement of
source(a) or sink(a) within a schedule loop; and dynamic buffering. The con-

straints imposed by these mechanisms can be specified as subsets of tokens that
must be buffered in the same block of storage. For example, suppose that for the
SDF graph in Figure 4.8(a), actér is programmed so that it writes its output
tokens from within a single loop inside the actor code block. The resulting conti-
guity constraints are illustrated in Figure 4.7(b) — the three tokens produced by

each invocation must be stored in three adjacent memory locations. We specify
these two constraints by the subset§A[1l],A[2],A[3]} and
{A[4],A[5],A[6]} , whereA[i] represents the th token accessed by ina
minimal schedule peridd for 1<i < total_consume@A — B) . The constraints

that result if the reads of act@& occur from within a loop inside the actor are
depicted in Figure 4.8(c), and we represent these constraift8 pH , B[2] } ,
{B[3],B[4]} ,and{B[5],B[6]} .However, since we must ultimately super-

impose all constraints, we would like to express them in terms of the same actor.

1. This notation assumes that the edge in question (in thifcaseB) is understood. Al-
so, for simplicity, we assume that the blocking factor is one; however, the analysis in this
section generalizes easily to any finite blocking factor.

201

storage allocation, with lifetimes ranging froy through, , &d through

D, respectively. We call these two invocation subsetsbtiféer periods of

20"
B - D, and we denote them by successive indicé asD [1[] BandD (2]

The concept of a buffer period will be defined precisely in the next subsection. The
live range forC — E can be decomposed similarly and the resulting lifetime pro-
file is depicted in Figure 4.7(c) (we suppress th&? " index for edges that have
only one buffer period). This new profile reveals that we can mapBethD and
C - E to the samel0 -unit block of storage, because even though the aggregate
lifetimes of these edges conflict, the buffer periods do not. Thus, the memory
requirement for buffering can be reduced almost in hal#to units of storage.

This fragmentation technique can be exploited by first-fit, best-fit, and
related storage optimization schemes. In such schemes, we maintain a list of vari-
ables along with their sizes and lifetimes; if a variable becomes live earlier than
another variabley , ther occurs earlier in the list than . Also, we maintain a
free-list of unallocated contiguous segments of memory. At each step, we remove
the head of the variable list from the list, and we assign it to a free memory block
for the duration of the variable’s lifetime. In first-fit allocation, we choose the first
free block of sufficient size, while in best fit, we choose the free block of sufficient
size whose size differs from the size of the variable by the least amount. In general,
best-fit leads to more compact allocation, while first-fit is computationally more
efficient.

For example, if we use the aggregate buffer lifetimes in Figure 4.7(b), then
neither first-fit, best-fit, nor any other storage allocation scheme will achieve any

overlaying between the four variables to be allocated,24nd units of storage are

200

Schedule: AB(10D)C(10E)B(10D)C(10E)

(@)

A; By D;...D1gC1 Eg ... E1q By Dyj ... Dog Cy Eyj ... Eng
ATB

BtD

ArC

Aggregate Buffer Lifetimes

(b)

A;B;D;..D1gC1Eg ... E4o By Dyg ... Dog Cp Eyg .. Eng

. B1D <1> CtE<l> | BiD<2> | CtE<2>
ATB

ArC

Buffer Period Lifetimes
©

Figure 4.7 An illustration of opportunities to overlay buffers based on the
periodicity of accesses.

199

4.4 Overlaying Buffers

When large sample rate changes are involved, assigning each buffer to a
single contiguous block of physical memory may require more data memory space
than what is available. In this section, we show how to fragment buffers in physi-
cal memory, which can expose more opportunities for overlaying [Fabr82]. This
technique can be used to improve first-fit, best-fit, and related storage optimization
schemes, which are frequently applied to memory allocation for variable sized data
items. In [Fabr82], Fabri has studied more elaborate storage optimization schemes
that incorporate a generalized interference graph. Such schemes are also compati-

ble with the methods developed in this section.

4.4.1 Fragmenting Buffer Lifetimes

Figure 4.7 illustrates how lifetime analysis and fragmentation information
can be used to reduce storage requirements. Here, a multirate SDF graph is
depicted along with a looped schedule for the graph and the resulting buffer life-
time profiles. In the first profile, each edge is treated as an indivisible unit with

respect to storage allocation. We see that this straightforward designation of buffer
lifetimes reveals no opportunities to share storage and thus the Adge3 ,
A- C,B- D,andC - E require2 2 10 , andl0 units of storage, respec-
tively, for a total of24 units.

Notice, however, that the invocations that acdgss D can be divided
into two sets{B;,D;,D,, ...,D;o} and{B,,D;;, Dy, ..., D, such that all

tokens are produced in the same set in which they are consumed — there is no

interaction among the two sets. Thus, they can be considered as separate units for

198

each actor, whereas reaching definitions can all be dealt with in a single pass. In
practice, however, we are concerned only with the columns of the first-reaches
matrix that correspond to actors that access multiword contiguous buffers, so often
a large number of passes can be skipped.

To fully assess the benefits of choosing static buffering over dynamic buff-
ering for a particular edge, we must consult the first-reaches table at every spill
point. Performing this check for every multiword buffer is very expensive. Instead,
we should generally perform this check only for the sections of the program that

are executed most frequently.

Aq Co

A2 %]

Aj Bq Cs By Cy Bg Cg

Ay Cl B C6 By C7 Bg Cg
A1,A2,A3,A4 T T T F F F F F
Cq T F T T F F F F
B1,B3 T F F T T F F F
C»,C3,C5,Cq T F F T T T F F
Bo,By T F T F F T T F
C4.Cy T F T T F F T T
Bs,Bg T F T F F F T T
Cg.Coq T T T F F F T T

Table 4.2. The first-reaches table associated with the looped schedule
(4A) C(2B(2C)BC) (2BC) (the corresponding CCSS flow graph is shown
in Figure 4.3(b)). The entry corresponding to a row CCSS X and a column
CCSS Y is true (“T") if and only if there is a control path directed from X to Y
that does not pass through another CCSS for the actor that corresponds to Y.

197

that reach a CCSS féx before traversing any vertex twice, add [&t denote
the first CCSS foA thgd encounters. Then the buffer pointer must be spilled to

memory if and only if the se? contains a member that does not axcess stati-
cally.

Traversing paths at every spill may be extremely inefficient. Instead, we
can perform a one-time analysis of the loop organization to construct a table con-
taining the desired reachability information. The concept is similar to the conven-
tional global dataflow analysis problem of determining which variable definitions
reach which parts of the program [Aho88]. However, our problem is slightly more
complex. In global dataflow analysis, we need to know which variable definitions
are live at a given point in the program. For eliminating buffer pointer spills, we
need to know which points in a program can reach a given @@B&ut passing
through another CCSS for the same acldris information can be summarized in

a boolean table that has each entry indexed by an ordered pair of common code

space set{C,, C,) . The entry f¢C,, C,) will be true if and only if there is a
control path directed fror®;, t@, that does not pass through another CCSS for

the actor that corresponds®, . We refer to this table d&sheeaches table

since it indicates the points (the common code space sets) at which control first
reaches a given actor from a given CCSS. Table 4.2 shows the first-reaches table
for the looped schedul€¢4A) C (2B (2C)BC) (2BC) . The CCSS flow graph
corresponding to this schedule is depicted in Figure 4.3(b).

The first-reaches table can be systematically constructed by a technique,
specified in [Bhat92], that is based largely on the methods described in [Aho88]
for computing reaching definitions. An important difference is that a separate pass

through the loop hierarchy is required to construct the columns associated with

196

that static buffers of length2 ar@l are used for the edgesB BandC :
respectively. Thaccess portolumn specifies the different actor-edge incidences

in the SDF graph. For examplé,» (A - B) refers to the connection of edge
A - B as the output edge of actar , afd - C) »C refers to the connection
of edgeB - C as the input edge of ac@r . Tiecationcolumn lists the fir-

ings of the actor with the associated access port, and the offset at which the th

invocation of this actor references the access port is given in the th offset entry

for the access port. Examination of Table 4.1 reveals that the members of CCSS

{C,,C;} readfromedg® -~ C atthe same offset. Similarly, the write accesses

of the common code space s¢t8,, B} 41}, B,} occur respectively at the

same offsets. If all members of a CC8S access ancedge at the same offset, we

say thatY” accessest statically

Thus, when a pointer into a static buffer is spilled, and the pointer is
accessed elsewhere from within a loop, it is not always necessary to spill the
pointer to memory. The procedure for determining whether a spill is necessary at a
given swap point can be conceptualized easily in terms of the CCSS flow graph,

which we introduced in Section 4.1.1. Suppose that a buffer pointer associated

with actorA and edge must be swapped out of its register at some point in the

program. First, we must determine the vertex in the CCSS flow graph that corre-

sponds to this swap point. Fram , we traverse all paths until they either reach the
end of the program, they traverse the same vertex twice (they traverse a cycle), or
they reach an occurrence of a CCSSAor . We are interested onlyfirsttkhiene

a path encounters a CCSS for . Bt be the set of all paths directed from

195

tions accesses the buffer at a different offset, we cannoRoad with an immediate
value. The value to load infR = must be obtained from a memory location and the

current value 01’(3rp must be written into this location whendver is swapped

out. It can easily be verified that at most three tokens coexist onC at any
given time, and thus a dynamic buffer of size three could implement the edge.
Since the organization of loops precludes exploiting the static information of a
length four buffer, dynamic buffering is definitely preferable in this situation.

It is not always the case that different members of a CCSS access a static
buffer at different offsets. As an illustration of this, consider again the SDF graph
in Figure 4.3(a), and consider the looped sched@dk) C (2B (2C) BC) (2BC)

We can tabulate the offsets for every buffer access in the program to examine the

access patterns for each CCSS. Such a tabulation is shown in Table 4.1, assuming

access port invocatior] offset access port invocation) offset
(A - B)»B 1 0 (B-0CO»C 1 0
2 2 2 2
3 4 3 4
4 6 4 0
5 8 5 2
6 10 6 4
B» (B - O 1 3 7 0
2 0 8 2
3 3 9 4
4 0 A» (A- B 1 0
5 3 2 3
6 0 3 6
4 9

Table 4.1. A tabulation of the buffer access patterns associated with the
schedule (4A) C (2B (2C)BC) (2BC) for the SDF graph in Figure 4.3(a).

194

accesses the buffer. Thus we can resume buffer addressing with an immediate
value and there is no need to spill the pointer to memory. As a result, every time a
buffer pointer of the source or sink actor is swapped out, dynamic buffering
requires an extra store to memory.

For instance, consider the example in Figure 4.6. Here, it is easily verified

Schedule: A(2B(2DCE))

Figure 4.6.An example of how loops can limit the advantages of static
buffering.

that (A B,C D, B = (1,24 4 4. Sincetotal_consume@B — C) = 4 ,
a buffer of size four suffices for static buffering on the dige C . Now, the code

block for actorC must acceg& -~ C through some physical address régjister

andR must contain the correct buffer posit'@;b every time the code block is
entered. If it is not possible to dedicake (ﬁpp for the entire inner loop
(2DCE) , thenR must be loaded with the current vaIueOpJ just prior to
entering the code block f& . Since the code block executes invoc@tjors, ,

Cs, andC4 — the members of the associated CCSS — and each of these invoca-

193

tokens) are also possible, but one must first verify that no access within a loop
wraps around the buffer. This expensive check is rarely worth the effort. A simple
rule of thumb can be used to decide whether to switch to linear buffering for a
delayless edge: we prioritize each delayless edge by the “urgency mgasure”

defined by

W (a)=

[total _consumeda) } 9 (4-1)

minimum buffer size ofx

1
[total_consumeda) — (minimum buffer size oh)}

The first bracketed term is the number of modulo accesses that occur on
each end ofx every schedule period, and the denominator in the second term is
the storage cost to convert this edge to a static buffer ofatiale consumeda)

Thuspu (a) denotes the number of modulo accesses eliminated per unit of addi-
tional storage. We simply convert the edges with the highest values until we
have exhausted the remaining data memory. Many variations on this scheme are

possible, and architectural restrictions on the layout of storage, such as multiple

independent memories [Lee88b] may require modification.

4.3 Increasing the Efficiency of Static Buffers

The storage economy of dynamic buffering comes at the expense of poten-
tial execution-time overhead. When a pointer to a dynamic buffer is swapped out
of its physical register, it is mandatory that its value be spilled to memory so that
the next time the pointer is used, it can resume from the correct position in the

buffer. With static buffering, we know the offset at which every invocation

192

memory requirements are severe, edges should be implemented as scattered buff-

ers whenever possible. We will discuss storage optimization further in Section 4.4.

4.2.3 Linear vs. Modulo

For each contiguous buffer, we must determine whether modulo address
updates will be required to make the buffer pointer wrap around the end of the
buffer. Such modulo address updates normally require overhead; the amount of
overhead varies from processor to processor. For instance, recall the discussion in
Section 4.1.2 regarding the Motorola DSP56000’s hardware support for modulo
address generation. Here a “modifier register” must be loaded with the buffer size
before modulo updates can be performed on the corresponding address register, so
there is a potential overhead of one instruction every time the buffer pointer is
swapped into the register file. When there is no hardware support for modulo
addressing, as with general purpose microprocessors such as the MIPS R3000
[Kane87], the modulo update must be performed in software every time the buffer
is accessed. This typically requires an overhead of several instructions for each
buffer access.

In Section 4.5, we will present general techniques for eliminating modulo
accesses. Presently, we conclude that circular buffering may potentially introduce
execution-time overhead. For edges with delay, this risk is unavoidable — circular
buffers are mandatory. However, for some delay-free edges, it may be preferable to

forego the data-memory savings offered by modulo buffering so that the overhead
can be avoided. For an SDF edge , a buffer sizetaf_consumeda) clearly
guarantees that no modulo accesses will be required — provided that we reset the

buffer pointer at the start of every schedule period. Smaller buffer sizes (divisors

of total_consumeda) which meet or exceed the maximum number of coexisting

191

follows thattotal consumeda) must be a positive integer multiple of the logical
buffer size ofY , and thus the buffer must be static. Thus, a dynamic buffer cannot

be implemented with only absolute addressing, and if an actor accesses a
dynamic buffer, the current position in the buffer must be maintained as a state
variable ofA . We will elaborate on the contiguity requirements for dynamic buff-
ering in Section 4.4.

An important aspect of the physical layout of a buffer is the effect on total
storage requirements. The locations of a scattered buffer are not restricted to be
mapped to continuous memory addresses, and graph coloring [Golu80] can be
used to assign physical memory locations to the set of scattered buffers. If all scat-
tered buffers correspond to delayless edges, then the interference graph becomes
an interval graph, and interval graphs can be colored with the minimum number of
colors in time that is linear in the number of vertices and edges [Carl91]. The pres-
ence of delay on one or more of the relevant edges complicates graph-coloring
substantially. A delay results in a token that is read in a schedule period after the
period in which it is written, and thus the lifetime of the token crosses one or more
iterations of the program’s outermost loop. The resulting interference graphs
belong to the class of circular-arc graphs [Hend92]. Finding an optimal coloring
for this class of graphs is intractable, but effective heuristics have been demon-
strated [Hend92].

When subsets of variables must reside in contiguous locations, we expect
that the memory requirements will increase since this imposes additional con-
straints on the storage allocation problem. Until further insight is gained about this
effect, we cannot accurately estimate how much more memory will be required if a
particular scattered buffer is changed to a contiguous buffer. However, since opti-
mally compact storage layout requires scattered buffers, it is likely that when data-

190

(1). n cannot be less than the maximum number of live tokens that coexist
on the corresponding edge

(2). If delay(a) = 0, then static buffering is possible with any logical
buffer size that meets criterion (1). Otherwise, static buffering is possible if and

only if for some positive integek tptal_consumeda) = kn.

Thus, static buffering for an edge with delay may require additional storage
space —50 % more in the case of the example in Figure 4.5. The difference may
be negligible for most buffers, but it must be kept in mind when sample rates are
very high. Further trade-offs between static and dynamic buffering are discussed in

Section 4.3.

4.2.2 Contiguous vs. Scattered

Once we have decided whether a buffer is to be static or dynamic, we may
decide upon whether it will becantiguous buffer, occupying a section of succes-
sive physical memory locations, or whether the buffer magcageredthrough
memory. Scattered buffering allows more flexibility in memory allocation, which
can lead to lower memory requirements. However, as we discussed in Section 4.1,
contiguity constraints between the location of successive buffer accesses may be
imposed by loops in the schedule. Similarly, loops that are contained in actor code
blocks lead to contiguity constraints.

Dynamic buffering also induces contiguity constraints. In dynamic buffer-

ing, no invocation accesses the logical buffer at the same offset every schedule

period. To see this, suppose that some invocwtjon accesses arbuffer for some
edgea at the same offset every schedule period. Since the buffer poin@?r for

advancedotal _consumeda) positions from one schedule period to the next, it

189

edge, there will always be a token in the buffer at the beginning of each schedule

period — this is the first token consumed by invocatgn . For static buffering,

we need this “delay token” — which is consumed in the schedule pterdt is
produced — to reside in the same memory location every schedule period. Com-

parison of the initial and final buffer states in Figure 4.5 reveals that this is not the
case since the write pointé/ did not wrap around to point to its original location.
Clearly, W could have returned to its original position if and only if the total num-
ber of advances made by (six, in this case) was an integer multiple of the buffer
length. But the total number of advances made W is simply

total_consumedU - V) . We summarize with the following theorem.

Theorem 4.1: For a given schedule, the logical buffer sike must satisfy the fol-

lowing two conditions:

Ug U/ ®

= @
S
E%

N
i
<
o= e
°
°
g%
S
°
°
°
}ro = @

=
py

Uo

T— @
S—=

W R

Figure 4.5.The effect of delay on the minimum buffer size required for
static buffering.

188

pies a region of contiguous memory locations, whether the accesses to the buffer
are static, and whether the buffer is circular or linear. By the logical size of a
buffer, we mean the number of memory locations required for the buffer if it is
implemented as a single contiguous block of memory. For example, the buffer for
the graph in Figure 4.4 will have a logical size of four or six depending, respec-
tively, on whether or not we are willing to pay the cost of resetting the buffer point-
ers before the beginning of every schedule period. In Section 4.4, we will show
that it may be desirable to implement a buffer in multiple nonadjacent segments of
physical memory.

Note that in our model of buffering, as in Figure 4.4, each token is read
(consumed) from the same memory location that it is produced into, and thus there

is no rearrangement of live tokens in the physical memory space.

4.2.1 Static vs. Dynamic

For an SDF edge , static buffering means that for Isoilrce(a) and
sink(a) , thei th token accessed in any schedule period resides in the same mem-
ory location as the th token accessed in any other schedule period [Lee87]. A
buffer that is not static is calleddgnamic buffer. From our discussion of Figure
4.4, it is clear that ifdelay(a) = 0 , static buffering can occur with a logical
buffer size equal to the maximum number of live tokens that coexist in the buffer.
However, ifa has nonzero delay, then we must impose the additional constraint
that total_consumed@a) is some positive integral multiple of the buffer length.

The need for this constraint is illustrated in Figure 4.5. Here, the minimum
buffer size according to the rule for zero delay is four, since up to four tokens con-

currently exist in the buffer for the given schedule. Figure 4.5 shows the succes-

sion of buffer states if a buffer of this length is used. Since there is a delay on the

187

each schedule period to point to the beginning of the buffer, and thus the access
patterns depicted in Figure 4.4 could be repeated every schedule period. This
would cause the locations in each buffer access tstdiee — fixed for every
schedule period — and hence they would be known values at compile time.

This illustration renders false the previous notion that for static buffering,
the total number of tokens exchanged on an edge per schedule period must always
be a multiple of the buffer size. As we will show in the following section, the
requirement holds only when there is a nonzero delay associated with the edge in

guestion.

4.2 Buffer Parameters

To guide memory allocation and code generation, we must determine four

gualities of each buffer — tHegical sizeof the buffer, whether the buffer occu-

=
o= e | T= e

==

Figure 4.4 An illustration of modulo addressing.

186

4.1.2 Modulo Addressing

Most programmable DSPs offemaoduloaddressing mode, which can be
used in conjunction with careful buffer sizing to alleviate the memory cost associ-
ated with requiring buffer accesses to be sequential. This addressing mode allows
for efficient implementation of circular buffers, for which indices need to be
updated modulo the length of the buffer so that they can wrap around to the other
end.

For example, in the Motorola DSP56000 programmable DSP, a modifier
registerMX is associated with each address regi&ter . Loadlhg with an
integern >0 specifies a circular buffer of lengtkr 1 . The starting address of the
buffer is determined by the value that is storedRix . If weblet denote the

value obtained by clearing tffelogz(n+ 1)"| least significant bitsrof , then

assuming thab<v< (b+ n , an autoincrement accéBX) + updraxes to
b+ ((v—=-b+1) mod(n+1)).

Figure 4.4 illustrates the use of modulo addressing to decrease memory
requirements when sequential buffer access is needed. The schied@ir/)
would clearly require a buffer size 6f for iterative access if only linear address-

ing is available. However, as the sequence of buffer diagrams in Figure 4.4 shows,

only four memory locations are required when postincrement modulo addressing
is usedW and®R respectively denote the write pointer for dé¢tor and the read

pointer forV , and a black dot inside a buffer slot indicat@seaoken — a token
that has been produced but not yet consumed. Note that the accesses of the second

invocation ofU and the second invocationof wrap around the end of the buffer.

Observe also that the pointedRs &M can be reset at the beginning of

185

3 2 3 2
()=~

(@)

(b)

Figure 4.3 An illustration of common code space sets and the CCSS flow graph.

184

heuristics for coloring this class of graphs are applied. The techniques developed
in this chapter do not depend on a specific method of register allocation.

We conclude this subsection with two definitions.

Definition 4.1: Given an SDF grapke , a looped schedble Gor , and an actor
A in G, acommon code space seabbreviatedCSS for A is the set of invoca-

tions of A that are represented by some appearange oS in

A CCSS is thus a set of invocations carried out by a given sequence of

instructions in program memory (code space). For example, consider the looped

schedule(4A) C (2B (2C) BC) (2BC) for the SDF graph in Figure 4.3(a). The

CCSS’s for this looped schedule afeA;, A, Aj A} {C;} {B; Bg} :

{C, CsC:,Cgt , {B, B}, {C,C}, {BgBg ,and{Cg Cy}

It will be useful to examine thigow of common code space sets. This can
be depicted with a directed graph, called @@SS flow graph that is largely
analogous to thbasic blockgraph [Aho88] used in conventional compiler tech-

niques. Each CCSS corresponds to a vertex in the CCSS flow graph, and an edge is
inserted from a CCS$; to a CCS§ if and only if there are invocations
A 09, and Bj 00, such thaBj is invoked immediately affgr . To illustrate

CCSS flow graph construction, Figure 4.3(b) shows the CCSS flow graph associ-
ated with the schedul@4A) C (2B (2C) BC) (2BC) for the SDF graph in Figure
4.3(a).

183

defining the actors. However the techniques are best-suited when actor inputs and
outputs are referenced symbolically, and the assignment of machine registers and
memory locations is performed by the compiler, as in the Comdisco Procoder
[Powe92]. In this type of actor definition language, a simple addition actor might

have the following as its defining code block:

add inl, in2, out
It is left to the compiler to replacdel in2 , aodt with register references and
to make sure that data is routed appropriately between the registers. For example,
if the adder is executed through a loop, and this loop does not contain the actor
whose output is consumed by input pori |, it is generally desirable to load the
register corresponding 01 through an address register. This is the case with the

input to actorB in Figure 4.2. Alternatively, the schedule may permit data to be
exchanged directly through registers, in which case the generated code might look
like:

add r0, r1, r2

add r2, r3, r4
(this corresponds to a cascade of adders).

Another important code generation issue is register allocation, which is
critical both for data and address registers. Scheduling heuristics for improving
register allocation in homogeneous SDF block diagrams are discussed in
[Powe92]. These techniques can be applied to homogeneous subgraphs in multi-
rate graphs in conjunction with clustering techniques, such as those presented in
Section 3.2. A recently-developed approach to register allocation studied by Hen-
dren et al. [Hend92] appears promising for multirate code generation. In this tech-

nique, a hierarchy of circular-arc graphs is extracted from nested loop code, and

182

SDF graph, a looped schedule for the graph, and an outline of assembly code that

could efficiently implement this schedule. In the code outline, the statement “do
#n LABEL” specifiesn successive executions of the block of code between the
do statement and the instruction at locatigkBEL Thus, the successive firings of
actorB are carried out with a loop. This requires that both invocatioBs of must
access their inputs with the same instruction, and that the output daka for be
stored in a manner that can be accessed iteratively. This in turn suggest writing the
data produced byA to successive memory locations, and hBving read this data
using the register autoincrement or autodecrement addressing modes that are typi-
cal in programmable digital signal processors. Here, the output tokehs of are
stored in successive locationsf dnd+1 ,8nd reads these values into local
registerxO through the autoincremented buffer poiriter

The techniques in this chapter do not depend on a specific language for

code for “A”
outputs in X0 and y0

move X0, buf

2 1 move yO0, buf + 1
move #buf, r2
do #2, LOOPEND

move (r2)+, x0

Schedule: A(2B) code for “B”

input in x0

LOOPEND:

Figure 4.2 An example of compiled code for a looped schedule.

181

are often best implemented as contiguous segments of memory to be accessed by
indirect addressing, and thus they cannot be mapped to machine registers. Effi-
ciently implementing such buffers requires reducing the amount of indexing over-
head. We show that for SDF, there is a large amount of information available at
compile-time that can be used to optimize the indexing of multirate buffers. Also,
multirate SDF graphs may lead to very large memory requirements if large sample
rate changes are involved, and this problem is compounded by the presence of
schedule loops. Thus, it may be highly desirable to overlay noninterfering buffers
in the same physical memory space as much as possible. This chapter presents
ways to analyze the dataflow information to detect opportunities for overlaying
buffers that can be incorporated into best-fit and related memory allocation
schemes.

We begin by reviewing the important code generation issues that are perti-
nent to multirate SDF graphs. In Section 4.2, we present a classification of buffers
based on dataflow properties and we discuss these different categories with respect
to storage requirements. The following three sections present code optimization
techniques. Section 4.3 discusses minimizing spills of address registers to memory.
Section 4.4 examines the problem of overlaying buffers for compact memory allo-
cation. Section 4.5 considers optimization opportunities that apply to circular buff-

ers. Finally, Section 4.6 presents a detailed summary of the proposed methods.

4.1.1 Code Generation for Looped Schedules

An important code generation issue for looped schedules is the accessing
of a buffer from within a schedule loop. The difficulty lies in the requirement for
different invocations of the same actor to be executed with the same block of

instructions. As a simple example, consider Figure 4.2, which shows a multirate

180

actor are stored, aralitputrepresents the location in which the output token will
be buffered.

In Figure 4.1, observe that four instructions are required to implement the
addition actor. Simply augmenting the compiler with a register allocator and a
mechanism for considering buffer locations as candidates for register-residence
can reduce the cost of the addition to three, two, or one instruction. The Comdisco
Procoder graphical DSP compiler [Powe92] demonstrates that integrating buffer-
ing with register allocation can produce code comparable to the best manually-
written code.

The Comdisco Procoder’s performance is impressive, however the Pro-
coder framework has one major limitation: it is primarily designed for homoge-
neous SDF, and thus, it becomes less efficient when multiple sample rates are
present. Furthermore, the techniques apply only when the buffers can be mapped
staticallyto memory. In general, this need not be the case, and we will elaborate on
this topic in Section 4.2.

In this chapter, we develop compile-time analysis techniques to optimize

the buffering of SDF graphs that involve multiple sample rates. Multirate buffers

1 move inputl, a
1 move input2, x0
add x0, a
move a, output

Figure 4.1 An illustration of inefficient buffering for an SDF graph.

179

A

INCREASING THE EFFICIENCY
OF BUFFERING

4.1 Introduction

Ho [Ho88a] developed the first compiler for pure SDF semantics. The
compiler, part of the Gabriel design environment [Lee89], was targeted to the
Motorola DSP56000 programmable digital signal processor and the code that it
produced was markably more efficient than that of existing C compilers. However,
due to its inefficient implementation of buffering, the compiler could not match the
quality of good handwritten code, and the disparity rapidly worsened as the granu-
larity of the graph decreased.

The mandatory placement of all buffers in memory, rather than in registers,
is a major cause of the high buffering overhead in Gabriel. Although this is a natu-
ral way to compile SDF graphs, it can create an enormous amount of overhead
when actors of small granularity are present. This is illustrated in Figure 4.1. Here,
a graphical representation of an atomic addition actor is placed alongside typical
assembly code that would be generated if straightforward buffering tactics are
used. The target language is assembly language for the Motorola DSP56000,

inputl andinput2 represent memory addresses where the operands to the addition

178

single appearance parallel schedules (with regards to throughput) cannot be based
solely on topological considerations.

When constructing single appearance parallel schedules or more general
looped schedules for parallel computation, it would be useful to consider the time
required for interprocessor communication. Scheduling techniques for SDF graphs
that take interprocessor communication into account have been developed by Liao
et al. [Liao93] and Sih [Sih91]; however these techniques do not attempt to con-

struct loops in the target code.

234

S;= (8s(3s(4pA)) (4s(3pB))) (96pC) .

If we denote the execution times of actdks B, ad thyg te ,
respectively, then we can measure the throughput 8f as
throughput(§) = 90/ (6(3, +5tz) +t;) minimal schedule periods per unit
time. Similar expressions can easily be derived for the throughgy of S,and

The table below lists the throughput of each schedule for three different sets of

execution times.

t, tg 1 throughput(§) throughput(§) throughput()
500 150 1 0.00667 0.00571 0.00571
50 1 950 0.0479 0.0500 0.0440
1 950 950 0.00305 0.00206 0.00306

In this table, we see that each set of execution times corresponds to a different
throughput-minimizing schedule from among the three schedules considered.

Thus, we see that even for homogeneous SDF graphs, the construction of optimal

Figure 5.3 An example used to illustrate the problem of constructing sin-
gle appearance parallel schedules.

233

appending a lettes to the iteration count if it is to be executed serially and a letter
p if it is to be executed as a doall loop. Thus, for example the schedule

(2p(2sA) (4pB)) corresponds to the processor-time execution profile in Figure
5.2.

The basic problem to address in constructing this type of single appearance
parallel schedule is determining the schedule that maximizes the throughput.
Unlike the problem of minimizing code size, the solution to an instance of this
problem depends in general on the execution time of each actor invocation, and
thus a solution cannot be obtained from a topological analysis alone. This compli-
cation applies even to homogeneous SDF graphs. As a simple example, consider

the homogeneous graph in Figure 5.3, and consider the single appearance parallel

schedules S, = (6s(3s(5pA)) (5s(3pB))) (90pC)

S, = (5s(4s(5pA)) (10s(2pB))) (100pC) , and

Figure 5.2 The processor-time execution profile for the single appearance par-
allel schedule (2p(2sA) (4pB)) . The vertical axis corresponds to time and
the horizontal co-ordinate identifies one of eight available processors P, —Pg.

It is assumed that each actor invocation takes one time unit. A shaded region
indicates that no operation is performed.

232

fully occupy the available program memory, then we would like to know how the
remaining program memory can be utilized to expand the schedule in such a way
that the buffer memory requirement is minimized. Alternatively, one can attempt
to develop a scheduling algorithm that is not restricted to single appearance sched-
ules and attempts to jointly minimize the code size and buffer memory require-
ment. A further step in this scheduling problem is incorporating considerations that

relate to buffer overlaying.

5.3 Parallel Computation

A number of scheduling techniques have been developed for compiling
SDF graphs into efficient code for multiprocessor systems, for example [Sih91,
Prin91, Liao93]. However these technigques do not consider code size constraints.
Thus, it would be useful to extend the loose interdependence scheduling frame-
work to address parallelism as well as memory requirements. An interesting prob-
lem that arises in this domain is the construction of optimal single appearance
parallel schedules.

One restricted class of single appearance parallel schedules that would be
useful to consider is that in which each schedule loop is either a serial loop, whose
iterations are to be executed in succession as in the uniprocessor scheduling case,
or adoall loop — a loop in which all iterations can execute simultaneously with-

out any synchronization between them [Zima90]. Given a schedule loop in this
model, it is executed serially if for some invocation of the loop, data produced
by some iteration of is consumed by another iteratioh of . If all iterations of a

given invocation of a schedule loop are independent, then all iterations are exe-

cuted in parallel. The execution “mode” of each loop can be represented by

231

retiming can be implemented by firild)y once @semmbleto the periodic sched-

ule. However, the code to construct this preamble will negate the advantage of
having a more compact periodic schedule. Alternatively, since the transformation
in computation may lead simply to a transient that diminishes with time, it may be
valid to ignore the preamble and directly implement a periodic schedule for the
retimed graph. In such cases, applications of retiming such as the example of Fig-
ure 5.1 can improve code size compactness for tightly interdependent graphs.
Thus, it would be useful if we could efficiently determine when a tightly interde-
pendent SDF graph can be retimed into an SDF graph that has a single appearance

schedule, and if we could determine appropriate retimings for such cases.

5.2 Buffering

In Section 4.6, we discussed some directions for further study to develop
systematic methods to choose optimally between static vs. dynamic, linear vs.
modulo, and contiguous vs. scattered buffers. Also, more powerful techniques are
desirable for minimizing the buffer memory requirement of a schedule. We have
presented a technique to construct the single appearance schedule that minimizes
the buffer memory requirement for a chain-structured SDF graph. Techniques to
address this problem for general acyclic graphs would be useful for incorporation
into the acyclic scheduling algorithm. Similarly, a technique for constructing sub-
independent partitions that leads to minimum buffer memory requirement is desir-
able.

Systematic assessment of scheduling trade-offs between the code size and
the buffer memory requirement is another area for further study. For example, if a

single appearance schedule has been constructed, and the resulting code does not

230

techniques for scheduling tightly interdependent graphs compactly. Once devel-
oped, such techniques can be incorporated in the tight scheduling algorithm with-
out affecting the performance of the other three component algorithms.

One direction of study in the problem of compactly scheduling tightly
interdependent graphs is the applicatiorratiming Retiming was proposed by
Leiserson et al. [Leis83] as a technique for minimizing the clock period of syn-
chronous digital circuits. Extension of the retiming concept to general SDF graphs
was discussed by Lee in [Lee86]; and in [Zivo93], Zivojnovic et al. formally ana-
lyze properties of retimed SDF graphs and they formulate an integer linear pro-
gramming solution to the problem of minimizing the total delay count of an SDF
graph through retiming.

In an SDF graph, retiming can be viewed as rearranging the delays in
accordance with certain constraints. As a simple example of retiming, and how it
can improve the scheduling of tightly interdependent subgraphs, consider the

example of Figure 5.1. Figure 5.1(a) shows a tightly interdependent SDF graph,
and Figure 5.1(b) shows how moving the delay on the édgeB to the edge

B - A results in a graph that has a single appearance schedule. This application of

Figure 5.1 An example of how retiming can lead to more compact sched-
ules of SDF graphs.

229

several practical examples, such as the digital audio tape to compact disc sample
rate conversion system of Figure 1.1, developed by Thomas M. Parks, a fellow
graduate student at U. C. Berkeley; and a QMF filter bank that was developed by
Alan Peevers, who is now at Emu/Creative Systems. Our scheduling framework
has constructed optimally compact schedules for all of these examples. An exam-
ple of particular interest is a rake receiver for spread spectrum communications,
developed by Sam Sheng, a fellow graduate student at U. C. Berkeley. For this
example, in the C code generation domain of Ptolemy, our scheduling framework
generated a code file whose size was under 35 kilobytes, while Buck’s loop sched-
uler [Buck93], discussed in Subsection 3.4.2, generated a 1.3 megabyte code file.
Although, the fast heuristics on which Buck’s scheduler is based often succeed in
constructing very compact schedules, in this particular instance, the more thorough
techniques developed in this thesis outperformed Buck’s scheduler by more than a
factor of 37.

In this remainder of this section, we discuss a number of problems that

remain open in the area of compiling SDF graphs.

5.1 Tightly Interdependent Graphs

Loose interdependence algorithms guarantee optimal code size for each
actor that does not lie in a tightly interdependent subgraph, and they guarantee that
the number of appearances of each actor within a tightly interdependent subgraph
is determined entirely by the tight scheduling algorithm, however, this thesis does
not propose any techniques that give guarantees on how compactly a tightly inter-
dependent component will be scheduled. Thus, to provide a more complete solu-

tion to the problem of generating compact code, it would be useful to study

228

5

FURTHER WORK

This thesis has presented a formal theory for constructing and manipulating
loops from SDF representations of digital signal processing algorithms, and based
on this theory, techniques have been presented for compiling SDF programs into
efficient code for programmable processors. The techniques have focused on the
minimization of code size, the minimization of the buffer memory requirement,
and the efficiency of buffering. We have defined a class of code-size-minimizing
schedules callesingle appearance schedul@$he central contribution of this the-
sis is a uniprocessor scheduling framework that constructs single appearance
schedules whenever they exist, and when single appearance schedules do not exist,
guarantees optimal code size for all actors that are not contained in a certain type
of subgraph called &ghtly interdependent subgraph

This scheduling framework has been implemented in Ptolemy, a design
environment for simulation, prototyping, and software synthesis of heterogeneous
systems [Buck92]. A large part of the implementation in Ptolemy was performed
by Joseph Buck, a graduate student colleague at the time and now with Synopsys
Inc., and Soonhoi Ha, a post-doctoral fellow of U.C. Berkeley at the time and now
a lecturer at Seoul National University. The implementation has been tested on

227

Acoustics, Speech, and Signal Processiiiguquerque, April, 1990.

[Wolf89]
M. Wolfe, Optimizing Supercompilers for SupercomputeviiT Press,
1989.

[Wolf91]
M. E. Wolf and M. S. Lam, “A Data Locality Optimizing Algorithmiro-
ceedings of the ACM Conference on Programming Language Design and
ImplementationSan Francisco, June, 1991.

[Yu93]
K. H. Yu and Y. H. Hu, “Optimized Code Generation for Programmable
Digital Signal ProcessorsProceedings of the International Conference on
Acoustics, Speech, and Signal Procesditigneapolis, April, 1993

[Zima90]
H.Zima and B.Chapmaigupercompilers for Parallel and Vector Comput-
ers ACM Press, 1990.

[Ziss87]
M. A. Zissman, G. C. O’Leary, and D. H. Johnson, “A Block Diagram
Compiler for a Digital Signal Processing MIMD Computd?fbceedings
of the International Conference on Acoustics, Speech, and Signal Process-
ing, Dallas, April, 1987.

[Zivo93]
V. Zivojnovic, S. Ritz, and H. Meyr, “Multirate Retiming: A Powerful Tool
for Hardware/Software Codesign,” technical report, Institute for Integrated

Systems in Signal Processing, Aachen University of Technology, 1993.

248

[Ritz92]
S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis for Sig-
nal Processing Systemd7toceedings of the International Conference on
Application Specific Array ProcessoBerkeley, August, 1992.
[Ritz93]
S. Ritz, M. Pankert, and H. Meyr, “Optimum \ectorization of Scalable
Synchronous Dataflow Graphg?toceedings of the International Confer-
ence on Application-Specific Array ProcessManice, October, 1993.
[Schm91]
U. Schmidt and K. Caesar, “Datawave: a Single-Chip Multiprocessor for
Video Applications,"IEEE Micro MagazingVol. 11, No. 3 June, 1991.
[Sih91]
G. C. Sih,Multiprocessor Scheduling to Account for Interprocessor Com-
munication Ph.D. thesis, Memorandum No. UCB/ERL M91/29, Electron-
ics Research Laboratory, University of California at Berkeley, April, 1991.
[Tarj72]
R. Tarjan, “Depth-First Search and Linear Graph Algorithr8&M Jour-
nal of ComputingJune, 1972.
[Tow88]
J. Tow, S. L. Gay, and J. Hartung, “Implementation of DSP Applications
Using the AT&T DSP32C Compiler and Application Librargfoceed-
ings of the International Symposium on Circuits and SystEsmoo, Fin-
land, June, 1988.
[Veig90]
M. Veiga, J. Parera, and J. Santos, “Programming DSP Systems on Multi-

processor ArchitecturesProceedings of the International Conference on

247

CMU-CS-91-141, School of Computer Science, Carnegie Mellon Univer-
sity, May, 1991.

[Parh91]
K. K. Parhi and D. G. Messerschmitt, “Static Rate-Optimal Scheduling of
Iterative Data-Flow Programs via Optimum UnfoldingEZEE Transac-
tions on Computerd/ol. 40, No. 2 February, 1991.

[Pin094]
J. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthesis for DSP
Using Ptolemy,” invited paper idournal of VLSI Signal Processingp
appear in 1994.

[Powe92]
D. B. Powell, E. A. Lee, and W. C. Newman, “Direct Synthesis of Opti-
mized DSP Assembly Code from Signal Flow Block DiagrarRsgteed-
ings of the International Conference on Acoustics, Speech, and Signal
ProcessingSan Francisco, March, 1992.

[Prin91]
H. Printz, Automatic Mapping of Large Signal Processing Systems to a
Parallel Machine Ph.D. thesis, Memorandum CMU-CS-91-101, School of
Computer Science, Carnegie Mellon University, May, 1991.

[Prin92]
H. Printz, “Compilation of Narrowband Spectral Detection Systems for
Linear MIMD Machines, Proceedings of the International Conference on
Application Specific Array ProcessoBerkeley, August, 1992.

[Reit68]
R. Reiter, “Scheduling Parallel Computationdgurnal of the ACMVol.
15, No. 4 October, 1968.

246

Replication,”International Conference on Programming Language Design
and ImplementatignSan Francisco, June, 1992.

[Mura71]
Y. Muraoka, Parallelism Exposure and Exploitation in Progranizh.D.
thesis, Report 71-424, Department of Computer Science, University of Illi-
nois at Urbana-Champaign, February, 1971.

[Murt93]
P. K. Murthy, Multiprocessor DSP Code Synthesis in PtoleMwgster’s
project report, Memorandum No. UCB/ERL M93/6, Electronics Research
Laboratory, University of California at Berkeley, August, 1993.

[Murt94a]
P. K. Murthy, S. S. Bhattacharyya and E. A. Lee, “Minimizing Memory
Requirements for Chain-Structured Synchronous Dataflow Programs”,
Proceedings of the International Conference on Acoustics, Speech, and
Signal ProcessingAdelaide, Australia, April, 1994.

[Murt94b]
P. K. Murthy and E. A. LeeDn the Optimal Blocking Factor for Blocked
Periodic SchedulesMemorandum No. UCB/ERL M94/46, Electronics
Research Laboratory, University of California at Berkeley, June, 1994.

[Najj92]
W. A. Najjar, R. Roh, and A. P. Wim Bohm, “Initial Performance of a Bot-
tom-Up Clustering Algorithm for Dataflow Graphsfoceedings of the
IFIP Working Conference on Architectures and Compilation Techniques
for Fine and Medium Grain Parallelisn®rlando, January, 1993.

[Ohal91]

D. R. O’Hallaron,The Assign Parallel Program Generatddemorandum

245

allel and Distributed System¥ol. 2, No. 2 April, 1991.

[Lee93]
E. A. Lee, “Multidimensional Streams Rooted in DatafloRtbceedings
of the IFIP Working Conference on Architectures and Compilation Tech-
nigues for Fine and Medium Grained ParallelisBrlando, January, 1993.

[Lee94]
E. A. Lee,Dataflow Process Networksiraft, Department of Electrical
Engineering and Computer Sciences, University of California at Berkeley,
April, 1994.

[Leis83]
C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing Synchronous Cir-
cuitry by Retiming, Third Caltech Conference on VL. $larch, 1983.

[Lia093]
G. Liao, G. R. Gao, E. Altman, and V. K. AgarwalComparative Study of
DSP Multiprocessor List Scheduling Heuristitschnical report, School of
Computer Science, McGill University.

[McGr83]
J. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J. Glauert, I.
Dobes, and P. HohensédSAL: Streams and Iteration in a Single Assign-
ment Language: Language Reference Manual VersignLawrence Liv-
ermore Laboratory, July, 1983.

[Mess84]
D. G. Messerschmitt, “Structured Interconnection of Signal Processing
Programs,’Proceedings of Globecqmtlanta, 1984.

[Muel92]

F. Mueller and D. B. Whalley, “Avoiding Unconditional Jumps by Code

244

[Lear90]
K. W. Leary and W. Waddington, “DSP/C: A Standard High Level Lan-
guage for DSP and Numeric ProcessirRydceedings of the International
Conference on Acoustics, Speech, and Signal Procesaslbgquerque,
April, 1990.

[Lee86]
E. A. Lee,A Coupled Hardware and Software Architecture for Program-
mable Digital Signal Processar#h.D. thesis, Department of Electrical
Engineering and Computer Sciences, University of California at Berkeley,
May, 1986.

[Lee87]
E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous
Dataflow Programs for Digital Signal ProcessindsEE Transactions on
ComputersVol. C-36, No. 2 February, 1982.

[Lee88a]
E. A. Lee, “Recurrences, Iteration and Conditionals in Statically Scheduled
Block Diagram LanguagesYLSI Signal Processing |IIEEE Press, 1988.

[Lee88Db]
E. A. Lee, “Programmable DSP Architectures: partlEEE ASSP Maga-
zine Vol. 5, No. 4, October, 1988.

[Lee89]
E. A. Lee, W. H. Ho, E. Goeli, J. Bier, and S. Bhattacharyya, “Gabriel: A
Design Environment for DSPJEEE Transactions on Acoustics, Speech,
and Signal Processinyol. 37, No. 11 November, 1989.

[Lee9l]

E. A. Lee, “Consistency in Dataflow Graph#EE Transactions on Par-

243

tics, Speech, and Signal ProcessiAtbuquerque, April, 1990.

[Kane87]
G. Kane MIPS RISC Architecturé’rentice-Hall, 1987.

[Karj88]
M. Karjalainen and S Helle, “Block Diagram Compilation and Graphical
Editing of DSP Algorithms in the QuickSig Systen®Ptoceedings of the
International Symposium on Circuits and SysteEspoo, Finland, June,
1988.

[Karp66]
R. M. Karp and R. E. Miller, “Properties of a Model for Parallel Computa-
tions: Determinacy, Termination, QueueinggTAM Journal of Applied
Math, Vol. 14, No. 6, November, 1966.

[Kell61]
J. Kelly, Lochbaum, and V. Wssotsky, “A Block Diagram Compil&gil
System Technical Journalol. 40, No. 3 May, 1961.

[Kogg81]
P. M. Kogge,The Architecture of Pipelined ComputetdcGraw Hill,
1981.

[Lauw90]
R. Lauwereins, M. Engels, J.A. Peperstraete, E. Steegmans, and J. Van
Ginderdeuren, “GRAPE: A CASE Tool for Digital Signal Parallel Process-
ing,” IEEE ASSP Magazin®ol. 7, No. 2 April, 1990.

[Lauw94]
R. Lauwereins, P. Wauters, M. Ade, and J. A. Peperstraete, “Geometric
Parallelism and Cyclo-Static Data Flow in GRAPE-II,” presentd&BE

Workshop on Rapid System Prototypi@genoble, June, 1994.

242

[Hend92]
L. Hendren, G. Gao, and C. Mukerji, “A Register Allocation Framework
Based on Hierarchical Cyclic Interval Graphisgcture Notes in Computer
ScienceFebruary, 1992.

[Henn90]
J. L. Hennessy and D. A. Patters@omputer Architecture A Quantitative
Approach Morgan Kaufmann, 1990.

[Ho88a]
W. H. Ho,Code Generation for Digital Signal Processors Using Synchro-
nous DataflowMaster’s project report, Department of Electrical Engineer-
ing and Computer Sciences, University of California at Berkeley, May,
1988.

[Ho88b]
W. H. Ho, E. A. Lee, and D. G. Messerschmitt, “High Level Dataflow Pro-
gramming for Digital Signal ProcessingyLSI Signal Processing |l
IEEE Press, 1988.

[How90]
S. How,Code Generation for Multirate DSP Systems in GapN&ster’s
project report, Department of Electrical Engineering and Computer Sci-
ences, University of California at Berkeley, May, 1990.

[John75]
Johnson, “Finding all the Elementary Circuits of a Directed GrapifAM
Journal of Computingvol. 4, No. 1, March, 1975.

[Kafk90]
S. M. Kafka, “An Assembly Source Level Global Compactor For Digital

Signal ProcessorsProceedings of the International Conference on Acous-

241

Processors,Proceedings of the International Symposium on Circuits and
SystemsPortland, Oregon, May, 1989.

[Geni90]
D. Genin, P. Hilfinger, J. Rabaey, C. Scheers, and H. De Man, “DSP Speci-
fication Using the Silage LanguageRroceedings of the International
Conference on Acoustics, Speech, and Signal Procesalbgquerque,
April, 1990.

[Gera92]
A. Gerasoulis and T. Yang, “A Comparison of Clustering Heuristics for
Scheduling Directed Acyclic Graphs on Multiprocessodsyirnal of Par-
allel and Distributed Computing/ol. 16, 1992.

[Godb73]
S. S. Godbole, “On Efficient Computation of Matrix Chain Products,”
IEEE Transactions on Computekfol. C-32, No. 9 September, 1973.

[Golu80]
M. C. Golumbic,Algorithmic Graph Theory and Perfect Graph&ca-
demic Press, 1980.

[Gurd85]
J. R. Gurd, C. C. Kirkham, and I. Watson, “The Manchester Prototype
Dataflow Computer,Communications of the AGMol. 28, No. 1, Janu-
ary, 1985.

[Hart88]
J. Hartung, S. L. Gay, and S. G. Haigh, “A Practical C Language Compiler/
Optimizer for Real Time Implementation on a Family of Floating Point
DSPs,”Proceedings of the International Conference on Acoustics, Speech,

and Signal ProcessindNew York, April, 1988.

240

[Denn92]
J. B. DennisStream Data Types for Signal Processitechnical report,
September, 1992.
[Dong79]
J.J. Dongarra and A.R. Hinds, “Unrolling Loops in FORTRASgftware-
Practice and Experien¢&ol. 9, March, 1979.
[Egol93]
T. Egolf, S. Famorzadeh, and V. Madise@in Library-Based Compiler
Optimization for Programmable DSP®chnical report, School of Electri-
cal Engineering, Georgia Institute of Technology, December, 1993.
[Fabr82]
J. Fabri, Automatic Storage OptimizatipblMI Research Press, 1982.
[Fish84]
J. A. Fisher, “The VLIW Machine: A Multiprocessor for Compiling Scien-
tific Code,”IEEE Computer Magazin&/ol. 17, No. 7, July, 1984.
[Gao92]
G. R. Gao, R. Govindarajan, and P. Panangaden, “Well-Behaved Programs
for DSP Computation,’Proceedings of the International Conference on
Acoustics, Speech, and Signal ProcessBan Francisco, March, 1992.
[Garb90]
J. Garbers, H. J. Promel, and A. Steger, “Finding Clusters in VLSI Cir-
cuits,” Proceedings of the IEEE International Conference on Computer-
Aided DesignSanta Clara, November, 1990.
[Geni89]
D. Genin, J. De Moortel, D. Desmet, and E. Van de Velde, “System Design,

Optimization, and Intelligent Code Generation for Standard Digital Signal

239

[Chow88]
F. C. Chow, “Minimizing Register Usage Penalty at Procedure C8I&-~
PLAN Notices\ol. 23, No. 7, 1988.

[Corm90]
T. H. Cormen, C. E. Leiserson, and R. L. Rivéstroduction to Algo-
rithms McGraw-Hill, 1990.

[Covi87]
C. D. Covington, G. E. Carter, and D. W. Summers, “Graphic Oriented Sig-
nal Processing Language — GOSPPfoceedings of the International
Conference on Acoustics, Speech, and Signal Procedsaltgs, April,
1987.

[Davi89]
J. W. Davidson and D. B. WhalleMethods for Saving and Restoring Reg-
ister Values Across Function Callsechnical Report 89-11, Department of
Computer Science, University of Virginia, 1989.

[Davi92]
J. W. Davidson and A. M. Holler, “Subprogram Inlining: A Study of its
Effects on Program, Execution TimelfEEE Transactions on Software
Engineering Vol. 18, No. 2,February, 1992.

[Denn75]
J. B. DennisFirst Version of a Data Flow Procedure Languad@AC
Technical Memorandum 61, Laboratory for Computer Science, Massachu-
setts Institute of Technology, May, 1975.

[Denn80]
J. B. Dennis, “Dataflow SupercomputerisEE Computer Magazin&/ol.

13, No. 11, November 1980.

238

for DSP Systems — Volume 1: DSP Design Challenges, Methodologies,
and Tools Berkeley Design Technologies, Inc., Fremont, California, 1993.

[Buck91]
J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate Signal
Processing In PtolemyProceedings of the International Conference on
Acoustics, Speech, and Signal Processliogonto, April, 1991.

[Buck92]
J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Frame-
work for Simulating and Prototyping Heterogeneous Systemgtna-
tional Journal of Computer Simulatipdanuary, 1994.

[Buck93]
J. T. Buck,Scheduling Dynamic Dataflow Graphs with Bounded Memory
Using the Token Flow ModelPh.D. thesis, Memorandum No. UCB/ERL
M93/69, Electronics Research Laboratory, University of California at Ber-
keley, September, 1993.

[Carl91]
M.C. Carlisle and E. L. Lloyd, “On the k-coloring of Interval&\dvances
in Computing and Information — ICCI 199Dttowa, Canada, Lecture
Note 497 — Springer Verlag, May, 1991.

[Chao93]
L-F. Chao and E. H-M. Sh&tatic Scheduling for Synthesis of DSP Algo-
rithms on Various Modelgechnical report, Department of Computer Sci-
ence, Princeton University, 1993.

[Chas84]
M. Chase, “A Pipelined Dataflow Architecture for Signal Processing: the

NEC pPD7281,"VLSI Signal ProcessindEEE Press, 1988.

237

Dataflow Architecture,IEEE Transactions on Computehifol. C-39, No.
3, March, 1990.

[Arviol]
Arvind, L. Bic, and T. Ungerer, “Evolution of Dataflow Computers,”
Advanced Topics in Dataflow Computifyentice-Hall, 1991.

[Ashc75]
E. A. Ashcroft, “Proving assertions about Parallel Progradwminal of
Computer and Systems Sciervda. 10, No. 1, 1975.

[Bane88]
U. BanerjeeDependence Analysis for Supercomputiigiwer Academic
Publishers, 1988.

[Barr91]
B. Barrera and E. A. Lee, “Multirate Signal Processing in Comdisco’s
SPW,” Proceedings of the International Conference on Acoustics, Speech,
and Signal Processingoronto, April, 1991.

[Bhat92]
S. S. Bhattacharyya and E. A. Lééemory Management for Synchronous
Dataflow ProgramsMemorandum No. UCB/ERL M92/128, Electronics
Research Laboratory, University of California at Berkeley, November,
1992.

[Bhat93]
S. S. Bhattacharyya and Edward A. Lee, “Scheduling Synchronous Data-
flow Graphs for Efficient Looping,Journal of VLSI Signal Processing
No. 6, 1993.

[Bier93]
J. C. Bier, P. D. Lapsley, and E. A. Lé&xsign Tools and Methodologies

236

REFERENCES

[AbuS81]
W. A. Abu-Sufah, D. J. Kuck, and D. H. Lawrie, “On the Performance
Enhancement of Paging Systems Through Program Analysis and Transfor-
mations,”|EEE Transactions on Computekéol. C-30, No. 5 May, 1981.

[Acke82]
W. B. Ackerman, “Data Flow Language$fZEE Computer Magazin&ol.
15, No. 2 February, 1982.

[Ade94]
M. Ade, R. Lauwereins, and J. A. Peperstraete, “Buffer Memory Require-
ments in DSP Applications,” presentedEEE Workshop on Rapid System
Prototyping Grenoble, June, 1994.

[Aho88]
A. V. Aho, R. Sethi, and J. D. Ullmagompilers Principles, Techniques,
and Tools Addison-Wesley, 1988.

[Alle87]
R. Allen and K. Kennedy, “Automatic Transformation of Fortran Programs
to Vector Form,”ACM Transactions on Programming Languages and Sys-
tems\Vol. 9, No. 4, October, 1987

[Ambl92]
A. L. Ambler, M. M. Burnett, and B. A. Zimmerman, “Operational Versus
Definitional: A Perspective on Programming ParadigntsEE Computer
Magazine Vol. 25, No. 9 September, 1992.

[Arvi9O]

Arvind and R. S. Nikhil, “Executing a Program on the MIT Tagged-Token

235

rithm 104
subgraph 39
subindependence 94

subindependence partitioning algorithn

104
subindependent partition 94
subschedule 56
successor 38
synthesis 19

T58

termination of a schedule 45
threading 19

tight scheduling algorithm 104
tightly interdependent 102
token 42

topological sort 41

topology matrix 46
total_consume&?2
transaction 210

trivial directed multigraph 38

valid schedule 49
vertex 38

Q 37
well-ordered 42

251

gcd 36
homogeneous SDF graph 27, 43

input edge 38

inv 57

invocation 43

invocation number 43

invocation sequence generated by
schedule 57

isomorphic SDF graphs 51

iterand of a looped schedule 56

iterand of a schedule loop 56

iteration count 56

J 62
J4a7

lcm 36

live token 185

logical size of a buffer 186
loop 56

loop fusion 71

looped schedule 56

P 58

part of a subschedule 58
path 39

periodic schedule 45
predecessor 38
produced4?2

projection 60
projection60

O 37
q4a7

Jg 04
dr/G 64

reachability matrix 151
ReducedFractior37

repetitions vector 47

repetitions vector of a subgraph 64
R-loop 133

root strongly connected component 41
root vertex 41

R-schedule 133

sample rate consistent 49

loose interdependence algorithms 104 scattered buffer 189

loosely interdependent 102

max37

max_token&9

min 37

minimal periodic schedule 47
mixed grain dataflow 11

nested in 57

schedule 43
schedule loop 56
schedule period 44
SDF graph 42
self-loop 46

S 104

Source38

source38

state 44

non-coprime schedule or schedule loostatic buffer 186, 187

87
null schedule 43
null schedule loop 56
numer37

037
one-iteration loop 57
output edge 38

static scheduling 14

static transaction 210

statically accessing an edge 195

strongly connected 40

strongly connected component 40

strongly connected component sub-
graph 41

strongly connected components algo-

250

INDEX OF TERMINOLOGY AND NOTATION

0037
0037
|37
- 37
-~ 39

actor 43

actors57

acyclic 39

acyclic precedence graph 51

acyclic scheduling algorithm 104

adjacent vertices 39
admissable schedule 43

APG 51

appearances7

associated graph of a path 39
atomic dataflow 11

balance equations 46

blocking factor 47

blocking vector 62

body of a schedule loop 56
buffer 43

buffer memory requirement 58
buffer period 200
buffer_memorp9

buffering 43

Catalan-numbers 134
CCSS 183

CCSS flow graph 183
chain-structured 42

class-S algorithms 54
clustering 65

common code space set 183
connected 40

connected component 40

connected component subgraph 41

consistent SDF graph 49
consumedi2

contained in 57
contiguous buffer 189
coprime 36

coprime schedule or schedule loop 87

cycle 39

dataflow 7

delay42

denom37

directed cycle 39
directed multigraph 37
doall loop 231

dynamic buffer 187
dynamic transaction 210

edge 38
executing a schedule 44

factoring a schedule loop 69
fine grain dataflow 11
fireable 43

firing 43

first-reaches table 196

fully reduced 87
fundamental cycle 39

249

	Binder1
	preliminary_pages
	chapter1
	chapter2
	chapter3
	chapter4
	chapter5
	references

	index

